
Vol.:(0123456789)

Machine Learning (2023) 112:483–514
https://doi.org/10.1007/s10994-022-06286-6

1 3

Learning multi‑agent coordination
through connectivity‑driven communication

Emanuele Pesce2  · Giovanni Montana1,2,3

Received: 10 December 2021 / Revised: 27 October 2022 / Accepted: 23 November 2022 /
Published online: 29 December 2022
© The Author(s) 2022

Abstract
In artificial multi-agent systems, the ability to learn collaborative policies is predicated
upon the agents’ communication skills: they must be able to encode the information
received from the environment and learn how to share it with other agents as required by
the task at hand. We present a deep reinforcement learning approach, Connectivity Driven
Communication (CDC), that facilitates the emergence of multi-agent collaborative behav-
iour only through experience. The agents are modelled as nodes of a weighted graph whose
state-dependent edges encode pair-wise messages that can be exchanged. We introduce a
graph-dependent attention mechanisms that controls how the agents’ incoming messages
are weighted. This mechanism takes into full account the current state of the system as
represented by the graph, and builds upon a diffusion process that captures how the infor-
mation flows on the graph. The graph topology is not assumed to be known a priori, but
depends dynamically on the agents’ observations, and is learnt concurrently with the atten-
tion mechanism and policy in an end-to-end fashion. Our empirical results show that CDC
is able to learn effective collaborative policies and can over-perform competing learning
algorithms on cooperative navigation tasks.

Keywords  Reinforcement learning · Multi-agent system · Neural networks · Graphs

Editors: Krzysztof Dembczynski and Emilie Devijver.

 *	 Giovanni Montana
	 g.montana@warwick.ac.uk

	 Emanuele Pesce
	 e.pesce@warwick.ac.uk

1	 Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
2	 WMG, University of Warwick, Coventry CV4 7AL, UK
3	 Alan Turing Institute, London NW1 2DB, UK

http://orcid.org/0000-0002-0314-8057
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06286-6&domain=pdf

484	 Machine Learning (2023) 112:483–514

1 3

1  Introduction

In reinforcement learning (RL), an agent learns to take sequential decisions by mapping
its observations of the world to actions using a reward as feedback signal (Sutton & Barto,
1998). In the last few years, deep artificial neural networks (LeCun et al., 2015; Schmid-
huber, 2015) have been leveraged to improve the learning ability of RL algorithms in a
number of ways, e.g. as policy function approximators to map observations to actions and
to learn informative data representations. The resulting deep reinforcement learning algo-
rithms (DRL) have recently achieved unprecedented performance in single-agent tasks, e.g.
in playing Go (Silver et al., 2016) and Atari games (Mnih et al., 2015; Vinyals et al., 2019).

Multi-agent reinforcement learning (MARL) extends RL to problems characterized by
the interplay of multiple agents operating in a shared environment. This is a scenario that
is typical of many real-world applications including robot navigation (Tanner & Kumar,
2005), autonomous vehicles coordination (Brunet et al., 1995), traffic management
(Dresner & Stone, 2004), and supply chain management (Lee & Kim, 2008). Compared
to single-agent systems, MARL presents additional layers of complexity. When multiple
learners interact with each other, the environment becomes highly non-stationary from
the point of view of each individual actor (Hernandez-Leal et al., 2017). Moreover, credit
assignment (Rahaie & Beigy, 2009), which is the ability to determine how the actions of
each individual agent impact on the overall system performance, becomes particularly dif-
ficult (Harati et al., 2007; Yliniemi & Tumer, 2014; Agogino & Tumer, 2004).

We are interested in systems involving agents that autonomously learn how to collabo-
rate in order to achieve a shared outcome. When multiple agents are expected to develop
a cooperative behaviour, an important need emerges: an adequate communication protocol
must be established to support the level of coordination that is necessary to solve the task.
The fact that communication plays a critical role in achieving synchronization in multi-
agent systems has been extensively documented (Vorobeychik et al., 2017; Demichelis
& Weibull, 2008; Miller & Moser, 2004; Kearns, 2012; Foerster et al., 2016; Sukhbaatar
et al., 2016; Singh et al., 2019; Pesce & Montana, 2019). Building upon this evidence, a
number of multi-agent DRL algorithms (MADRL) have been developed lately which try
to facilitate the spontaneous emergence of communication strategies during training. In
particular, significant efforts have gone into the development of attention mechanisms for
filtering out irrelevant information (Jiang & Lu, 2018; Mao et al., 2018; Liu et al., 2020;
Hoshen, 2017; Das et al., 2018; Iqbal & Sha, 2019; Wang et al., 2019) (see also Section 4).

In this paper we introduce a MADRL algorithm for cooperative multi-agent tasks. Our
approach relies on learning a state-dependent communication graph whose topology con-
trols what information should be exchanged within the system and how this information
should be distributed across agents. As such, the communication graph plays a dual role.
First, it represents how every pair of agents jointly encodes their observations to form local
messages to be shared with others. Secondly, it controls a mechanism by which local mes-
sages are propagated through the network to form agent-specific information content that
is ultimately used to make decisions. As we will demonstrate, this approach supports the
emergence of a collaborative decision making policy. The core idea we intend to exploit
is that, given any particular state of the environment, the graph topology should be self-
adapting to support the most efficient information flow. This raises the question: how
should efficiency be measured?

Our proposed approach, connectivity-driven communication (CDC), is inspired by the
process of heat transference in a graph, and specifically the heat kernel (HK). The HK

485Machine Learning (2023) 112:483–514	

1 3

describes the effect of applying a heat source to a network and observing the diffusion
process over time. As such, it can be used to characterise the way in which the infor-
mation flows across nodes. The HK has been used in a number of different application
domains where there is a need to characterise the topology of graph, e.g. in 3D object
recognition (Zhang & Hancock, 2008) and neuroimaging (Chung et al., 2016a, b). Various
metrics obtained from the HK have been used to organise the intrinsic geometry of a net-
work over multiple-scales by capturing local and global shapes’ in relation to a node via a
time parameter. The HK also incorporates a concept of node influence as measured by heat
propagation in a network, which can be exploited to characterise how efficiently the infor-
mation propagates between any pair of nodes. To the best of our knowledge, this is the first
time that the HK has been used to develop an end-to-end learnable attention mechanism
enabling multi-agent cooperation.

Our approach relies on an actor-critic paradigm (Degris et al., 2012; Silver et al., 2014;
Lillicrap et al., 2015) and is intended to extend the centralized-learning with decentralized-
execution (CLDE) framework (Foerster et al., 2016; Lowe et al., 2017). In CDC, all the
observations from each agent are assumed known only during the training phase whilst
during execution each agent makes autonomous decisions using only their own informa-
tion. The entire model is learned end-to-end supported by the fact that the heat-kernel is
a differentiable operator allowing the gradients to flow throughout the architecture. The
performance of CDC has been evaluated against alternative methods on four cooperative
navigation tasks. Our experimental evidence demonstrates that CDC is capable of outper-
forming other relevant state-of-the-art algorithms. In addition, we analyse the communica-
tion patterns discovered by the agents to illustrate how interpretable topological structures
can emerge in different scenarios.

The structure of this work is as follows. In Sect. 2 we discuss related state-of-the-art
MADRL methods focusing on cooperating systems with communication mechanisms. In
Sect. 3 we provide the details of the proposed CDC algorithm. Experimental results are
then provided in Sect. 4. Finally, in Sect. 5, we discuss the benefits and potential limita-
tions of the proposed methodology with a view on further improvements in future work.

2 � Related work

Multi-agent systems have been widely studied in a number of different domains, such as
machine learning (Stone & Veloso, 2000), game theory (Parsons & Wooldridge, 2002) and
distributed systems (Shoham & Leyton-Brown, 2008). Recent advances in deep reinforce-
ment learning have allowed multi-agent systems capable of autonomous decision-making
(Nguyen et al., 2020; Hernandez-Leal et al., 2019; Albrecht & Stone, 2018) improving tab-
ular-based solutions (Busoniu et al., 2008). In this section, we briefly review recent devel-
opments in MADRL with a focus on communication strategies that have been proposed to
improve cooperation.

2.1 � Centralised learning with decentralised execution

When multiple learners interact with each other, the environment becomes non-station-
ary from the perspective of individual agents which results in increased training instabil-
ity (Tuyls & Weiss, 2012; Laurent et al., 2011). An approach that has proved particularly
effective consists of training the agents assuming centralised access to the entire system’s

486	 Machine Learning (2023) 112:483–514

1 3

information whilst executing the policies in a decentralised manner (CLDE) (Foerster
et al., 2016; Pesce & Montana, 2019; Iqbal & Sha, 2019; Lowe et al., 2017; Kraemer &
Banerjee, 2016; Foerster et al., 2017). During training, a critic module has access to infor-
mation related to other agents, i.e. their actions and observations. MADDPG (Lowe et al.,
2017), for example, extends DDPG (Silver et al., 2014) in this fashion: each agent has a
centralised critic providing feedback to the actors, which decide what actions to take. A
variant of this approach has recently been proposed to deal with partially observable envi-
ronments through the use of recurrent neural networks (Wang et al., 2020; Hochreiter &
Schmidhuber, 1997). In Foerster et al. (2017), a centralised critic is used to estimate the
Q-function whilst decentralised actors optimise the agents’ policies. In Lin et al. (2018), an
action-value critic network coordinates decentralised policy networks for a fleet manage-
ment problem.

2.2 � Communication methods

Communication has always played a crucial role in facilitating synchronization and coor-
dination (Scardovi & Sepulchre, 2008; Wen et al., 2012; Wunder et al., 2009; Itō et al.,
2011; Fox et al., 2000). Some of the recent MADRL approaches facilitate the emergence
of novel communication protocols through communication mechanisms. For example, in
CommNet (Sukhbaatar et al., 2016), the hidden states of an agent’ neural network are first
averaged and then used jointly with the agent’s own observations to decide what action to
take. Similarly, in Peng et al. (2017), communication is enabled by connecting agents’ poli-
cies through a bidirectional recurrent neural network that can produce higher-level infor-
mation to be shared. In IC3Net (Singh et al., 2019), a gating mechanism decides whether to
allow or block access to other agents’ hidden states.

Other approaches have introduced explicit communication mechanisms that can be
learnt from experience. For instance, in RIAL (Foerster et al., 2016), each agent learns a
simple encoding that is transferred over a differentiable channel and allows the gradient of
the Q-function to flow; this enables an agent’s feedback to take into account the exchanged
information. In our previous work, (Pesce & Montana, 2019), the agents are equipped with
a memory device allowing them to write and read signals to be shared within the system.
The communication mechanism we propose in this paper is also explicit; messages are sig-
nals that must be shared within the system in order to maximize the shared rewards and
serve no other purpose.

