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Abstract
Graphons are limits of large graphs. Motivated by a theoretical problem from statistical 
relational learning, we develop a generalization of basic results from graphon theory into 
the “multi-relational” setting. We show that their multi-relational counterparts, which we 
call multi-relational graphons, are analogically limits of large multi-relational graphs. We 
extend the cut-distance topology for graphons to multi-relational graphons and prove its 
compactness and the density of multi-relational graphs in this topology. In turn, compact-
ness enables to prove the large deviation principle for Multi-Relational Graphs (LDP) 
which enables to prove the most typical random graphs constrained by marginal statistics 
converge asymptotically to constrained multi-relational graphons with maximum entropy. 
We show the equivalence between a restricted version of Markov Logic Network and 
Multi-Relational Graphons with maximum entropy.
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1  Introduction

Statistical Relational Learning [SRL (Getoor & Taskar, 2007)] deals with learning proba-
bilistic models from relational data. Many popular SRL frameworks, for instance, Markov 
Logic Networks [MLNs (Richardson & Domingos, 2006)], use weighted logical formulas 
to encode statistical regularities that hold for the considered problem. Typically, maximum 
(pseudo-)likelihood estimation is used to compute the weights of the formulas based on 
training data, which is often a single large example (e.g. a social network). This is problem-
atic because the weights that are learned from this single training example are in general 
not optimal for examples of different sizes. Jain et al. (2007) show a detailed example of 
a MLN that does not scale on data from different sizes. This turns out to be a fundamen-
tal problem, which cannot simply be solved by rescaling the weights. Using statistical ter-
minology, the issue is that models such as MLNs are not projective. Shalizi and Rinaldo 
(2013) show that projectivity is essential condition to ensure consistency of estimated 
probability distribution along samples of different sizes. Jaeger and Schulte (2018) shows 
some examples of non-projective relational models. An alternative approach to modelling 
relational structures using MLNs studied in detail in Kuželka et  al. (2018) exploits the 
fact that MLNs can be seen as maximum-entropy models constrained by so called rela-
tional marginal statistics. Here, the relational marginal statistics are given by first-order 
logic formulas. In particular, given a first-order logic formula � without quantifiers, the 
respective relational marginal statistic, denoted t(�,�) , is the probability that a randomly 
drawn grounding of the formula � will be satisfied in a given relational structure � (here, 
grounding of a formula is a formula obtained by replacing all its variables by constants). 
For instance, if � = friends(x, y) then the respective relational marginal statistic “measures” 
the density of the friends relation. Now suppose that we are given formulas �1 , �2 , … , �m 
and real numbers t1 , t2 , … , tm and we formulate the following optimization problem: find the 
distribution P(�) on possible worlds over some given set of domain constants � that (i) sat-
isfies ��∼P[t(�i,�)] = ti for each of the formulas �1 , … , �m and (ii) has maximum entropy 
among all distributions satisfying (i). When � has infinite number of nodes, Radin and 
Sadun (2013) show, in the context of Exponential Random Graphs (ERGM), that the most 
typical worlds � of MLN, described by one binary and symmetry relation, are the graphons 
with maximum entropy constrained by t(�i,W) = ti where W is a graphon.

Equipped with the view of MLNs as maximum-entropy models constrained by rela-
tional marginal statistics, the following problem naturally arises when approximately mod-
elling very large relational structures. Let us fix a set of first order-logic formulas �1 , �2 , 
… , �m and the values t1 , t2 , … , tm and let us consider the same maximum entropy problem 
as in the previous paragraph, however, this time we let |�| → ∞ . What can we say about 
the resulting distribution in the limit? It turns out this is a difficult question and at the 
moment we do not have much to say about it. However, we can take a look into the theory 
of graphons (Lovász, 2012) and see what it can offer for problems like this one.

Graphon theory deals with limits, called graphons, of large dense graphs. A graphon is 
any symmetric function W ∶ [0, 1]2 → [0, 1] . From a procedural point of view, a graphon 
can be seen as a probabilistic model for graphs. To sample a random graph �(n,W) on n 
vertices from a given graphon W. The set of vertices of the graph is � = {v1, v2,… , vn} 
and it is obtained by picking n arbitrary objects. The edge set is sampled as follows. Draw-
ing n numbers x1 , x2 , … , xn from [0,  1] uniformly at random. For every possible edge 
{vi1 , vi2} we uniformly sample a number yi1,i2 from [0,  1] and if yi1,i2 ≤ W(xi1 , xi2 ) , we 
add it to the edge set � . At first this may seem to be a very simple and very restricted 
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model. It may also seem that this model has little to do with the problem we were talk-
ing about. However, the opposite is true. Lovász and Szegedy (2006) showed a remark-
able result, which can be described using the MLN terminology as follows. Let us con-
sider just one symmetric relation which will represent edges of undirected graphs. Let us 
fix a set of constant-free and quantifier-free first-order logic formulas, representing some 
small graphs, e.g. �1 = e(x, y) , �2 = e(x, y) ∧ e(y, z) , �3 = e(x, y) ∧ e(y, z) ∧ e(z, x) . If there 
is a sequence of undirected graphs of increasing sizes G1,G2,G3,… such that the limit 
� = limi→∞(t(�1,Gi), t(�2,Gi), t(�3,Gi)) exists, then there also exists a graphon W such 
that �G∼W [(t(�1,G), t(�2,G), t(�3,G))] = � . In fact, Lovasz and Szegedy showed a stronger 
result. They showed that graphons are limits of converging sequences of graphs, but to 
describe this result precisely, we will first need to introduce more background (in particular 
this result only makes sense after we describe a suitable topology).

Graph homomorphism is the key notion that connects graphons with MLNs. Any con-
straint based on a graph homomorphism density and a graph density number can be trans-
lated into a logical formula with a suitable weight in a MLN. Hence graphons are an alter-
native for probabilistic modelling of relational structures constrained by relational marginal 
statistics. The main difference is that graphons maximize Boltzmann Entropy and MLNs 
maximize Gibbs Entropy. In the parlance of Statistical Mechanics, graphons are microca-
nonical ensembles of relational structures and MLNs are canonical ensembles. Graphons 
are also interesting from the computational viewpoint. For instance, unconditional sam-
pling of graphs from a graphon is extremely easy, compared to sampling from MLNs.

A crucial limitation of graphons from the knowledge representation perspective is that 
they model only probability distributions over simple undirected unlabeled graphs. In this 
work, we address this limitation and introduce what we will call multi-relational graphons 
as a direct generalization of graphons into the multi-relational setting. Strikingly, we man-
age to keep both the simplicity and the theoretical properties of graphons. A multi-rela-
tional graphon turns out to be just a vector of graphons, yet all the elegant properties of 
graphons such as topological compactness carry over to multi-relational graphons. Infor-
mally, our main result in the paper is showing the limit of growing random multi-relational 
graphs constrained by marginal statistics can be obtained by solving an optimization prob-
lem in the space of multi-relational graphons.

This potentially opens doors to wider applications of graphons for modelling of large 
heterogeneous networks: with graphons we could model a network of friends, whereas with 
multi-relational graphons we can model a network consisting both of friends, acquaint-
ances and families at once. In Sect. 8.3, we show an example of a MLN that is modeled by 
multi-relational graphon based on friends and acquaintances relations. Our results may also 
be potentially useful in the context of the very recently introduced framework called the 
AHK model (Jaeger, 2018), which is a rather general probabilistic model for relational data. 
Thus a natural open question would be the generalization of our results about the limits 
of constrained sequences of random undirected multi-relational graphs to arbitrary-arity 
relational data. This generalization would give us a principled way to learn AHK models.

This paper is organized as follows. Section 2 introduces Markov logic, multi-relational 
graphs, and graphon theory. Section  3 introduces multi-relational graphon space, graph 
homomorphism density, and cut-distance topology. Section 4 proves the compactness of 
cut-distance topology. Section 5 is devoted to prove that the set of multi-relational graphs 
is dense in the cut-norm topology. To prove that, we extend the sampling lemmas given 
by Lovász in his book (Lovász, 2012). Section  6 introduces the large deviation princi-
ple for multi-relational Erdős-Rényi random graphs. This principle enables proving that 
the most typical infinite random graphs constrained by any closed region in the space of 
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multi-relational graphons are solutions of a maximum entropy problem. Section 7 contains 
the largest proofs of this paper. In this section, we need to introduce yet more mathemati-
cal preliminaries oriented to show Alaoglu’s Theorem. This theorem states that the unit 
ball in the dual space of any topological vector space is compact. This theorem enables 
proving an alternative definition of cut-distance based on couplings. With this alternative 
definition, the large deviation principle is proven. Section 8 discusses the equivalence of 
probabilistic models based on multi-relational graphons and a restricted version of MLNs. 
After that, we show an example of the equivalence between multi-relational graphons and 
MLNs. In this section, we also show why multi-relational graphon models based on Boltz-
mann entropy are more natural than maximum entropy models based on Gibbs entropy for 
modelling multi-relational data. Section 9 describes the relationship to other works with 
multi-relational graphons. First, we show how multi-relational graphs limits are a special 
case of Compact Decorated graphs due to Lovász and Szegedy (2010). Second, we show 
the AHK model is a generalization of multi-relational graphons. Third we discuss the work 
of constrained graphons with maximum entropy done in the field of Statistical Mechanics. 
These works can be seen as a special case of constrained multi-graphons with maximum 
entropy. Finally, Sect. 10 gives the conclusions of this paper.

2 � Background

In this section we cover the necessary background material. Some basic concepts of Topol-
ogy and Measure Theory are also reviewed in the appendix.

2.1 � Basic notation

We use 1X to denote the indicator function, i.e., if x ∈ X then 1X(x) = 1 else 1X(x) = 0 . 
For any positive integer n, we denote by [n] the set of all positive integers smaller 
than or equal to n. We denote by ⌈x⌉ the least integer greater than or equal to x. For a 
function f ∶ X × X → Z , we denote by f ⊤ the function which is its transpose, i.e., 
∀x, y ∈ X ∶ f ⊤(x, y) = f (y, x) . A sequence x ∶ ℕ → X  is denoted by (xi)∞i=1.

2.2 � First order logic

We assume a restricted function-free first-order language defined by a set of constants � , a 
set of variables V and a set R of binary predicates. Variables start with lowercase letters and 
constants start with uppercase letters. A term is a variable or a constant. An atom is r(a1, a2) 
with a1, a2 ∈ � ∪ V and r ∈ R . A literal is an atom or its negation. An expression is ground 
if it contains no variables. A substitution is a mapping {a1∕t1,… , an∕tn} where the ai are 
distinct variables and the ti are terms. If e is an expression and � = {a1∕t1,… , an∕tn} a sub-
stitution, then e� is the expression e where one has replaced simultaneously the variables ai 
with the corresponding terms ti . A possible world � is represented as a set of ground atoms 
that are true in � . The satisfaction relation ⊧ is defined in the usual way: 𝜔 ⊧ 𝛼 means that 
the first-order logic formula � is true in � . When � is a list of first-order logic variables 
then |�| is used to denote the length of this list.
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2.3 � Markov logic networks

A Markov logic network (Richardson & Domingos, 2006) (MLN) is given as a set of 
weighted first-order logic formulas (�,w) , where w ∈ ℝ and � is a function-free and quan-
tifier-free first-order formula. The semantics are defined w.r.t. the groundings of the first-
order formulas, relative to a given finite set of constants � , called the domain. An MLN � 
induces the probability distribution over possible worlds � ∈ �:

where N(�,�) is the number of groundings of � from � satisfied in � , and Z, called the par-
tition function, is a normalization constant to ensure that p� is a probability distribution.

In the context of the present paper, we replace N(�,�) in the definition of MLNs by the 
fraction of groundings of � satisfied in � , i.e.,

where vars(�) is the set of variables occurring in � , �(�,�) is the set of all grounding sub-
stitutions of � ’s variables using constants from � and 1(𝜔 ⊧ 𝛼𝜗) is the indicator function, 
which is equal to 1 when �� is true in the possible world � , 0 otherwise. Thus, Q(�,�) is 
the fraction of the groundings of � satisfied in � . With this notation we will write the prob-
ability of a possible world � ∈ � as:

The reason this representation is more convenient for us is that Q(�,�) is closer to the 
homomorphism densities used in graphon theory, as we discuss in Sect. 2.5.

