Machine Learning (2023) 112:515-569
https://doi.org/10.1007/s10994-022-06278-6

®

Check for
updates

FFNSL: Feed-Forward Neural-Symbolic Learner

Daniel Cunnington®2® - Mark Law?3 - Jorge Lobo* - Alessandra Russo?

Received: 25 January 2022 / Revised: 2 September 2022 / Accepted: 7 November 2022 /
Published online: 23 January 2023
© The Author(s) 2023

Abstract

Logic-based machine learning aims to learn general, interpretable knowledge in a data-
efficient manner. However, labelled data must be specified in a structured logical form.
To address this limitation, we propose a neural-symbolic learning framework, called Feed-
Forward Neural-Symbolic Learner (FFNSL), that integrates a logic-based machine learning
system capable of learning from noisy examples, with neural networks, in order to learn
interpretable knowledge from labelled unstructured data. We demonstrate the generality of
FFENSL on four neural-symbolic classification problems, where different pre-trained neural
network models and logic-based machine learning systems are integrated to learn inter-
pretable knowledge from sequences of images. We evaluate the robustness of our framework
by using images subject to distributional shifts, for which the pre-trained neural networks
may predict incorrectly and with high confidence. We analyse the impact that these shifts
have on the accuracy of the learned knowledge and run-time performance, comparing FFNSL
to tree-based and pure neural approaches. Our experimental results show that FFNSL out-
performs the baselines by learning more accurate and interpretable knowledge with fewer
examples.

Keywords Neural-symbolic learning - Inductive logic programming - Logic-based machine
learning - Distributional shift
1 Introduction

Logic-based machine learning (Muggleton, 1991; Law et al., 2019) learns interpretable
knowledge expressed in the form of a logic program, called a hypothesis, that explains

Editors: Nikos Katzouris, Alexander Artikis, Luc De Raedt, Artur d’Avila Garcez, Ute Schmid, and Jay
Pujara.

B<I Daniel Cunnington
dancunnington @uk.ibm.com

1 IBM Research Europe, Winchester, UK
Imperial College London, London, UK
3 ILASP Limited, Grantham, UK

ICREA-Universitat Pompeu Fabra, Barcelona, Spain

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06278-6&domain=pdf
http://orcid.org/0000-0003-0715-964X

516 Machine Learning (2023) 112:515-569

labelled examples in the context of (optional) background knowledge. Recent logic-based
machine learning systems have demonstrated the ability to learn highly complex and noise-
tolerant hypotheses in a data efficient manner [e.g., Learning from Answer Sets (LAS) (Law
etal., 2019)]. However, they require labelled examples to be specified in a structured logical
form, which limits their applicability to many real-world problems. On the other hand, dif-
ferentiable learning systems, such as (deep) neural networks, are able to learn directly from
unstructured data, but they require large amounts of training data and their learned models
are difficult to interpret (Gilpin et al., 2018).

Within neural-symbolic artificial intelligence, many approaches aim to integrate neural
and symbolic systems with the goal of preserving the benefits of both paradigms (Besold et
al., 2017; Garcez & Lamb, 2020). Most neural-symbolic integrations assume the existence of
pre-defined knowledge expressed symbolically, or logically, and focus on training a neural
network to extract symbolic features from raw unstructured data (Manhaeve et al., 2018;
Yang et al., 2020; Serafini & d’ Avila Garcez, 2016; Cohen, 2016; Riegel et al., 2020). In this
paper, we introduce Feed-Forward Neural-Symbolic Learner (FFNSL), a neural-symbolic
learning framework that assumes the opposite. Given a pre-trained neural network, FFNSL
uses a logic-based machine learning system robust to noise to learn a logic-based hypothesis
whose symbolic features are constructed from neural network predictions. The motivation
is to enable logic-based machine learning systems to utilise pre-trained neural networks' to
learn symbolic features from unstructured data, and use these features to learn interpretable
knowledge needed to solve a downstream classification task. FFNSL preserves the benefits
of both paradigms, increasing the scope of the tasks logic-based machine learning systems
can be applied to. The challenge in performing such an integration, is that neural networks
are vulnerable to distributional shifts, where unstructured data belonging to a distribution
different from that used for training often leads to incorrect predictions (Ovadia et al., 2019;
Sensoy etal.,2018; Amodei etal.,2016). By using a logic-based machine learning system that
is robust to noise, such as a LAS system, FFNSL is capable of learning robust logic-based
hypotheses from examples generated from labelled unstructured data, which may contain
incorrect or noisy features as a result of incorrect neural network predictions.

The novel aspect of our FENSL framework is the Data-to-Knowledge (D2K) generator
that bridges the neural and symbolic learning components. The D2K generator automatically
constructs a symbolic representation of the features predicted from the unstructured data, and
weights such knowledge with a level of truthfulness that reflects the confidence score of the
neural network predictions. The symbolic features can then be used by the symbolic learning
component to automatically generate weighted examples from which to learn general and
interpretable knowledge needed to solve the given downstream task.

FENSL is general enough to support the integration of any neural component capable
of making discrete predictions from unstructured data (binary or multi-class classification),
with any logic-based machine learning system capable of learning from noisy examples. In
this paper, we present four instances of our framework, where the LAS systems, ILASP (Law,
2018) and FastLAS (Law et al., 2020), are used as the symbolic learning component, and
different neural network architectures are used as the neural component. The LAS systems
have been shown to learn optimal hypotheses from noisy examples (Law et al., 2018), and to
be suitable for different forms of symbolic learning tasks. In these systems, a noisy example
includes a weight, which defines the penalty paid by a hypothesis for not covering that exam-
ple. FENSL interprets this weight as a level of certainty of the example, and computes it using
the confidence score of the related neural network predictions. In this way, the LAS systems

! Examples include https://modelzoo.co/ and those listed here: https://github.com/collections/ai-model-zoos.

@ Springer

https://modelzoo.co/
https://github.com/collections/ai-model-zoos

Machine Learning (2023) 112:515-569 517

become biased towards learning a hypothesis that has minimal penalty, i.e., a hypothesis
that covers examples generated from high confidence neural network predictions (examples
with high weights). For each proposed instance of our FFNSL framework, we investigate:
(1) whether FENSL can learn an accurate and interpretable hypothesis from incorrect feature
predictions of the neural component, (2) how robust the learned hypothesis is in the presence
of distributional shifts applied to an increasing percentage of the unstructured data, (3) the
impact of using an uncertainty-aware neural network component that provides more robust
confidence estimates when distributional shifts are applied to the unstructured data, and (4)
how FFNSL performs in comparison to other hybrid systems where the same pre-trained
neural networks, used for predicting features from the unstructured data, are integrated with
a random forest and deep neural networks trained to learn the knowledge required to solve
the downstream task.

To evaluate our FFNSL framework, we use four neural-symbolic classification tasks, one
for each proposed instance.” Firstly, the Follow Suit Winner task is a card game where 4
players each play a card and the goal is to predict the winning player. In order to solve the
task, the neural network predicts the rank and suit of the playing card images and the rules
of the game are learned as symbolic knowledge, where the winner is the player that plays the
highest ranked card with the same suit as player 1. The second task is Sudoku Grid Validity
classification, which consists of observing a sequence of images of handwritten MNIST
digits, corresponding to the digits in a Sudoku grid, and predicting if the grid is valid or not.
The neural network classifies each digit and the symbolic knowledge required to be learned
is the definition of valid (or invalid) Sudoku grids. The final tasks are Crop Yield Prediction
and Indoor Scene Classification, which demonstrate the applicability of FENSL to real-world
problems and datasets. The Crop Yield Prediction task requires predicting the quality of crop
yield from an image containing potentially diseased crops, where the neural network predicts
the crop’s species and disease status, and the learned symbolic knowledge predicts the quality
of yield. In the Indoor Scene Classification task, the neural network is pre-trained to predict
the scene class from an image, and the learned symbolic knowledge maps scene classes
to high-level super-classes. In the first task, the neural network is pre-trained on images of
playing cards from a standard deck, but our FENSL framework is applied on card images
subject to distributional shifts, where a percentage of standard card images are replaced with
images from alternative card decks. In the second task, the neural network is pre-trained on the
standard MNIST dataset, and our FENSL system is applied on an out-of-distribution MNIST
dataset generated by rotating MNIST digits 90° clockwise. In the Crop Yield Prediction task,
we pre-train the neural network on the Plant Village dataset (Hughes & Salathé, 2015), and
apply distributional shifts using a hue filter. Finally, in the Indoor Scene Classification task,
we adopt a neural network model pre-trained on the MIT Indoor Scene dataset (Quattoni &
Torralba, 2009), and apply distributional shift using blur, hue, and rotation filters.

Our evaluation demonstrates that FFNSL outperforms the baselines on all four tasks.
The hypotheses learned from unstructured data, subject to distributional shifts, are more
interpretable and more accurate than those learned by the random forest and deep neural
networks even when these baselines are trained with significantly more data. We have also
evaluated the robustness of the FFNSL instances when applied to a test set that is also subject
to distributional shifts. The results show that FENSL outperforms the baselines, trained
with the same amount of unstructured data, when up to ~80% of the test set is subject to
distributional shifts.

2 See https://github.com/DanCunnington/FENSL for code and data.

@ Springer

https://github.com/DanCunnington/FFNSL

518 Machine Learning (2023) 112:515-569

The paper is structured as follows. Section 2 provides necessary background material
on the LAS framework, alongside further discussion of the drawbacks of the standard neu-
ral network Softmax layer for providing robust confidence estimates, and details of the
uncertainty-aware neural networks used in this paper. Section 3 presents our general FFNSL
framework followed by four instances discussed in detail in Sect. 4. We introduce our evalua-
tion methodology in Sect. 5 and present the results of each FENSL instance on the Follow Suit
Winner and Sudoku Grid Validity tasks in Sects. 6 and 7 respectively, followed by the Crop
Yield Prediction and Indoor Scene Classification tasks in Sect. 8. Related work is discussed
in Sects. 9 and 10 concludes the paper.

2 Background

This section provides an overview of the LAS framework and the neural network approaches
used in FENSL. We discuss the difference between confidence estimates of uncertainty-aware
neural networks versus that of the standard Softmax layer, when applying these trained net-
works to out-of-distribution data. This is particularly relevant to our FFNSL framework,
as FFNSL relies upon neural network predictions and their confidence scores to learn inter-
pretable knowledge for solving a downstream task.

2.1 Learning from answer sets

LAS (Law et al., 2019) is a logic-based machine learning approach that extends the field
of Logic Programming (ILP) (Muggleton, 1991) with systems ILASP (Law, 2018) and Fast-
LAS (Law et al., 2020). ILASP and FastLLAS are capable of learning interpretable knowledge,
expressed in the language of Answer Set Programming (ASP) (Gelfond & Kahl, 2014), from
noisy labelled examples in an effective and scalable manner. Typically, an ASP program
includes four types of rules: normal rules, choice rules, and hard and weak constraints. In
this paper, we consider ASP programs composed of normal rules only.> A normal rule is of the
formh:-bq,..., by, not ¢1,..., not ¢y, where h, b1,...,bn, c1,..., cy are atoms,
“not” is negation as failure, h is the head of therule and b1, . .., by, not c1,..., not ¢y
is the body of the rule. The Herbrand Base of an ASP program P, denoted H Bp, is the set of
ground (variable free) atoms that can be formed from predicates and constants in P. Subsets
of H Bp are called interpretations of P. The semantics of an ASP program P is defined in
terms of answer sets, a subset, denoted as AS(P), of all interpretations of P that satisfy every
rule in P. Given an answer set A, a ground normal rule is satisfied if the head is satisfied
by A whenever all positive atoms and none of the negated atoms of the body are in A, that
is when the body is satisfied. A partial interpretation, ep;, is a pair of sets of ground atoms

<egi‘°, eg’i‘°>, called the inclusion and exclusion sets respectively. An interpretation I extends
epi iff ei“iC Clande°NI=40.

In the LAS framework, labelled examples are specified as Context-Dependent Partial
Interpretations (CDPIs). A CDPI example e is a pair {ep;, ecix), where ep; is a partial inter-
pretation and ey is an ASP program called the context of e. An ASP program P is said to
accept e if there is at least one answer set A of P U ec(x that extends ep;. Essentially, a CDPI

states that a learned program P, together with e, should bravely entail* all inclusion atoms

3 The reader is referred to Gelfond and Kahl (2014) for a full overview of ASP.

‘A program P bravely entails an atom a if there is at least one answer set of P that contains a.

@ Springer

Machine Learning (2023) 112:515-569 519

and none of the exclusion atoms of e. When a CDPI example is noisy, that is, the truthful-
ness of its context and/or partial interpretation is not guaranteed, it has a weight or penalty
assigned to it, in the form of a positive integer. A Weighted Context-Dependant Partial Inter-
pretation (WCDPI) is therefore a CDPI weighted with a penalty. It is formally defined as a
tuple e = (eid, epen. €pi, €ctx) Where ejq is a unique identifier of e, epep is the penalty of e, and
epi and ecix represent a CDPL. A LAS system that is noise-tolerant learns an ASP program
H, called a hypothesis, from WCDPI examples. If a hypothesis H does not accept a WCDPI
example, we say that it pays the penalty of that example. Informally, penalties are used to
calculate the cost associated with a hypothesis for not covering examples. The cost function
of a hypothesis H is the sum over the penalties of all of the examples that are not covered by
H, augmented with the length of the hypothesis. A LAS learning task with noisy examples,
consists of an ASP program denoting background knowledge, a hypothesis space defined by
a language bias,” expressing the set of rules that can be used to construct a solution of the
task, and a set of WCDPI examples. The goal of such a task is to find a hypothesis H in the
hypothesis space that minimises a cost function with respect to a given set of noisy examples.
This is formally defined below, adapted from Law (2018).