2.3 � Attention mechanisms to support communication

In a collaborative decision making context, attention mechanisms are used to selectively
identify relevant information coming from the environment and other agents that should
be prioritised to infer better policies. For example, in Jiang and Lu (2018), the agents first
encode their observations to produce messages; then an attention unit, implemented as a
recurrent neural network (RNN), probabilistically controls which incoming messages are
used as inputs for the action selection network. The CommNet algorithm (Sukhbaatar
et al., 2016) has been extended using a multi-agent predictive modeling approach (Hoshen,
2017) which captures the locality of interactions and improves performance by determining

487Machine Learning (2023) 112:483–514	

1 3

which agents will share information. In the IS algorithm (Kim et al., 2020) the agents pre-
dict their future trajectories, and these predictions are utilised by an attention mechanism
module to compose a message determining the next actions to take. The TarMac algorithm
(Das et al., 2018) instead leverages the signature-based attention model originally proposed
in Vaswani et al. (2017). Here, each agent receives the messages broadcasted by others and
produces a query that helps select what information to keep and what to discard. The latter
approach is closely related to the work proposed in this paper; ours agents also aggregate
information coming from different sources in order to maximise their final reward.

2.4 � Diffusion processes on graphs

Spectral graph theory allows to relate the properties of a graph to its spectrum by analysing
its associated eigenvectors and eigenvalues (Chung & Graham, 1997; Brouwer & Haem-
ers, 2011; Cvetkovic, 1980). The heat kernel falls in this category; it is a powerful and
well-studied operator allowing to study certain properties of a graph by solving the heat
diffusion equation. The HK is determined by exponentiating the graph’s Laplacian eigen-
system (Schoen, 1994) over time. The resulting features can be used to study the graph’s
topology and have been utilised across different applications whereby graphs are naturally
occurring data structures; e.g. the HK has been used for community detection (Kloster &
Gleich, 2014), data manifold extraction (Lafferty & Lebanon, 2005), network classification
(Chung et al., 2016b) and image smoothing (Zhang & Hancock, 2008) amongst others. In
recent work, the HK has been adopted to extend graph convolutional networks (Xu et al.,
2020) and define edge structures supporting convolutional operators (Klicpera et al., 2019).
In this work, we use the HK to characterise the state-dependent topology of a multi-agent
communication network and learn how the information should flow within the network.

2.5 � Graph‑based communication mechanisms

Graph structures provides a natural framework for modelling interactions in RL domains
(Kschischang et al., 2001; Kuyer et al., 2008; Guestrin et al., 2002). Lately, Graph Neural
Networks (GNNs) have also been adopted to learn useful graph representations in coopera-
tive multi-agent systems (Liao et al., 2021; Zhou et al., 2021; Huang et al., 2019; Mohamed
et al., 2020; Xu et al., 2021). For example, graphs have been used to model spatio-temporal
dependencies within episodes for traffic light control (Wang et al., 2019), and to infer a
multi-agent connectivity structure which, once processed by a GNN, generates the features
required to decide what action to take (Li et al., 2020; Jiang et al., 2018; Chen et al., 2020).
Heterogeneous graph attention networks (Seraj et al., 2021) have been introduced to learn
efficient and diverse communication models for coordinating heterogeneous agents. Graph
convolutional networks capturing multi-agent interactions have also been combined with
a counterfactual policy gradient algorithm to deal with the credit assignment problem (Su
et al., 2020).

GNNs have also supported the development of multi-stage attention mechanisms. For
instance, (Liu et al., 2020) describe a two-stage approach whereby multi-agent interactions are

488	 Machine Learning (2023) 112:483–514

1 3

first determined, and their importance is then estimated to generate actions. In GraphComm
(Yuan et al., 2021), the agents share their encoded observations over a multi-step communica-
tion process; at each step a GNN processes a graph and generates signals for the subsequent
communication round. This multi-round process is designed to increase the length of the com-
munication mechanism and favour a longer range exchange of information. The MAGIC algo-
rithm (Niu et al., 2021) consists of a scheduled learning when to communicate and whom to
address messages to, and a message processor to process communication signals; both com-
ponents have been implemented using GNNs and the entire architecture is learned end-to-end.

In our proposed model, the attention mechanism depends on how the encoded informa-
tion exchanged amongst the agents flows within the graph; the graph topology itself depends
on the encoded observations and the heat kernel is used as a topology-dependent feature to
control the agent’s communication. The process of encoding the observations, inferring the
graph topology, and learning the attention mechanism are all coupled with the aim to learn an
optimal policy.

3 � Connectivity‑driven communication

3.1 � Problem setting

We consider Markov Games, partially observable extension of Markov decision processes
(Littman, 1994) involving N interacting agents. We use S to denote the set of environ-
mental states; Oi and Ai indicate the sets of all possible observations and actions for the ith
agent, with i ∈ 1,…N , respectively. The agent-specific (private) observations at time t are
denoted by ot

i
∈ Oi , and each action at

i
∈ Ai is deterministically determined by a mapping,

��i
∶ Oi ↦ Ai , which is parametrised by �i . A transition function T ∶ S ×A1 ×A2 ×⋯ ×AN

describes the stochastic behaviour of the environment. Each agent receives a reward, defined
as a function of states and actions ri ∶ S ×A1 ×A2 ×⋯ ×AN ↦ ℝ and learns a policy that
maximises the expected discounted future rewards over a period of T time steps, J(�i) = �[Ri] ,
where Ri =

∑T

t=0
� trt

i
(st, at

1
,… , at

N
) is the discounted sum of future rewards, where � ∈ [0, 1]

is the discount factor.

3.2 � Learning the dynamic communication graph

We model each agent as the node of a time-depending, undirected (and unknown) weighted
graph, Gt = (V , St) , where V is a set of N nodes and St is an N × N matrix of edge weights.
Each St(u, v) = S

t(v, u) = st
u,v

 quantifies the degree of communication or connectivity strength
between a given pair of agents, u and v. Specifically, we assume that each st

u,v
∈ [0, 1] with

values close to 1 indicating strong connectivities, and to 0 a lack of connectivity.
In our formulation, each st

u,v
 is not known a priori. Instead, each one of these connectivi-

ties is assumed to be a time-dependent parameter that varies as a function of the current state
of the environment. This is done through the following two-step process. First, given a pair of
agents, u and v, their private observations at time-step t are encoded to form a local message,

489Machine Learning (2023) 112:483–514	

1 3

where ��c is a non-linear mapping modelled as a neural network with parameter �c . Each
local message is then encoded non-linearly to produce the corresponding connectivity
weight,

where ��s is a neural network parameterised by �s and � is the sigmoid function.

3.3 � Learning a time‑dependent attention mechanism

Once the time-dependent connectivities in Eq. 2 are estimated, the communication graph
Gt is fully specified. Given this graph, our aim is to characterise the relative contribution of
each node to the overall flow of information over the entire network, and let these contribu-
tions define a attention mechanism controlling what messages are being exchanged. The
resulting attention mechanism should be differentiable with respect to the network param-
eters to ensure that, during backpropagation, all the gradients correctly flow throughout the
architecture to enable end-to-end training.

Our observation is that a diffusion process over graphs can be deployed to quantify how
the information flows across all agents for any given communication graph, Gt . The infor-
mation flowing process is conceptualised as the amount of energy that propagates through-
out the network (Kondor & Lafferty, 2002). Specifically, we deploy the heat diffusion pro-
cess: we mimic the process of applying a source of heat over a network and observe how it
varies as a function of time. In our context, the heat transfer patterns reflect how efficiently
the information propagates at time t.

First, we introduce a diagonal matrix D(u) of dimension N × N with diagonal elements
given by

Each such element provides a measure of strength of node u. The Laplacian of the commu-
nication graph G is given by

and its normalised version is defined as

The differential equation describing the heat diffusion process over time p (Chung & Gra-
ham, 1997; Fiedler, 1989) is defined as

(1)c
t
u,v

= c
t
v,u

= ��c (o
t
u
, ot

v
)

(2)st
u,v

= st
v,u

= �(��s (c
t
u,v
))

D(u, u) =
∑

v∈V

su,v, ∀u ∈ V .

L = D − S

L̂ =
1

√
D

L
1

√
D

.

(3)
𝜕H(p)

𝜕p
= −L̂H(p).

490	 Machine Learning (2023) 112:483–514

1 3

where H(p) is the fundamental solution representing the energy flowing through the net-
work at time p. To avoid confusion, the environment time-step is denoted by t whilst p
indicates the time variable related to the diffusion process. For each pair of nodes u and v,
the corresponding heat kernel entry is given by

 where H(p)u,v quantifies the amount of heat that started in u and reached v at time p, �i
represents the ith eigenvector, � = (�1,… ,�N) is a matrix with the corresponding eigen-
vectors as columns and Λ = diag(�1,… , �V) is a diagonal matrix formed by the eigenval-
ues of S ordered by increasing magnitude.

In practice, Eq. (4) is approximated using Padé approximant (Al-Mohy & Higham,
2009),

A useful property of H(p) is that it is differentiable with respect to neural network param-
eters that define the Laplacian. This allows us to train an architecture where all the relevant
quantities are estimated end-to-end via backpropagation. Additional details are provided in
Sect. 3.4.

We leverage this information to develop an attention mechanism that identifies the most
important messages within the system, given the current graph topology. First, for every
pair of nodes, we identify the critical time point p̂ at which the heat transfer drops by a pre-
determined percentage � and becomes stable, i.e. for each pair of u and v, we identify that
critical value p̂(u, v) such that

In practice, the search of these critical values is carried out over a uniform grid of points.
Once these critical time points are identified, we use them to evaluate the HK values, and
arrange them into an N × N matrix,

which is used to define a multi-agent message-passing mechanism. Specifically, the final
information content (or message) for an agent u is determined by a linear combination of
the local messages received from all other agents,

where the HK values are used to weight the importance of the incoming messages. Finally,
the agent’s action depends deterministically by its message,

(4)H(p)u,v = � exp[Λp]�⊺ =

N∑

i=1

exp[−�ip]�i(u)�i(v)

H(p) = exp[−pL̂].

(5)|||
Ht(p + 1)u,v − Ht(p)u,v

Ht(p)u,v

||| < 𝛿.