Another way to look at Markov logic networks is to view them in the max-entropy 
framework as a maximum entropy distribution satisfying the given marginal constraints 
�[Q(�i, .)] = �i [along the lines of Wainwright and Jordan (2008)]. Assuming we are 
given constraints on the expected values of the statistics �[Q(�i, ⋅)] for a set of formulas 
� = {�1 … �|�|} , we can define the following max-entropy problem of finding a maximum 
entropy distribution satisfying the constraints on the expected values.

Relational marginal problem (formulation):

Here, the P� ’s are the problem’s decision variables, each of which represents the probabil-
ity of one possible world � ∈ � . Line (1) is the maximum Gibbs entropy criterion, which 

p�(�) =
1

Z
exp

( ∑
(�,w)∈�

w ⋅ N(�,�)

)
,

Q(𝛼,𝜔) =
1

|𝛥||vars(𝛼)|
∑

𝜗∈𝛩(𝛼,𝛥)

1(𝜔 ⊧ 𝛼𝜗),

p�(�) =
1

Z
exp

( ∑
(�,w)∈�

w ⋅ Q(�,�)

)
.

(1)min
{P�∶�∈�}

∑
�∈�

P� logP� s.t.

(2)∀i = 1,… ,m ∶
∑
�∈�

P� ⋅ Q(�i,�) = �i

(3)∀� ∈ � ∶ P� ≥ 0,
∑
�∈�

P� = 1



182	 Machine Learning (2023) 112:177–216

1 3

is shown here as the minimization of the negative entropy; Line (2) shows the constraints 
given by the statistics; and Line (3) provides the normalization constraints for the probabil-
ity distribution.

Assuming there is a feasible solution satisfying ∀𝜔 ∶ P𝜔 > 0 , the optimal solution of 
the above maximum entropy problem is an MLN P� =

1

Z
exp

�∑
(�i ,wi)∈�

wi ⋅ Q(�i,�)
�
 

where the parameters � = (w1,… ,wm) are obtained by maximizing the dual criterion, 
which also happens to be equivalent to the log-likelihood of the MLN [we refer to Kuželka 
et al. (2018) for details in the MLN context].

2.4 � Graphs and multi‑relational graphs

An undirected graph � is a pair (�,�) where � is a finite set of vertices and 
� ⊆ {e ⊆ �||e| = 2} is a set of edges. Two vertices are said to be adjacent (in � ) if they 
are connected by an edge (of the graph � ). A multi-relational undirected graph is a triple 
(�,�, �) , where (�,�) is an undirected graph and � ∶ � → 2� is a function assigning a 
set of labels from a finite alphabet � = {l1,… , lr} to every element of � . Alternatively, a 
multi-relational graph can be represented as a tuple (�,�1,�2,… ,�r) where �i consists of 
the edges e for which li ∈ �(e) , i.e. which have label li among their labels. We will use this 
latter representation in this paper because it will turn out to be convenient for constructing 
limits of multi-relational graphs. Note that simple graphs are a special case of multi-rela-
tional graphs. Given a multi-relational graph � = (�,�1,�2,… ,�r) we use the notation 
�(G) = � to refer to the set of vertices of � . The set of multi-relational graphs is denoted 
by G[r].

A homomorphism from a multi-relational graph F =
(
�F ,�F

1
,… ,�F

r

)
 to a multi-rela-

tional graph G = (�,�1,… ,�r) is a mapping � ∶ �F → � such that for all i ∈ {1, 2,… , r} 
it holds that if {u, v} ∈ �

F
i
 then {�(u),�(v)} ∈ �i . Informally, homomorphisms are map-

pings that preserve edges and their labels. The set of all homomorphisms between � and � 
is denoted Hom(�,�).

Next we define homomorphism density of � in � , denoted t(�,�) , as:

2.5 � Graphons

A graphon is the limit of a sequence of growing undirected graphs w.r.t. a certain topology 
that we describe below. It can be represented as a measurable function W ∶ [0, 1]2 → [0, 1] 
satisfying W = W⊤ . The space of graphons W is defined as

The space W is a subspace of W
ℝ
= {W ∶ [0, 1]2 → ℝ ∣ W is measurable and W = W⊤} . 

The space W
ℝ
 is endowed with the topology induced by the cut-norm,

(4)t(�,�) =
|Hom(�,�)|
|�(�)||�(�)| .

W ∶= {W ∶ [0, 1]2 → [0, 1] ∣ W is measurable and W = W⊤}.

‖W‖□ ∶= sup
S,T⊆[0,1]

����∫S×T

W(x, y)dxdy
����.
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Let � be the set of bijective measure preserving maps � ∶ [0, 1] → [0, 1] . Let W ∈ W and 
let � ∈ � . Then W� ∶ [0, 1]2 → [0, 1] is defined by W�(x, y) ∶= W(�(x), �(y)) . The space 
of unlabeled graphons W̃ , shortly called the graphon space, is the quotient of the space 
of graphons W w.r.t. the equivalence relation ∼ on W defined by W ∼ V  iff there is � ∈ � 
such that W = V� . Hence we can also write W̃ ∶= W∕ ∼.

The unlabeled graphon space W̃ is endowed with a topology induced by the 
cut-distance:

where V ,W ∈ W̃.
Lovász and Szegedy (2006) shows that (W̃, �□) is a compact topological space. Hence 

any sequence (xn)∞n=1 in W̃ has a convergent subsequence.

2.5.1 � Graphons as random‑graph models

Graphons can also be seen as non-parametric random graph models. Given a graphon W 
and a positive integer n, we can use W to sample random graphs on n vertices as follows: 

1.	 Let � = {v1, v2,… , vn}.
2.	 Sample uniformly n numbers x1 , x2 , … , xn from the interval [0, 1].
3.	 For every vi, vj , where i < j , sample uniformly a number yi,j from [0, 1].
4.	 Let � = {{vi, vj}|i < j and yi,j ≤ W(xi, xj)}.
5.	 Return � = (�,�).

Hence, intuitively, we can view a graphon as defining a “probabilistic” adjacency matrix 
over an uncountable set of vertices.

2.6 � Stepfunctions

Stepfunctions are graphons that can be described by a finite number of parameters. First, 
the probability polytope P(m) , where m is a positive integer, is defined by

Next we define the notion of m-stepfunction, which will be a central tool in the next 
sections,

Definition 1  Let � be the Lebesgue measure on ℝ , let P = {P1,… ,Pm} be a partition of 
[0,  1], let � ∈ P(m) such that �(Pi) = �i , let A ∈ [0, 1]m×m be a symmetric m × m matrix 
on [0, 1]. Then an m-stepfunction (A,�) ∶ [0, 1]2 → [0, 1] is a function locally constant on 
Pi × Pj for all i, j ∈ [m] , more precisely

The set of stepfunctions is denoted by W(m).

�□(W,V) = inf
�∈�

‖W − V�‖□

P(m) ∶=

{
� ∈ [0, 1]m

|||
∑
i

�i = 1

}
.

(A,�) ∶=
m∑

i,j=1

Ai,j1Pi×Pj
.
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3 � Multi‑relational graphons

In this section we introduce multi-relational graphons, which, as we show later, are limits1 
of convergent series of multi-relational graphs. The multi-relational graphons introduced 
here can also be seen as special cases of the decorated graphons given in Lovász and Sze-
gedy (2010). However, as we will show, they are simpler to work with.

3.1 � Multi‑relational graphon space

We start by defining multi-relational graphons, which are the multi-relational counter-
parts of graphons. First, let us recall that the space of graphons W from Section 2.5 is the 
following

Since every multi-relational graph G can be represented as a vector of graphs [G1,… ,Gr] 
with a common node set, intuitively we might expect that the limit of a sequence of multi-
relational graphs can be represented as a vector of graphons. Later we will see that this def-
inition makes sense and gives us all the desired theoretical properties. Hence, we identify 
the space of multi-relational graphons, denoted W[r] , with the cartesian product of r copies 
of the graphon space W:

Definition 2  (Graphon space)

Moreover we extend the cut-norm to the multi-relational graphon space by

Note that when r = 1 , W[r] is reduced to the graphon space W . Hereafter, we assume 
that every multi-relational graphon is a vector of r graphons.

Moreover later we need some additional notations for graphon and multi-relational gra-
phon whose values are in [−1, 1].

and

W ∶= {W ∶ [0, 1]2 → [0, 1] ∣ W is measurable ,W = W⊤}

W
[r] ∶= {W ∶ [0, 1]2 → [0, 1]r |Wk ∶ [0, 1]2 → [0, 1]

is measurable ,Wk = W⊤
k
for all k ∈ [r]}.

(5)‖W‖[r]
□

=

r�
i=1

‖Wi‖□.

W[−1,1] ∶= {W ∶ [0, 1]2 → [−1, 1] ∣ W is measurable and W = W⊤}.

W
[r]

[−1,1]
∶= {W ∶ [0, 1]2 → [−1, 1]r ∣ W is measurable and for all i ∈ [r]Wi = W⊤

i
}.

1  What precisely we mean by being a limit is explained later.
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3.2 � Unlabeled multi‑relational graphon space

Next we define the space of unlabeled multi-relational graphons, completely analogously 
to how the space of unlabeled graphons is defined.

Definition 3  Let W ∈ W
[r] and let � ∈ � then the action of � on W is defined by,

We define the space of unlabeled multi-relational graphons W̃
[r]

 as the quotient of W[r] by 
the equivalence relation ∼ on W[r] defined by W ∼ V  iff there exists an action � ∈ � such                                                
3.2.1 � Multi‑relational graphons as probabilistic models

Like graphons, multi-relational graphons can also be seen as non-parametric multi-rela-
tional random graph models. Given a multi-relational graphon W = (W1,W2,… ,Wr) and 
a positive integer n, we can use W to sample random multi-relational graphs on n vertices 
as follows (we highlight the differences from sampling from simple graphons using text in 
italics): 

1.	 Let � = {v1, v2,… , vn}.
2.	 Sample n numbers x1 , x2 , … , xn uniformly from the interval [0, 1].
3.	 For every vi, vj , where i < j , sample r numbers y(1)

i,j
 , y(2)

i,j
 … , y(r)

i,j
 uniformly from [0, 1].

4.	 For all k ∈ {1, 2,… , r} , let �k = {{vi, vj}|i < j and y
(k)

i,j
≤ Wk(xi, xj)}.

5.	 Return � = (�,�1,�2,… ,�r).

3.3 � Counting multi‑relational graph homomorphisms

Let � and � be multi-relational graphs with the same number of relations r. Additionally, 
we assume that � has node and edges weights. To compute |Hom(�,�)| , we extend the for-
mulas given in Section 5.2.1 in Lovász (2012) to count graph homomorphism on weighted 
graphs to the multi-relational case. For any k ∈ [r] and vertices i, j ∈ V(�) , let �i ∈ ℝ+ and 
let �k,ij ∈ ℝ+ be non-negative weights.

To every map � ∶ V(�) → V(�) , we assign the weights

and

Moreover, we define

[W1,… ,Wr]
� = [W�

1
,… ,W�

r
].

�� =
∏

u∈V(F)

��(u)(�)

|Hom�(�,�)| =
r∏

k=1

∏
(uv)∈Ek(�)

�k,�(u)�(v).

(6)|Hom(�,�)| = ∑
�∶V(�)→V(�)

��|Hom�(�,�)|.
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In the sequel of this paper, unless explicitly stated otherwise we will assume that �v = 1 for 
all v ∈ V(�) . In particular, if we set the node weights �� = 1 , there follows from Eqs. (4) 
and (6) that

where m = |V(�))| and n = |V(�))| . G can be seen as a vector of step-
functions on the unit square whose value for the relation k at the square 
[(i − 1)∕|V(G)|, i∕|V(G)|) × [(j − 1)∕|V(G)|, j∕|V(G)|) is �k,ij for i, j ∈ [|V(G)|] . In this way 
G is a measurable function, hence when V(G) → ∞ in a converging sequence we have that 
G → W converges to a measurable function W by Lebesgue’s Dominated Convergence 
Theorem. Hence we arrive to the formula to compute the density of multi-relational graph 
homomorphisms,

Note that the above formula computes the density of multi-relational graph homomorphism 
from � into a multi-relational graph W with uncountable many nodes from [0, 1].