Definition 1 An ILPﬂ‘gsse task T isatuple T = (B, Sy, E), where B is an ASP program, Sy
is a hypothesis space, and E is a set of WCDPIs. Given a hypothesis H C Sy,

1. UNCOV(H, T) is the set consisting of all examples e € E such that B U H does not
accept e.

2. The penalty of H, denoted as PEN(H, T, is the sum), cyncov (s .7) €pen-

3. The score of H, denoted as S(H, T), is calculated as |H| + PEN(H, T).

4. H is an optimal inductive solution of T if and only if #H’ € Sy such that S(H', T) <
S(H,T).

ILASP and FastLAS are two state-of-the-art systems capable of solving an ILPE‘X? task.
The optimisation function used by both systems aims at learning a hypothesis H that jointly
minimises the total penalty paid for the uncovered examples and its length. In practice, this
creates a bias towards shorter, and therefore more general solutions that cover examples with
a high penalty value.

2.2 Uncertainty-aware neural networks

Our FFNSL framework relies on pre-trained neural networks to extract symbolic features
from unstructured data. The neural network prediction and its confidence score may therefore
affect the accuracy of a learned hypothesis. In this paper, we consider two different types of
neural networks as FENSL neural components: a standard Convolutional Neural Network
(CNN) that uses a Softmax layer, and an uncertainty-aware CNN that provides more robust
confidence estimates when given data outside the training distribution.

Uncertainty can be formulated as either aleatoric or epistemic uncertainty (Hiillermeier
& Waegeman, 2021; Pearce et al., 2021). In a machine learning classification task, aleatoric
uncertainty can be thought of as the uncertainty along the class decision boundary, whereas
epistemic uncertainty can be thought of as whether the sample falls into any of the classes
at all. The confidence estimates output by a neural network Softmax layer in a classification
task often only capture aleatoric uncertainty, as these outputs are based on a single probability
distribution over a set of classes squashed into real values between 0 and 1. For example,

5 For a detailed definition of a language bias see Law (2018).

@ Springer

520 Machine Learning (2023) 112:515-569

given neural network output logits I and k possible classes, the Softmax output o (1) for class
i, where 1 <i < k is calculated as:

eli
Z?‘:l eli

o) =

where e = 2.71828... is the Euler number.® There are three challenges with this approach in
terms of uncertainty quantification. Firstly, the exponent applied to neural network outputs
inflates the confidence estimate. Secondly, as the Softmax output is a point-wise, multinomial
distribution, it is only possible to compare the confidence of the predicted class among other
classes, as opposed to estimating the predictive distribution variance (Sensoy et al., 2018).
Finally, when Softmax is paired with the commonly used cross-entropy loss, the network is
only trained to minimise prediction error, as opposed to expressing uncertainty robustly.

To address these challenges, many techniques have been proposed in the literature (Ras-
mussen, 2003; Mackay, 1995; Blundell et al., 2015; Abdar et al., 2021). In this paper we
consider the EDL-GEN (Sensoy et al., 2020) approach, which is a neural network based on
generative models of Evidential Deep Learning (EDL) systems (Sensoy et al., 2018) that
have been shown to achieve state-of-the-art performance in handling epistemic uncertainty.
An EDL (Sensoy et al., 2018) system replaces the Softmax layer in a neural network with
a linear layer that represents the parameters of a Dirichlet distribution, a second-order dis-
tribution that inherently models the variance of a predictive distribution as opposed to the
single point-wise output provided by Softmax. It then uses a new loss function that jointly
minimises prediction error and the variance of the Dirichlet distribution, to reduce aleatoric
uncertainty on the class decision boundary. EDL-GEN (Sensoy et al., 2020) extends this
approach to also capture epistemic uncertainty by firstly treating the output of each class as
a binary decision and secondly, using a variational auto-encoder to automatically generate
out-of-distribution samples for training, in order to help the network discriminate between
samples within and outside the training distribution.

To better understand how the uncertainty estimation of neural network predictions impacts
the overall accuracy of our FFNSL framework, we analyse in the evaluation Sects. 6 and 7,
the predicted confidence scores generated by a standard CNN with a Softmax layer and
an EDL-GEN neural network and evaluate how they affect the accuracy of FFNSL when
increasing percentages of input training data are subject to distributional shifts.

3 FFNSL framework

In this section we present our general FENSL framework. It consists of three components, a
pre-trained neural network, a symbolic (logic-based) learning system and a D2K generator
that bridges the neural and symbolic learning components. It takes as input a dataset D of
labelled (sequences of) unstructured data, alongside a background knowledge B (if any)
and a search space Sy. The output is a hypothesis H in the search space Sy (H € Sy),
that predicts the labels of (sequences of) unstructured data. An overview of the FFNSL
architecture is presented in Fig. 1.

We now define each of the three components of our FFNSL architecture. Let us assume
that the training dataset D is given by a finite set D = {(xy, yy») | 1 < w < |D|}. The
downstream task is a classification task where the objective is to predict the target label y € Y
given a sequence of unstructured data x € X7 x...x X,. Note that A; could refer to different

6 We have used bold e to avoid confusion with a WCDPI e.

@ Springer

Machine Learning (2023) 112:515-569 521

. X FF-NSL
—_ . (W @), {{mg,, fy, 1:) | x; € x})
— Data-to- >
—_— -> Il 9:(xp) = | Knowledge (D2K) Symbolic
- Ll - generator ILP -— H
Pre-trained neural System
y network(s) g; with
B identifier m,

Sud

Fig. 1 FFNSL architecture and data flow generated for a single data point (x, y), where x is a sequence of
images and y is a label for the sequence. B is the background knowledge, Sy is the hypothesis search space
and H is the learned hypothesis. In practice, the architecture is applied on a set of data points from which
the D2K generator produces a set of symbolic examples passed in as input to the symbolic learner

types of unstructured inputs and the sequence could also contain only a single input. The
neural component of FENSL contains up to n pre-trained neural network(s).” Each neural
network g; : X; — [0, 115 returns a vector denoting relative assignment to k; possible
classes for an unstructured input x; € x. Each possible class z; € {1, ..., k;} represents a
set of symbolic feature and value pairs from a given set F, of symbolic feature mappings
associated with the neural network g;. For example, in the Follow Suit Winner task, Fg,
contains all possible suit and rank values corresponding to the possible predictions of the
neural network, when given an image of a playing card.

The second component of FFNSL is the D2K generator that outputs a symbolic represen-
tation of the sequence of neural network predictions, together with an aggregated confidence
value. Specifically, for a given sequence of unstructured data x = (xi, ..., x,), the D2K
generator takes each neural network output g; (x;), and computes the corresponding predic-
tion z;. Each z;, for 1 < i < n, is obtained by using the standard “arg max" function, i.e.,
the class with the maximum confidence score:

zi = argmax e (i ()1

The D2K generator then uses the set Fy, , associated with g; and generates the set f;‘[" C Fy,
of symbolic feature and value pairs corresponding to the prediction z;. As an example, in the
Follow Suit Winner task, z; is an identifier for one of 52 playing cards, and fél." contains two
feature and value pairs, one for the suit, and one for the rank of the card z;. The D2K generator
also generates a set /; of pairs containing additional symbolic meta-data, associated with each
input x;. Again, each pair in /; contains a name and a value. In the Follow Suit Winner task,
[; contains one pair indicating which player played the card z;. The generated set of tuples
{{mg,, féf‘l." 1) | xi € x}, where mg, is a unique identifier for the neural network g;, defines
the symbolic features extracted from a sequence of unstructured data x, based on the neural
network predictions. Finally, the D2K generator computes an aggregated confidence value
W (x) for the generated symbolic features, representing the combined confidence scores of
the neural network predictions:

W(x) = min({g; (x;)[z;] | x; € x}) (1)

W (x) is a generalisation of the binary Godel #-norm used in fuzzy logic to encode fuzzy con-
junctions (Metcalfe etal., 2008). So, given a sequence of unstructured inputs x = (x, ..., x,)
and the predicted vector (g1 (x1)[z1], - - ., gn(xn)[2,]) from the neural network, the output of

7 If the input sequence contains the same type of data, only one neural network is required.

@ Springer

522 Machine Learning (2023) 112:515-569

the D2K generator is formally defined as:
D2K () = (W), f(mg. f3.1) | % € x)) @)

A pseudo-code implementation of the D2K generator is presented in Algorithm 1. Note that
some aspects are task specific, such as the set of feature value pairs f, f'[", and meta-data /;.
These are left general in Algorithm 1, and specified in more detail for each task in Sect. 4.

Algorithm 1 D2K generator

Input: x // A sequence of images

SF =0

CcS=90

for x; € x do

// Obtain the neural network prediction for each input x;

7 = argmax ey, ;1 (8 (x)LjD

// Accumulate symbolic facts associated with the neural network

.....

prediction z;, using the set of feature value pairs f;: € Fg, and
meta-data [

SF =SFU{(mg,. fg' . 1;)}

// Accumulate the neural network confidence of prediction z;

CS=CSU{g(x)lz;1}

end for

// Calculate the aggregated weight penalty

W = min(CS)

// Return the D2K output

return (W, SF)

The third component of our FENSL framework is a symbolic logic-based machine learning
system. For each labelled unstructured data (x, y) € D, the symbolic learning system takes
as input D2K (x) and the label y, and generates a weighted symbolic labelled example
denoted as the tuple (W' (x), e(x,y)) where W’/ (x) is a penalty for the example, calculated
from the aggregated confidence score W (x), and e(y y) is a labelled example. The syntactic
form of e,y and the calculation of the penalty W'(x) depends on the specific symbolic
learning system used in the instantiation of the framework. In Sect. 4 we present two specific
instances of FFNSL where the symbolic learning systems are LAS systems and we show
how weighted symbolic labelled examples are defined as WCDPI examples. We denote with
E the set of weighted symbolic labelled examples defined by the symbolic learning system
forall (x, y) € D. A symbolic learning task T = (B, Sy, E) is then generated where B and
Sy are respectively the background knowledge and a search space given as input to FFNSL.
The symbolic learner then computes an optimal solution H for this task 7" as the output
of FFNSL.

Formally, an FENSL learning task is a tuple 7 = (B, Sy, D) where D is a set of labelled
unstructured data, B is a set of optional background knowledge and Sy, is a search space of
possible solutions for T. A hypothesis H € Sy is an inductive solution of 7 if and only if
H is an optimal inductive solution of the symbolic learning task (B, Sy, E), where E is the
set of weighted symbolic labelled examples automatically generated relative to the given set
D. In the next section, we present four specific instances of our FENSL framework and give
specific examples of the components described here.

@ Springer

Machine Learning (2023) 112:515-569 523

4 FFNSL with LAS systems

The generality of our FENSL framework allows it to be instantiated differently, using alterna-
tive neural and/or symbolic learning components, depending on the nature of the classification
task in hand. We have considered four different classification tasks, called Follow Suit Winner,
Sudoku Grid Validity, Crop Yield Prediction and Indoor Scene Classification respectively. The
first requires the learning of concepts that are not directly observed in the labels, but linked
to the label through the background knowledge, whereas the other tasks require the learning
of concepts that define the classification label. Because of the different types of symbolic
learning, we consider instantiations of our FFENSL framework with different LAS systems. In
what follows we introduce these tasks, their datasets, define the respective FFNSL learning
tasks and describe in more detail the FENSL instances we have implemented to solve these
tasks. Firstly, let us define the weighted symbolic labelled examples within a LAS system,
based on the output from the D2K generator. Essentially, the predicted symbolic features and
meta-data define the context of a LAS example, represented as a conjunction of facts, and
the aggregated confidence score W (x) is used to calculate the associated weight penalty:

W (x) =100 x W(x)] + 1 3)

which converts W (x) to an integer W’(x) > 0 as required by the LAS systems. Given the
output generated by D2K, a LAS system constructs a weighted symbolic labelled example
(W'(x), e(x,y)) as a WCDPI of the form (eiq, epen (%), €pi(¥), ecix (X)), Where ejq is a unique
identifier, epen (x) = W (x), epi(y) is the partial interpretation {{y}, Y\ {y}), defined in terms
of the label y and its domain), and the context e.x (x) is a conjunction of facts created from
the predicted symbolic features and meta-data. The components ep;(y) and ecix (x) together
constitute the labelled example ey y).

Given a set E’ of WCDPIs, a background knowledge B, and a search space Sy, a
hypothesis H C Sj is learned such that H is an optimal inductive solution of the task
foige = (B, Sy, E'). Let us now present the tasks used in our evaluation, alongside exam-
ples of each instantiated FENSL component.

4.1 Follow suit winner

This is a classification task where 4 players each play 1 card and the goal is to predict the
winning player. The symbolic knowledge required to solve the task defines the rules of the
game, that is the winner is the player that plays the highest ranked card with the same suit
as player 1. Each (x, y) € D is composed of a sequence x of 4 card images corresponding
to the cards played by players 1, ..., 4, and alabel y € {1, 2, 3, 4} denoting the player who
wins the 4 card trick.

Let us assume x = [, &, .., #] which contains images of the cards /0 of hearts, jack of
hearts, 4 of clubs and 8 of spades played by player 1, 2, 3 and 4 respectively. For this trick,
the ground truth label is y = 2 indicating that player 2 is the winner since player 2 has played
the highest ranked card with the same suit as player 1. Since the unstructured inputs in the
sequence x are of the same type (i.e., card images), FFNSL can simply use a single neural
network g pre-trained to predict the features of a card image, that is the rank and suit of
each card. Therefore, g has two associated symbolic features rank and suit each with values
{2,...,10, jack, queen, king, ace} and {hearts, clubs, spades, diamonds} respectively.
For each input x;, there are 52 possible predictions, one for each combination of rank and suit,
ie.,g: X — [0, 1]°2, where X is the set of possible card images. g has an associated feature

@ Springer

524 Machine Learning (2023) 112:515-569

value mapping F, which gives for each card prediction z; € {1, ..., 52}, a unique set of two
pairs, each containing a feature and value, i.e., f;i = {{rank, vyauk), (Suit, vg,i;)}, where
Vrank s one of the 13 rank values and vy,,;; is one of the 4 suit values. Furthermore, each input x;
also has associated symbolic meta-data [; = {{player, vpiayer)} Where vpiayer € {1, 2, 3,4}
indicates the player that has played card x;.