Ht
u,v

= Ht(p̂(u, v))

(6)m
t
u
=
∑

v∈V

Ht
u,v
c
t
u,v

(7)at
u
= ��

p
u
(mt

u
)

491Machine Learning (2023) 112:483–514	

1 3

where ��
p
u
 is a neural network with parameters �pu . A lack of communication between a pair

of agents results when no stable HK values can be found. In such cases, for a pair of agents
(u, v), the corresponding entry in Ht

u,v
 will be zero hence no value of p̂(u, v) satisfies Eq. 5.

3.4 � Heat kernel: additional details and an illustration

The heat kernel is a technique from spectral geometry (Schoen, 1994), and is a fundamen-
tal solution of the heat equation:

Given a graph G defined on n vertices, the normalized Laplacian L̂ , acting on functions
with Neumann boundary conditions (Cheng & Cheng, 2005), is associated with the rate of
heat dissipation. L̂ can be written as

where Ii is the projection onto the ith eigenfunction �i . For a given time p ≥ 0 , the heat ker-
nel H(p) is defined as a n × n matrix:

Equation 9 represents an analytical solution to Eq. 8. Furthermore, the heat kernel H(t) for
a graph G with eigenfunctions �i satisfies

The proof follows from the fact that

and

In this work the heat kernel is used to introduce a mechanism for the selection of important
edges in a network to support communication between nodes. In this context, the impor-
tance of an edge is determined by both its weight and the role it plays to allow agents to
exchange information correctly in the network structure. Figure 2 illustrates the advantages
of selecting edges through the heat kernel features over a naive thresholding approach. The
heat diffusion considers the edge weights as well as their relevance within the graph struc-
ture, e.g. edge connecting two communities.

(8)
𝜕Ht(p)

𝜕p
= −L̂

t
Ht(p).

L̂ =

n−1∑

i=0

𝜆iIi

(9)H(p) =
∑

i

exp[−𝜆ip]Ii = exp[−pL̂].

H(p)u,v =
∑

i=1

exp[−�ip]�i(u)�i(v).

H(p) =
∑

i

exp[−�ip]Ii

I(u, v) = �i(u)�i(v).

492	 Machine Learning (2023) 112:483–514

1 3

3.5 � Reinforcement learning algorithm

In this section, we describe how the reinforcement learning algorithm is trained in an end-to-
end fashion. We extend the actor-critic framework (Degris et al., 2012) in which an actor pro-
duces actions and a critic provides feedback on the actors’ moves. In our architecture, multiple
actors, one per each agent, receive feedback from a single, centralised critic.

In the standard DDPG algorithm (Silver et al., 2014; Lillicrap et al., 2015), the actor
�� ∶ O ↦ A and the critic Q�� ∶ O ×A ↦ ℝ are parametrised by neural networks with the
aim to maximize the expected return,

where � is the set of parameters that characterise the return. The gradient ∇�J(�) required
to update the parameter vector � is calculated as follows,

whilst Q�� is obtained by minimizing the following loss,

where

Here, Q�′

� is a target critic whose parameters are only periodically updated with the param-
eters of Q�� , which is utilised to stabilize the training.

Our developments follow the CLDE paradigm (Foerster et al., 2016; Lowe et al., 2017;
Kraemer & Banerjee, 2016). The critics are employed during learning, but otherwise only the
actor and communication modules are used at test time. At training time, a centralised critic
uses the observations and actions of all the agents to produce the Q values. In order to make
the critic unique for all the agents and keep the number of parameters constant, we approxi-
mate our Q function with a recurrent neural network (RNN). We treat the observation/action
pairs as a sequence,

where zt
i
 and zt

i−1
 are the hidden state produced for the ith and i − 1th agent, respectively.

Upon all the observation and action pairs from all the N agents are available, we use the
last hidden state zt

N
 to produce the Q-value:

where � is a neural network with parameters �Q . The parameters of the ith agent are adjusted
to maximize the objective function J(�i) = �[Ri] following the direction of the gradient
J(�i),

J(�) = �

[T∑

i=1

r(ot, at)
]
.

∇�J(�) = �ot∼D

[
∇���(o

t)∇atQ
�� (ot, at)|at=�� (o

t)

]
.

L(�) = �ot ,at ,rt ,ot+1∼D

[(
Q�� (ot, at) − y

)2]

y = rt + �Q�′

� (ot+1, at+1).

(10)z
t
i
= RNN(ot

i
, at

i
|zt

i−1
)

Q(ot
1
,… , ot

N
, at

1
,… , at

N
) = ��Q

(zt
N
)

493Machine Learning (2023) 112:483–514	

1 3

where x = (ot
1
,… , ot

N
, at

1
,… , at

N
) and Q minimizes the temporal difference error, i.e.

where

The differentiability of the heat kernel operator allows the gradient in Eq. (11) to be evalu-
ated. Since the actions are modelled by a neural network parametrised �u in Eq.(7), we have
that

and from Eq.(6) the gradient is

whilst the gradients of the HK values are

which is a composition of differentiable operations. Algorithm 1 summarises the learning
algorithm; the proposed architecture is presented in Fig. 1.

(11)∇�i
J(�i) = �ot

i
,at

i
,rt ,ot+1

i
∼D

[
∇�i

��i
(mt

i
)∇at

i
Q(x)|at

i
=��i

(mt
i
)

]

L(�i) = �ot
i
,at

i
,rt ,ot+1

i
∼D

[
(Q(x) − y)2

]

y = rt
i
+ �Q(ot+1

1
,… , ot+1

N
, at+1

1
,… , at+1

N
).

∇�u
��u

(mt
u
) = ∇�u

��u
(mt

u
).

��(mt
u
)

��u
=

��

� ∑
v∈V

Ht
u,v
ct
u,v

�

���u

=
�

v∈V

��(Ht
u,v
ct
u,v
)

���u

=
�

v∈V

���(Ht
u,v
)

���u

c
t
u,v

+ Ht
u,v

��(ct
u,v
)

���u

�
.

𝜕𝜑(Ht
u,v
)

𝜕𝜑𝜃u

=
𝜕𝜑(Ht

u,v
(p̂))

𝜕𝜑𝜃u

=
𝜕(exp[−p̂L̂])

𝜕𝜑𝜃u

=

𝜕(exp[−p̂
1√
D
L

1√
D
])

𝜕𝜑𝜃u

=

𝜕(exp[−p̂
1√
D
(D − S)

1√
D
])

𝜕𝜑𝜃u

494	 Machine Learning (2023) 112:483–514

1 3

Fig. 1   Diagrammatic representation of CDC at a fixed time-step. Agents’ observations are encoded to gen-
erate a graph topology (blue box on the left). The diffusion process is used to quantify global information
flow throughout the graph and to control the communication process (blue box on the right). In this exam-
ple, the line thickness is proportional to communication strength. At training time, observations and actions
are utilised by the critic to receive feedback on the graph components

Fig. 2   An illustration of two edge selection methods. Starting from graph (a), we want to remove the less
relevant edges. The relevance of an edge is measured considering both its weight and structural role in
allowing information to pass through the network. The edge connecting nodes 0 and 5, despite its relatively
low weight (0.3), has an important structural role as it serves as bridge connecting two communities hence
allowing the information to propagate throughout the entire network. In (b), removing edges with smaller
weights (e.g. all those falling below the 40th percentile of the edge weight distribution) results in the loss of
the bridge. In (c), edges are selected based on the heat kernel weights, which recognise the importance of
the bridge

495Machine Learning (2023) 112:483–514	

1 3

4 � Experimental results

4.1 � Environments

The performance of CDC has been assessed in four different environments. Three of them
are commonly used swarm robotic benchmarks: Navigation Control, Formation Control
and Line Control (Mesbahi & Egerstedt, 2010; Balch & Arkin, 1998; Agarwal et al., 2019).
A fourth one, Pack Control, has been added to study a more challenging task. All the
environments have been tested using the Multi-Agent Particle Environment (Lowe et al.,

496	 Machine Learning (2023) 112:483–514

1 3

2017; Mordatch & Abbeel, 2017), which allows agents to move around in two-dimensional
spaces with discretised action spaces. In Navigation Control there are N agents and N fixed
landmarks. The agents must move closer to all landmarks whilst avoiding collisions. Land-
marks are not assigned to particular agents, and the agents are rewarded for minimizing the
distances between their positions and the landmarks’ positions. Each agent can observe the
position of all the landmarks and other agents. In Formation Control there are N agents and
only one landmark. In this scenario, the agents must navigate in order to form a polygonal
geometric shape, whose shape is defined by the N agents, and centred around the landmark.
The agents’ objective is to minimize the distances between their locations and the posi-
tions required to form the expected shape. Each agent can observe the landmark only. Line
Control is very similar to Formation Control with the difference that the agents must navi-
gate in order to position themselves along the straight line connecting the two landmarks.
Finally in Dynamic Pack Control there are N agents, of which two are leaders and N − 2
are members, and one landmark. The objective of this task is to simulate a pack behav-
iour, where agents have to navigate to reach the landmark. Once a landmark is occupied, it
moves to a different location. The landmark location is accessible only to the leaders, while
the members are blind, i.e. they can only see their current location. Typical agent configu-
rations arising from each environment we use here are reported in Fig. 3.

For each environment we have tested two versions with different number of agents: a
basic one focusing on solving the designed task when 3 − 4 agents are involved, and a scal-
able one to show the ability to succeed with 8 − 10 agents. The performance of competing
MADRL algorithms has been assessed using a number of metrics: the reward, which quan-
tifies how well a task has been solved (the higher the better); the distance, which indicates
the amount of navigation carried out by the agents to solve the task (the lower the better);
the number of collisions, which shows the ability to avoid collisions (the lower the bet-
ter); the time required to solve the task (the lower the better); the success rate, defined as
the number of times an algorithm has solved a task over the total number of attempts; and
caught targets, which refers to the number of landmarks that the pack managed to reach.
Illustrative videos showing CDC in action on the above environments can be found online.1

4.2 � Implementation details and experimental setup

For our experiments, we use neural networks with two hidden layers (64 each) to imple-
ment the graph generation modules (Eqs. 2, 1) and the action selector in Eq. 7. The
RNN described in Eq. 10 is implemented as a long-short term memory (LSTM) network
(Schmidhuber, 1996) with 64 units for the hidden state.