In this paper, it is convenient to define F as a generalization of signed graphs from 
Lovász (2012) in the context of multi-relational graphs. Suppose that the edges of each 
relation Ei of a multi-relational graph F are partitioned into two sets E+

i
 and E−

i
 . Then the 

tuple F = (V ,E+
1
,E−

1
,… ,E+

r
,E−

r
) will be called a multi-relational signed graph. The sub-

graph density of F in a multi-relation al graphon is,

3.4 � Cut distance on W̃
[r]

We already have a topology based on the cut norm for the space of multi-relational 
graphons W[r] that we defined in (5) above. Now, we use it to also endow the space of 
unlabeled multi-relational graphons W̃

[r]
 with a topology by defining the cut-distance on it.

Let W,V ∈ W̃
[r]

The following lemma shows bounds for �[r]
□

.

Lemma 1  Let W,V ∈ W̃
[r]

 be unlabeled multi-relational graphons, then

(7)t(�,�) =

m∑
x1=1

1

m
⋯

m∑
xn=1

1

m

r∏
k=1

∏
uv∈Ek(�)

�k,xuxv

(8)t(�,W) = ∫[0,1]|V(�)|

r∏
k=1

∏
(uv)∈�k(F)

Wk(xu, xv)
∏

u∈V(�)

dxu.

(9)t(�,W) = ∫[0,1]|V(�)|

r∏
k=1

∏
(uv)∈�+

k
(F)

Wk(xu, xv)
∏

(uv)∈�−
k
(F)

(1 −Wk(xu, xv))
∏

u∈V(�)

dxu.

�[r]
□
(W,V) = inf

�∈�
‖W − V�‖[r]

□

r�
k=1

�□(Wk,Vk) ≤ �[r]
□
(W,V) ≤ ‖W − V‖[r]

□
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Proof  Note that

Hence we obtain

	�  ◻

Remark 1  Note that the norm ‖ ⋅ ‖[r]
□

 is the sum of ‖ ⋅ ‖□ . Hence every result that shows an 
upper bound for the norm ‖ ⋅ ‖ on W for graphons can be extended easily to an upper bound 
for multi-relational graphons by the sum of individual upper bounds.

4 � Compactness on W̃
[r]

In this section we prove that the space (W̃
[r]
, �[r]

□
) is compact. To do that we extend the 

weak regularity lemma for graphons given Corollary 9.13 in Lovász (2012).

4.1 � Weak regularity lemma for multi‑relational graphons

The weak regularity lemma, which is known to hold for graphons, asserts that every gra-
phon can be arbitrarily approximated by stepfunctions. Here we extend the weak regularity 
lemma to multi-relational graphons.

To state the weak regularity lemma, we need the notion of a stepping operator. Intui-
tively, a stepping operator for multi-relational graphons takes an arbitrary multi-relational 
graphon and produces a multi-relational graphon which approximates the original graphon 
and which is a step function.

Definition 4  (Stepping Operator for graphons) Let P ∶= {P1,… ,Pm} be a partition of 
[0, 1] and W ∈ W . Then TP(W) is the m-stepfunction defined by

where (x, y) ∈ Pi × Pj and �(A) is the Lebesgue measure of A.

It is clear that the stepping operator TP is a map from W to W(m) where m = |P|.
Now we generalize the stepping operator TP(W) for multi-relational graphons.

Definition 5  (Stepping Operator for Multi-relational graphons) Let P = [P1,… ,Pr] be a 
vector of partitions of [0, 1] and W ∈ W

[r] be a multi-relational graphon then

r�
k=1

�□(Wk,Vk) =

r�
k=1

inf
�k∈�

‖Wk − V
�k
k
‖□ = inf

�1,…,�r∈�

r�
k=1

‖Wk − V
�k
k
‖□

≤ inf
�∈�

r�
k=1

‖Wk − V�
k
‖□ = �[r]

□
(W,V).

r�
k=1

�□(Wk,Vk) ≤ �[r]
□
(W,V) ≤

r�
k=1

‖Wk − Vk‖□.

TP(W)(x, y) =
1

�(Pi)�(Pj) ∫Pi×Pj

W(u, v)dudv
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The next theorem from Lovász (2012) can be proven using the weak regularity lemma 
(Lemma 9.9 in Lovász (2012)).

Theorem 1  (Corollary 9.13 in Lovász (2012)) For every function W ∈ W and k ≥ 1 there 
is a partition P of [0, 1] into at most k sets with positive measure for which

Definition 6  Let P = {P1,… ,Pk} be a partition of [0, 1]. We say that P is an equipartition 
P with k classes if �(Pi) = 1∕k for all i ∈ [k].

Lemma 2  (Lemma 9.15 in Lovász (2012))    Let W ∈ W[−1,1] and 1 ≤ m < k . 

(a)	 For every m-partition Q of [0, 1] and k > m there is a partition with k classes P refining 
Q such that 

(b)	 For every m-partition Q of [0, 1] and k > m there is an equipartition P with k classes 
such that 

Definition 7  (�-partition) Let P = [P1,P1,… ,P1]
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

r times

 be a vector of partitions of [0, 1] with 

the same classes. Let 𝜖 > 0 and let W ∈ W
[r] . We say that P is an �-partition for W if

The next theorem proves the existence of an �-partition for any W ∈ W
[r].

Theorem 2  For every graphon W ∈ W
[r] and k ≥ 1 such that k1∕r ∈ ℕ . Then, there exists a 

partition P such that

Proof  Let k1 ≥ 1 be an integer. By Theorem 1, for every i ∈ [r] there is a k1-partition Qi of 
[0, 1] such that

TP(W) = [TP1
(W1),… , TPr

(Wr)].

‖W − TP(W)‖□ ≤ 2√
log2 k

‖W − TP(W)‖□ ≤ 2√
log2(k∕m)

.

‖W − TP(W)‖□ ≤ 2‖W − TQ(W)‖□ +
2m

k

‖W − TP(W)‖[r]
□

≤ �.

‖W − TP(W)‖[r]
□

≤ 2r3∕2√
log2 k

.

‖Wi − TQi
(Wi)‖□ ≤ 2√

log2 k1

.
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For s ∈ [k1]
r let Q∩

s
⊆ [0, 1] be the set of all x ∈ [0, 1] such that for all i ∈ [r] the point x is 

in the si-th partition class of Qi . The set Q∩ = {Q∩
s
∣ s ∈ [k1]

r} is a partitioning of [0, 1]. Let 
k = kr

1
= |Q∩| be the number of classes of |Q∩| . Q∩ is a refinement of Qi for each i ∈ [r] , so 

there holds

and hence

	�  ◻

4.2 � Compactness on W̃
[r]

We have all ingredients to prove compactness of W̃
[r]

.

Theorem 3  The space (W̃
[r]
, �[r]

□
) is compact.

This proof is almost identical to the proof of Theorem 5.1 in Lovász and Szegedy (2007) 
except that we use a vector of stepfunctions instead of a single stepfunction and we make 
use of �-partitions.

Proof  Let W1,W2,… be a sequence of vectors of graphons in W[r] . We will construct a sub-
sequence that has a limit in W̃

[r]
.

For each k and n, using Theorem 2, we construct an �-partition Pn,k such that these parti-
tions and the corresponding stepfunctions Wn,k = TPn,k

(W) ∈ W
[r] satisfy the following.

–	 ‖Wn −Wn,k‖[r]□ ≤ 1∕k.

–	 |Pn,k| = mk (where mk depends only on k).
–	 The partition Pn,k+1 refines Pn,k for every k.

The rest of the proof follows verbatim from the analogous proof of Theorem  5.1 from 
Lovász and Szegedy (2007) except that we use a vector of stepfunctions instead of one 
stepfunction. 	�  ◻

Any multi-relational graph G[r] has a natural representation as multi-relational graphon 
in terms of adjacency matrices:

Definition 8 
where n = |V(G[r])| . Hence f G[r]

k
(x, y) is a representation of G[r] in W̃

[r]
 . From Eqs. (7) and 

(8), it is not difficult to verify t(F,G) = t(F, f G).

∀i ∈ [r] ∶ ‖Wi − TQ∩ (Wi)‖□ ≤ 2√
log2 k1

=
2r1∕2√
log2 k

‖W − TQ∩ (W)‖□ ≤ 2r3∕2√
log2 k

f G
[r]

k
(x, y) =

�
1 if (v⌈nx⌉, v⌈ny⌉) ∈ Ek(G

[r])

0 otherwise
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Compactness of W̃
[r]

 ensures that any sequence of growing multi-relational graphs 
(G[r]

n
)∞
n=1

 represented by (f G[r]
n )∞

n=1
 has at least a subsequence with a limit. In the next sec-

tion, we will prove that such limits of sequences of multi-relational graphons (f G[r]
n )∞

n=1
 con-

strained to a closed set H ⊂ �W
[r]

 are solutions of a maximum entropy problem.

5 � Density of multi‑relational graphs

The weak regularity lemma shows that the set of stepfunctions ∪m>0W
(m) is dense in W[r] 

and the set of multi-relational graphs is a subset of W(m) via the representation G ↦ f G . 
To show the space of unlabeled multi-relational graphons is the appropriate limit space 
for multi-relational graphs, we need to prove that the set of multi-relational graphs G[r] is 
dense in W̃

[r]
 via the identification G ↦ f G . To do that, we extend Theorem 4.7 Borgs et al. 

(2008) due to Borgs, Chayes, Lovász, Sós and Vesztergombi to the multi-relational setting. 
This theorem states that a sample is close to the original graphon with high probability.

We start by extending the notion of W-sampling for multi-relational graphons.

5.1 � W‑sampling for multi‑relational graphons

Definition 9  (Sampling weighted multi-relational graphs) Let W ∈ W
[r] and let 

S = {x1,… , xn} ⊂ [0, 1] be an ordered set, then we denote by ℍ(S,W) the multi-relational 
weighted graph [H!,… ,Hr] obtained from W = [W1,… ,Wr] by assigning the common 
node set to V(ℍ(S,W)) = {1,… , n} and the weight for Hk is equal to

for all 1 ≤ k ≤ r . If S is a random k-subset of [0, 1] drawn uniformly then we write ℍ(n,W) 
instead of ℍ(S,W).

Definition 10  (Sampling of random graphs from weighted multi-relational graphs) Let 
H be a weighted multi-relational graph. Then �(H) is a random multi-relational graph 
obtained by connecting different nodes i and j by an edge of class k with probability 
�k,ij(H) ∈ [0, 1] independently of the sampling of other edges. Hence, we can construct a 
random graph 𝔾(S,W) = 𝔾(ℍ(S,W)).

Definition 11  (Sampling of random graphs from multi-relational graphons) Let W ∈ W̃
[r]

 
and let n be a positive integer. Let S be a random k-subset of [0, 1] sampled uniformly. 
Then �(n,W) is a random graph obtained by �(S,W).

Note that the sampling from �(n,W) extends the sampling procedure of graphs from a gra-
phon given in Sect. 2.5.1.

Definition 12  (Multi-relational graph parameter) Recall that G[r] is the set of multi-rela-
tional graphs. A multi-relational graph parameter is a function f ∶ G

[r]
→ ℝ defined on 

multi-relational, not necessarily loop-free graphs which is invariant under graph isomor-
phism. For example any multi-relational subgraph density t(F, ⋅) is a multi-relational graph 
parameter.

�k,ij(ℍ(S,W)) =

{
Wk(xi, xj) If i ≠ j

0 If i = j
.
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Hence it is clear that f (�(n,W)) is a random variable. The next lemma shows a concen-
tration measure inequality for the multi-relational graph parameters.