We instantiate our FENSL framework as follows. Given a sequence x of 4 card images,
the neural component of FFNSL generates 4 vectors g(x;), where 1 < i < 4. The D2K
component generates for each x;, the card prediction z; and its corresponding symbolic
features and meta-data, thus computing the tuple D2K (x;) = (card, f;" ,1;), where card
is the identifier for the network g (i.e., my = card).

Example 1 Consider the sequence x = [, &, [, #] and y = 2. Let us assume that the neural
network g computes the outputs g(x1), ..., g(x4) from which the D2K generator generates
the correct card predictions z; = 10, zo = 11, z3 = 17, and z4 = 34. Let us also assume the
neural network confidence scores for these predictions are:

g(xn)[z1] = 0.95; g(x2)[z2] = 0.92; g(x3)[z3] = 0.80; g(xa)[z4] = 0.94;
D2K (x) is given by the following tuple:

D2K (x) = (0.80, { (card, {(rank, 10), (suit, hearts)}, {{(player, 1)}),

card, {(rank, jack), (suit, hearts)}, {{player, 2)}),
card, {(rank, 4), (suit, clubs)}, {{player, 3)}),
(

card, {(rank, 8), (suit, spades)}, {{(player, 4)}) }).

o~ o~~~

In this task, FFNSL uses the symbolic learner ILASP. The concept to be learned is not directly
expressed as a label, but is related to it. The label is a single winning player for a trick, but
the learned concept requires reasoning over the conditions of the suit and rank values of the
other players’ cards. We encode as background knowledge, possible suit and rank values,
the four players, as well as the definition of a higher rank predicate. ILASP is particularly
suited for solving such learning tasks, known as non-observational predicate learning. The
full background knowledge B and language bias used to construct the search space Sy for
this classification task are given in Appendix F. To generate its learning task, ILASP has
to generate its set E " of WCDPI examples based on the output of the D2K component.
For example, the WCDPI generated from the D2K output and the corresponding label in
Example 1 is:

(eida 815 ({2}7 {1» 3’ 4})5 eCtX)

where ejq is a unique identifier and ecy is the set of facts {card(l,10,hearts).,
card(2, jack, hearts)., card(3, 4, clubs)., card(4, 8, spades).}.

4.2 Sudoku grid validity

Our second classification task is Sudoku Grid Validity. This consists of observing a sequence
of images of handwritten MNIST digits, corresponding to the digits in a Sudoku grid, and
predicting if the grid is valid or not.® The learned symbolic knowledge required to solve this
task is the definition of a valid Sudoku grid. In this task, each (x, y) € D contains a sequence

8 We assume a Sudoku grid has been pre-processed to return images of digits in different cells and we do not
process blank cells.

@ Springer

Machine Learning (2023) 112:515-569 525

of digit images x with a label y € {0, 1} for valid and invalid respectively. The length of the
sequence depends on the size of the grid. We consider 4 x 4 and 9 x 9 Sudoku grids as two
separate tasks, with respective datasets D4y4 and Dg,9 where the maximum length of the
sequence in input is given by n = 16 and n = 81 respectively. As the images are all MNIST
digits, FFNSL uses two neural networks g4x4 and goxo9, depending on the grid size, pre-
trained to predict the feature digit of a single image x; in x. So ggxx : X — [0, 11%, where
X=MNIST. In the case of D4yx4,n = 16 and k = 4 whereas in the case of Dgy9, n = 81 and
k = 9. The neural network gix has associated a feature value mapping Fy, , which gives
for each digit prediction z; € {1, ..., k} a unique set of pairs f;,ka = {{value, v)}, where v
is one of the k digits that can appear in a Sudoku grid of size k x k. The meta-data related to
each x; is a set of two feature value pairs denoting the row and column that the image x; has
in the Sudoku grid, i.e., [; = {{(row, vyou), (col, Veor)}, Where vypy, Veor € {1, ..., k}.

The instantiated FFNSL framework for this classification task is defined as follows. Given
a sequence, x, of MNIST digit images, for each x; € x, the pre-trained neural network gz
computes the vector g(x;). The D2K component generates for each x; the tuple D2K (x;) =
(digit, fg .. li) where digit isthe network identifier, fg; , is the set of symbolic feature
values associated with the prediction z;, and /; is the set of symbolic meta-data feature value
pairs associated with x;.

Example 2 Consider the task of predicting the validity of a 4 x 4 Sudoku grid. Let x =
(2. . . El. B, with label y = 1, and associated symbolic meta-data:

I = {{row, 1), (col, 1)}
I, = {{row, 1), (col, 3)}
I3 = {{row, 1), (col, 4)}
Iy = {{row, 3), (col, 2)}
Is = {{row, 4), (col, 3)}

Let us assume the neural network ¢ = g44 and g computes the outputs g(x1), ..., g(xs) from
which the D2K generator generates the correct digit predictions z; = 2,20 = 4,23 = 1,
z4 = 3, and z5 = 4. Let us also assume the neural network confidence scores for these
predictions are: g(x1)[z1] = 0.88, g(x2)[z2] = 0.93, g(x3)[z3] = 0.87, g(x4)[z4] = 0.97,
and g(x5)[z5] = 0.99. The aggregated confidence score W(x) = 0.87. D2K (x) is given by
the following tuple:

D2K (x) = (0.87,{ (digit, {{value, 2)}, {{row, 1), (col, 1)}),
(digit, {(value, 4)}, {{row, 1), (col, 3)}),
(digit, {(value, 1)}, {{row, 1), (col, 4)}),
(digit, {(value, 3)}, {{row, 3), (col, 2)}),
(digit, {{value, 4)}, {{row, 4), (col, 3)}) }).

In this task FENSL uses the FastLAS symbolic learner because the task is to learn the
definition of the classification label, and FastLAS has been shown, for these types of learning
tasks, to be more scalable than ILASP (Law et al., 2020). For both 4 x 4 and 9 x 9 Sudoku
grids, the knowledge of the grid is encoded as part of the background knowledge B, given
in Appendix F together with the language bias used to construct the search space Sys. For
each (x, y), FastLAS takes as input D2K (x) and generates a WCDPI example. For instance,
the WCDPI generated for the D2K output and the corresponding label in Example 2 is:

<€id, 887 ({1}7 {0}>7 eCtX)

where ejg is a unique identifier and ecx is given by the set of facts {digit(l,1,2).,
digit(1,3,4)., digit(1,4,1)., digit(3,2,3)., digit(4, 3,4).}.

@ Springer

526 Machine Learning (2023) 112:515-569

4.3 Crop yield prediction

To demonstrate the application of FENSL to a real-world problem and dataset, consider the
Crop Yield Prediction task. The goal is to classify the quality of yield, given an image and
the location of a particular crop. The symbolic knowledge required to solve the task defines
the quality of yield according to the crop’s location, species, and any disease that may be
present. Each (x, y) € D is composed of a sequence x containing a single image, and a label
y € {0, 1, 2} denoting the quality of yield as poor, moderate, and strong respectively.

Let us assume x = [[@] which contains an image of a peach crop with the bacterial
spot disease. Given symbolic meta-data denoting the location of this crop, let us assume
the label y = 0, indicating poor yield. In this task, we use one neural network g to pre-
dict the features of a crop image, which are the crop species and disease. In total, there
are 38 possible combinations of crop species and diseases, and g is trained to classify each
combination. To assist with neural network training, the image dataset also contains a back-
ground class with unrelated images.9 Therefore, g : X — [0, 1]39, where X is the set
of possible crop and background images. g has an associated feature value mapping F,,
which specifies for the crop prediction z; € {1, ..., 38}, a unique set of feature and value
pairs ng[= {(species, Vspecies)v (disease, Vgisease)}, Where Vspecies and Vyjseqse are the
crop species and disease values respectively. Also, each input x; has associated symbolic
meta-data [; = {(location, vipcation)} Where vigearion € {1, ..., 19} is the location of the
crop.!?

We instantiate our FFNSL framework as follows. Given a sequence x containing a single
crop image, the neural component generates a single vector g(x;). The D2K component
generates the prediction z; and its corresponding symbolic features and meta-data, thus
computing the tuple D2K (x;) = (crop, ngi , i), where crop is the identifier for the network
g (e, mg = crop).

Example 3 Consider the sequence x = [E] and y = 0. Let us assume the neural net-
work g computes the output g(x;) from which the D2K generator generates the correct
crop prediction z; = 17. Let us also assume the neural network predicts with confidence
g(x1)[z1] = 0.98, and this crop is in location 5. D2K (x) is given by the following tuple:

D2K (x) = (0.98,{ (crop, {(species, peach), (disease, bacterial_spot)},
{{location, 5)}) }).

In this task FENSL uses the FastLLAS symbolic learner which is shown to be more scalable
than ILASP. The background knowledge B contains a rule that ensures a classification is
performed, i.e., given a crop, disease, and a location, the learned hypothesis should output
only one class of crop yield. This rule, alongside the language bias used to construct the
search space Sy, is given in Appendix F. For each (x, y), FastLAS takes as input D2K (x)
and generates a WCDPI example. For instance, the WCDPI generated from the D2K output
and the corresponding label given in Example 3 is:

(eidv 997 ({O}a {15 2})7 eCtX)

where ejg is a unique identifier and e.x is given by the set of facts {species(peach).,

disease(bacterial_spot)., {location(5).}.

9 In FFNSL, if the neural network predicts the background class, no WCDPI example is generated by the
D2K component.

10 The dataset consists of two unique crops in each location, hence 19 possible location values.

@ Springer

Machine Learning (2023) 112:515-569 527

Sl
/;}‘ i erer o

i A
lu ‘!' ’[I‘[

JMI il
{1 AT

Fig.2 Example bookstore image from the MIT Indoor Scenes dataset. Quattoni and Torralba (2009)

4.4 Indoor scene classification

Our final instantiation of FFNSL is with the Indoor Scene Classification task, where both
neural and symbolic components are trained with real data. The goal is to learn symbolic
knowledge that maps indoor scene classes (e.g., bedroom, bathroom, kitchen) into higher level
super-classes (e.g., home), given images of indoor scenes. Each (x, y) € D is composed of
a sequence x containing a single indoor scene image, and a label y € {0, ..., 4} denoting
the super-class as store, home, public space, leisure, and working place respectively.

Let us assume x = [[&#] which contains an image of a bookstore (also shown in Fig. 2).
The label for this example is y = 0 (i.e., store). We use one neural network g to predict the
scene class. In total, there are 67 different classes of various indoor scenes, and therefore
g: X — [0, 1197, where X is the set of possible images in the MIT Indoor Scene dataset. g
has an associated feature value mapping Fg, which for the scene prediction z; € {1, ..., 67},
gives a pair that denotes the symbolic scene name vycepe, i.€., f3' = {(scene, vycene)}. In this
task there is no symbolic meta-data associated with each input x € x. Given a sequence x
containing a single scene image, the neural component generates a single vector g(x;). The
D2K component generates the prediction z; and its corresponding symbolic feature, thus
computing the tuple D2K (x;) = (image, f;i, {}), where image is the identifier for the
network g (i.e., my = image).

Example 4 Consider the sequence x = [[&] and y = 0. Let us assume the neural network g
computes the output g(x) from which the D2K generator generates the correct scene predic-
tion z; = 8. Letus also assume the neural network predicts with confidence g(x1)[z1] = 0.96.
D2K (x) gives as output the following tuple:

D2K (x) = (0.96, { (image, {(scene, bookstore)}, {}) }).

The FastLAS symbolic learner is also used in this task. No background knowledge is
required, and the language bias is given in Appendix F. For each (x, y), FastLAS takes as
input D2K (x) and generates a WCDPI example. For instance, the WCDPI generated for the
D2K output in Example 4 is:

(eidv 967 ({0}7 {17 2s 37 4})! eCtX)

where ejq is a unique identifier and e« is given by the set {scene(bookstore).}.

@ Springer

528 Machine Learning (2023) 112:515-569

5 Evaluation methodology

In this section we describe the methodology used to evaluate the FENSL framework. In the
first two tasks, the focus is on learning complex first-order knowledge involving negation
as failure and predicate invention, which are essential aspects of common-sense learning
and reasoning. In the second two tasks, we demonstrate FFNSLs applicability to real-world
problems and datasets. For each of the four classification tasks, we divide the evaluation into
two types. Firstly, we evaluate the symbolic learning capability of FENSL, where the goal
is to learn interpretable knowledge from symbolic features extracted from pre-trained neural
network predictions. Secondly, we evaluate the inference capability of FFNSL, where the pre-
trained neural networks together with the learned knowledge are used to make a downstream
classification of unseen unstructured data. We refer to the first type of evaluation as the learned
hypothesis evaluation and the second type as the FFNSL framework evaluation, since this
targets both neural and symbolic components. Let us now describe each evaluation type in
more detail.

5.1 Learned hypothesis evaluation

We evaluate the learned hypothesis in terms of accuracy, interpretability and learning time.
To measure accuracy, we use a symbolic test set containing ground truth symbolic features.
This ensures that the evaluation only targets the accuracy of the learned hypothesis. For each
example in the test set, the symbolic features are used with the learned hypothesis to make
a prediction of the downstream label. This prediction is compared to the ground truth label
in the test set and accuracy is computed using the standard measure. Since FENSL learns
knowledge from a pre-trained neural network, we consider the hypotheses that have been
learned at each (increasing) percentage of distributional shift and evaluate the accuracy of
the knowledge that FFNSL learns in the presence of incorrect neural network predictions.
Note that the symbolic test set remains unchanged and is not affected by the distributional
shifts, as we want to evaluate in this case just the accuracy of the learned hypotheses.