We use the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 10−3 for
critic and 10−4 for policies. Similarly to (Wang et al., 2019; Agarwal et al., 2019), we
set �1 = �2 = ⋯ = �N in order to make the model invariant to the number of agents. The
reward discount factor is set to 0.95, the size of the replay buffer to 106 , and the batch size
to 1, 024. At each iteration, we calculate the heat kernel over a finite grid of P = 300 time
points, with a threshold for getting stable values set to s = 0.05 . This value has been deter-
mined experimentally (see Table 4). The number of time steps for episode, T, is set to 50
for all the environments, except for Navigation Control where is set to 25. For Formation
Control, Line Control and Pack Control the number E of episodes is set to is set to 50,000

1  https://​youtu.​be/​H9kMt​rnvRCQ.

https://youtu.be/H9kMtrnvRCQ

497Machine Learning (2023) 112:483–514	

1 3

Fig. 3   Typical agent configurations for all our environments

498	 Machine Learning (2023) 112:483–514

1 3

for the basic versions (30,000 for scalable versions), while for Navigation Control is set to
100,000 (30,000 for scalable versions).

All network parameters are updated every time 100 new samples are added to the replay
buffer. Soft updates with target networks use � = 0.01 . We adopt the low-variance gradi-
ent estimator Gumbel-Softmax for discrete actions in order to allow the back-propagation
to work properly with categorical variable, which can truncate the gradient’s flow. All the
presented results are produced by running every experiment 5 times with different seeds
(1, 2001, 4001, 6001, 8001) in order to avoid that a particular choice of the seed can sig-
nificantly condition the final performance. Python 3.6.6 (Van Rossum & Drake, 1995)
with PyTorch 0.4.1 (Paszke et al., 2017) is used as framework for machine learning and
automatic differentiable computing. NetworkX 2.2 (Hagberg et al., 2008) has been used
for graph analysis. Computations were mainly performed using Intel(R) Xeon(R) CPU
E5-2650 v3 at 2.30GHz as CPU and GeForce GTX TITAN X as GPU. With this configura-
tion, the proposed CDC in average took approximately 8.3 h to complete a training proce-
dure on environments with four agents involved (Table 1).

4.3 � Main results

We have compared CDC against several different baselines, each one representing a differ-
ent way to approach the MA coordination problem: independent DDPG (Silver et al., 2014;
Lillicrap et al., 2015), MADDPG (Lowe et al., 2017), CommNet (Sukhbaatar et al., 2016),
MAAC (Iqbal & Sha, 2019), ST-MARL (Wang et al., 2019), When2Com (Liu et al., 2020)
and TarMAC (Das et al., 2018) and Intention Sharing (IS2) (Kim et al., 2020). Independent
DDPG provides the simplest baseline in that each agent works independently to solve the
task. In MADDPG each agent has its own critic with access to combined observations and
actions from all agents during learning. CommNet implements an explicit form of com-
munication; the policies are implemented through a large neural network with some com-
ponents of the networks shared across all the agents and others agent-specific. At every
time-step each agent’s action depends on the local observation, and on the average of all
other policies (neural network hidden states), used as messages. MAAC is a state-of-the
art method in which an attention mechanism guides the critics to select the information
to be shared with the actors. ST-MARL uses a graph neural network to capture the spatio-
temporal dependency of the observations and facilitate cooperation. Unlike our approach,
the graph edges here represents the time-depending agents’ relationships, and capture the
spatial and temporal dependencies amongst agents. When2Com utilises an attentional
model to compute pairwise similarities between the agents’ observation encodings, which
results in a fully connected graph that is subsequently sparsified by a thresholding opera-
tion. Afterwards, each agent uses the remaining similarities scores to weight its neighbor
observations before producing its action. TarMac is a framework where the agents broad-
cast their messages and then select whom to communicate to by aggregating the received
communications together through an attention mechanism. In IS (Kim et al., 2020) the
agents generate their future intentions by simulating their trajectory and then an attention
model aggregate this information together to share it with the others. Differently from the

2  In our implementation, the number of steps to be predicted is set to one, i.e. each agent predicts the next
step of every other agent. In the original paper, this is the equivalent to IS(H=1). In addition, in order to
maintain a fair comparison with the other baselines, a message at time t is used to generate the next actions,
i.e. we do not rely on previously generated messages.

499Machine Learning (2023) 112:483–514	

1 3

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f D
D

PG
, M

A
D

D
PG

, C
om

m
N

et
, M

A
A

C
, S

T-
M

A
R

L,
 W

he
n2

C
om

, T
ar

M
A

C
, I

S
an

d
C

D
C

 o
n

al
l e

nv
iro

nm
en

ts
. N

 is
 th

e
nu

m
be

r o
f a

ge
nt

s.
Re

su
lts

 a
re

av

er
ag

ed
 o

ve
r fi

ve
 d

iff
er

en
t s

ee
ds

N
av

ig
at

io
n

C
on

tro
l N

=
3

N
av

ig
at

io
n

C
on

tro
l N

=
1
0

Re
w

ar
d

co

lli
si

on
s

D
ist

an
ce

Re
w

ar
d

co

lli
si

on
s

D
ist

an
ce

D
D

PG
−
5
7
.3
±
9
.9
4

1
.2
4
±
0
.3
9

4
.0
9
±
6
.9
2

−
1
1
5
.9
3
±
2
1
.2
6

8
.8
3
±
6
.4
1

3
.6
±
0
.8
5

M
A

D
D

PG
−
4
5
.2
3
±
6
.5
9

0
.7
7
±
0
.2
4

3
.1
6
±
5
.7
4

−
1
1
2
.1
7
±
1
3
.2
3

1
2
.2
9
±
7
.4
5

3
.4
4
±
0
.5
3

C
om

m
N

et
−
4
8
.9
5
±
6
.2
5

0
.9
2
±
0
.2
4

3
.4
9
±
5
.0
9

−
1
0
4
.4
9
±
1
0
.4
5

1
2
.2
1
±
6
.8
7

3
.1
4
±
0
.4
1

M
A

A
C

​
−
4
3
.1
8
±
6
.4
4

0
.7
1
±
0
.2
4

1
.4
6
±
2
.9
7

−
1
0
7
.3
8
±
1
1
.8
1

9
.0
4
±
6
.4
6

3
.2
6
±
0
.4
6

ST
-M

A
R

L
−
5
5
.3
6
±
8
.1
7

1
.5
4
±
3
.5
6

1
.2
±
0
.3
3

−
1
1
0
.6
9
±
1
5
.7
5

3
2
.7
3
±
3
2
.7
7

3
.2
7
±
0
.5
7

W
he

n2
C

om
−
4
0
.7
±
(5
.3
3
)

0
.6
1
±
(0
.2
1
)

1
.0
6
±
(3
.2
6
)

−
1
1
2
.5
1
±
(1
4
.4
8
)

1
3
.6
8
±
(1
1
.2
9
)

3
.4
5
±
(0
.5
7
)

Ta
rM

A
C

−
4
4
.9
±
(6
.2
2
)

0
.7
7
±
(0
.2
4
)

2
.1
4
±
(4
.3
6
)

−
1
1
0
.6
7
±
(1
3
.7
6
)

9
.8
1
±
(7
.6
6
)

3
.3
9
±
(0
.5
4
)

IS
−
4
2
.6
±
(6
.7
0
)

0
.7
0
±
(0
.2
9
)

1
.2
2
±
(3
.5
6
)

−
1
1
1
.6
7
±
(9
.1
8
)

1
2
.2
8
±
(7
.2
7
)

3
.3
9
±
(0
.6
8
)

C
D

C
−
3
9
.1
6
±
4
.7
7

0
.5
6
±
0
.1
9

0
.4
±
1
.6
6

−
1
0
2
.6
8
±
1
0
.1

9
.0
3
±
9
.3
6

3
.0
6
±
0
.4

Fo
rm

at
io

n
C

on
tro

l N
=
4

Fo
rm

at
io

n
C

on
tro

l N
=
1
0

Re
w

ar
d

Ti
m

e
Su

cc
es

s R
at

e
Re

w
ar

d
Ti

m
e

Su
cc

es
s R

at
e

D
D

PG
−
3
9
.4
3
±
1
2
.3
7

5
0
±
0
.0

0
±
0
.0

−
4
9
.2
7
±
6
.1
1

5
0
±
0
.0

0
±
0
.0

M
A

D
D

PG
−
1
9
.8
6
±
6
.0
4

5
0
±
0
.0

0
±
0
.0

−
2
0
.6
5
±
7
.1
1

5
0
±
0
.0

0
±
0
.0

C
om

m
N

et
−
7
.7
7
±
2
.0
6

4
5
.8
±
1
0
.1
9

0
.1
8
±
0
.3
8

−
1
0
.2
2
±
1
.0
3

4
8
.8
9
±
5
.5

0
.0
4
±
0
.2

M
A

A
C

​
−
5
.7
7
±
1
.5
3

2
6
.6
6
±
1
7
.2

0
.6
6
±
0
.4
7

−
9
.6
3
±
1
.3
5

5
0
±
0
.0

0
±
0
.0

ST
-M

A
R

L
−
2
0
.2
4
±
3
.0

5
0
±
0
.0

0
±
0
.0

−
1
9
.8
1
±
5
.7
4

5
0
±
0
.0

0
±
0
.0

W
he

n2
C

om
−
1
7
.0
0
−
±
(4
.1
6
)

4
8
.2
1
±
(1
0
.1
1
)

0
.1
2
±
(0
.3
1
)

−
1
8
.4
9
±
(1
.2
3
)

4
8
.7
2
±
(0
.9
)

0
.0
1
±
(0
.1
)

Ta
rM

A
C

−
1
4
.2
5
±
(2
.5
8
)

4
7
.3
5
±
(1
2
.8
7
)

0
.1
3
±
(0
.4
5
)

−
1
9
.0
6
±
(1
.2
3
)

4
9
.4
4
±
(5
.6
)

0
.0
1
±
(0
.1
)

IS
−
1
8
.7
2
±
(3
.4
3
)

4
9
.7
9
±
(9
.9
6
)

0
.1
±
(0
.4
1
)