Lemma 3  (Lemma 4.1 Borgs et al. (2008)) Let k be a positive integer, and let C > 0 . Let 
Z = (Z1,… , Zs) , where Z1,… , Zs are independent random variables, and Zi takes values in 
some measure space (�i,Ai) . Let f ∶ �1 ×⋯ ×�s → ℝ be a measurable function. Sup-
pose that |f (x) − f (y)| ≤ C whenever x = (x1,… , xs) and y = (y1,… , ys) differ only in one 
coordinate. Then

Remark 2  Let f ∶ G
[r]

→ ℝ be a multi-relational graph parameter and suppose f is 
bounded. Let fq ∶ [0, 1]q → ℝ with fq(S) = f (�(S,W)) . Then fq satisfies the condition of 
the above lemma since there is a C such that |fq(x) − fq(y)| ≤ C whenever x = (x1,… , xq) 
and y = (y1,… , yq) differ only in one coordinate.

5.1.1 � Sampling lemmas

The goal of this section is the extension of Theorem 4.7 Borgs et al. (2008) to the multi-
relational setting. To do that, we extend a set of lemmas from Chapter 10 in Lovász (2012) 
and finally extend Theorem 4.7. We name this extension the second sampling lemma for 
multi-relational graphons.

Lemma 4  (The First Sampling Lemma for graphons. Lemma 10.6 in Lovász (2012)) Let 
U ∈ W[−1,1] and let X be a random ordered k-subset of [0, 1]. Then with probability at least 
1 − 4 exp(−

√
k∕10),

From the first sampling lemma, we prove the following.

Lemma 5  Let k > 1 be a positive integer. Let U ∈ W
[r]

[−1,1]
 and let X be a random ordered 

k-subset of [0, 1]. Then,

Proof  From Remark 1 and the linearity of the expectation, it is sufficient to prove that

for any V ∈ W[−1,1] . Let z = ‖V[X]‖□ − ‖V‖□ , thus

ℙ(f (Z) > E[f (Z)] + 𝜆C) < exp(−
𝜆2

2s
)

−
3

k
≤ ‖U[X]‖□ − ‖U‖□ ≤ 8

k1∕4
.

�

�
‖U[X]‖[r]

□
− ‖U‖[r]

□

� ≤ 14r

k1∕4
.

�
�‖V[X]‖□ − ‖V‖□

� ≤ 14

k1∕4
.
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In the second term we can bound �
[
z|z < −3∕k ∨ z ≥ 8∕k1∕4

] ≤ 1 because 
z ∈ [−1, 1] , and by applying Lemma  4 on V and k > 1 we can bound 
ℙ
�
z < −3∕k ∨ z ≥ 8∕k1∕4

� ≤ 4 exp(−
√
k∕10) . In the second term, from Lemma 4 we can 

bound �
[
z| − 3∕k ≤ z ≤ 8∕k1∕4

] ≤ 8∕k1∕4 and the probability is at most 1. There follows

where the last inequality can be verified numerically. 	�  ◻

We also extend a consequence of Lemma 10.11 Lovász (2012).

Lemma 6  (Lemma 10.11 Lovász (2012)) For every edge-weighted multi-relational graph 
H with k nodes and edge weights in [0, 1], and for every � ≥ 10∕

√
k , we have

First we prove a consequence of the above lemma in the setting of simple graphs.

Lemma 7  For every edge-weighted simple graph H with k nodes and edge weights in [0, 1], 
we have

Proof  By applying Lemma 6 with � = 10∕
√
k , we have

We abbreviate ‖�(H) − H‖□ by z. Hence

From (10) and knowing the distance z = ‖�(H) − H‖□ in bounded by 1, we have

	�  ◻

We can extend the above lemma to the multi-relational setting.

𝔼[z] =𝔼
[
z|| − 3

k
≤ z ≤ 8

k1∕4

]
ℙ

(
−
3

k
≤ z ≤ 8

k1∕4

)

+ 𝔼

[
z||z < −

3

k
∨ z ≥ 8

k1∕4

]
ℙ

(
z < −

3

k
∨ z ≥ 8

k1∕4

)

E[z] ≤ 8

k1∕4
+ 4 exp(−

√
k

10
) ≤ 14

k1∕4
.

Prob(‖�(H) − H‖□ > 𝜀) ≤ exp(−𝜀2k2∕100).

�
�‖�(H) − H‖□

� ≤ 11√
k

(10)ℙ

�
‖𝔾(H) − H‖□ >

10√
k

�
≤ exp(−k).

𝔼[z] = 𝔼

�
z
��� z >

10√
k

�
ℙ

�
z >

10√
k

�
+ 𝔼

�
z
���z ≤ 10√

k

�
ℙ

�
z ≤ 10√

k

�

�[z] ≤ �

[

z ||
|

z > 10
√

k

]

exp(−k) + �

[

z ||
|

z ≤ 10
√

k

]

≤ exp(−k) + 10
√

k
≤ 11

√

k
.
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Lemma 8  For every edge-weighted multi-relational graph H with k nodes and edge weights 
in [0, 1], we have

Proof  From Lemma 7 and Remark 1, the proof is immediate. 	�  ◻

Lemma 9  Let V ∈ W̃
[r]

 be a stepfunction of q steps and let k be a positive integer. Then

Proof  We follow the same ideas as the proof of Theorem 4.7 in Borgs et al. (2008).
Let V have steps J1,… , Jq ⊆ [0, 1] , and �(Ji) = �i . Let X1,… ,Xk be independent ran-

dom variables that are uniformly distributed on [0, 1], and let Zi be the number of points Xj 
that fall into the set Ji . Hence we have

Construct a partition of [0, 1] into measurable sets J�
1
,… , J�

q
 such that �(J�

i
) = Zi∕k and

We define a symmetric function V � ∈ W such that the value of V ′ on J�
i
× J�

j
 is the same as 

the value of V on Ji × Jj . Then V ′ is a step function representation of ℍ(k,V) , and it agrees 
with V on the set Q = ∪

q

i,j=1
(Ji ∩ J�

i
) × (Jj ∩ J�

j
) . Let ‖W‖[r]

1
=
∑

i ‖Wi‖1 be the extension of 
the L1 norm to W[r] . Thus we have

Thus we have

It follows,

�(‖�(H) − H‖[r]
□
) ≤ 11r√

k

𝔼[�□(V ,ℍ(k,V))] ≤ r

√
q

k

�[Zi] = �ik, Var(Zi) = (�i − �2
i
)k ≤ �ik.

�(J�
i
∩ Ji) = min(�i, Zi∕k).

�□(V ,ℍ(k,V)) ≤‖V − V �‖[r]
□

≤ ‖V − V �‖[r]
1

≤ r(1 − �(Q))

= r

⎛⎜⎜⎝
1 −

��
i

min

�
�i,

Zi

k

��2⎞⎟⎟⎠
≤ 2r

�
1 −

�
i

min

�
�i,

Zi

k

��

= r
�
i

�����i −
Zi

k

���� ≤ r

�
q
�
i

�
�i −

Zi

k

�2
�1∕2

.

�□(V ,ℍ(k,V))
2 ≤ qr2

∑
i

(
�i −

Zi

k

)2

.

E[�□(V ,ℍ(k,V))2] ≤ qr2
∑

i
E

[

(

�i −
Zi
k

)2
]

=
qr2

k2
∑

i
Var(Zi)

<
qr2

k2
∑

i
k�i =

qr2

k
.
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Because �□(V ,ℍ(k,V)) ≥ 0 there follows by Cauchy-Schwartz

	�  ◻

Now, we have all the ingredients to extend the second sampling lemma.

Lemma 10  Extension of Theorem 4.7 in Borgs et al. (2008) (Second Sampling Lemma for 
Multi-Relational Graphons). Let k ≥ 1 , and let W ∈ W̃

[r]
 be a multi-relational graphon. 

Then with probability at least 1 − exp(−kr∕(2 log2 k)),

One direct consequence of Lemma 10 is that the set of multi-relational graphs is dense 
in (W̃

[r]
, �[r]

□
).

Theorem 4  The set of multi-relational graphs is dense in (W̃
[r]
, �[r]

□
).

Proof  It is sufficient to prove that for any W ∈ W̃
[r]

 and 𝜖 > 0 , there is a multi-relational 
graph G such that �[r]

□
(G,W) ≤ � . There is a sufficient large k such that � ≥ 37r√

log k
 . Then, 

from Lemma  10 there holds �[r]
□
(�(k,W),W) ≤ � with probability at least 

1 − exp(−k∕(2 log k)) > 0 so at least one of the multi-relational graphs which can be 
obtained by sampling from �(k,W) has the required property. 	�  ◻

From the above theorem, any multi-relational graphon can be seen as the limit of a 
sequence of multi-relational graphs.

6 � Large deviation principle and the principle of maximum‑entropy

The large deviation principle (LDP) establishes lower and upper bounds for the limiting 
behaviour of a sequence of probability distributions. More precisely (Dembo & Zeitouni, 
2009), let X  be a topological space. A sequence of probability distributions (ℙn)

∞
n=1

 satis-
fies LDP when there is a function I ∶ X → ℝ , called the rate function such that for every 
Γ ⊂ X  and sequence (�n)n∈ℕ with limit �n → 0 , the probability measure of the set Γ , ℙn(Γ) , 
satisfies the following inequality. Recall Γ and Γ◦ are closure and interior of Γ ⊂ X .

In this section, we extend the large deviation principle for Erdős-Rényi random graphs due 
to Chatterjee and Varadhan (2011) to multi-relational Erdős-Rényi random graphs.

The negative of the rate function can be interpreted as an entropy function. We will 
see that −I(W) is a density of entropy of multi-relational random graphs sampled from W. 

E[�□(V ,ℍ(k,V))] ≤ r

√
q

k
.

(11)�[r]
□
(�(k,W),W) ≤ 36r3∕2√

log2 k

− inf
x∈Γ◦

I(x) ≤ lim inf
n→∞

�n logℙn(Γ) ≤ lim sup
n→∞

�n logℙn(Γ) ≤ − inf
x∈Γ

I(x).
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Note that if infx∈Γ◦ I(x) = inf
x∈Γ I(x) then the limiting probability distribution is the prob-

ability distribution with maximum entropy. We prove this property for any closed region 
constrained by densities of multi-relational subgraphs.

Based on the compactness of graphon space, Chatterjee and Varadhan (2011) developed 
the large deviation principle for limiting behavior of the probability measure ℙ̃n,p induced 
by Erdős-Rényi random graphs G(n, p) on the unlabeled graphon space W̃.

Here, we first need to extend the Erdős-Rényi random-graph model G(n, p) to multi-
relational graphs and define the rate function.

Definition 13  (Erdős-Rényi multi-relational random graphs) Let p ∈ [0, 1] . Then Erdős-
Rényi multi-relational random graphs G[r](n, p) are r-tuple of independent draws of G(n, p), 
where we identify the vertices across all r graphs.

Definition 14  (Rate function) Let p ∈ (0, 1) . Then the rate function I[r]
p

∶ W̃
[r]

→ ℝ is 
defined by,

where I0,p(u) =
1

2
u log

u

p
+

1

2
(1 − u) log

(
1−u

1−p

)
.

Remark 3  Note that the negative of I0,p is the entropy of the Bernoulli distribution. Hence 
−Ip(W) can be seen as a density of entropy produced by large random graphs sampled from 
W. From a statistical mechanics point of view (Radin & Sadun, 2013), −Ip(W) corresponds 
to the Boltzmann entropy of the microcanonical ensemble of random edges W.

Let ℙn,p be the probability measure on W induced by f G(n,p) and more generally let ℙ[r]
n,p

 
be the probability measure on W[r] induced by f G[r](n,p) . In the same way, let ℙ̃[r]

n,p
 be the 

probability measure on W̃
[r]

 induced by f̃ G[r](n,p) , where f̃ G is the equivalence class of f G 
induced by the permutations of rows/columns on f G.