To perform a deeper analysis of the accuracy of the learned hypotheses, we take into
consideration the following measures. Firstly, the accuracy and confidence score distribution
of the pre-trained neural network(s) in classifying unstructured data in the training set D.
Since the neural networks were pre-trained on a dataset different from D, this measure
enables us to understand the reliability of the pre-trained neural network predictions over
new unseen input data (For more dataset details, see Appendix C.). Secondly, we measure
the percentage of WCDPI examples generated by the LAS system, that contains features in
the context which are incorrect with respect to the label in the inclusion set. This enables us
to understand the relationship between incorrect neural network predictions and the accuracy
of the learned hypotheses, as well as analyse how many correct WCDPI examples are needed
to learn hypotheses with a certain level of accuracy. Thirdly, we calculate the weight penalty
ratio r over the generated WCDPI examples, defined as

ZeeE’ €

correct pen
2 eer €pen

where E/ ... is the set of correctly generated WCDPI examples, (i.e., WCDPI examples
with features in the context that are consistent with the label in the inclusion set) and E’ is the
complete set of generated WCDPI examples. This enables us to measure the bias given to the

LAS system by the weights of the WCDPI examples, which are based on the neural network

@ Springer

Machine Learning (2023) 112:515-569 529

confidence scores. Ideally, FFNSL should allocate a higher proportion of the total weight
penalty to WCDPI examples that contain correct neural network predictions. We compare
the accuracy of the knowledge learned from these WCDPI examples with that of knowledge
learned from corresponding WCDPI examples where we fix the penalty to be constant for
all examples, as a baseline. To measure interpretability, we count the total number of atoms
in a learned hypothesis: a hypothesis with a lower number of atoms is considered to be more
interpretable (Lakkaraju et al., 2016). Finally, we measure the wall-clock time taken to learn
a hypothesis at each percentage of distributional shift.

5.2 FFNSL framework evaluation

When a hypothesis has been learned, the entire FENSL framework can be evaluated using a
test set containing unseen labelled unstructured data. In this case, the neural network com-
ponent of FENSL classifies each element of a sequence of unstructured data. The symbolic
features predicted from the neural network classification are added to the background knowl-
edge alongside the learned hypothesis. The symbolic component of FENSL is used to compute
the downstream prediction. This is compared to the ground-truth label associated with the
sequence of unstructured data, and the accuracy is computed with the standard measure. To
assist the evaluation, and to provide insight into where mistakes are being made, we evaluate
the neural network accuracy in predicting the symbolic features from the unstructured data
in the test set with respect to ground truth information. This enables us to identify whether
any downstream classification error is due to neural network feature prediction, the learned
hypothesis, or both. We also evaluate FFNSL under distributional shifts. We inject into the
test data the same percentages of distributional shifts used during the learning of hypotheses,
and evaluate the accuracy of FFNSL. This evaluates the performance of FFNSL in realistic
scenarios where distributional shifts occur during learning and inference.

5.3 Experimental setting

In the next four sections, we present the results of the Follow Suit Winner, Sudoku Grid
Validity, Crop Yield Prediction, and Indoor Scene Classification tasks, using the evaluation
methodology outlined in this section. In the first three tasks we pre-train a Softmax CNN and
an EDL-GEN neural network and when used in combination with a symbolic learning system
in FENSL, we refer to these as FFNSL Softmax and FFNSL EDL-GEN respectively. For the
Indoor Scene Classification task we adopt a pre-trained network, called Semantic Aware Scene
Recognition (SASR), tailored to the task of scene classification. We use a Random Forest (RF)
and neural network as baseline rule learning approaches in all tasks, and they both use the same
pre-trained Softmax neural network for feature extraction as used in FFNSL Softmax, and are
trained to learn the knowledge needed to predict the downstream label, given Softmax neural
network predictions. In the Indoor Scene Classification task the SASR network is used. The
RF is chosen as a powerful decision tree approach, known for being a lightweight model that
is quick to train and exhibits a certain level of interpretability. In the Follow Suit Winner and
Crop Yield Prediction tasks, the neural network is a Fully Connected Network (FCN), chosen
to evaluate a deeper architecture, and in the Sudoku Grid Validity task, the neural network
is a Convolutional Neural Network-Long Short Term Memory (CNN-LSTM) designed for
sequence classification problems where the CNN component can learn spatial dependencies
in the Sudoku grid. Full details of the baseline architectures are given in Appendix D. To
measure interpretability of the RF baseline, we used the first tree in the forest and extract a

@ Springer

530 Machine Learning (2023) 112:515-569

Fig.3 Example playing card images

rule from each branch (from root to leaf) of this tree. For the neural network baselines, we
fitted a surrogate decision tree model (Molnar, 2019) to approximate black-box predictions,
and applied the same rule extraction methods as that used for the RF. Let us now present our
results.

6 Follow suit winner

In this section we present the results of the Follow Suit Winner task. We start with Softmax
and EDL-GEN neural networks pre-trained on standard playing card images and apply minor
and major distributional shifts by substituting standard playing card images with images from
alternative decks. Example images are shown in Fig. 3 for the queen of hearts card taken from
the Standard Fig. 3a, Batman Joker Fig. 3b, Captain America Fig. 3¢, Adversarial Standard
Fig. 3d, Adversarial Batman Joker Fig. 3e and Adversarial Captain America Fig. 3f decks.

The Batman Joker and Captain America decks represent minor distributional shifts; the
adversarial decks represent instead major distributional shifts where card images from each of
the Standard, Batman Joker and Captain America decks are placed against a background con-
taining additional card images from the Standard deck. These adversarial decks are designed
to trick the neural networks into predicting incorrectly as images from the Standard deck are
from the same distribution as the card images used during neural network pre-training. In
order to understand the challenge faced by the LAS system when learning from neural net-
work feature predictions in the presence of distributional shifts, Fig. 4 presents the accuracy
and confidence score distribution of pre-trained neural networks when evaluated on different
playing card decks than the one used for pre-training.

In Fig. 4, each row shows the type of neural network, the playing card deck used for
evaluation, the predictive accuracy, and the confidence score distribution. As one would
expect, the accuracy was very high when classifying playing card images from the standard
deck, as this was the deck used for pre-training. For the Softmax neural network the confidence
score was also very high in this case, whereas EDL-GEN had more distributed confidence
scores. When evaluating the pre-trained networks on decks different from the one used
in training, the Softmax neural network still reported high confidence despite its overall
low accuracy, whereas the EDL-GEN network reported comparable low accuracy but with
much lower confidence. For example, evaluating the networks over the Captain America
deck (see 3rd and 9th rows), 96% of Softmax predictions were made with confidence in the
interval [0.95, 1], despite an accuracy of 0.0697, whereas only 10% of EDL-GEN predictions
were made within this same confidence interval. As for the overall accuracy, EDL-GEN
performed slightly better than Softmax over decks representing minor distributional shifts,

@ Springer

Machine Learning (2023) 112:515-569 531

Confidence Score Value

B 0-0.25 0.75-0.9
0.25-0.5 0.9-0.95
Network | Deck | Accuracy 0.5-0.75 mmm 0095-1
Softmax | Standard | 1.0 100
Softmax | Batman Joker | 0.1986

Softmax | Captain America | 0.0697 96
Softmax | Adversarial Standard | 0.0332 95
Softmax | Adversarial Batman Joker | 0.0423 95

Softmax | Adversarial Captain America | 0.0192 95
EDL-GEN | Standard | 0.9976 4
EDL-GEN | Batman Joker | 0.2394
EDL-GEN | Captain America | 0.1207
EDL-GEN | Adversarial Standard | 0.0356
EDL-GEN | Adversarial Batman Joker | 0.0264 41 32
EDL-GEN | Adversarial Captain America | 0.0245 57 7 6 16

Confidence Score Distribution (%)

Fig.4 Neural network performance under distributional shifts

whereas both networks performed in a similar way when applied to decks representing major
distributional shifts. This highlights the challenge for our FFNSL framework in learning
knowledge when presented with out-of-distribution data, as neural network predictions are
likely to be incorrect, and may potentially be made with high confidence.

6.1 Learned hypothesis evaluation

Figure 5 presents the accuracy of the learned hypotheses when an increasing percentage of
labelled unstructured data were subject to distributional shifts, applied with cards from the
alternative decks. The reported accuracy is the mean accuracy over 5 repeats and the error
bars indicate standard error.

FFENSL outperformed the baselines and learned far superior hypotheses when up to 90%
of labelled unstructured data were subject to distributional shifts. This was the case for
both instances of FFNSL. The baselines required 100x the number of examples in order
to perform close to FENSL, and despite the significant increase in the amount of data used
by the baselines, FFNSL still learned more accurate hypotheses. Figures 5a and b refer
to the injection of minor distributional shifts. In these two cases, when the percentage of
distributional shift was very high (above 90%), the accuracy of the FFNSL learned hypotheses
decreased, but still remained between ~ 70—100%, whereas the accuracy of the baselines
trained with the same amount of data reduced to ~ 40%. Figure 5c—e refer to the injection
of major distribution shifts. FFNSL Softmax had similar performance in Fig. 5S¢ and d but a
much lower accuracy than that shown with minor distributional shifts when 90% or more of
the unstructured data were subject to distributional shifts. The FENSL EDL-GEN maintained
instead a higher accuracy in these cases. We now perform a more in-depth analysis to explore
the reasons for dropping accuracy in the presence of high percentages of distributional shifts.
Given the two groups of similar behaviours we consider only two representative cases: Batman

@ Springer

532 Machine Learning (2023) 112:515-569

—-- FFNSL Softmax 104 examples —4-- Baseline RF 104 examples --¢-- Baseline FCN 104 examples
—— FFNSL EDL-GEN 104 examples Baseline RF 10,400 examples %+ Baseline FCN 10,400 examples

1.0 — 1.0

i\'f
.
o8 % EIIE } 111 { 08
0.6 INI\I‘ 3 0.6
3= EN .

o
IS
o
IS

Learned hypothesis accuracy
Learned hypothesis accuracy

0.2 0.2
0 0.0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)
(a) Batman Joker (b) Captain America
1.0 1.0
1.0
208 208
gos
:
5 306 306
206 2 H
2 H H
g 204 204
g 2o 2,
S04 g g
£ ki 4
§ 0.2 0.2
0.2
0.0 0.0
0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
0 10 20 30 40 50 60 70 80 90 100 Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)

Training data points subject to distributional shift (%)
(d) Adversarial Batman (e) Adversarial Captain

(c¢) Adversarial Standard Joker America

Fig. 5 Accuracy of learned hypotheses with increasing percentages of data subject to distributional shifts,
Follow Suit Winner task. 5 repeats

Joker, as minor distributional shift, and Adversarial Batman Joker as major distributional
shift. A full set of analysis results, with respect to all the other card decks, is given in
Appendix A.

In particular, we explore whether FFNSL. EDL-GEN provides a performance benefit
over FFNSL Softmax, and if so, what are the contributing factors. Specifically we anal-
yse the accuracy performance in relation to either or both (i) better neural network predictive
accuracy, when classifying out-of-distribution data, and (ii) more informative weight penal-
ties of the generated WCDPI examples, calculated from the neural network confidence scores.
For this analysis we focus on high percentages of distributional shifts, 95-100%, as this was
when FENSL instances deteriorated in their learned hypothesis accuracy. We run 50 experi-
mental repeats to generate statistically significant results. In order to isolate the effect of the
example weight penalties, we also run two additional baseline FFNSL instances where the
weight penalties of the generated WCDPI examples are all constant and equal to 10. The
results are shown in Fig. 6. We have also included the performances with respect to distribu-
tional shifts given by the Adversarial Captain America deck (Fig. 6¢), since Fig. 5e shows
that in this case the accuracy of both FENSL instances decreased to around 40% when nearly
100% of the data were subject to distributional shifts. Full analysis of this deck is presented
in Appendix A.

@ Springer

Machine Learning (2023) 112:515-569 533

—-= FFNSL Softmax (with NN penalties) —=- FFNSL Softmax (with constant penalties)
—— FFNSL EDL-GEN (with NN penalties) FFNSL EDL-GEN (with constant penalties)

1.0 1.0

1.000

0.975

o
53

Learned hypothesis accuracy
° °
= S
T+
Iz
7
1
et
S
@

is accuracy
o
©
v
S

°
>

0.925

0.900

0.875

;
/
/
/
Learned hypothesis accuracy
°
; =
=
!
,

Learned hypothesi

0.850 02 é\:_{ - :::h}:::%'\’“‘*- _
N 0.2 {_;_,___ ‘i
0.825
95 96 97 98 99 100 95 96 97 98 99 100
Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)
95 96 97 98 99 100
Training data points subject to distributional shift (%) X X
(b) Adversarial (c) Adversarial
(a) Batman Joker Batman Joker Captain America

Fig.6 FFNSL Softmax vs. FENSL EDL-GEN. Accuracy of learned hypotheses with 95-100% distributional
shifts using 50 repeats. Follow Suit Winner task

For both Batman Joker and Adversarial Batman Joker, FFNSL EDL-GEN outper-
formed FFNSL Softmax. Note, however, the difference in y-axis scale between Fig. 6a
and b and the difference in FENSL performance. This was due to the fact that both Softmax
and EDL-GEN neural networks predicted more accurately on the Batman Joker deck than
the Adversarial Batman Joker deck, as presented in Fig. 4. The improved performances of
FFNSL EDL-GEN versus FFNSL Softmax did not seem to depend on the more informa-
tive weights of WCDPI examples with weights calculated from neural network confidence
scores, versus constant weights, since the accuracy of FFNSL instances (denoted “...with
NN penalties™) was similar to that of the respective baselines with constant weight penalties.
However, Fig. 6¢ shows that when the distributional shift was more severe,!! the decrease
in accuracy of FENSL EDL-GEN was less drastic than that of its corresponding baseline
with constant penalty, whereas there was no difference in the case of FFNSL Softmax. Even
though the overall accuracy of the framework was lower than that reported for less drastic
forms of distributional shifts, the more informative weight penalties of WCDPI examples,
calculated from the EDL-GEN neural network confidence scores, provided a clear benefit
compared to using constant weights, in particular when the percentage of distributional shift
was very high.

It still remains open the question as to why FFNSL EDL-GEN performed better
than FFNSL Softmax in Fig. 6a and b. For the percentages of distributional shifts between
95-100%, the pre-trained neural networks both reported low average accuracy. So a natural
question to ask is whether EDL-GEN led to more consistent symbolic feature predictions
than Softmax. This is important to investigate because LAS systems are capable of learn-
ing accurate hypotheses from few “good" examples. So, we investigated the percentage of
incorrect WCDPI examples generated when 95-100% of the unstructured data were sub-
ject to distributional shifts. These were examples whose contextual symbolic features were
inconsistent with the ground-truth label due to incorrect neural network predictions.