−
1
8
.3
0
±
4
.3
6

5
0
±
0
.0

0
±
0
.0

C
D

C
−
4
.2
2
±
1
.4
6

1
1
.8
2
±
5
.4
9

0
.9
9
±
0
.1
2

−
7
.5
1
±
1
.0
6

1
5
.2
1
±
9
.2
3

0
.9
9
±
0
.1

500	 Machine Learning (2023) 112:483–514

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

Li
ne

 C
on

tro
l N

=
4

Li
ne

 C
on

tro
l N

=
1
0

Re
w

ar
d

Ti
m

e
Su

cc
es

s R
at

e
Re

w
ar

d
Ti

m
e

Su
cc

es
s R

at
e

D
D

PG
−
3
3
.4
5
±
1
0
.5
8

4
9
.9
9
±
0
.2
2

0
±
0
.0

−
6
8
.1
9
±
1
0
.2

5
0
±
0
.0

0
±
0
.0

M
A

D
D

PG
−
1
8
.7
5
±
2
.3
2

4
7
.3
2
±
9
.1
4

0
.0
8
±
0
.2
7

−
1
2
.6
9
±
2
.1
1

4
8
.4
8
±
7
.1
2

0
.0
4
±
0
.2
1

C
om

m
N

et
−
1
0
.9
9
±
2
.2
4

4
6
.9
7
±
8
.9
3

0
.1
2
±
0
.3
3

−
9
.5
8
±
1
.2
8

3
7
.7
3
±
1
4
.8
5

0
.4
7
±
0
.5

M
A

A
C

​
−
7
.3
8
±
2
.0
9

1
7
.0
8
±
1
2
.1
7

0
.8
9
±
0
.3
2

−
8
.5
8
±
1
.5
2

2
2
.5
5
±
1
6
.0
9

0
.7
6
±
0
.4
3

ST
-M

A
R

L
−
2
3
.8
7
±
7
.7
7

5
0
±
0
.0

0
±
0
.0

−
1
9
.2
4
±
6
.2
6

5
0
±
0
.0

0
±
0
.0

W
he

n2
C

om
−
1
6
.4
5
±
(3
.0
1
)

4
6
±
(0
.0
)

0
.1
1
±
(0
.3
)

−
1
0
.1
±
(2
.8
)

4
9
.5
5
±
4
.2
4

0
.0
1
±
(0
.1
2
)

Ta
rM

A
C

−
1
7
.7
5
±
(4
.2
4
)

4
7
.0
0
±
(0
.0
)

0
.0
9
±
(0
.3
1
)

−
1
1
.8
3
±
(1
.6
3
)

4
9
.9
1
±
1
.1
2

0
.0
1
±
(0
.0
9
)

IS
−
1
6
.1
1
±
(4
.2
4
)

4
5
.2
0
±
(0
.0
)

0
.1
0
±
(0
.1
5
)

−
1
1
.9
0
±
(1
.5
2
)

4
9
.8
4
±
1
.1
5

0
.0
1
±
(0
.0
3
)

C
D

C
−
5
.9
7
±
1
.7
3

1
0
.4
2
±
5
.5
8

0
.9
8
±
0
.1
3

−
7
.9
6
±
1
.1
9

1
5
.0
6
±
1
2
.0
2

0
.9
1
±
0
.2
9

D
yn

am
ic

 P
ac

k
C

on
tro

l N
=
4

D
yn

am
ic

 P
ac

k
C

on
tro

l N
=
8

Re
w

ar
d

D
ist

an
ce

Ta
rg

et
s c

au
gh

t
Re

w
ar

d
D

ist
an

ce
Ta

rg
et

s c
au

gh
t

D
D

PG
−
2
2
4
.7
7
±
8
7
.6
5

3
.5
2
±
1
.6
7

0
±
0
.0

−
2
7
9
.6
7
±
7
0
.1
8

4
.5
8
±
1
.4

0
±
0
.0

M
A

D
D

PG
−
1
1
6
.1
5
±
7
1
.3
7

1
.4
6
±
0
.7
2

0
.2
±
0
.1
3

−
1
1
0
.8
6
±
2
8
.6
6

1
.2
2
±
0
.2
8

0
.0
±
0
.0
5

C
om

m
N

et
2
9
3
.3
5
±
4
4
6
.8
9

1
.1
1
±
0
.1
2

0
.8
1
±
0
.8
9

−
7
6
.1
8
±
1
3
8
.7
3

1
.1
3
±
0
.2
5

0
.0
7
±
0
.2
8

M
A

A
C

​
−
9
5
.2
9
±
6
1
.6
5

1
.2
5
±
0
.2
1

0
.0
1
±
0
.1
2

−
1
0
5
.1
5
±
4
6
.4
2

1
.1
5
±
0
.2
8

0
.0
1
±
0
.0
9

ST
-M

A
R

L
−
1
0
7
.0
2
±
7
1
.8
4

1
.2
6
±
0
.3

0
.0
2
±
0
.1
4

−
1
2
3
.9
1
±
1
6
.8
9

1
.4
2
±
0
.3
6

0
±
0
.0

W
he

n2
C

om
−
1
0
8
.4
7
±
(7
3
.5
8
)

1
.3
2
±
(0
.3
3
)

0
.0
2
±
(0
.1
4
)

−
1
1
1
.4
7
±
(7
3
.5
8
)

1
.3
2
±
(0
.3
3
)

0
.0
2
±
(0
.1
4
)

Ta
rM

A
C

5
0
.4
7
±
(7
3
.5
8
)

1
.2
0
±
0
.2
1

0
.3
±
0
.5
5

−
7
8
.1
8
±
4
2
.5

1
.1
8
±
0
.7
6

0
.0
5
±
0
.2
1

IS
2
3
5
.7
4
±
4
4
6
.8
9

1
.0
6
±
0
.3
5

0
.8
0
±
0
.6
3

5
0
.1
9
±
3
1
0
.4
4

1
.1
0
±
0
.2
9

0
.3
4
±
0
.9
8

C
D

C
3
6
9
.5
±
4
6
3
.9
2

1
.0
9
±
0
.1

0
.9
6
±
0
.9
3

5
8
.0
3
±
2
7
9
.0
5

1
.1
2
±
0
.1
4

0
.3
5
±
0
.5
6

Th
e

nu
m

be
rs

 in
 b

ol
d

in
di

ca
te

 th
e

m
os

t p
er

fo
rm

an
t m

et
ho

d
fo

r t
ha

t m
et

ric

501Machine Learning (2023) 112:483–514	

1 3

methods above, CDC utilises graph structures to support the formation of communication
connectivities and then use the heat kernel, as an alternative form of attention mechanism,
to allow to each agent to aggregate the messages coming from the others.

In Table 2 we provide a summary of selected features for each MADRL algorithm used
in this work. First, we have indicated whether the communication is implicit or explicit.
The former refers to the ability to share information without sending explicit messages, i.e.
communication is inherited from a certain behaviour rather than being deliberately shared
(Breazeal et al., 2005); studies have shown that this approach is used by both animals and
humans (Mech & Boitani, 2007; Quick & Janik, 2012; Schaller, 2009) and has discussed
in a number of multi-agent reinforcement learning works (Sukhbaatar et al., 2016; Singh
et al., 2019; Das et al., 2018; Peng et al., 2017; Li et al., 2020; Montesello et al., 1998;
Grupen et al., 2022). Explicit communication assumes the existence of a specific mecha-
nism deliberatively introduced to share information within the system; this is considered
to be the most common form of human communication (Gildert et al., 2018; Håkansson &
Westander, 2013) and has also been widely explored in the context of reinforcement learn-
ing (Foerster et al., 2016; Pesce & Montana, 2019; Kim et al., 2020; Liu et al., 2020). This
categorization can help interpret the performance achieved in certain environments, such
as Dynamic Pack Control, where explicit communication is more beneficial.

We also report on how the information is aggregated amongst agents, whether the algo-
rithm relies on a graph-based architecture, and whether the communication content is
delayed, i.e. it only utilised in the future but does not affect the current actions. For exam-
ple, in TarMac, each message is broadcasted and utilised by the agents in the next step,
while in MAAC and MADDPG the communication happens through the critics and affect
future actions once the policy parameters get updated.

Table 1 summarises the experimental results obtained from all algorithms across all the
environments. The metric values are obtained by executing the best model (chosen accord-
ing to the best average reward returned during training) for an additional 100 episodes. We
repeated each experiment using 5 different seeds, and each entry of Table 1 is an average
over 500 values.

It can be noted that CDC outperforms all the competitors on all four environments on
all the metrics. In Navigation Control ( N = 3 ), the task is solved by minimizing the overall

Table 2   A comparative summary of various MARL algorithms according to how communication is imple-
mented

Type of com-
munication

How information is aggregated Has a graph-
based architec-
ture

Is com-
munication
delayed

DDPG NA NA No NA
MADDPG Implicit Observation and action concatenation No Yes
CommNet Explicit Sharing neural-networks hidden states No No
MAAC​ Implicit Attention No Yes
ST-MARL Implicit RNN + Attention Yes No
When2Com Implicit Attention Yes No
TarMAC Explicit Attention No Yes
IS Explicit Attention No No
CDC Explicit Heat Kernel Yes No

502	 Machine Learning (2023) 112:483–514

1 3

distance travelled and the number of collisions, with an improvement over MAAC. In For-
mation Control ( N = 4 ), the best performance is also achieved by CDC, which always suc-
ceeded in half of time compared to MAAC.

When the number of agents is increased, and the level of difficulty is significantly
higher, all the baselines fail to complete the task whilst CDC still maintains excellent per-
formance with a success rate of 0.99. In Line Control, both scenarios ( N = 4 and N = 10 )
are efficiently solved by CDC with higher success rate and less time compared to MAAC,
while all other algorithms fail. For Dynamic Pack Control, amongst the competitors, only
CommNet does not fail. In this environment, only the leaders can see the point of interest,
hence the other agents must learn how to communicate with them. In this case, CDC also
outperforms CommNet on both the number of targets that are being caught and travelled
distance. Overall, it can be noted that the gains in performance achieved by CDC, com-
pared to other methods, significantly increase when increasing the number of agents.

Learning curves for all the environments, averaged over five runs, are shown in Fig. 4.
Here it can be noticed that CDC reaches the highest reward overall. The Dynamic Pack
Control task is particularly interesting as only three methods are capable of solving it,
CommNet, IS and CDC, and all of them implement explicit communication mechanisms.
The high variance associated with CDC and CommNet in Dynamic Pack Control can be
explained by the fact that, when a landmark is reached by all the agents, the environment
returns a higher reward. These are the only two methods capable of solving the task, and
lower variance is associated to other methods that perform poorly. The performance of
CDC when varying the number of agents at execution time is investigated (see Appendix
A).

4.4 � Communication analysis

In this section, we provide a qualitative evaluation of the communication patterns and asso-
ciated topological structures that have emerged using CDC on the four environments. Fig-
ures 5 and 6 show the communication networks Gt

H
 evolving over time at a given episode

during execution: black circles represent the landmarks, blue circles indicate the normal
agents, and the red circles are the leaders. Their coordinates within the two-dimensional
area indicate the navigation trajectories. The lines connecting pairs of agents represent the
time-varying edge weights, Ht . Each Ht

u,v
 element quantifies the amount of diffused heat

between the two nodes.
As expected, different patterns emerge in different environments; see Figs. 5 and 6.