Now we state our main technical result which is a generalization of the corresponding 
large deviation result from Chatterjee and Varadhan (2011),

Theorem  5  (Extension of Theorem  2.3 Chatterjee and Varadhan (2011)) For each fixed 
p ∈ (0, 1) , the sequence ℙ̃[r]

n,p
 satisfies a large deviation principle in the cut-distance topol-

ogy. That is, for every closed set F ⊂ �W

and for any open set U ⊂ �W,

6.1 � Constraint systems for quantum graphs

In the context of the present paper, it is convenient to define regions of Multi-Relations 
Graphons by linear combinations of multi-relational graph densities.

I[r]
p
(W) =

1

2

r∑
k=1

∫[0,1]2
I0,p(Wk(x, y))dxdy

(12)lim sup
n→∞

1

n2
log ℙ̃[r]

n,p
(F) ≤ − inf

W∈F
I[r]
p
(W)

(13)lim inf
n→∞

1

n2
log ℙ̃[r]

n,p
(U) ≥ − inf

W∈U
I[r]
p
(W).
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Definition 15  (Multi-relational quantum graphs) We say that F is a multi-relational quan-
tum graph if it is the linear combination of a finite number of multi-relational graphs Fi 
with real coefficients, more precisely

Hence the definition of t(F,  W) extends to multi-relational quantum graphs linearly, i.e. 
t(F,W) =

∑
i �it(Fi,W).

Quantum graphs generalize the notion of signed multi-relational graph and offer a con-
venient way to write succinctly linear combinations of subgraph densities specially when 
we represent horn clauses using linear combinations of conjunctions.

Let F = [F1,… ,Fk] be a finite vector of multi-relational quantum graphs and let 
u ∈ ℝ

k
+
 . We let correspond to (F, u) a system of constraints ∀i ∈ [k] ∶ t(Fi,W) = ui on the 

multi-relational quantum graphs F1,… ,Fk , where we call u the density vector. Then we 
define the feasible region

We also define an approximate feasible region. In particular, for 𝜖 > 0,

6.2 � The most typical multi‑relational graph of S̃(F, u)

We need an additional ingredient to prove the main result of this section which is is the 
extension of the counting lemma of graphons (Lemma 10.23 in Lovász (2012)) to multi-
relational graphons.

Lemma 11  (Counting lemma for multi-relational graphons) Let F be a multi-relational 
graph and let W and V be multi-relational graphons, then

Thus if F is a quantum multi-relational graph then the map W ↦ t(F,W) is continuous.
We now define the notion of the most typical multi-relational graphs in S̃(F, u) . Let 

(G[r](n, 1∕2))∞
n=1

 be a sequence of multi-relational Erdős-Rényi random graphs. From Theo-
rem 4 and the compactness of W̃

[r]
 , there is a subsequence (G[r](ni, 1∕2))

∞
i=1

 and a sequence 
of positive numbers (�i)∞i=1 with limi→∞ �i = 0 such that G[r](ni, 1∕2) ∈ S̃(F, u, �i) . By 

Theorem 4, G[r] is dense in W̃
[r]

 , hence the condition G[r](ni, 1∕2) ∈ S̃(F, u, �i) holds since 

S̃(F, u, �i) is open for any 𝜖i > 0 . Therefore the limit of random multi-relational graphs 
G[r](ni, 1∕2) satisfying the constraints t(Fi,W) = u ∀i ∈ [k] is defined. We call these limits 
as the most typical random multi relational graphs

F =
∑
i

�iFi and �i ∈ ℝ

(14)S̃(F, u) = {W ∈ W̃
[r]

∣ t(Fi,W) = ui, for 1 ≤ i ≤ |F|}

(15)S̃(F, u, �) = {W ∈ W̃
[r]

∣ |t(Fi,W) − ui| ≤ �, for 1 ≤ i ≤ |F|}

|t(F,W) − t(F,V)| ≤ max
k

||E(Fk)
||�[r]□

(W,V)
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We prove that any typical multi-relational Erdős-Rényi random graph W∗ is a solution of 
min

W∈S̃(F,u) I
[r]
p
(W) , where p = 1∕2 . First we prove the following.

Theorem 6  Take any p ∈ (0, 1) . Then

and

Proof  Let 𝛿 > 0 . Then we define

and

From Lemma 11, t(Fi, ⋅) is continuous under the cut-distance topology, hence U� and V� are 
open and closed sets.

Let ℙ̃[r]
n,p
(U�) and ℙ̃[r]

n,p
(V�) be the probability measure of U� and V� . From Theorem 5, it 

follows that

and

and therefore we may write

By taking the limit � → 0+ , infW∈U�
I[r]
p
(W) and infW∈U�+�2

I[r]
p
(W) are the same and 

V� → S̃(F, u) . Thus we have,

Since S̃(F, u) is compact and Chatterjee and Varadhan proved the function I[r]
p

 is lower 
semi-continuous, it follows that we may replace inf by min (c.f. Appendix, Theorem 9) and 
deduce

(16)inf
W∈S̃(F,u)◦

I[r]
p
(x) = inf

W∈S̃(F,u)
I[r]
p
(x).

lim
n→∞

1

n2
ℙ̃
[r]
n,p
(S̃(F, u)) = − min

W∈S̃(F,u)
I[r]
p
(W).

U𝛿 = ∩k
i=1

{W ∈ �W
[r]

∣ |t(Fi,W) − ui| < 𝛿}

V� = ∩k
i=1

{W ∈ W̃
[r]

∣ |t(Fi,W) − ui| ≤ �}

lim sup
n→∞

1

n2
log ℙ̃

[r]
n,p
(V�) ≤ − inf

W∈V�

I[r]
p
(W)

lim inf
n→∞

1

n2
log ℙ̃

[r]
n,p
(U�) ≥ − inf

W∈U�

I[r]
p
(W)

− inf
W∈U�

I[r]
p
(W) ≤ lim inf

n→∞

1

n2
log ℙ̃

[r]
n,p
(U�) ≤ lim sup

n→∞

1

n2
log ℙ̃

[r]
n,p
(U�)

≤ lim sup
n→∞

1

n2
log ℙ̃

[r]
n,p
(V�) ≤ − inf

W∈V�

I[r]
p
(W) ≤ − inf

W∈U�+�2

I[r]
p
(W)

inf
W∈S̃(F,u)◦

I[r]
p
(W) = inf

W∈S̃(F,u)
I[r]
p
(W).
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	�  ◻

Theorem  6 shows that the limiting distribution of the most typical multi-relational 
Erdős-Rényi random graphs holds the condition

The next theorem shows that the limiting distribution of the most typical random graphs is 
a solution of min

W∈S̃(F,u) I
[r]

1∕2
(W) . To do that, we extend a concentration inequality for 

growing sequences (G[r](n, p))∞
n=1

 given by Chatterjee and Varadhan, Theorem 3.1 in Chat-
terjee and Varadhan (2011).

Theorem  7  (Concentration inequality for constrained and multi-relational Erdős-Rényi 
random graphs) Take any p ∈ (0, 1) (in our case p = 1∕2 ). Let H ⊂ �W

[r]
 be a compact set 

such that the condition of Eq. (16) holds. Let H∗ be the subset of H where I[r]
p
(⋅) is mini-

mized. Then H∗ is non-empty and compact, and for each n, and each 𝜖 > 0,

where C(�,H) is a positive constant depending only on � and H. In particular, if H∗ con-
tains only one element h∗ , then the conditional distribution of G[r](n, p) given H converges 
to the point mass at h∗ as n → ∞.

The original statement of the above theorem includes the condition

which is proven in Theorem 6. The proof of the theorem is omitted since it is identical to 
the proof of Theorem 3.1 found in Chatterjee and Varadhan (2011).

Note that if H is compact the sequence (G[r](n, 1∕2))∞
n=1

|(H) samples uniformly random 
graphs constrained by H. Hence from the above theorem, we conclude the solutions of 
minx∈H I

[r]

1∕2
(x) are the most typical infinite multi-relational random graphs constrained to 

H.
Finally from Theorems 5 and 6 , it is straightforward to prove that

Theorem  8  Let F  be a vector of finite vector of multi-relational quantum graphs 
F = [F1,… ,Fk] and let u ∈ ℝ

k be a vector of multi-relational subgraph densities.

Then the limit W∗(F, u) of the sequence (G[r](n, 1∕2))∞
n=1

 of growing random multi-rela-
tional graphs which are uniformly sampled such that limn→∞ G[r](n, 1∕2) ∈ S̃(F, u) satisfies

lim
n→∞

1

n2
ℙ̃
[[r]
n,p

(S̃(F, u)) = − min
W∈S̃(F,u)

I[r]
p
(W).

lim
n→∞

1

n2
ℙ̃
[r]

n,1∕2
(S̃(F, u)) = − min

W∈S̃(F,u)
I
[r]

1∕2
(W).

Prob(�□(G
[r](n, p),H∗) ≥ � |G[r](n, p) ∈ H) ≤ exp(−C(�,H)n2)

(17)inf
W∈S̃(F,u)◦

I[r]
p
(x) = inf

W∈S̃(F,u)
I[r]
p
(x).

(18)W∗(F, u) = min
W∈S̃(F,u)

I[r]
p
(W)
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7 � Technical results and proofs

7.1 � Proof of the second sampling lemma

Proof  of Lemma 10. Let us abbreviate ‖W − V‖[r]
□

 by d□(W,V) . Recall Theorem 2, for any 
U there a stepfunction UP with partition P of q classes such that,

We can also write

By Lemma 5 and Theorem 2, we have that

Thus

There follows

Lemma 9 shows an upper bound for E[�[r]
□
(UP,ℍ(k,UP)] , thus

By setting q = ⌈k1∕4⌉ we get

hence (since k ≥ 1).

d□(U,UP) ≤ 2r3∕2√
log2 q

E[|d□(ℍ(k,U),ℍ(k,UP))|] ≤ E[|d□(ℍ(k,U),ℍ(k,UP)) − d□(U,UP)|] + d□(U,UP)

E[d□(ℍ(k,U),ℍ(k,UP))] ≤ 14r

k1∕4
+

2r3∕2√
log2 q

E[�□(ℍ(k,U),ℍ(k,UP))] ≤ 14r

k1∕4
+

2r3∕2√
log2 q

E[�[r]
□
(U,ℍ(k,U))] ≤ �[r]

□
(U,UP) + E[�[r]

□
(UP,ℍ(k,UP))] + E[�[r]

□
(ℍ(k,UP),ℍ(k,U))]

≤ 2r3∕2√
log2 q

+ E[�[r]
□
(UP,ℍ(k,UP)] +

14r

k1∕4
+

2r3∕2√
log2 q

=
14r

k1∕4
+

4r3∕2√
log2 q

+ E[�[r]
□
(UP,ℍ(k,UP)]

E[�[r]
□
(U,ℍ(k,U))] ≤ 14r

k1∕4
+

4r3∕2√
log2 q

+ r

�
q

k
.

E[�[r]
□
(U,ℍ(k,U))] ≤ 14r

k1∕4
+

8r3∕2√
log2 k

+ r
√
k−3∕4 + k−1,
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In order to get an upper bound for E[�[r]
□
(U,�(k,U))] we write

By Lemma 8 and Eq. (19), we have

Let f (G) = v(G)�[r]
□
(G,W) be the multi-relational graph parameter. Note that 

|f (G) − f (G�)| ≤ r when G and G′ differ in only one edge. Hence we can apply Lemma 3 on 
f, by setting C = r , f (Z) = k�[r]

□
(�(k,W),W) , E[f (Z)] = k�[r]

□
(�(k,W),W) and s = k.

hence

If � =
kr1∕2√
log2 k

 then we have

From (20) we know that E[�[r]
□
(W,�(k,W))] ≤ 35r3∕2√

log2 k
 . Thus there also must hold

and hence

	�  ◻

7.2 � Proof of counting lemma for multi‑relational graphons

Proof  This proof follows the same ideas as the proof of Lemma 4.1 in Lovász and Szegedy 
(2006). Let n = |V(F)| . Let E∗ = {(k, i, j) ∣ s ∈ [r] ∧ {i, j} ∈ Ek ∧ i < j} be the collection of 
all edges of the multi-relational graph. Number the elements in E∗ from 1 to e∗ = |E∗| and 
for s ∈ E∗ we denote the s-th triple in E∗ by (ks, is, js) . We define Xt ∶ [0, 1]n → ℝ as

(19)E[�[r]
□
(U,ℍ(k,U))] ≤ 24r3∕2√

log2 k
.