Figure 7 shows, first of all, that the percentage of generated incorrect WCDPI examples
was lower than the corresponding percentage of data subject to distributional shifts. This
indicated that some correct WCDPI examples could be generated even when the neural

I Recall that the accuracy of Softmax and EDL-GEN neural networks was the lowest for the Adversarial
Captain America test set, as shown in Fig. 4.

@ Springer

534 Machine Learning (2023) 112:515-569

_ B Softmax
g ©me EDL-GEN = & m Softmax
@ 801) ome EDL-GEN
g g 80
£ g
g 5
o x
5 0 o 60
: 5
£ ¢
g a0 g a0
5 5
g o
g g
£ £ 20
: 20 ;
& &
0
- % 97 98 99 100 95 96 97 98 99 100
Percentage of data points subject to distributional shift (%) Percentage of data points subject to distributional shift (%)
(a) Batman Joker (b) Adversarial Batman Joker

Fig.7 The effect of distributional shifts on percentage of incorrect WCDPI examples generated. Follow Suit
Winner task

networks made incorrect predictions. Incorrect predictions made over the 4 cards played
could in combination lead to predicted symbolic features for the trick whose winning player
would match the ground truth label. Secondly, more correct WCDPI examples were generated
when the distributional shift was given by the Batman Joker deck, compared to that of the
Adversarial Batman Joker deck. This was because, as indicated in Fig. 4, the neural network
accuracy for the former was better than that for the latter. Furthermore, EDL-GEN led to a
lower number of incorrect WCDPI examples compared to that of Softmax in both forms of
distributional shifts, and this difference was bigger in the case of the Adversarial Batman
Joker deck. Given the relatively small number of WCDPI examples used by the LAS system
(104), this difference contributed to the larger gap in accuracy between FFNSL Softmax
and FFENSL EDL-GEN in Fig. 6b than Fig. 6a.

Now, how did the weight penalty, generated from the neural network confidence score,
effect the accuracy of learned hypotheses? Clearly, EDL-GEN provided improved confidence
scores than the Softmax neural network which in-turn, improved the accuracy of FFNSL.
This explains why the accuracy of each FENSL approach was higher in Fig. 6a than that
shown in Fig. 6b. However, Fig. 6 shows that for FENSL Softmax, using WCDPI example
weight penalties calculated from Softmax neural network confidence scores appears to have
no benefit compared to using WCDPI examples with constant weight penalties. However,
this was different in the case of FFNSL EDL-GEN. To investigate this further, we calculated
the weight penalty ratio for the WCDPI examples generated from both Softmax and EDL-
GEN neural network confidence scores. The analysis is shown in Fig. 8 for each deck and
95-100% distributional shifts.

Figure 8 shows that the weight penalty ratio calculated from EDL-GEN confidence scores
provided a clear benefit than that calculated from the Softmax neural network confidence
scores, which was instead very similar to the weight penalty ratio given by constant penalties.
At 100% distributional shifts, the benefits of calculating WCDPI example weight penalties
with the neural network confidence scores reduced, as there were very few correct examples.
This explains why the gap between the accuracy of the FFNSL EDL-GEN with neural network
penalties and that of FFNSL EDL-GEN with constant penalties, in both decks, reduced as
distributional shifts increase towards 100% (see Fig. 6). In summary, improved accuracy of
the neural network predictions led to a higher percentage (even if small) of correct WCDPI
examples and improved neural network confidence scores led to an improved penalty ratio
of correct WCDPI examples. Together they provided an improved bias for the LAS system

@ Springer

Machine Learning (2023) 112:515-569 535

—-- FFNSL Softmax (with NN penalties) —=—- FFNSL Softmax (with constant penalties)
—— FFNSL EDL-GEN (with NN penalties) FFNSL EDL-GEN (with constant penalties)
80 80

~
o
~
o

(=2}
o
(=2}
o

w
o
u
o

Correct ILP example penalty ratio
5

Correct ILP example penalty ratio
Y
o

301 301
201 201
I___'-———-————-:—__‘_§
101 101 =
0+ T T T T T 0+ T T T T T
95 9 97 98 99 100 95 96 97 98 99 100

Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)

(a) Batman Joker (b) Adversarial Batman Joker

Fig.8 WCDPI example weight penalty ratio. Follow Suit Winner task

—-- FFNSL Softmax 104 examples —¢-- Baseline RF 104 examples --¢-- Baseline FCN 104 examples
—— FFNSL EDL-GEN 104 examples Baseline RF 10,400 examples -X-- Baseline FCN 10,400 examples
10°
104
% B B & e E ...
" 104 *IIXX IS " x £ I R I
£ £ ¥
S <] B
© ® 1034 A
“— u
© 103 2 B
3 2 SR i S 2 S S S
E 00 SR) GO S Gy e S & E
2 (¥t 2100y 3.
< 1024 © ¥ I ----- e T | T 4.
§ IIII III I ke = 1
. t L 1014 K2 T
10*4 ﬂ\~\:[__{
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)

(a) Batman Joker (b) Adversarial Batman Joker

Fig.9 Interpretability of the learned hypotheses, Follow Suit Winner task

which even if it was reduced to learn from a small percentage of correct examples, these had
improved penalty weight to guide the search for optimal solutions.

Let us now investigate the interpretability of the hypotheses learned using our FFNSL
framework compared to that of the baseline approaches. Figure 9 shows the results, where
interpretability was measured in terms of the number of atoms that formed the learned
hypothesis.

FFNSL learned significantly more interpretable knowledge than the baseline approaches
(note the logarithmic scale on the y-axis). In the case of the minor form of distributional

@ Springer

536 Machine Learning (2023) 112:515-569

—-= FFNSL Softmax 104 examples —4 - Baseline RF 104 examples --¢- Baseline FCN 104 examples
—— FFNSL EDL-GEN 104 examples Baseline RF 10,400 examples =%+ Baseline FCN 10,400 examples
1031
1024 .., eeee
1021
w w /I
L 2 -
° ° 10'4 "
€ S z—F
=1 =1 A
2 10 g /i__}_z_’ll—a—l——l’*’%
£ = E
€ £
© ©
9] 100 Ig..*+.,4.+.,.¢.‘.
100 o T STiTi: ST Seieh vt et WY W SRR S S
S AR st o S N R e S S Gt i s S S (N
w4 | T 1,1 O T T A T B .
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)
(a) Batman Joker (b) Adversarial Batman Joker

Fig. 10 Learning time. Follow Suit Winner task

shift (see Fig. 9a), the interpretability of the baseline models trained with 100x the amount
of data decreased as distributional shift increased. These models reached high accuracy by
training over a much larger dataset (see Fig. 5a), but they did so at the cost of much lower
interpretability. This was because they learned a more complex mapping between input and
output, instead of learning general rules, as was the case for our FFNSL approach. The FCN
trained with the same amount of data as FFNSL had similar interpretability to that of FENSL,
because the model learned to largely predict the same class and the surrogate decision tree
was very small. This was reflected in the poor performance of the FCN shown in Fig. 5d
for the Adversarial Batman Joker deck. Examples of interpretable knowledge learned by our
FFNSL approaches are presented in Appendix A.

Finally, to investigate the scalability of FFNSL, we have also computed the time required
to learn an interpretable hypothesis. The results are shown in Fig. 10.

Both FENSL approaches learned with an order of magnitude of time similar to that of the
FCN trained with the same number of examples when no distributional shifts were applied
to the data. As distributional shifts increased, FFNSL took longer because the ILASP system
required more iterations to prove optimality with respect to minimising the total penalty on
the examples. However, the learning time of FENSL EDL-GEN did not increase as quickly,
when compared to FENSL Softmax. This was because the WCDPI example weight penalties
were much more informative (see Fig. 8) and the ILASP learning system required fewer
iterations overall to prove optimality.

In conclusion, our analysis shows that FFNSL outperformed the baseline approaches in
terms of accuracy and interpretability, even when the baselines were trained with 100x
the amount of data. FFNSL EDL-GEN outperformed FFNSL Softmax, in the accuracy of
the learned hypotheses, as EDL-GEN neural network predictions were more accurate, and
this influenced the downstream performance of the FENSL framework more than the neural
network confidence scores. When major distributional shifts were applied, the EDL-GEN
uncertainty-aware neural network led to significantly more informative WCDPI example
weight penalties compared to the Softmax neural network, although this benefit diminished

@ Springer

Machine Learning (2023) 112:515-569 537

—-- FFNSL Softmax 104 examples —¢- Baseline RF 104 examples -4+ Baseline FCN 104 examples
—— FFNSL EDL-GEN 104 examples Baseline RF 10,400 examples ~ --X:- Baseline FCN 10,400 examples
1.01 1.0
0.81 0.81
> >
e} (%}
e e
3 3
% 0.6+ 9 0.6
~ X~
£ £
o o
3 3
£ 0.4+ £ 0.44
© ©
i frs
0.2 0.21
0.0 0.0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

Training and test data points subject to distributional shift (%) Training and test data points subject to distributional shift (%)

(a) Batman Joker (b) Adversarial Batman Joker

Fig. 11 Accuracy of the FFNSL framework when training and test data were subject to distributional shifts.
Follow Suit Winner

as the percentage of input data subject to distributional shifts approached 100%. Finally,
we have shown that more informative WCDPI example weight penalties resulted in faster
hypothesis learning times, when the iterative ILASP system was used.

6.2 FFNSL framework evaluation

Figure 11 presents the accuracy of the entire FENSL framework when evaluated over a test
data subject to the same types of distributional shifts used during the learning of interpretable
knowledge. The mean accuracy is reported and the error bars denote standard error over 5
repeats.

FFENSL outperformed the baselines trained with the same amount of data at each percent-
age of distributional shift on the Batman Joker deck, and until ~80% distributional shift on
the Adversarial Batman Joker deck. The baselines required 100x the amount of data in order
to match or outperform FFNSL. On the Adversarial Batman Joker deck, the performance
was lower for all approaches when the percentage of distributional shift was high, due to
the neural networks predicting with lower accuracy (see Fig. 4). The baselines trained with
the same amount of data outperformed FFNSL for > 80% distributional shifts. This was
because they largely predicted player 1 and was sufficient to reach approximately 40% of
accuracy on the test set: the Follow Suit Winner task is biased towards player 1 because
winning depends on playing the highest ranked card with the same suit as player 1. In the
test set, 38.6% of the data was indeed labelled with player 1 as the winner, which roughly
corresponds to the performance of the baselines trained with the same number of examples
at 100% shifts in Fig. 11b. FENSL EDL-GEN outperformed FENSL Softmax because of two
reasons. Firstly, the rules learned by FFNSL EDL-GEN, in the presence of high percentage
of distributional shifts, were more accurate (see Figs. 5a and d) because of the lower number
of incorrect WCDPI examples when the EDL-GEN neural network was used (Fig. 7). In
addition, the EDL-GEN neural network provided more informative bias to the LAS system
through better WCDPI example weight penalties (Fig. 8). Finally, the decrease in perfor-

@ Springer

538 Machine Learning (2023) 112:515-569

— = Softmax — EDL-GEN

1.0 1.09

o

[oe]
I
o

o

(o)}
o
o

<

>
I
IS

Neural network card accuracy

o
[N}

Neural network card accuracy

o
[N)

0 10 20 30 40 50 60 70 80 90 100
Test data points subject to distributional shift (%)

(b) Adversarial

(a) Batman Joker Batman Joker

Fig. 12 Neural network card accuracy when test data points were subject to distributional shifts. Follow Suit
Winner task

0 10 20 30 40 50 60 70 80 90 100
Test data points subject to distributional shift (%)

mance of the FENSL approaches over unseen data subject to distributional shift seemed to
be linear in the percentage of applied distributional shift. This was primarily due to the accu-
racy of the neural network feature predictions. Figure 12 shows that indeed the accuracy of
neural network predictions over unseen card images decreased linearly with the increase of
the percentage of distributional shifts.

As shown in Fig. 12, the EDL-GEN neural network was more accurate than Softmax
in predicting unseen playing cards in the case of minor distributional shift given by the
Batman Joker deck. However, the accuracy of the neural networks was the same in the case
of major distributional shift given by the Adversarial Batman Joker deck. This was why in
Fig. 11, FFNSL EDL-GEN’s showed better performance on the Batman Joker deck. For
the Adversarial Batman Joker deck, FENSL EDL-GEN’s better performance than FFNSL
Softmax was primarily due to more accurate hypotheses.

7 Sudoku grid validity

Having presented in detail the performance of our FENSL approaches on the Follow Suit
Winner task, we now explore whether the approach can generalise to other tasks. We have
applied our approach to a different classification task, the Sudoku Grid Validity task and we
present the results in this section. We consider two cases: a 4 x 4 Sudoku grid size, for which
the sequence x of unstructured data is much longer than that used for the Follow Suit Winner
task. Therefore, each generated WCDPI example contains more contextual features that are
likely to be predicted incorrectly, as a result of distributional shifts applied to input images.
We then evaluate the scalability of the FFNSL framework even further by considering 9 x 9

@ Springer

Machine Learning (2023) 112:515-569 539

Confidence Score Value Confidence Score Value
s 0-0.25 0.75-0.9 B 0-0.25 0.75-0.9
Network | Dataset | Accuracy 0.25-0.5 0.9-0.95 Network | Dataset | Accuracy 0.25-0.5 0.9-0.95
0.5-0.75 B 095-1 0.5-0.75 B 095-1

Softmax | Standard | 0.9989 Softmax | Standard | 0.9913

Softmax | Rotated | 0.137 4 & Softmax | Rotated | 0.1158

EDL-GEN | Standard | 0.9977 -

EDL-GEN | Standard | 0.9849

EDL-GEN | Rotated | 0.1729 - EDL-GEN | Rotated | 0.1729

Confidence Score Distribution (%) Confidence Score Distribution (%)
(a) 4 x 4 grids (b) 9 x 9 grids

Fig. 13 Neural network performance under distributional shifts, Sudoku Grid Validity task

Sudoku grid sizes. For the Sudoku grid validiy tasks, the FFNSL instance makes use of the
FastLAS system, which has been shown to scale to handle large hypothesis spaces (Law et
al., 2020).