For instance, in Formation Control, the dynamic graphs are dense in the early stages
of the episodes, and become sparser later on when the formation is found. The degree
of topological adjustment observed over time indicate initial bursts of communication
activity at the beginning of an episode; towards the end the communication, this seems
to have stabilised and consists of messages shared only across neighbours, which seems
to be sufficient to maintain the polygonal shape. A different situation can be observed
in Dynamic Pack Control; see Fig. 6f. Here, there is an intense communication activity
between leaders and members at an early stage, and the emerging topology approxi-
mates a bipartite graph between red and blue nodes. This is an expected and plausible

Fig. 4   Learning curves for 9 competing algorithms assessed on Navigation Control, Line Control, Forma-
tion Control and Dynamic Pack Control. Horizontal axes report the number of episodes, while vertical axes
the achieved rewards. Results are averaged over five different runs

▸

503Machine Learning (2023) 112:483–514	

1 3

504	 Machine Learning (2023) 112:483–514

1 3

pattern, given the nature of this environment; the leaders need to share information with
the members, which otherwise would not know be able to locate the landmarks.

In addition to the above qualitative interpretation based on graph topologies, we can
also quantify the emergence of different communication patterns by looking at changes
in the statistics of the degree centrality (i.e. the number of connections of each agent)
over time. Specifically, we compare the statistics attained at the beginning and end of an
episode using the connectivity graph generated by CDC. Table 3 shows the mean and
variance of the centrality degree, across all nodes, for each environment. Changes in
variance, for instance, may indicate the formation of clusters. Here it can be noted that
in Navigation Control, Line Control and Formation Control, the variance is significantly
lower at the end of the episodes; this is expected since the best strategy in such tasks
consists of spreading the number of connections across all nodes. A different pattern
emerges in Dynamic Pack Control where the formation of clusters is necessary since the
workers need to connect with the leaders. These clusters are also visible in Fig. 6f.

Fig. 5   Examples of communication networks Gt evolving over different episode time-steps on Navigation
Control and Line Control. Black circles represent landmarks; agents are represented in blue. Connections
indicate the heat kernel connectivity weights generated by CDC

505Machine Learning (2023) 112:483–514	

1 3

Further appreciation for the role played by the heat kernel in driving the communica-
tion strategy can be gained by observing Fig. 7 which provides visualisations for all the
environments. On the left, the connection weights are visualised using a circular layout.
Here the nodes represent agents, and the size of each node is proportional to the node’s
eigenvector centrality. The eigenvector centrality is a popular graph spectral measure

Fig. 6   Examples of communication networks Gt evolving over different episode time-steps on Formation
Control and Dynamic Pack Control. Black circles describe landmarks; agents are represented in blue, leader
agents in red. Connections indicate the heat kernel connectivity weights generated by CDC

Table 3   Mean and standard
deviation for the centrality
degree calculated using the
connectivity graphs generated
by CDC. Metrics are calculated
utilising the graph produced in
the first (beginning) and last step
(end) of the episodes at execution
time

Average Degree Centrality

Environment Beginning of episode End of episode

Navigation Control N = 10 1.7 ± (1.5) 2.4 ± (0.5)

Line Control N = 10 2.5 ± (0.9) 1.8 ± (0.4)

Formation Control N = 10 2.2 ± (1.7) 2.1 ± (0.3)

Dynamic Pack Control N = 8 1.4 ± (0.91) 1.6 ± (1.4)

506	 Machine Learning (2023) 112:483–514

1 3

(Bonacich, 2007), utilised to determine the influence of a node considering both its adja-
cent connections and the importance of its neighbouring node. This measure is calculated
using the stable heat diffused values averaged over an episode, i.e. Hu,v = (

∑T

t=1
Ht

u,v
)∕T  .

The resulting graph structure reflects the overall communication patterns emerged while
solving the given tasks. On the right, we visualise the squared N × N matrix of averaged
pairwise diffusion values as a heatmap (red values are higher). It can be noted that, in Pack

Fig. 7   Averaged communication graphs for all the environments. On the left side of each figure, the node
sizes describe the eigenvector centrality, the connections represent the heat kernel values and the numbers
indicate the node labels. On the right, the heat kernel values are shown as heatmaps, where axis numbers
correspond to node labels

507Machine Learning (2023) 112:483–514	

1 3

Control, two communities of agents are formed, each one with a leader. Here, as expected,
leaders appear to be influential nodes (red nodes), and the heatmap shows that the connec-
tions between individual members and leaders are very strong. A different pattern emerges
instead in Formation Control, where there is no evidence of communities since all nodes
are connected to nearly form a circular shape. The corresponding heatmap shows the heat
kernel values connecting neighbouring agents tend to assume higher values compared to
more distant agents.

4.5 � Ablation studies

We have carried out a number of studies to assess the relative importance of each new
component contributing to CDC. First, we investigate the relative merits of the heat kernel
over two alternative and simpler information propagation mechanisms: (a) a global average
approach, where the observations of all other agents are averaged and provided to the agent
to inform its action, and (b) the nearest neighbours approach, where only the observations
of the agent’s two nearest neighbours are averaged. For each one of these two mechanisms,
we compare a version using our proposed critic (Sect. 3.5), which uses a recurrent archi-
tecture (specifically an LSTM), and a version using a traditional critic, i.e. based on a feed-
forward neural network. To better characterise the benefits of a recurrent network, we have
also investigated an LSTM-based version of MADDPG. In addition, we have implemented
a version of CDC that use a softmax attention, i.e. the heat kernel connectivity weights
have been replaced by a softmax function. To ensure a fair comparison, only the necessary
architectural changes have been carried out in order to keep the modelling capacity across
different versions comparable.

In Fig. 8, it can be noted that the proposed CDC using the heat kernel achieves the
highest performance by a significant margin. The other modified versions of CDC, with
and without LSTM, also outperform the simpler communication methods. There is evi-
dence to suggest that averaging local information coming from the nearest neighbours is
a better strategy compared to using a global average; the latter cannot discard unneces-
sary information and results in nosier embeddings and worse communication. Overall, we
have observed that the LSTM-based critic is beneficial compared to the simpler alternative.

Fig. 8   Learning curves of different versions of the proposed model on Formation Control ( N = 4)

508	 Machine Learning (2023) 112:483–514

1 3

This is an expected result because, by design, the LSTM’s hidden state filters out irrel-
evant information content from the sequence of inputs. Another observed finding is that the
order of the agents does not affect the final performance of the model. This is explained by
the fact that each of LSTM-based critics observe the entire sequence of observations and
actions before producing the feedback to return. Furthermore, the softmax version of CDC
has been found to be less performant that the original CDC thus confirming the impor-
tant role played by the heat kernel in aggregating the messages across the communication
network.

In order to choose an appropriate threshold for the heat kernel equation (see Eq. 5) we
have run a set of experiments whereby we monitor how the success rate behaves using dif-
ferent parameter values. Table 4 reports on the performance of CDC on Formation Control
when the threshold parameter s varies over a grid of possible values. In turn, this thresh-
old determines whether the heat kernel values are stable or not. The best performance is
obtained using s = 0.05 , which is the value used in all our experiments. To select the spe-
cific thresholds reported in Table 4, we tried a range of values suggested in related works
(Chung et al., 2016b; Xiao et al., 2005).

5 � Conclusions

In this work, we have presented a novel approach to deep multi-agent reinforcement learn-
ing that models agents as nodes of a state-dependent graph, and uses the overall topology
of the graph to facilitate communication and cooperation. The inter-agent communication
patterns are represented by a connectivity graph that is used to decide which messages
should be shared with others, how often, and with whom. A key novelty of this approach
is represented by the fact that the graph topology is inferred directly from observations
and is utilised as an attention mechanism guiding the agents throughout the sequential
decision process. Unlike other recently proposed architectures that rely on graph convolu-
tional networks to extract features, but we make use of a graph diffusion process to simu-
late how the information propagates over the communication network and is aggregated.
Our experimental results on four different environments have demonstrated that, compared
to other state-of-the-art baselines, CDC can achieve superior performance on navigation
tasks of increasing complexity, and remarkably so when the number of agents increases.
We have also found that visualising the graphs learnt by the agents can shed some light on
the role played by the diffusion process in mediating the communication strategy that ulti-
mately yields highly rewarding policies. The current LSTM-based critic could potentially
be replaced by a graph neural network equipped with an attention mechanism capable of
tailoring individual feedback according to the agents’ needs.

Table 4   Comparison of CDC
results using different values for
threshold s 

Method Formation Control N = 4

Reward Time Success Rate

CDC s = 0.01 −4.48 ± (1.62) 13.52 ± (9.83) 0.93 ± (0.21)

CDC s = 0.025 −4.33 ± (1.28) 14.01 ± (9.74) 0.94 ± (0.24)

CDC s = 0.05 −4.22 ± (1.46) 11.82 ± (5.49) 0.99 ± (0.1)

CDC s = 0.075 −4.34 ± (1.43) 12.88 ± (9.13) 0.95 ± (0.22)

CDC s = 0.1 −4.31 ± (1.57) 12.52 ± (8.39) 0.96 ± (0.2)

509Machine Learning (2023) 112:483–514	

1 3

This work represents an initial attempt to leverage well-known graph-theoretical
properties in the context of a multi-agent communication strategy, and paves the way
for future exploration along related directions. For instance, further constraints could be
imposed on the graph edges to regulate the overall communication process, e.g. using a
notion of flow conservation (Jia et al., 2019). Further investigations could be directed
towards the effects of adopting a decentralised critic modelling the communication con-
tent together with the agents’ state-action values to provide a richer individual feedback.

Appendix A: Varying the number of agents

We tested whether CDC is capable of handling a different number of agents at test time.
Table 5 shows how the performance of DDPG and CDC compares when they are both
trained using 4 learners, but 3–8 agents are used at test time. We report on the maxi-
mum distance between the farthest agent and the landmark, which is invariant to the
number of agents. It can be noted that CDC can handle systems with a varying number
of agents, outperforming DDPG and keeping the final performance competitive with
other methods that have been trained with a larger number of agents (see Table 1).

Author contributions  Authors’ contributions follow the authors’ order convention.

Funding  GM acknowledges support from a UKRI AI Turing Acceleration Fellowship (EPSRC EP/
V024868/1).

Availability of data and materials  Environments will be made available upon paper publication. All code
will be made available upon paper publication.

Declarations 

Ethics approval  Not applicable.

Consent to participate  The authors give their consent to participate.