E[�[r]
□
(U,𝔾(k,U))] ≤ E[�[r]

□
(U,ℍ(k,U))] + E[�[r]

□
(ℍ(k,U),𝔾(k,U))]

(20)E[�[r]
□
(U,�(k,U))] ≤ 24r3∕2√

log2 k
+

11r√
k
≤ 35r3∕2√

log2 k

ℙ(k𝛿[r]
□
(𝔾(k,W),W) > kE[𝛿[r]

□
(𝔾(k,W),W)] + 𝜆r) < exp

(
−
𝜆2

2k

)

ℙ(𝛿[r]
□
(𝔾(k,W),W) > E[𝛿[r]

□
(𝔾(k,W),W)] +

𝜆r

k
) < exp

(
−
𝜆2

2k

)

ℙ(�[r]
□
(𝔾(k,W),W) ≤ E[�[r]

□
(𝔾(k,W),W)] +

r3∕2√
log2 k

) ≥ 1 − exp

�
−

kr

2 log2 k

�
.

ℙ(�[r]
□
(𝔾(k,W),W) ≤ 35r3∕2√

log2 k
+

r3∕2√
log2 k

) ≥ 1 − exp

�
−

kr

2 log2 k

�
,

ℙ(�[r]
□
(𝔾(k,W),W) ≤ 36r3∕2√

log2 k
) ≥ 1 − exp

�
−

kr

2 log2 k

�
.
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Subtracting the integral of two such polynomials for consecutive indices t,

The last inequality follows from the fact that |||∫[0,1]2 Wkt
(x, y) − Vkt

(x, y)
||| is at most the cut 

norm of Wkt
− Vkt

 (since it uses the rectangle [0, 1]2 , rather than supS×T ) . As 
t(F,W) = ∫

[0,1]n
Xe∗

(x) and t(F,V) = ∫
[0,1]n

X0(x) , we can use the above inequality to bound

Now, noting that t(F,V) = t(F,V�) for all � ∈ � , we find

	�  ◻

7.3 � Proof of the large deviation principle for G[r](n, p)

Here we prove Theorem 5. Our proof technique is inspired by the proof of Theorem 2.3 in 
Chatterjee and Varadhan (2011).

Xt(x) =

t∏
s=1

Wks

(
xis , xjs

) e∗∏
s=t+1

Vks

(
xis , xjs

)

������[0,1]n
Xt(x) − Xt−1(x)

�����
≤ �[0,1]n

t−1�
s=1

Wks

�
xis , xjs

����Wkt

�
xit , xjt

�
− Vkt

�
xit , xjt

����
e∗�

s=t+1

Vks

�
xis , xjs

�

≤ �[0,1]n

���Wkt

�
xit , xjt

�
− Vkt

�
xit , xjt

����

≤ �
1

0 �
1

0

���Wkt

�
xit , xjt

�
− Vkt

�
xit , xjt

���� dxitdxjt
≤ ‖Wkt

− Vkt
‖□.

�t(F,W) − t(F,V)� =
�����

e∗�
t=1

�[0,1]n
Xt(x) − Xt−1(x)

�����
≤

e∗�
t=1

������[0,1]n
Xt(x) − Xt−1(x)

�����
≤

e∗�
t=1

‖Wkt
− Vkt

‖□

=

r�
k=1

�Ek�‖Wk − Vk‖□
≤max

k
�Ek�‖Wk − Vk‖r[□

�t(F,W) − t(F,V)� ≤ max
k

�Ek� inf
�∈�

‖Wk − V�
k
‖r[
□
.
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7.4 � Proof of the upper bound of Theorem 5

Let B̃[r](h̃, �) ∶= {W ∈ W̃
[r] | �[r]

□
(W, h̃) ≤ �} . First, we claim that to prove the upper bound 

(12), it is sufficient to prove that for any h̃ ∈ W̃
[r]

,

Since F is compact, for each 𝜂 > 0 we can construct a finite cover {B̃[r](h̃1, �),… , B̃[r](h̃k, �)} 
where ∪k

i=1
�B[r](�hi, 𝜂) ⊇ F and ∀i ∶ hi ∈ F . Thus

From (21), there are functions g1, g2 ∶ ℝ≥0 → ℝ such that

with lim�→0 g1(�) = 0 and lim supn→∞ g2(n) = 0 . Hence

for any n and 𝜂 > 0 . We can thus bound

Hence

Note that k is finite for any 𝜂 > 0 since F is compact. Then by taking the sup limit n → ∞ 
when 𝜂 > 0 , we get

By taking the limit � → 0 , we get

Thus we have proven that (21) implies (12).
With B[r](h̃, �) ∶= {W ∈ W

[r] | W̃ ∈ B̃[r](h̃, �)} , Eq. (21) is equivalent to

(21)lim
�→0

lim sup
n→∞

1

n2
log ℙ̃[r]

n,p
(B̃[r](h̃, �)) ≤ −I[r]

p
(h̃).

ℙ̃
[r]
n,p
(F) ≤

k∑
i=1

ℙ̃
[r]
n,p
(B̃[r](h̃i, �)).

1

n2
log ℙ̃[r]

n,p
(B̃[r](h̃, �)) ≤ −I[r]

p
(h̃) + g1(�) + g2(n).

ℙ̃
[r]
n,p
(B̃[r](h̃, �) ≤ exp(−n2(I[r]

p
(h̃) − g1(�) − g2(n)) )

ℙ̃[r]
n,p(F) ≤

k
∑

i=1
ℙ̃[r]
n,p(B̃

[r](h̃i, �))

≤
k
∑

i=1
exp(−n2(I[r]p (h̃i) − g1(�) − g2(n)) )

≤ kmax
i

exp(−n2(I[r]p (h̃i) − g1(�) − g2(n)))

= k exp
(

−n2
(

min
i

I[r]p (h̃i) − g1(�) − g2(n)
))

.

1

n2
log(ℙ̃[r]

n,p
(F)) ≤ min

i
I[r]
p
(h̃i) − g1(�) − g2(n) +

1

n2
log(k).

lim sup
n→∞

1

n2
log(ℙ̃[r]

n,p
(F)) ≤ min

i
I[r]
p
(h̃i) − g1(�)

lim sup
n→∞

1

n2
log(ℙ̃[r]

n,p
(F)) ≤ inf

h̃∈F
I[r]
p
(h̃).
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Since G[r](n, p) has the distribution of an r-tuple of independent G(n, p) random variables, 
it is not difficult to see that for h̃ ∈ W

[r] with h̃ = (h̃1 … h̃r),

and hence

where prjk(⋅) is the projection onto the k-th coordinate and 
B(h̃, �) = {W ∈ W ∣ �□(W, h) ≤ �} . Eq. (11) in the proof of the upper bound of Theo-
rem 2.3 in Chatterjee and Varadhan (2011) states that for h̃ ∈ W̃,

Combining these two last inequalities, we get

This proves Eq. (22) and hence the upper bound.

7.5 � Proof of the lower bound of Theorem 5

It is sufficient to prove for any h̃ ∈ W̃
[r]

 and arbitrary 𝜂 > 0 that

Since B[r](�h, 𝜂) ⊃
∏r

k=1
B(�hk, 𝜂∕r) , there holds

(22)lim
�→0

lim sup
n→∞

1

n2
logℙ[r]

n,p
(B[r](h̃, �)) ≤ −I[r]

p
(h̃).

ℙ
[r]
n,p
(h̃) =

r∏
k=1

ℙn,p(h̃k)

log
(
ℙ
[r]
n,p
(B[r](h̃, �))

) ≤ log

r∏
k=1

ℙn,p

(
prjk

(
B[r](h̃, �)

))

≤ log

r∏
k=1

ℙn,p

(
B(h̃k, �)

)

=

r∑
k=1

logℙn,p

(
B(h̃k, �)

)

lim
�→0

lim sup
n→∞

1

n2
logℙn,p(B(h̃, �)) ≤ −Ip(h̃)

lim
�→0

lim sup
n→∞

1

n2
logℙ[r]

n,p
(B[r](h̃, �))

≤ lim
�→0

lim sup
n→∞

1

n2

r∑
k=1

logℙn,p(B(h̃k, �)))

≤ −

r∑
k=1

Ip(prjk(h̃))

= −I[r]
p
(h̃)

(23)lim inf
n→∞

1

n2
log ℙ̃[r]

n,p
(B̃[r](h̃, �)) ≥ −I[r]

p
(h̃).
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Applying the lower bound of Theorem 2.3 in Chatterjee and Varadhan (2011) we get that 
for each k;

Combining these inequalities, we get

This proves Eq. (23) and hence the lower bound of the theorem.

8 � Markov logic networks and multi‑relational graphons: two 
maximum‑entropy models

In this section, we discuss the translations between probabilistic models represented in 
first-order logic and models represented in the multi-relational graph formalism. In particu-
lar, we focus on models constrained by relational statistics Q(�,�) (the FOL setting) and 
homomorphism densities (the multi-relational graph setting). As explained in Sect.  2.2, 
MLNs are maximum entropy models constrained by expected values of the statistics 
Q(�,�).

8.1 � From multi‑relational graph representations to FOL representations

There is a simple relationship between homomorphism densities t(�,�) and the statistics 
Q(�,�) that we introduced for Markov logic networks in Sect. 2.2. First, we show that any 
multi-relational graph � = (�,�1,… ,�m) can be trivially represented as a first-order logic 
possible world � . This is done as follows. We identify the domain � with the set of verti-
ces, i.e. � = {v|v ∈ �} . Then we set

The possible world �
�

 plays the same role in the statistic Q(�,�) as � plays in the 
homomorphism density t(�,�) . It remains to show how to construct a formula � as a 
counterpart of the graph � . One way to construct such an � is as follows. Given a graph 
� = (��,��

1
,… ,��

m
) , we define � as a conjunction of the following set of first-order logic 

atoms

lim inf
n→∞

1

n2
log ℙ̃[r]

n,p
(B̃[r](h̃, �)) = lim inf

n→∞

1

n2
logℙ[r]

n,p
(B[r](h̃, �))

≥ lim inf
n→∞

1

n2
logℙ[r]

n,p

(
r∏

k=1

B(h̃k, �∕r)

)

=

k∑
k=1

lim inf
n→∞

1

n2
logℙn,p

(
B[r](h̃k, �∕r)

)

lim inf
n→∞

1

n2
logℙn,p

(
B[r](h̃k, �)

) ≥ −Ip(h̃k)

lim inf
n→∞

1

n2
log ℙ̃[r]

n,p
(B̃[r](h̃, �)) ≥ −

r∑
k=1

Ip(hk) = −I[r]
p
(h)

�
�
= {�i(v1, v2)|v1, v2 ∈ � and {v1, v2} ∈ �

�
and i ∈ {1, 2,… ,m}}.

A = {�i(xv, xw)|v,w ∈ �
� and {v,w} ∈ �

�

i
and i ∈ {1, 2,… ,m}}.
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Indeed, it is not difficult to see that if we let �
�
=
⋀

a∈A a , then

Remark 4  For Markov logic networks, it is more common to use formulas in the form of a 
disjunction of atoms rather than a conjunction. If we construct ��

�
=
⋁
{¬a�a ∈ A} then it 

follows that Q(��
�
,�

�
) = 1 − t(�,�) . Hence, we can express the same type of constraints 

using also disjunctions.

It follows from the discussion above that for any set of constraints expressed using 
homomorphism densities of multi-relational graphs, we can formulate an equivalent set of 
constraints using first-order logic conjunctions or disjunctions.