We first pre-train both Softmax and EDL-GEN neural networks on standard images from
the MNIST training set. In all experiments, we used MNIST digits 1-4 and 1-9 for the
respective Sudoku grid size tasks. Figure 13 shows the accuracy and confidence score distri-
bution of the pre-trained neural networks for the 4 x 4 and 9 x 9 grid tasks, on two test sets:
a standard MNIST test set, and a test set where the MNIST digits have been rotated 90°
clockwise, representing a distributional shift. The test sets also contain MNIST digits 1-4 or
1-9, depending on the Sudoku grid size.

The results are similar to the Follow Suit Winner task. The Softmax neural network
predicted with high confidence also over data subject to distributional shift, despite its low
test set accuracy. The EDL-GEN neural network predicted more accurately than Softmax on
data subject to distributional shift, but Softmax was slightly more accurate on the standard
test sets.

7.1 Learned hypothesis evaluation

Figure 14 presents the accuracy of the hypotheses learned from unstructured data with increas-
ing percentages of distributional shift, given by rotating MNIST digit images. We plot the
mean accuracy over 5 repeats and the error bars denote standard error. In both Sudoku Grid
Validity tasks the FENSL approaches have as input a background knowledge that encodes
the concept of a Sudoku grid (see Appendix F for details). For the 4 x 4 task, we created an
additional, more challenging task with a reduced background knowledge where facts about
column, row and block were not given but implicitly inferred from a more general notion of
division and cell coordinates (given as meta-data). For the 9 x 9 task, we also created an addi-
tional training task for the RF, (which was the best performing baseline), where pre-trained
neural network predictions were post-processed into 3 Boolean features: whether digits were
in the same row, column or block, which was given as input to the RF. This type of input
effectively encoded the Sudoku grid knowledge into the RF learning task, and constituted
even more information than what was provided to our FFNSL approaches. We demonstrate

@ Springer

540 Machine Learning (2023) 112:515-569

—-- FFNSL Softmax 320 examples —4- Baseline RF 320 examples -4 Baseline CNN-LSTM 320 examples
—— FFNSL EDL-GEN 320 examples Baseline RF 32,000 examples X+ Baseline CNN-LSTM 32,000 examples
—& - FF-NSL Reduced Background Knowledge 320 examples —A - Baseline RF (with knowledge) 320 examples

51.04 *—o—o—o—o R S 31.0<
c : e
3 0.9 { """ X 3 0.91
1% 1%
© III @
0 VK. LI
2 0.8 i 2 0.8
207 o
ey ey
° T 0.6 1
O 0.67 Focaeon - Q
= SR S g S U S P -\ =
Q 051 E T S R R R T S SN U £ Q 0.51 ;-wi-—*—--i—-.i.-?-—f-ﬁ--
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training examples subject to distributional shift (%) Training examples subject to distributional shift (%)
(a) 4 x 4 grids (b) 9 x 9 grids

Fig. 14 Accuracy, over 5 repeats, of the learned hypotheses with increasing percentages of data subject to
distributional shifts, Sudoku Grid Validity task

that FFNSL performed similarly to this baseline with additional background information.
Full FastLAS task listings are given in Appendix F.

FFENSL approaches outperformed the baselines in both 4 x 4 and 9 x 9 tasks by learning far
more accurate hypotheses. In the 4 x 4 task, the baselines required 100 x the amount of data
to reach an accuracy closer to that of FENSL, whereas in the 9 x 9 task, the baselines failed
completely. In Fig. 14a the purple line is FFNSL with the explicit background knowledge
about the Sudoku grid removed. In this case, the FENSL approach used the EDL-GEN
neural network, and it outperformed the baselines. It also outperformed the other two FFNSL
approaches, which used explicit background knowledge about the Sudoku grid, when 90%
and 100% distributional shifts were applied to the data. This was because with less explicit
facts about the grid, the symbolic learner FastLAS was less constrained and alternative
hypotheses could be learned which better accommodated the (incorrect) predictions of the
neural networks. With explicit facts about the Sudoku grid, the hypothesis space contained
rules that performed either very well or very poorly. In Fig. 14b, the brown line shows the
accuracy of the RF with the 3 Boolean input features, post-processed from the pre-trained
neural network predictions, indicating if digits were in the same row, column or block. FFNSL
approaches performed similarly to this baseline that used extra input knowledge.

We investigate our results further to understand whether using the pre-trained EDL-GEN
neural network provides a benefit over Softmax in the presence of high percentages of distri-
butional shifts, also in this domain. We focused on 80-96% distributional shifts for the 4 x 4
Sudoku Grid Validity task and 95-99% distributional shifts for the 9 x 9 task, as this was
where the performance of FFNSL deteriorated. Similarly to the Follow Suit Winner task, we
run 50 experimental repeats and run two baseline FFNSL approaches with constant weight
penalties. Figure 15 shows our further experimental results.

Firstly, in both cases of 4 x 4 and 9 x 9 grids, the FFNSL Softmax and FFNSL EDL-
GEN that used WCDPI example weight penalties calculated from neural network confidence
scores, outperformed the corresponding FFNSL with constant weight penalties. To investigate
this further, we explore the WCDPI example weight penalty ratio for the 4 x 4 and 9 x 9
tasks.

Figure 16 shows that both FENSL Softmax and FENSL EDL-GEN with neural network
penalties had a larger weight penalty ratio than the corresponding FFNSL with constant

@ Springer

Machine Learning (2023) 112:515-569 541

—-- FFNSL Softmax (with NN penalties) —=—- FFNSL Softmax (with constant penalties)
—— FFNSL EDL-GEN (with NN penalties) FFNSL EDL-GEN (with constant penalties)

1.04

B

o

o
54
©
o

°
©
o

o

oo
o
)
vl

o

~
o
o
S

Learned hypothesis accuracy
Learned hypothesis accuracy

0.61 0.75
0.70
0.51
Y y y s o 95 9% 97 98 99
80 85 90 95 96 . . . - . .
Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)
(a) 4 x 4 grids (b) 9 x 9 grids

Fig. 15 FFNSL Softmax versus FEFNSL EDL-GEN. Average accuracy of learned hypotheses over 50 repeats.
Sudoku Grid Validity task

—-- FFNSL Softmax (with NN penalties) —=- FFNSL Softmax (with constant penalties)
—— FFNSL EDL-GEN (with NN penalties) FFNSL EDL-GEN (with constant penalties)
2707 2701
e g
2 Fl
2 65 2 65
3 g
2 @
Q Q
g 60 E 60
3 b)
S 3
S 551 B 551
5 5
(] @]
50 501
80 85 90 9596 95 %6 97 98 99
Training examples subject to distributional shift (%) Training examples subject to distributional shift (%)
(a) 4 x 4 grids. (b) 9 x 9 grids.

Fig. 16 ILP example weight penalty ratio, Sudoku Grid Validity task

penalties. For FENSL EDL-GEN this was expected, and for FENSL Softmax, this is explained
by the fact that, as shown in Fig. 13, the Softmax neural network had a more varied confidence
score distribution over data subject to distributional shift (rotated digits). The difference
between the WCDPI example weight penalty ratio with neural network penalties and constant
penalties explains the performance gain of FFNSL with neural network penalties versus
FFENSL with constant penalties in Fig. 15. Similarly, the difference between the example

@ Springer

542 Machine Learning (2023) 112:515-569

Bl Softmax Bl Softmax
feme EDL-GEN feme EDL-GEN

3
o

80

o
o

60

N
S

40

N
o

204

Percentage of incorrect ILP examples (%)

Percentage of incorrect ILP examples (%)

o
80 85 90 95 % 95 9 97 98 99
Percentage of training examples subject to distributional shift (%) Percentage of training examples subject to distributional shift (%)

(a) 4 x 4 grids (b) 9 x 9 grids

Fig. 17 The effect of applying distributional shifts on the percentage of incorrect ILP examples, Sudoku Grid
Validity task

weight penalty ratio of FFNSL EDL-GEN and that of FENSL Softmax, with neural network
penalties, also explains why FENSL EDL-GEN outperformed FFNSL Softmax in Fig. 15a
for 4 x 4 grids. For the 9 x 9 task the difference between the example weight penalty ratio of
FFNSL EDL-GEN and that of FENSL Softmax, with neural network penalties, is very small
and this explains why FFNSL EDL-GEN and FENSL Softmax show a similar performance
in Fig. 15b.

Now, in Fig. 15a, FENSL Softmax with constant weight penalties outperformed FFNSL
EDL-GEN with constant weight penalties, whereas in Fig. 15b these two approaches per-
formed similarly. To investigate this further, we consider the percentage of incorrect ILP
examples when distributional shifts were applied. The results are shown in Fig. 17.

For the 4 x 4 task, despite the pre-trained EDL-GEN neural network predicting on average
more accurately (see Fig. 13), it led to a higher percentage of incorrect WCDPI examples
than the pre-trained Softmax neural network, as shown in Fig. 17a. This explains the lower
performance in Fig. 15a of FFNSL EDL-GEN with constant penalties. Using WCDPI exam-
ple weight penalties calculated with EDL-GEN neural network confidence scores was able
to rectify this and bias the LAS system to focus on learning a hypothesis from WCDPI exam-
ples containing correct neural network predictions. For the 9 x 9 task both pre-trained neural
networks led to a similar percentage of incorrect WCDPI examples (see Fig. 17b), which
explains the similar performance of FFNSL EDL-GEN and FFNSL Softmax with constant
penalties (shown in Fig. 15b).

Let us now investigate the interpretability of FENSL compared to the baseline approaches.
The results are shown in Fig. 18.

Again, FFNSL learns significantly more interpretable hypotheses than the baseline
approaches. Example learned hypotheses are presented in Appendix A. As for the learn-
ing time, results are shown in Fig. 19.

Inboth 4 x4 and 9 x 9 tasks, the learning time for FENSL did not increase as the percentage
of input data subject to distributional shifts increased. This was because the FastLAS learning
system used by FFNSL learned a hypothesis by solving an optimisation problem with respect
to all generated WCDPI examples. This was not the case for the Follow Suit Winner task
where the ILASP system learned an optimal hypothesis iteratively over the examples. It is
interesting to note that in Fig. 19a, FFNSL’s learning time had the same order of magnitude
as that of the CNN-LSTM trained with 100x the amount of data, which had lower accuracy
up to 90% of distributional shifts.

@ Springer

Machine Learning (2023) 112:515-569

543

s | 10°
O I i o
%)) -
e,
é 1041 * o 104
2
o
5 10°] + S G W G S G S S 510 g
! L e e T SRR SR e g e = JER VD GV GNP G GO G SIS G S
2 DG G0 e SR i xiie S SN0 O D ¢ 8 E S o 225 e e S S Qe e e
2 1021 2102
= g — & — K]
3 ‘,_0-—0——0—"“— T e— e e e S SR et e atat T
® 10 ~F~y|
0 10 20 30 40 50 60 70 80 90 100 100

FFNSL Softmax 320 examples
—— FFNSL EDL-GEN 320 examples
—& - FF-NSL Reduced Background Knowledge 320 examples

—4- Baseline RF 320 examples
Baseline RF 32,000 examples
—A - Baseline RF (with knowledge) 320 examples

-4+ Baseline CNN-LSTM 320 examples
--X:- Baseline CNN-LSTM 32,000 examples

(a) 4 x 4 grids

Training data points subject to distributional shift (%)

0 10 20 30 40 50 60 70 80 90 100
Training data points subject to distributional shift (%)

(b) 9 x 9 grids

Fig. 18 Interpretability of the learned hypotheses, Sudoku Grid Validity task

Learning time (s)

Fig. 19 Hypothesis learning time, Sudoku Grid Validity task

—— FFNSL EDL-GEN 320 examples

.-

FFNSL Softmax 320 examples

FF-NSL Reduced Background Knowledge 320 examples

[
o
A

=
o
)

—
e Shrotte Svstbe. veid

el o

=

F. L [S = SN B ST > SIS &) SN > S 4o -+

I e N
e e e RS

-*

0 10 20 30 40 50 60 70 80 90 100

Training data points subject to distributional shift (%)

(a) 4 x 4 grids

Learning time (s)

—¢- Baseline RF 320 examples
Baseline RF 32,000 examples
-k~ Baseline RF (with knowledge) 320 examples

10?

10!

-4+ Baseline CNN-LSTM 320 examples

-%- Baseline CNN-LSTM 32,000 examples
1
£ SYTTON G SOOI ST SO S e R
I AL 4
RIS RS =0 I S N
B 2 =g P
,
*“‘I"“I'

0 10 20 30 40 50 60 70 80 90 100
Training data points subject to distributional shift (%)

(b) 9 x 9 grids

In conclusion, we have shown that for the learned hypotheses evaluation, FENSL out-
performed the baseline approaches in terms of accuracy and interpretability, even when the
baselines were trained with 100x the amount of data. Furthermore, in this task, WCDPI
example weight penalties had a larger impact on the performance of FFNSL. We have also
shown that FFNSL can scale to learning hypotheses where many more unstructured data
points x; are observed per labelled input (x, y), and in these cases FFNSL learns in a timely
manner.

@ Springer

544 Machine Learning (2023) 112:515-569

—.- FFNSL Softmax 320 examples —¢- Baseline RF 320 examples --4-- Baseline CNN-LSTM 320 examples
—— FFNSL EDL-GEN 320 examples Baseline RF 32,000 examples %+ Baseline CNN-LSTM 32,000 examples
—@- FF-NSL Reduced Background Knowledge 320 examples —k - Baseline RF (with knowledge) 320 examples

1.04
0.9
0.9
> > 0.81
o =
© ©
5 0.8+ 5
v I~
o o
- 207
& &
2 0.7 1 =
8 8
N 0.6
061 Pty g A Fog N
e e e s e e . 051 onFerugoad -’%““f”’?*»—g—x
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training and test data points subject to distributional shift (%) Training and test data points subject to distributional shift (%)
(a) 4 x 4 grids (b) 9 x 9 grids

Fig. 20 Accuracy of the FFNSL framework when training and test data were subject to distributional shifts.
Sudoku Grid Validity task

7.2 FFNSL framework evaluation

The final evaluation is the accuracy of the overall FFNSL framework when it is applied to a
test set of unseen data also subject to distributional shifts. Figure 20 shows the mean accuracy
over 5 repeats and the error bars denote standard error.