 Consent for publication  The authors give their consent for publication.

Conflict of interest  No competing and finacial interests to disclose.

Table 5   Comparison of DDPG
and CDC on Dynamic Pack
Control. Both algorithms were
trained with 4 agents and tested
with 3–8. The performance
metric used here is the distance
of the the farthest agent to the
landmark

The numbers in bold indicate the most performant method for that
metric

agents DDPG CDC

3 2.34 ± 0.61 1.06± 0.12

4 3.52 ± 1.67 1.09± 0.1

5 3.90 ± 1.68 1.08± 0.15

6 4.44 ± 1.7 1.08± 0.18

7 5.21 ± 1.98 1.12± 0.12

8 6.49 ± 2.17 1.13± 0.11

510	 Machine Learning (2023) 112:483–514

1 3

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Agarwal, A., Kumar, S., & Sycara, K. (2019). Learning transferable cooperative behavior in multi-agent
teams. arXiv preprint arXiv:​1906.​01202.

Agogino, A. K., & Tumer, K. (2004). Unifying temporal and structural credit assignment problems. In
AAMAS (Vol. 4, pp. 980–987).

Albrecht, S. V., & Stone, P. (2018). Autonomous agents modelling other agents: A comprehensive sur-
vey and open problems. Artificial Intelligence, 258, 66–95.

Al-Mohy, A. H., & Higham, N. J. (2009). A new scaling and squaring algorithm for the matrix exponen-
tial. SIAM Journal on Matrix Analysis and Applications, 31(3), 970–989.

Balch, T., & Arkin, R. C. (1998). Behavior-based formation control for multirobot teams. IEEE Transac-
tions on Robotics and Automation, 14(6), 926–939.

Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29(4), 555–564.
Breazeal, C., Kidd, C. D., Thomaz, A. L., Hoffman, G., & Berlin, M. (2005). Effects of nonverbal com-

munication on efficiency and robustness in human-robot teamwork. In 2005 IEEE/RSJ interna-
tional conference on intelligent robots and systems (pp. 708–713). IEEE.

Brouwer, A. E., & Haemers, W. H. (2011). Spectra of graphs. Springer.
Brunet, C.-A., Gonzalez-Rubio, R., & Tetreault, M. (1995). A multi-agent architecture for a driver

model for autonomous road vehicles. In Proceedings 1995 Canadian conference on electrical and
computer engineering (Vol. 2, pp. 772–775). IEEE.

Busoniu, L., Babuska, R., & De Schutter, B. (2008). A comprehensive survey of multiagent reinforce-
ment learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), 38(2), 156–172.

Cheng, A.H.-D., & Cheng, D. T. (2005). Heritage and early history of the boundary element method.
Engineering Analysis with Boundary Elements, 29(3), 268–302.

Chen, H., Liu, Y., Zhou, Z., Hu, D., & Zhang, M. (2020). Gama: Graph attention multi-agent reinforce-
ment learning algorithm for cooperation. Applied Intelligence, 50(12), 4195–4205.

Chung, F. R., & Graham, F. C. (1997). Spectral graph theory. American Mathematical Society.
Chung, A. W., Pesce, E., Monti, R. P., & Montana, G. (2016a). Classifying hcp task-fmri networks using

heat kernels. In 2016 International workshop on pattern recognition in neuroimaging (PRNI) (pp.
1–4). IEEE.

Chung, A. W., Schirmer, M., Krishnan, M. L., Ball, G., Aljabar, P., Edwards, A. D., & Montana, G.
(2016b). Characterising brain network topologies: A dynamic analysis approach using heat ker-
nels. Neuroimage, 141, 490–501.

Cvetkovic, D. M. (1980). Spectra of graphs. Theory and Application.
Das, A., Gervet, T., Romoff, J., Batra, D., Parikh, D., Rabbat, M., & Pineau, J. (2018). Tarmac: Targeted

multi-agent communication. arXiv preprint arXiv:​1810.​11187.
Degris, T., White, M., & Sutton, R. S. (2012). Off-policy actor-critic. arXiv preprint arXiv:​1205.​4839.
Demichelis, S., & Weibull, J. W. (2008). Language, meaning, and games: A model of communication,

coordination, and evolution. American Economic Review, 98(4), 1292–1311.
Dresner, K., & Stone, P. (2004). Multiagent traffic management: A reservation-based intersection control

mechanism. In: Proceedings of the third international joint conference on autonomous agents and
multiagent systems (Vol. 2, pp. 530–537). IEEE Computer Society.

Fiedler, M. (1989). Laplacian of graphs and algebraic connectivity. Banach Center Publications, 25(1),
57–70.

Foerster, J., Assael, I. A., de Freitas, N., & Whiteson, S. (2016). Learning to communicate with deep
multi-agent reinforcement learning. In: Advances in neural information processing systems (pp.
2137–2145).

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1906.01202
http://arxiv.org/abs/1810.11187
http://arxiv.org/abs/1205.4839

511Machine Learning (2023) 112:483–514	

1 3

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., & Whiteson, S. (2017). Counterfactual multi-agent
policy gradients. arXiv preprint arXiv:​1705.​08926.

Fox, D., Burgard, W., Kruppa, H., & Thrun, S. (2000). A probabilistic approach to collaborative multi-
robot localization. Autonomous Robots, 8(3), 325–344.

Gildert, N., Millard, A. G., Pomfret, A., & Timmis, J. (2018). The need for combining implicit and
explicit communication in cooperative robotic systems. Frontiers in Robotics and AI, 5, 65.

Grupen, N. A., Lee, D. D., & Selman, B. (2022). Multi-agent curricula and emergent implicit signaling.
In Proceedings of the 21st international conference on autonomous agents and multiagent systems
(pp. 553–561).

Guestrin, C., Koller, D., & Parr, R. (2002). Multiagent planning with factored mdps. In Advances in neu-
ral information processing systems (pp. 1523–1530).

Hagberg, A., Swart, P., & Chult, D.S. (2008). Exploring network structure, dynamics, and function using
network. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States).

Håkansson, G., & Westander, J. (2013). Communication in humans and other animals. John Benjamins.
Harati, A., Ahmadabadi, M. N., & Araabi, B. N. (2007). Knowledge-based multiagent credit assignment: a

study on task type and critic information. IEEE Systems Journal, 1(1), 55–67.
Hernandez-Leal, P., Kaisers, M., Baarslag, T., & de Cote, E. M. (2017). A survey of learning in multiagent

environments: Dealing with non-stationarity. arXiv preprint arXiv:​1707.​09183.
Hernandez-Leal, P., Kartal, B., & Taylor, M. E. (2019). A survey and critique of multiagent deep reinforce-

ment learning. Autonomous Agents and Multi-Agent Systems, 33(6), 750–797.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.
Hoshen, Y. (2017). Vain: Attentional multi-agent predictive modeling. In Advances in neural information

processing systems (pp. 2701–2711).
Huang, Y., Bi, H., Li, Z., Mao, T., & Wang, Z. (2019). Stgat: Modeling spatial-temporal interactions for

human trajectory prediction. In Proceedings of the IEEE/CVF international conference on computer
vision (pp. 6272–6281).

Iqbal, S., & Sha, F. (2019). Actor-attention-critic for multi-agent reinforcement learning. ICML.
Itō, T., Zhang, M., Robu, V., Fatima, S., Matsuo, T., & Yamaki, H. (2011). Innovations in agent-based com-

plex automated negotiations. Springer.
Jia, J., Schaub, M. T., Segarra, S., & Benson, A. R. (2019). Graph-based semi-supervised & active learning

for edge flows. In Proceedings of the 25th ACM SIGKDD international conference on knowledge dis-
covery & data mining (pp. 761–771).

Jiang, J., & Lu, Z. (2018). Learning attentional communication for multi-agent cooperation. arXiv preprint
arXiv:​1805.​07733.

Jiang, J., Dun, C., Huang, T., & Lu, Z. (2018). Graph convolutional reinforcement learning. arXiv preprint
arXiv:​1810.​09202.

Kearns, M. (2012). Experiments in social computation. Communications of the ACM, 55(10), 56–67.
Kim, W., Park, J., & Sung, Y. (2020). Communication in multi-agent reinforcement learning: Intention shar-

ing. In International Conference on Learning Representations.
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:​1412.​

6980.
Klicpera, J., Weißenberger, S., & Günnemann, S. (2019). Diffusion improves graph learning. In Advances in

neural information processing systems (pp. 13354–13366).
Kloster, K., & Gleich, D. F. (2014). Heat kernel based community detection. In Proceedings of the 20th

ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1386–1395).
ACM.

Kondor, R., & Lafferty, J. (2002). Diffusion kernels on graphs and other discrete input spaces. icml 2002. In
Proc (pp. 315–322).

Kraemer, L., & Banerjee, B. (2016). Multi-agent reinforcement learning as a rehearsal for decentralized
planning. Neurocomputing, 190, 82–94.

Kschischang, F. R., Frey, B. J., Loeliger, H.-A., et al. (2001). Factor graphs and the sum-product algorithm.
IEEE Transactions on Information Theory, 47(2), 498–519.

Kuyer, L., Whiteson, S., Bakker, B., & Vlassis, N. (2008). Multiagent reinforcement learning for urban traf-
fic control using coordination graphs. In Joint European conference on machine learning and knowl-
edge discovery in databases (pp. 656–671). Springer.

Lafferty, J., & Lebanon, G. (2005). Diffusion kernels on statistical manifolds. Journal of Machine Learning
Research, 6, 129–163.

Laurent, G. J., Matignon, L., Fort-Piat, L., et al. (2011). The world of independent learners is not Marko-
vian. International Journal of Knowledge-based and Intelligent Engineering Systems, 15(1), 55–64.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

http://arxiv.org/abs/1705.08926
http://arxiv.org/abs/1707.09183
http://arxiv.org/abs/1805.07733
http://arxiv.org/abs/1810.09202
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

512	 Machine Learning (2023) 112:483–514

1 3

Lee, J.-H., & Kim, C.-O. (2008). Multi-agent systems applications in manufacturing systems and supply
chain management: A review paper. International Journal of Production Research, 46(1), 233–265.

Li, S., Gupta, J. K., Morales, P., Allen, R., & Kochenderfer, M. J. (2020). Deep implicit coordination graphs
for multi-agent reinforcement learning. arXiv preprint arXiv:​2006.​11438.

Liao, W., Bak-Jensen, B., Pillai, J. R., Wang, Y., & Wang, Y. (2021). A review of graph neural networks and
their applications in power systems. arXiv preprint arXiv:​2101.​10025.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., & Wierstra, D. (2015). Con-
tinuous control with deep reinforcement learning. CoRR arXiv:​abs/​1509.​02971.