8.2 � From FOL representations to multi‑relational graph representations

Next we discuss the other direction. We describe when it is possible to represent con-
straints in the “world” of relational structures by constraints on multi-relational graphs. 
One obvious restriction is that we can only represent constraints on possible worlds where 
all relations are symmetric, irreflexive and binary. That is we will only be able to model 
distributions over possible worlds where the following first-order logic sentences are satis-
fied for all relations r that we use:

From now on we will assume that all possible worlds � satisfy these two constraints and 
we will not always state this explicitly if there is no risk of confusion.

Let � be a conjunction of first-order logic atoms without constants and � be a possi-
ble world on a domain � which satisfies the irreflexivity and symmetry constraints. We 
first show how to construct graphs �� and �� such that Q(�,�) = t(�� ,��) . We define 
�

�
= {vx|x is a FOL variable contained in �} and �

�
= {vc|c ∈ �} . Then we define

Next we illustrate the above outlined translation on an example.

Example 1  Let

and

Q(�
�
,�

�
) = t(�,�).

∀x ∶ ¬r(x, x)(irreflexivity)

∀x, y ∶ r(x, y) ⇒ r(y, x)(symmetry) .

�� = (��, {{vx, vy}|�1(x, y) ∈ � or �1(y, x) ∈ �},… ,

{{vx, vy}|�m(x, y) ∈ � or �m(y, x) ∈ �})

�� = (��, {{vx, vy}|�1(x, y) ∈ � or �1(y, x) ∈ �},… ,

{{vx, vy}|�m(x, y) ∈ � or �m(y, x) ∈ �})

� = friends(x, y) ∧ friends(y, z)

� = {friends(Alice,Bob), friends(Bob,Alice), friends(Alice,Eve),

friends(Eve,Alice), friends(Bob,Eve), friends(Eve,Bob)}.
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We now construct the respective graphs �� and �� , following the steps outlined above. For 
�� we get

and for ��:

It is easy to check that Q(�,�) = t(�,�) = 12∕27 , as expected.

So far we have only explained how to represent constraints which are specified using 
conjunctions of positive first-order logic literals. It is not difficult to also represent con-
straints specified by formulas in the form of disjunctions of negative first-order logic liter-
als. If we are given a constraint �[Q(¬a1 ∨…¬am, .)] = t , where a1,… , am are first-order 
logic atoms, then we can replace it by �[Q(a1 ∧⋯ ∧ am, .)] = 1 − t , which we already 
know how to represent using multi-relational graphs.

Finally, what remains is to show how to encode constraints represented using either dis-
junctions or conjunctions of first-order logic literals without the restriction that the literals 
in them must be all negative or positive, respectively. For this we can exploit the inverse 
Moebius transform (see e.g. Lovász (2012); Kennes and Smets (2013); Schulte et  al. 
(2014), in particular for homomorphism densities, see Eq. (7.11) in Lovász (2012)). Let 
� = ¬a1 ∧⋯ ∧ ¬al ∧ al+1 ∧⋯ ∧ am be a conjunction of first-order logic literals. We now 
need to show how to represent Q(�,�) in the graph domain.

Let �� = (��,E+
1
,E−

1
,… ,E+

r
,E−

r
) be a signed multi-relational graph 

where �� is defined above, E+
i
= {{vx, vy}|�i(x, y) ∈ � or �i(y, x) ∈ �} and 

E−
i
= {{vx, vy}|¬�i(x, y) ∈ � or ¬�i(y, x) ∈ �} . With this notation we can then write: 

Q(�,�) = t(�� ,��) , where t is the subgraph density of signed multi-relational graphs 
defined in Eq. (9) and �� is defined above.

In conclusion, we have shown that for every constraint that we can write using function-
free quantifier-free first-order logic formulas, we can write the equivalent constraint in the 
graph domain. Note, however, that we restrict ourselves to possible worlds represented over 
symmetric non-reflexive binary relations.

8.3 � An example on how a MLN is represented by multi‑relational graphons

Using the equivalence between MLN and multi-relational graphs, we transform a MLN � 
into multi-relational graphons with maximum entropy. � contains two binary and symmet-
ric relations friends(x, y) and acquitances(x, y) with the following formulas,

�
� = {vx, vy, vz}

�
� = {{vx, vy}, {vy, vz}},

�
� = {vAlice, vBob, vEve}

�
� = {{vAlice, vBob}, {vAlice, vEve}, {vBob, vEve}}.

(24)

∞ ∶ friends(x, y) ⇒ friends(y, x)

∞ ∶ acquitances(x, y) ⇒ acquitances(y, x)

∞ ∶ ¬friends(x, x)

∞ ∶ ¬acquitances(x, x)

w1 ∶ friends(x, y) ∧ friends(y, z) ⇒ friends(x, z)
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where w1,w2 ∈ ℝ . The probability distribution of the possible worlds � of � is the Gibbs 
distribution is given by,

Instead, multi-relational graphons enables to formulate a new semantics for � by pick-
ing the most typical possible worlds of � if we assume that � = [0, 1] . Hence the pos-
sible worlds where the predicates friends(x, y) and acquitances(x, y) can be satisfied are 
2-relational graphons. To pick the most typical possible worlds, we solve the optimization 
problem.

where �[Q(�1, .)] = u1 and �[Q(�2, .)] = u2 where �1 is the formula given by Eq. (24) and �2 
is the formula given by Eq. (25), and F1 and F2 are signed multi-relational graphs which are 
shown in Fig. 1. Note that the constraints ui = 1 − t(Fi,W) i = 1, 2 come from the Boolean 
identity p ⇒ q = 1 − (p ∧ ¬q).

Once the optimization problem is solved, computing marginal probability of a logi-
cal formula � , which is represented by the signed graph F� , is easy. It is just to compute 
1

M

∑
i t(F�,W

∗
i
) where M is the number of global minimizers W∗

i
 of the above optimization 

problem.
The key point in the estimation of the most typical worlds from a given set of formu-

las is to solve the optimization problem in the space of multi-relational graphons. This 
is a problem posed in a space of infinite many dimensions. Although it is not clear that 
the problem is computable, prior work on constrained graphons with maximum entropy 
described in Sect.  9.3, found by numerical experiments that the global solutions of the 
maximum entropy problem seem to be stepfunctions.

8.4 � Maximum entropy distributions

As described in Sect. 2.3, MLNs are maximum entropy models. In particular they are the 
model with given statistics Q(�, .) , that maximize Gibbs entropy. As we described in detail 
in the previous sections, constraints equivalent to those on the statistics Q can be also 
represented in the graph domain using homomorphism densities. If we fix the number of 

(25)w2 ∶ friends(x, y) ∧ acquitances(y, z) ⇒ acquitances(x, z)

p�(�) =
1

Z
exp(w1 ⋅ Q1(�) + w2 ⋅ Q2(�))

min
W∈W̃

[r]
I[2](W) subject to

u1 = 1 − t(F1,W) and u2 = 1 − t(F2,W)

Fig. 1   Two signed muulti-
relational graphs. The blue edges 
correspond to ’friends’ relations 
and the red one is ‘acquitances’ 
relation (Color figure online)
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vertices and find the model that maximizes Gibbs entropy in the graph domain, we end up 
with a multi-relational variant of exponential random graph model2 (Wasserman, 1996). 
However, we are not interested in finite graphs and finite relational structures since the 
large deviation principle shows that graphons maximize the Boltzmann entropy. Let us 
consider some first-order language with binary relations and denote by �n the set of all 
possible worlds on a domain of size n, for which the binary relations are symmetric and 
non-reflexive. It follows from the large deviation principle that if we select from the rela-
tional structures �n that violate the given Q-statistics constraints the least and then pick 
one of them uniformly at random, the limit of this sequence will be a multi-relational gra-
phon that has maximum Boltzmann entropy among the graphons satisfying the constraints 
that we obtain by transforming the Q-constraints into the graph domain. This is an impor-
tant result on its own because it justifies the use of maximum-Boltzmann-entropy models 
for modelling multi-relational data. It could also be potentially relevant as an answer to a 
question raised in Jaeger and Schulte (2018) asking which distributions, satisfying some 
given constraints one should choose. We answer this question (for undirected multi-rela-
tional graphs): one should choose the multi-relational graphons that maximize Boltzmann 
entropy.

9 � Related work

9.1 � Multi‑relational graphs as compact decorated graphs

Compact Decorated Graphs (CDG) are a generalization of simple graphs due to Lovász 
and Szegedy (2010). CDG are defined as follows.

Definition 16  (Compact decorated graphs) Let K be a compact separable topological 
space such that K contains an element 0̂ representing no edge. A graph decorated with K is 
a symmetric function G ∶ [n] × [n] → K . Equivalently, CDG is a complete graph Kn with 
each edge by an element of K . The set of all F -decorated graphs with n nodes is denoted 
by Gn(F) and G(F) = ∪n>0Gn(F).

Definition 17  (K-graphon) Let P(K) be the set of Borel probability measures on K . We 
denote by W(K) the set of symmetric functions W(K) ∶ [0, 1]2 → P(K) . The elements of 
W(K) are called K-graphons.

Intuitively, the idea of K-decorated graph is to model complex relations for every pair 
of nodes. Hence the element of K associated with an edge can be seen as a random vari-
able and as the number of nodes goes to infinity, the distribution of the random variable 
between two nodes x, y ∈ [0, 1] converges to W(x, y) ∈ P(K).

2  Exponential random graph models are very similar to Markov logic networks.
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9.1.1 � Graph homomorphism density on W⇐K⇒

Graph homomorphism densities on W⇐K⇒ may be defined using C-decorated graphs. Let 
C be the set of functions K ↦ ℝ . Hence a C -decorated graph F = (V ,E) is a simple graph 
on which each edge ij is associated with a function Fij ∶ K → ℝ.

Definition 18  Let W be a K-graphon and let f ∈ C . Define Wf ∶ [0, 1]2 → ℝ by 
Wf (x, y) = ∫

K
f dW(x, y).

The graph homomorphism density on W⇐K⇒ is computed by,

where F is a C-decorated graph with k nodes and W is a K-graphon. Note that (26) is gener-
alizing the earlier formula (8) when r = 1.

9.1.2 � Convergence on CDG

Lovász (2012) shows that any graphon can be seen as the limit of a sequence of grow-
ing graphs such that (Gn)

∞
n=1

 converges to W ∈ W̃ iff (t(F,Gn))
∞
n=1

 converges to t(F, W) for 
every simple graph F. For CDG, there is a similar result. Instead of simple graphs, it uses 
the notion of Generation system of decorated graphs.

Definition 19  We say that a set F ⊆ C is dense if for every 𝜖 > 0 and f ∈ C there is a 
g ∈ F  such that |g(x) − f (x)| ≤ � for every x ∈ K . We say that F ⊆ C is a generating sys-
tem if the linear space generated by the elements of F  is dense.

Theorem 9  (Convergence on CDG Theorem 2.6 in Lovász and Szegedy (2010)) Let F  be a 
countable generating set and let (Wn)

∞
n=1

 be a sequence of F -graphons such that (t(F,Wn)) 
is a convergent sequence for every F ∈ G(F) . Then there is a F -graphon W such that 
t(F,Wn) → t(F,W) for every F ∈ G(C).

Note that in graphon space the graphs converge to a graphon function W such that 
W(x, y) ∈ [0, 1] for all x, y ∈ [0, 1]2 and in F -graphon space, the CDG converge to a Borel 
probability measure on F  instead a number in [0, 1].

9.1.3 � Multi‑relational graphs as compact decorated graphs

Any multi-relational graph can be represented as a compact K-decorated graph. As fol-
lows, Lovász and Szegedy describe a special case of CDG, Parallel Colored Graphs (PCG) 
where K = {0, 1}r , shown in Example 2.10 (Lovász, 2010). Each edge of a PCG is a gen-
eral probability distribution on {0, 1}r . From Theorem 9, the limits of growing PCG are K
-graphons, W ∶ [0, 1]2 → [0, 1]2

r−1 since a probability distribution on {0, 1}r can be repre-
sented using a vector in [0, 1]k for k = 2r − 1.