In the 4 x 4 task, FENSL outperformed the baselines until 80% of the test data were
subject to distributional shifts, even when the baselines were trained with 100x the amount
of data. In the 9 x 9 task, FFNSL outperformed all baselines, with the exception of the RF
with additional background knowledge, which performed similarly to FFNSL Softmax. It is
indeed interesting to analyse why for the 9 x 9 task FENSL Softmax outperformed FFNSL
EDL-GEN especially when low percentages of test data were subject to distributional shift.

Aside from the accuracy of the learned hypotheses, there were two contributing factors to
the test set accuracy shown in Fig. 20b. Firstly, the ability to correctly predict test examples
when input data was subject to distributional shifts, and secondly, the ability to correctly
predict test examples when no distributional shifts were applied. In the 9 x 9 task, there
were many more digit images on the grid for the neural network to predict. For test exam-
ples that were not subject to distributional shift, just one single incorrect neural network
prediction may have led to a miss-classified example. At 0% shifts in Fig. 20b, FFNSL
Softmax outperforms FFNSL EDL-GEN. Now, the Softmax neural network accuracy over
unseen and non-rotated MNIST digits was 0.9927, whereas that of EDL-GEN neural net-
work was 0.9861. This explains the drop in performance for FENSL EDL-GEN at 0% shifts.
As distributional shifts were applied to the test set for percentages ranging between 10-80%,
both FENSL Softmax and FFNSL EDL-GEN failed to classify most examples subject to dis-
tributional shifts, but FFNSL EDL-GEN also failed to classify more examples that were not
subject to distributional shifts, when compared to FFENSL Softmax. At distributional shifts
> 80%, the accuracy of the learned rules also became a factor and the performance of both
approaches deteriorated towards 50% accuracy.

@ Springer

Machine Learning (2023) 112:515-569 545

(a) (b) (c) ()

Fig.21 Example crop images from the Plant Village dataset with and without distributional shift

8 Real-world datasets

In order to demonstrate FFNSLs applicability to real-world problems and datasets, in this sec-
tion we present evaluations of two additional tasks: (1) Crop Yield Prediction, and (2) Indoor
Scene Classification, introduced in Sects. 4.3 and 4.4 respectively. Let us now summarise
each task.

Crop yield prediction The goal is to classify the quality of yield given an image of a particular
crop, and symbolic information denoting the crop’s location. Softmax and EDL-GEN neural
networks were trained to output species and disease information for each crop image, and the
symbolic learner learned knowledge that identifies which predicted crop features correspond
to different qualities of yield. We used the Plant Village dataset containing images of healthy
and diseased crops (Hughes & Salathé, 2015), and generated a synthetic symbolic dataset
for yield prediction. A distributional shift was applied to crop images using a hue filter, after
the neural networks were pre-trained on the unaltered images. Example images are shown in
Fig. 21 for a grape crop. Fig. 21a and b show standard images of a healthy and black measles
image respectively, and Fig. 21c and d are the same as Fig. 21a and b respectively, with the
distributional shift applied.

Indoor scene classification The goal is to learn knowledge that maps scene level classifica-
tions (e.g., bedroom, bathroom, living room) into higher-level super-classes that correspond
to a collection of scenes (e.g., home). In this task, we used a state-of-the art neural network
called Semantic Aware Scene Recognition (SASR) (Lopez-Cifuentes et al., 2020). SASR is
a dual-branch CNN that is trained to output scene level classifications, utilising semantic
segmentation information, and raw image RGB pixel data on each CNN branch respectively.
The symbolic learner then learned the super-class of each scene. Both neural and symbolic
datasets are real and were constructed from the MIT Indoor Scenes dataset (Quattoni & Tor-
ralba, 2009). To apply a distributional shift, we transformed each image using a Gaussian
blur, hue shift, and 180° rotation, after the neural network was trained on unaltered images.
An example image for a bedroom scene is shown in Fig. 22. In order to obtain results in a
timely manner, in this task we implemented a timeout for FastLAS to return the most optimal
hypothesis found after 10 min. Also, in contrast to the other tasks, all models were trained
with the same dataset size, as the baselines performed strongly when no distributional shift
was applied. Finally, only one experimental repeat was performed as the image train/test split
was already defined in the dataset (Quattoni & Torralba, 2009).

Figure 23 presents the neural network performance on both tasks, in terms of both accuracy
and confidence score distribution when classifying unseen images with and without distri-
butional shift. For the Crop Yield Prediction task in Fig. 23a, the Softmax neural network
achieved 88.18% accuracy for the standard images, and performed poorly when classifying
hue shift images. In both datasets, predictions were made with very high confidence. The

@ Springer

546 Machine Learning (2023) 112:515-569

(a) Standard image (b) Dist. shift applied

Fig. 22 Example bedroom image from the MIT Indoor scene dataset with (b) and without (a) distributional
shift applied

Confidence Score Value Confidence Score Value
- 0-0.25 0.75-0.9 = 0.025 0.75-0.9
Network | Dataset | Accuracy 0.25-0.5 0.9-0.95 Network | Dataset | Accuracy 0.25-0.5 0.9-0.95
0.5-0.75 W= 0.95-1 0.5-0.75 === 0.95-1

Softmax | Standard | 0.8818
SASR | Standard | 0.8701

Softmax | Hue Shift | 0.0765

EDL-GEN | Standard | 0.831

SASR | Shift | 0.1119
EDL-GEN | Hue Shift | 0.318

Confidence Score Distribution (%) Confidence Score Distribution (%)

(a) Crop images (b) Indoor scene images

Fig. 23 Neural network performance under distributional shifts

EDL-GEN neural network achieved 83.1% accuracy on the standard images, and 31.8%
accuracy on the hue shift images which is much higher than Softmax. Crucially, the EDL-
GEN neural network predicted with much lower confidence than Softmax on both datasets
which better reflects the predictive accuracy. However, the confidence for standard images
was somewhat lower than expected, as 58% of predictions were made with less than 25%
confidence, despite 83% accuracy. For the Indoor Scene Classification task in Fig. 23b, the
distributional shift reduced the network accuracy from 87.01 to 11.19%, although the con-
fidence scores from the SASR network appropriately reflected the reduced accuracy when
distributional shift was applied. Although the SASR network does not have an uncertainty-
aware architecture like the EDL-GEN networks used in the other tasks, SASR was able to
predict with low confidence under our distributional shift. We suspect this was due to the
shifted samples falling between the decision boundary of the 67 scene classes, rather than
being completely out-of-distribution, enabling the network to better reflect its uncertainty
amongst the possible classes. We now present our evaluation of the learned hypotheses in
each task.

8.1 Learned hypothesis evaluation
Figure 24 shows the accuracy of the learned hypotheses in each task, when an increasing

percentage of labelled unstructured data were subject to distributional shift. In the Crop Yield
Prediction task (Fig. 24a), the reported accuracy is the mean accuracy over 5 repeats, and

@ Springer

Machine Learning (2023) 112:515-569 547

— -+ FFNSL Softmax (783 examples) Baseline RF (12,717 examples) FFNSL SASR ——- Baseline RF
—— FFNSL EDL-GEN (783 examples) -4+ Baseline FCN (783 examples) . N
—4 - Baseline RF (783 examples) .- Baseline FCN (12,717 examples) -4 FFNSL SASR (constant penalties) — ----- Baseline FCN
L0 B) 1.0
> >
§ 0.8 E 0.9
=] 3
e I3
@ e 0.8
206 2
() ()
K- <
S]
Q 80.7
> >
k3 2
c c 0.6
© ©
S g
0.2
0.5
3
0.0 — T T T T T T T T T T 0.4-— T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)
(a) Crop Yield Prediction (b) Indoor Scene Classification
Fig. 24 Learned hypothesis accuracy
—-- FFNSL Softmax (with NN penalties) ~ === FFNSL Softmax (with constant penalties)
—— FFNSL EDL-GEN (with NN penalties) FFNSL EDL-GEN (with constant penalties)

65.0
60

625

s 0w
& & 8
s
2
S
°

Correct ILP example penalty ratio
5
Total number
g &
> °

&

.
,,,,,,, SRS

45.0

9% 97 98 99 10

95 96 97 98 9 100 95 0 95 9 99 100
Training data points subject to distributional shift (%) Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)

(a) Hypothesis accuracy (b) Weight penalty ratio (c) Hypothesis length

Fig. 25 The effect of setting ILP example weight penalties based on neural network confidence scores,
compared to constant penalties, Crop Yield Prediction task. 95-100% shifts, 50 repeats

the error bars indicate standard error. In this task, both instances of FENSL learned accurate
hypotheses until 90% of the data were subject to distributional shift, and outperformed all
the baseline approaches, even when the baselines were trained with significantly more data.
In the Indoor Scene Classification task (Fig. 24b), FFNSL also outperformed the baseline
approaches, learning the correct hypothesis up to 50% of the data subject to distributional
shift. Setting the weight penalties for the examples based on the neural network confidence
scores led to more accurate hypotheses, compared to using constant penalties. This is because
using the neural network-based weight penalties enabled FastLAS to find a better optimal
solution within the 10 min timeout, as the more informative weight penalties gave a clearer
optimisation signal for the final solving stage. With constant weight penalties, the optimisation
took significantly longer as the distributional shift increased (see Fig. 27b).

Exploring deeper the effect of using example weight penalties set by neural network
confidence scores, compared to using constant penalties, we ran 50 experimental repeats
between 95-100% shifts. Figure 25 shows the accuracy, weight penalty ratio, and hypothesis
length comparison for the Crop Yield Prediction task.

@ Springer

548 Machine Learning (2023) 112:515-569

The EDL-GEN instances of FFNSL clearly outperformed the Softmax FFNSL instances
(see Fig. 25a). This is because the EDL-GEN neural network predicted with greater accuracy
than Softmax when distributional shifts were applied (see Fig. 23a). However, setting the
weight penalties of the examples for the symbolic learner based on neural network confi-
dence scores made very little difference in the FFNSL EDL-GEN instances. Therefore, we
investigated the weight penalty ratio (Fig. 25b). As expected, both FFNSL Softmax instances
had a similar weight penalty ratio, due to the Softmax neural network predicting with high
confidence when distributional shift was applied (see Fig. 23a). The EDL-GEN instances do
however show a difference, and the neural network-based weight penalties did provide a more
informative signal. The question therefore, is why did this not translate into an improvement
in learned hypothesis accuracy? It turns out that the benefit was realised in the length of the
learned hypothesis (Fig. 25¢), as FENSL EDL-GEN with neural network weight penalties
learned a shorter hypothesis than when constant penalties were used. Comparing Fig. 25¢
to a, you can see that at 99% shifts, when the accuracy of FFNSL EDL-GEN with con-
stant penalties decreased, the length of the learned hypotheses also decreased, whilst FFNSL
EDL-GEN with neural network weight penalties achieved a higher accuracy with a shorter
hypothesis. With constant penalties, to account for the level of noise, the symbolic learner
had to learn more rules that map additional values of location type, plant species and disease
to crop yield, in order to maintain the same level of accuracy as when neural network-based
penalties were used.

Finally, Figs. 26 and 27 present the interpretability and learning time results for both tasks.
FENSL learned significantly more interpretable hypotheses than the baseline approaches in
both tasks. In terms of learning time, FENSL learned a hypothesis faster than the baselines
trained with more examples in the Crop Yield Prediction task, and was slower than the
baselines in the Indoor Scene Classification task. Figure 27b clearly shows the computational
benefit of setting ILP example weight penalties based on neural network confidence scores,
as a hypothesis was learned significantly faster than when constant penalties were used. The
near constant learning times at 80—100% shifts for FFNSL SASR with neural network-based
penalties, and 30—100% shifts with constant penalties, was due to the 10 min timeout imposed
on each FastLLAS learning task.

8.2 FFNSL framework evaluation

Figure 28 presents the accuracy of the entire FFNSL framework when evaluated over test
data also subject to the same percentage of distributional shift as used during learning.

In the Crop Yield Prediction task (Fig. 28a), FFNSL EDL-GEN outperformed all other
methods, and FENSL Softmax outperformed all other methods trained with the same amount
of data. The next best approach, the random forest, required significantly more data to match
the performance of FFNSL Softmax. The superior performance of FFNSL EDL-GEN com-
pared to FENSL Softmax was due to the EDL-GEN neural network predicting more accurately
for images subject to distributional shift (see Fig. 23a). In the Indoor Scene Classification
task, FENSL performed similarly to the best baseline approach, and all approaches degraded
gracefully as the percentage of data points subject to distributional shift increased.

To conclude, this evaluation of FENSL to real-world datasets shows that the framework
can support a wide range of neural modules, and the D2K component is flexible enough
to support the interface between different neural and symbolic modules. When taking into
account the Follow Suit Winner and Sudoku Grid Validity results, we have also shown
that FFNSL can learn complex, first-order symbolic knowledge, using essential aspects of

@ Springer

Machine Learning (2023) 112:515-569 549

—-- FFNSL Softmax (783 examples) Baseline RF (12,717 examples)

—— FFNSL EDL-GEN (783 examples) -4+ Baseline FCN (783 examples) — FFNSLSASR -~ Baseline RF
~¢- Baseline RF (783 examples) -x+ Baseline FCN (12,717 examples) -4 FFNSL SASR (constant penalties) -+ Baseline FCN
103
1034
") - F n
s LIRS
S %z z-¥ - 3
2 /T% =
' e - [l
R E S R 2 5
@]
3 I S o L
2 2
T 102 E
ke 8 107
B
= D S G G S W
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)
(a) Crop Yield Prediction (b) Indoor Scene Classification
Fig. 26 Interpretability of the learned hypotheses
—-- FFNSL Softmax (783 examples) Baseline RF (12,717 examples) "
—— FFNSL EDL-GEN (783 examples) -4+ Baseline FCN (783 examples) — FFNSLSASR X == Baseline RF
—¢- Baseline RF (783 examples) -+ Baseline FCN (12,717 examples) -+ FENSL SASR (constant penalties) - Baseline FCN
T e T VUSSR 103
10?
- . 102
) o
[} (]
JERT B IPUEL, . SNE O N R U E
> > 10t
£ £
£ £
3 3
- = 100
100
g 1071
B R s Sl . S =
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)
(a) Crop Yield Prediction (b) Indoor Scene Classification

Fig. 27 Hypothesis learning time

common-sense learning and reasoning such as negation as failure and predicate invention.
In the next section, we discuss related work before concluding the paper.