Lin, K., Zhao, R., Xu, Z., & Zhou, J. (2018). Efficient large-scale fleet management via multi-agent deep
reinforcement learning. In Proceedings of the 24th ACM SIGKDD international conference on knowl-
edge discovery & data mining (pp. 1774–1783).

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994 (pp. 157–163). Elsevier.

Liu, Y.-C., Tian, J., Glaser, N., & Kira, Z. (2020). When2com: Multi-agent perception via communica-
tion graph grouping. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (pp. 4106–4115).

Liu, Y., Wang, W., Hu, Y., Hao, J., Chen, X., & Gao, Y. (2020). Multi-agent game abstraction via graph
attention neural network. In AAAI (pp. 7211–7218).

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P., & Mordatch, I. (2017). Multi-agent actor-critic
for mixed cooperative-competitive environments. In Advances in neural information processing
systems (pp. 6379–6390).

Mao, H., Zhang, Z., Xiao, Z., & Gong, Z. (2018). Modelling the dynamic joint policy of teammates with
attention multi-agent ddpg. arXiv preprint arXiv:​1811.​07029.

Mech, L. D., & Boitani, L. (2007). Wolves: Behavior, ecology, and conservation. University of Chicago
Press.

Mesbahi, M., & Egerstedt, M. (2010). Graph theoretic methods in multiagent networks. Princeton Uni-
versity Press.

Miller, J. H., & Moser, S. (2004). Communication and coordination. Complexity, 9(5), 31–40.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-

level control through deep reinforcement learning. Nature, 518(7540), 529.
Mohamed, A., Qian, K., Elhoseiny, M., & Claudel, C. (2020). Social-stgcnn: A social spatio-temporal

graph convolutional neural network for human trajectory prediction. In Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition (pp. 14424–14432).

Montesello, F., D’Angelo, A., Ferrari, C., & Pagello, E. (1998). Implicit coordination in a multi-agent
system using a behavior-based approach. In Distributed autonomous robotic systems (Vol. 3, pp.
351–360). Springer.

Mordatch, I., & Abbeel, P. (2017). Emergence of grounded compositional language in multi-agent popu-
lations. arXiv preprint arXiv:​1703.​04908.

Nguyen, T. T., Nguyen, N. D., & Nahavandi, S. (2020). Deep reinforcement learning for multiagent
systems: A review of challenges, solutions, and applications. IEEE Transactions on Cybernetics,
50(9), 3826–3839.

Niu, Y., Paleja, R., & Gombolay, M. (2021). Multi-agent graph-attention communication and teaming.
In Proceedings of the 20th international conference on autonomous agents and MultiAgent sys-
tems (pp. 964–973).

Parsons, S., & Wooldridge, M. (2002). Game theory and decision theory in multi-agent systems. Autono-
mous Agents and Multi-Agent Systems, 5(3), 243–254.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
& Lerer, A. (2017). Automatic differentiation in PyTorch.

Peng, P., Yuan, Q., Wen, Y., Yang, Y., Tang, Z., Long, H., & Wang, J. (2017). Multiagent bidirectionally-
coordinated nets for learning to play starcraft combat games. arXiv preprint arXiv:​1703.​10069.

Pesce, E., & Montana, G. (2019). Improving coordination in multi-agent deep reinforcement learning
through memory-driven communication. Deep Reinforcement Learning Workshop, (NeurIPS
2018), Montreal, Canada.

Quick, N. J., & Janik, V. M. (2012). Bottlenose dolphins exchange signature whistles when meeting at
sea. Proceedings of the Royal Society B: Biological Sciences, 279(1738), 2539–2545.

Rahaie, Z., & Beigy, H. (2009). Toward a solution to multi-agent credit assignment problem. In 2009
International conference of soft computing and pattern recognition (pp. 563–568). IEEE.

Scardovi, L., & Sepulchre, R. (2008). Synchronization in networks of identical linear systems. In 47th
IEEE conference on decision and control, 2008. CDC 2008 (pp. 546–551). IEEE

http://arxiv.org/abs/2006.11438
http://arxiv.org/abs/2101.10025
http://arxiv.org/1509.02971
http://arxiv.org/abs/1811.07029
http://arxiv.org/abs/1703.04908
http://arxiv.org/abs/1703.10069

513Machine Learning (2023) 112:483–514	

1 3

Schaller, G. B. (2009). The Serengeti lion: A study of predator-prey relations. University of Chicago
press.

Schmidhuber, J. (1996). A general method for multi-agent reinforcement learning in unrestricted envi-
ronments. In Adaptation, coevolution and learning in multiagent systems: Papers from the 1996
AAAI spring symposium (pp. 84–87).

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.
Schoen, R., & Shing-Tung Yau Mack, C. A. (1994). Lectures on differential geometry. International Press.
Seraj, E., Wang, Z., Paleja, R., Sklar, M., Patel, A., & Gombolay, M. (2021). Heterogeneous graph atten-

tion networks for learning diverse communication. arXiv preprint arXiv:​2108.​09568.
Shoham, Y., & Leyton-Brown, K. (2008). Multiagent systems: Algorithmic, game-theoretic, and logical

foundations. Cambridge University Press.
Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014). Deterministic policy

gradient algorithms. In ICML.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. (2016). Mastering

the game of go with deep neural networks and tree search. Nature, 529(7587), 484.
Singh, A., Jain, T., & Sukhbaatar, S. (2019). Learning when to communicate at scale in multiagent coopera-

tive and competitive tasks. In ICLR.
Stone, P., & Veloso, M. (2000). Multiagent systems: A survey from a machine learning perspective. Autono-

mous Robots, 8(3), 345–383.
Su, J., Adams, S., & Beling, P. A. (2020). Counterfactual multi-agent reinforcement learning with graph

convolution communication. arXiv preprint arXiv:​2004.​00470.
Sukhbaatar, S., & Fergus, R., et al. (2016). Learning multiagent communication with backpropagation. In

Advances in neural information processing systems (pp. 2244–2252).
Sutton, R. S., & Barto, A. G. (1998). Introduction to reinforcement learning. MIT Press.
Tanner, H. G., & Kumar, A. (2005). Towards decentralization of multi-robot navigation functions. In Pro-

ceedings of the 2005 IEEE international conference on robotics and automation (pp. 4132–4137)
IEEE.

Tuyls, K., & Weiss, G. (2012). Multiagent learning: Basics, challenges, and prospects. AI Magazine, 33(3),
41.

Van Rossum, G., & Drake, F. L., Jr. (1995). Python tutorial. Amsterdam: Centrum voor Wiskunde en
Informatica.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin,
I. (2017). Attention is all you need. In Advances in neural information processing systems (pp.
5998–6008).

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., et al. (2019). Grandmas-
ter level in starcraft ii using multi-agent reinforcement learning. Nature, 1–5.

Vorobeychik, Y., Joveski, Z., & Yu, S. (2017). Does communication help people coordinate? PLoS ONE,
12(2), 0170780.

Wang, R. E., Everett, M., & How, J. P. (2020). R-maddpg for partially observable environments and limited
communication. arXiv preprint arXiv:​2002.​06684.

Wang, T., Wang, J., Zheng, C., & Zhang, C. (2019). Learning nearly decomposable value functions via
communication minimization. arXiv preprint arXiv:​1910.​05366.

Wang, Y., Xu, T., Niu, X., Tan, C., Chen, E., & Xiong, H. (2019). Stmarl: A spatio-temporal multi-agent
reinforcement learning approach for traffic light control. arXiv preprint arXiv:​1908.​10577.

Wen, G., Duan, Z., Yu, W., & Chen, G. (2012). Consensus in multi-agent systems with communication con-
straints. International Journal of Robust and Nonlinear Control, 22(2), 170–182.

Wunder, M., Littman, M., & Stone, M. (2009). Communication, credibility and negotiation using a cogni-
tive hierarchy model. In Workshop# 19: MSDM 2009 (p. 73).

Xiao, B., Wilson, R. C., & Hancock, E. R. (2005). Characterising graphs using the heat kernel.
Xu, B., Shen, H., Cao, Q., Cen, K., & Cheng, X. (2020). Graph convolutional networks using heat kernel for

semi-supervised learning. arXiv preprint arXiv:​2007.​16002.
Xu, Z., Zhang, B., Bai, Y., Li, D., & Fan, G. (2021). Learning to coordinate via multiple graph neural net-

works. arXiv preprint arXiv:​2104.​03503.
Yliniemi, L., & Tumer, K. (2014). Multi-objective multiagent credit assignment through difference rewards

in reinforcement learning. In Asia-Pacific conference on simulated evolution and learning (pp. 407–
418). Springer.

Yuan, Q., Fu, X., Li, Z., Luo, G., Li, J., & Yang, F. (2021). Graphcomm: Efficient graph convolutional com-
munication for multi-agent cooperation. IEEE Internet of Things Journal.

Zhang, F., & Hancock, E. R. (2008). Graph spectral image smoothing using the heat kernel. Pattern Recog-
nition, 41(11), 3328–3342.

http://arxiv.org/abs/2108.09568
http://arxiv.org/abs/2004.00470
http://arxiv.org/abs/2002.06684
http://arxiv.org/abs/1910.05366
http://arxiv.org/abs/1908.10577
http://arxiv.org/abs/2007.16002
http://arxiv.org/abs/2104.03503

514	 Machine Learning (2023) 112:483–514

1 3

Zhou, H., Ren, D., Xia, H., Fan, M., Yang, X., & Huang, H. (2021). Ast-gnn: An attention-based spatio-
temporal graph neural network for interaction-aware pedestrian trajectory prediction. Neurocomput-
ing, 445, 298–308.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Learning multi-agent coordination through connectivity-driven communication
	Abstract
	1 Introduction
	2 Related work
	2.1 Centralised learning with decentralised execution
	2.2 Communication methods
	2.3 Attention mechanisms to support communication
	2.4 Diffusion processes on graphs
	2.5 Graph-based communication mechanisms

	3 Connectivity-driven communication
	3.1 Problem setting
	3.2 Learning the dynamic communication graph
	3.3 Learning a time-dependent attention mechanism
	3.4 Heat kernel: additional details and an illustration
	3.5 Reinforcement learning algorithm

	4 Experimental results
	4.1 Environments
	4.2 Implementation details and experimental setup
	4.3 Main results
	4.4 Communication analysis
	4.5 Ablation studies

	5 Conclusions
	References