A multi-relational graphon can be seen as a restricted version of the limit of 
a sequence of PCGs in which the probability distribution for every W(x,  y) is the 

(26)tCDG(F,W) = �[0,1]k

∏
1≤i≤j≤k

WFij
(xi, xj)

∏
i∈V(F)

dxi
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product of r independent Bernoulli distributions. Hence the limit object of a convergent 
sequence of growing multi-relational graphs is a symmetric and measurable function 
W ∶ [0, 1]2 → [0, 1]r.

Remark 5  The formula for subgraph density on multi-relational graphons (8) can be 
obtained from the formula for homomorphism density of a CDG (26). We use two F -deco-
rated graphs,

where g1 and g2 decorate every edge and non-edge. To see that, this yields the subgraph 
density formula for multi-relational graphs let FCDG be the multi-relational graph F in the 
form of a F -graph. By a simple computation we have

Hence it is easy to see that tCDG(FCDG,W) = t(F,W).

9.2 � The AHK model

The AHK Model given in Jaeger and Schulte (2020) is an infinite exchangeable array 
which characterizes the probability distributions that are projective on relational structures. 
A probability distribution is projective when the marginal of the distribution for size-n 
structures on induced sub-structures of size k < n is equal to the given distribution for size-
k structures. More precisely AHK is defined as follows.

F = {g1, g2 ∶ [0, 1]r → [0, 1] ∣ g1(x) =
∏
k

xk and g2(x) = 1}

WFCDG
ij

(x, y) =

�∏r

k=1
Wk(x, y) if ij is connected in FCDG

1 otherwise

Fig. 2   a shows a relational structure with 2 unary predicates and 2 binary relations. b the projection of the 
unary relation. c the projection of the binary relation. d the possible values for the unary relation. e the pos-
sible values for the binary relation. The circles represent the elements of the domain, boxes attached to the 
nodes indicate the values of the unary relations, and edges (with arrows) represent the binary relations
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Definition 20  Let [n]d≠ be the set of d-tuples with distinct entries from [n]d . Let ⟨n⟩d be the 
set of d-tuples with distinct and ordered entries from [n]d.

Definition 21  Let � be a relational structure with maximal arity(�) = a ≥ 1 . Let Dm(�) 
m = 1,… , a be the arity-m data of � . Dm(�) can be seen as a collection of adjacency 
matrices referring the connections of m distinct elements. Let Dm(� ↓ i) be the projections 
of Dm(�) in terms of i ∈ ⟨n⟩m distinct elements where n is number of elements of � . Let Tm 
be the space of possible values of Dm(� ↓ i) when |i| = m.

Example 2  Figure 2 shows an example of AHK model. 

(a)	 The relational structure � : symmetric and irreflexive relations
(b)	 The projection of � of the unary relation D1(�)
(c)	 The projection of � of the binary relation D2(�)
(d)	 The possible values for the unary relation T1
(e)	 The possible values for the binary relation T2.

Definition 22  (AHK model) Let S be a relational signature with maximal arity(S) = a ≥ 1 . 
Let ⟨ℕ⟩m be the set of tuples from ℕm in which the tuples are distinct and ordered. An AHK 
model for S is given by 

1.	 A family of i.i.d. latent random variables {Ui ∣ i ∈ ⟨ℕ⟩m,m = 0,… , a} , where each Ui 
is uniformly distributed on [0, 1].

2.	 A family of random variables {Di ∣ i ∈ ⟨ℕ⟩m,m = 0,… , a} . For i ∈ ⟨ℕ⟩m the variable 
Di takes values in Tm.

3.	 For each m = 1,… , a a measurable function fm ∶ [0, 1]2
m

→ Tm so that

–	 For i = (i1,… , im) ∈ ⟨ℕ⟩m the value of Di is defined as fm(Ui) , where 

 is a vector containing all Ui′-variables with i′ ⊂ i in lexicographic order.
–	 fm is invariant under permutations, in the sense that for any permutation 

� ∶ [m] → [m] of [m] 

 where U�
i
 is the new multi-dimensional array obtained from Ui where the dimen-

sions i are replaced by the ordered tuple whose entries are (�(i1),… , �(im)).

9.2.1 � Relation between AHK model and multi‑relational graphons

Recall that �(n,W) was mentioned in the Introduction and it is the random graph of n ver-
tices from a given graphon W sampled by picking n numbers x1 , x2 , … , xn from [0, 1] uni-
formly at random and connecting every possible edge xi and xj with probability W(xi, xj).

Let X = �(n,W) . The random variable Xi1i2
 can be written as

(27)Ui = (U�,Ui1
,… ,Uim

,U(i1,i2)
,… ,U(im−1,im)

,… ,U(i1,…,im)
)

fm(U
�
i
) = fm(Ui)

�

(28)Xi1i2
= g(U�,Ui1

,Ui2
)
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where U�,Ui1
,Ui2

∈ [0, 1] are uniform random variables and

Note that (28) omits the random variable U(i1i2)
 so that X is a general 2-dimensional random 

array. This is because the sampling process of �(n,W) does not consider the combination 
of values of i1 and i2 to sample Xi1i2

.
For multi-relational random graphs X = �

[r](n,W) where W ∈ W̃
[r]

 , Xi1i2
 can be rep-

resented by the vector (gW1
(U�,Ui1

,Ui2
),… , gWr

(U�,Ui1
,Ui2

)) . Hence it is clear that any 
multi-relational graphon is an AHK model with maximum arity 2 where the random vari-
able Ui1i2

 in the representation is omitted.

9.3 � Prior work on constrained graphons with maximum entropy

Radin and Sadun (2013) proposed graphons with maximum entropy to model large graphs 
constrained by subgraph density. Radin et  al. (2014) showed through numerical experi-
ments that graphons with maximum entropy constrained subgraph densities of edges and 
triangles are stepfunctions.

Kenyon et al. (2017) prove rigorously the optimal constrained graphon are stepfunctions 
when the constraints are on subgraph densities of edge and k-star graphs.

Aristoff and Zhu (2015) prove the large deviation principle for random directed graphs 
when the constraints are on edge and outward p-star densities.

However it is an open problem to prove that the conjecture is correct. If the conjecture is 
true, then the maximum entropy graphons can be obtained by solving a finite dimensional 
non-linear optimization problem.

10 � Conclusions

The Large Deviation Principle for Erdős-Rényi multi-relational graphs enables proving the 
Principle of Maximum Entropy (PME) for multi-relational graphs. This principle states 
that the most typical random multi-relational graphs constrained by any closed region 
in the space of multi-relational graphons are multi-relational graphons with maximum 
Boltzmann entropy. These Boltzmann entropy maximizers, unlike MLN which are Gibbs 
entropy maximizers, are a projective model. Thus, multi-relational graphons with maxi-
mum entropy are consistent statistical models, in the sense that when the number of nodes 
of an observed multi-relational network goes to infinity then the network converges to a 
multi-relational graphon. We show that PME on multi-relational graphs enables the notion 
of the most typical worlds of a MLN by picking the global solutions of an optimization 
problem. If Radin’s conjecture holds, the optimal computation of the most typical graphons 
(worlds), constrained by the expectation of logical formulas, can be obtained by a non-
linear optimization of finite dimension.

As a candidate theory for MLNs, multi-relational graphon theory has two main issues. 
The first one is that there is no a rigorous proof of the conjecture raised by Radin et al. 
Radin et al. (2014), neither for graphons nor multi-relational graphons. However this con-
jecture has been proved for a special case (Kenyon et al., 2017). The second limitation is 
that Multi-relational graphon theory is only for symmetric and binary relations. We think 

gW (x0, x1, x2) =

{
1 x0 ≤ W(x1, x2)

0 otherwise
.
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that it is possible to extend Multi-relational graphons to higher order relations as long as 
the relations are symmetric. For non-symmetric relations, the problem is more difficult 
since it is not clear what is a suitable limiting space for sequences of growing non-symmet-
ric relations (Nešetřil & de Mendez, 2016).

Appendix

In this section we provide the necessary concepts from topology, measure theory and com-
pactness on vector spaces. We mostly follow notation and definitions from Dudley (2002) 
and Pedersen (2012), except for the definitions of measure preserving map from Walters 
(2000).

Some concepts of topology

Definition 23  (Topological Closure and Interior of a set) Let X  be a topological space and 
let A ⊂ X  . The topological closure of A and denoted by A is the intersection of all closed 
sets that contain A. The interior of A and denoted by A◦ is the union of all open sets are 
contained in A.

Now we define compact spaces which are a type of topological spaces.

Definition 24  (Compact space) Let X  be a topological space. We say that X  is compact if 
for every sequence (xi)∞i=1 in X  there is a subsequence (xni )

∞
i=1

 that is convergent.
Another alternative definition for compactness is the following. We say that the family 

of open sets {Oi} is an open cover for A ⊂ X  if A ⊂ ∪iOi . Then A is compact if for any 
cover {Oi} of A, it is always possible to pick a subfamily of {Oi} such that A ⊂ ∪n

j=1
Oij

.

Compactness of a space S ensures the existence of limit points i.e. limits of convergent 
subsequences of any sequence on S. For instance, every closed and bounded subset of ℝn is 
compact.

Definition 25  (Lower-continuity) We say that a function f is lower semi-continuous if

Lower-continuity is a sufficient condition to state that infx∈X f (x) and minx∈X f (x) are 
equivalent when X is a compact set.

Theorem 10  [Corollary 1.2 (Aubin, 1998)] If f is a lower-semi continuous and X ⊂ X  is 
compact set then infx∈X f (x) = minx∈X f (x) ∈ f (X).

Some concepts of measure theory

Next we define �-algebras, which are building blocks of probability theory.

lim inf
x→x0

f (x) ≥ f (x0).



214	 Machine Learning (2023) 112:177–216

1 3

Definition 26  (�-Algebra) Let X be a set. We say that a collection of subsets of X, 
AX ⊂ P(X) , is a �-algebra on X if (i) AX includes ∅ , (ii) is closed under complement, and 
(iii) is closed under countable unions.

Having defined �-algebras, we now define the following notions that we will need in the 
technical arguments in this paper: measure functions, outer measures and measurable sets, 
measure spaces, measure functions and measure-preserving maps.

Definition 27  (Measure function) Let AX be a �-algebra on X. We say that a function 
� ∶ AX → ℝ≥0 ∪ {+∞} is a measure function if

–	 �(�) = 0

–	 If A ∈ A then �(A) ≥ 0

–	 For all countable collections of An ∈ A such that Ai ∩ Aj = � for i ≠ j it holds that 

Definition 28  (Outer measure) Let AX be a �-algebra and let �X be a measure on X. For 
E ⊂ X the outer measure of E is defined by,

(Here we note that the infimum of an empty set is +∞.)

Next we define measurable sets using the just introduced notion of outer-measure.

Definition 29  (Measurable set) We say set F ⊂ X is a �∗-measurable, where �∗ us an 
outer-measure, iff for every set E ⊂ X , we have

Let MX(�
∗
X
) be the collection of sets in X that are measurable. Then MX(�

∗) is �
-algebra and �∗ is a measure function on it (see e.g. Lemma 3.1.8 (Dudley, 2002)): hence 
(X,MX(�

∗
X
),�∗

X
) is a measure space.

Definition 30  (Measure space) We say that the triple (X,A,�) is a measure space if X  
a topological space, A is the Borel �-algebra generated by the open sets of X  , and � is a 
measure function on A.

Definition 31  (Measurable function) Let (Xi,Ai, �i) , i = 1, 2 be measure spaces. Then 
f ∶ X1 → X2 is a measurable function if for any Borel set A ∈ A2 then its preimage f −1(A) 
is a Borel set.

Definition 32  (Measure preserving map) Let (Xi,Ai, �i) , i = 1, 2 be two measure spaces. 
Then the measurable function � ∶ X1 → X2 is a measure preserving map or Measure pre-
serving transformation if for any Borel set A ∈ A2 we have �1(�−1(A)) = �2(A).

�(∪∞
i=1

Ai) =

∞∑
i=1

�(Ai).

𝜇∗
X
(E) ∶= inf

{ ∑
1≤n<∞

𝜇(An) |An ∈ AX ,E ⊆ ∪nAn

}
.

�∗
X
(E) = �∗

X
(E ∩ F) + �∗

X
(E ⧵ F)
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