9 Related work

Our proposed FFNSL approach is a specific form of a neural-symbolic learning and reasoning
system that, differently from other neural-symbolic methods, uses pre-trained neural networks
and logic-based machine learning systems to learn interpretable, logic-based knowledge from
unstructured data that can be used to solve a given task. Most of the recently proposed neural-

@ Springer

550 Machine Learning (2023) 112:515-569

—-- FFNSL Softmax (783 examples) Baseline RF (12,717 examples)

—— FFNSL SASR ——- Baseline RF
—— FFNSL EDL-GEN (783 examples) -4+ Baseline FCN (783 examples))
—¢- Baseline RF (783 examples) -+ Baseline FCN (12,717 examples) -4 FFNSL SASR (constant penalties) - Baseline FCN
1.01y 1.0
0.8 0.8
> >
9 9
o o
3 3
g 0.6 g 0.6
= <
S S
2 2
go4 go.4
© ©
= =
0.2 0.2
0.0 0.0
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training and test data points subject to distributional shift (%) Training and test data points subject to distributional shift (%)
(a) Crop Yield Prediction (b) Indoor Scene Classification

Fig. 28 Accuracy of the FFNSL framework when training and test data were subject to distributional shift

symbolic approaches focus on ways in which a given fixed knowledge can be used to improve
the training of a neural network (Serafini & d’Avila Garcez, 2016; Donadello et al., 2017;
Riegel et al., 2020; Manhaeve et al., 2018; Yang et al., 2020; Tsamoura et al., 2021). These
approaches leverage the notions of Real Logic (Serafini & d’ Avila Garcez, 2016; Donadello
et al., 2017) or t-norm functions (Flaminio & Marchioni, 2006) to enable the injection of
logical reasoning in data-driven relational machine learning. This is the case, for instance,
of the Logic Tensor Network approaches proposed in Serafini and d’Avila Garcez (2016);
Donadello et al. (2017). Our FFENSL approach also uses a similar notion of t-norms but not
to embed logic into the differentiable setting, rather to “combine” neural network predictive
approximations with logic-based learning optimisation so enabling the composition of these
two different machine learning paradigms.

Neural-symbolic approaches that preserve the composition of neural and symbolic infer-
ence include DeepProbLog (Manhaeve et al., 2018), NeurASP (Yang et al., 2020) and
NeuroLog (Tsamoura et al., 2021). They compose deep learning architectures with sym-
bolic reasoning in order to use existing background knowledge, expressed as logic programs,
to train deep learning models. DeepProbLog (Manhaeve et al., 2018) uses ProbLog (De Raedt
et al., 2007) to interpret network outputs as probabilistic atoms, and symbolic knowledge
compiled into an arithmetic circuit, to train the network. NeurASP extends ASP with neural
predicates, expressed as choice rules, to symbolically capture possible network outputs. The
probability of each model of the ASP program is computed based on the network predic-
tions, which is in turn used to optimise a semantic loss function for training the network
(Xu et al., 2018). NeuroLog also trains the neural network using a semantic loss function,
although uses abduction to prune the space of possible pseudo-label revisions for the latent
concepts, instead of considering all possibilities as in NeurASP. Although compositional in
their architectural solution, and novel in their end-to-end approach for differentiable training
of the neural networks, these methods require the logic-based knowledge to be manually
engineered. Our FFNSL approach, on the other hand, enables the learning of logic-based
knowledge from unstructured data exploiting pre-trained neural models. The semantics of
the underlying logic-based learning algorithm in FFNSL is the Answer Set semantics, as it
is the case for the symbolic component of the NeurASP system, but with the advantage in

@ Springer

Machine Learning (2023) 112:515-569 551

FFNSL that knowledge expressed in ASP programs is learned instead of being fully encoded
as input.

Contrary to the end-to-end feature of DeepProbLog and NeurASP neural-symbolic sys-
tems, our FENSL adopts a pipeline approach. It is therefore somewhat related to the Concept
Bottleneck Model architecture proposed in Koh et al. (2020), which advocates the idea of
training first a model to predict “primary” concepts and then using these concepts to train
a downstream model for predicting the labels. These models are however differentiable and
even though they can be trained in an end-to-end fashion to improve the overall accuracy
(Koh et al., 2020), the trained downstream model is not interpretable. Their interpretability
is limited to extracting correlations between the primary concepts and the final label. In our
FENSL approach, the use of LAS logic-based machine learning systems allow the learning of
knowledge that is fully interpretable and that is more robust to distributional shifts and noise
in the data. In fact, the CNN-LSTM and FCN baselines used in our tasks could be considered
as independent concept bottleneck models, and FFNSL outperformed both of these models
in our evaluation.

The compositional aspect of our framework could, in principle, make it amenable to
instantiations where the symbolic component is a probabilistic rule learning system. Different
probabilistic rule learning and statistical relational learning systems have been proposed,
such as ProbFOIL (De Raedt et al., 2015), SLIPCOVER (Bellodi & Riguzzi, 2013), Markov
Logic Networks (Richardson & Domingos, 2006) and Credal-FOIL (Tuckey et al., 2020).
They adopt a probabilistic notion of uncertainty which is different from the notion of WCDPI
example weight penalties used in our FENSL approach. Such systems would, however, make
FFENSL not applicable to tasks where non-observational predicate learning with negation as
failure is required, like our Follow Suit Winner task, and limit its scalability. This is because
it still remains to be shown whether current probabilistic rule learning systems are scalable
to a large number of probabilistic facts and large hypothesis search spaces.

Related approaches that support the learning of interpretable knowledge from (unstruc-
tured) data in a neural-symbolic manner include SILP (Evans & Grefenstette, 2018), and
NeuralLP (Yang et al., 2017). They make use of rule templates and differentiable reasoning
to approximate the inference process and learn instances of the rule templates that cover
given labelled examples or to answer given queries. Such approaches, preserve the symbolic,
logic-based representation of the knowledge, but replace the logic-based inference process
with a purely differentiable one. Our FFNSL approach uses instead a pure symbolic inference
process to learn interpretable knowledge, leveraging on state-of-the-art logic-based machine
learning systems such as ILASP and FastLAS. The composition of these systems with differ-
entiable feature extraction from unstructured data enables FENSL to learn knowledge that is
more expressive than the definite clausal form supported by §ILP and NeuralLP, broadening
the applicability of FFNSL to real-world problems where non-monotonicity and preference
learning are required. Results in Law et al. (2018) have already demonstrated that, in the
case of structured data, the ILASP system used by our FENSL framework outperforms §ILP
when learning interpretable knowledge from noisy examples.

Neural-symbolic systems such as Neural-Theorem Prover (Rocktéschel & Riedel, 2017)
and its extensions, adopt instead a counterpart approach whereby knowledge is expressed as
dense vector embedding representations that are learned in a differentiable manner by using
a symbolically inspired backward chaining algorithm and (soft) unification. In these systems,
the knowledge is represented in a high-dimensional differentiable space and the inference
is symbolically inspired. More recently, a fully differentiable rule induction approach based
on Logical Neural Networks has been proposed (Sen et al., 2021) that uses differentiable
operators from fuzzy and real logic to learn rules from structured data within a very controlled

@ Springer

552 Machine Learning (2023) 112:515-569

search space expressed using templates. Although some of these systems have recently shown
to be somewhat scalable over large knowledge bases (Minervini et al., 2020, ?), they are all
limited in the expressivity of the knowledge that they can learn and they are not guaranteed
to learn (mathematically provable) optimal solutions. These are two main properties that
our FFENSL framework instead benefits from, making our approach particularly suited for
safe and trusted Al applications where data are unstructured, complex, and interpretable
knowledge is required to be learned to solve complex tasks.

Recent approaches train a neural network to extract primary concepts from raw data,
whilst learning interpretable symbolic knowledge in an end-to-end fashion (Dai et al., 2019;
Dai & Muggleton, 2021). These methods don’t require labels for the primary concepts,
and train a neural network from scratch whilst simultaneously learning knowledge. The
Abductive Learning framework (ABL) (Dai et al., 2019) learns ground operation facts that
complete a symbolic knowledge base, to map neural network outputs to downstream labels.
This knowledge is then used to abduce revised pseudo-labels to improve the training of
the neural network. Crucially, Dai et al. (2019) cannot perform program induction, and
assumes monotonicity of the background knowledge, as ground operation facts are abduced
and accumulated during an iterative sampling process over the training data. In contrast,
our approach learns first-order rule-based programs, which contain universally quantified
variables, and are therefore applicable to a range of input sizes greater than the sizes used for
training. We can also handle non-monotonicity, thus enabling the learning of more complex
knowledge. The Metaapq approach (Dai & Muggleton, 2021) extends (Dai et al., 2019) to
perform rule induction using the Metagol symbolic learner (Muggleton et al., 2015). The
key drawback of Metaap, is that Metagol can only learn symbolic knowledge expressed
as definite logic programs without function symbols, which can compute only polynomial
functions (Dantsin et al., 2001). M etaspq cannot learn more expressive knowledge involving
defaults, exceptions, constraints and choice, which are essential aspects of common-sense
learning and reasoning. In FENSL, we learn first-order complex knowledge expressed in the
language of ASP, which is more general than symbolic learning of definite clauses (Law,
2018; Law et al., 2020, 2018), and can solve computationally harder problems (Karp, 1972).
Also, due to the high level of difficulty of such an end-to-end neuro-symbolic task, Metaapq
has only been applied to very simple classification problems. Our architecture is motivated
by a completely different requirement, that of using already trained and therefore possibly
much more complex neural components for extracting features from challenging raw data.

10 Conclusion

This paper introduces a neural-symbolic learning framework, FFNSL, that learns interpretable
knowledge from unstructured data that is robust to distributional shifts. Three main instantia-
tions of this framework have been presented, which use the ILASP and FastLAS logic-based
machine learning systems, according to the type of symbolic learning task required. In each
instantiation, pre-trained neural networks have been used for extracting symbolic features
from the unstructured data. The novel component of FENSL is the D2K generator, which
generates symbolic features, weighted by neural network confidence scores, that together
with a label, form the input to the logic-based machine learning system which then learns
interpretable knowledge needed to solve the given downstream task.

Our evaluation on four neural-symbolic classification tasks, Follow Suit Winner, Sudoku
Grid Validity, Crop Yield Prediction and Indoor Scene Classification, demonstrates that

@ Springer

Machine Learning (2023) 112:515-569 553

FENSL is robust to distributional shifts in the input data, outperforming random forest and
deep neural network baselines. FFNSL learns more accurate and interpretable knowledge than
the baselines even when the latter are trained with significantly more data. The application
of FFNSL learned knowledge to unseen data also subject to similar proportions of distribu-
tional shifts shows that FFNSL is again capable of outperforming the baseline approaches
trained with the same amount of data up to ~80% of data subject to distributional shifts. A
detailed analysis of the performance in accuracy of our FFNSL framework shows that using
an uncertainty-aware neural network provides an improved bias to the logic-based machine
learning system compared to Softmax neural networks, with a greater proportion of the total
weight penalty allocated to WCDPI examples containing correct contextual information
extracted from the unstructured data.

Acknowledgements This research was sponsored by the U.S. Army Research Laboratory and the U.K. Min-
istry of Defence under Agreement Number W911NF-16-3-0001. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of
Defence or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation hereon.

Author Contributions DC defined the FENSL method, performed the experimental evaluation and wrote the
initial version of the paper. ML provided support with running the ILASP and FastLAS systems and helped
define the correct encoding for each task. ML also suggested the Follow Suit Winner task and provided feedback
on the final paper. AR and JL both equally contributed to the papers positioning, the generalised FFNSL method
and gave suggestions for the experimental approach. AR and JL also contributed to the writing of the paper.

Funding This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of
Defence under Agreement Number W911NF-16-3-0001.

Availability of data and material The Sudoku and Follow Suit Winner datasets introduced in this paper are
available at the following GitHub repository: https://github.com/DanCunnington/FFNSL.

Code availability All the experimental code is also available at the GitHub repository.

Declarations

Conflict of interest Daniel Cunnington, Jorge Lobo and Alessandra Russo have no relevant financial or non-
financial interests to disclose. Mark Law is the director of ILASP Limited, which owns the intellectual property
of the ILASP system used in this paper.

Ethics approval Not applicable to this paper.

Consent to participate Not applicable to this paper as no humans were used to conduct the experimental
evaluations.

Consent for publication Not applicable, all data, figures and tables are original and are generated synthetically,
with the exception of the MNIST dataset LeCun et al. (1998).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

https://github.com/DanCunnington/FFNSL
http://creativecommons.org/licenses/by/4.0/

554 Machine Learning (2023) 112:515-569

—-- FFNSL Softmax (with NN penalties) —=—- FFNSL Softmax (with constant penalties)
—— FFNSL EDL-GEN (with NN penalties) FFNSL EDL-GEN (with constant penalties)

1.0

1.00 10

o
®
o
@

o
o
-3
o
£
o
>

o
o
b
o
=

o
©
N

Learned hypothesis accuracy
Learned hypothesis accuracy

>
2
ey
!
!
e
1
!

Learned hypothesis accuracy

02 N

0.90 02 \E ””” I‘ “"“"ﬂ:..‘__,____i
0.88 0.0

95 96 97 98 99 100 95 97 98 99 10

Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)
95 96 97 98 99 100
Training data points subject to distributional shift (%) . .
(b) Adversarial (c) Adversarial
(a) Captain America Standard Captain America

Fig. 29 FENSL Softmax vs. FENSL EDL-GEN. Accuracy of learned hypotheses, 95-100% distributional
shifts, 50 repeats

A Additional follow suit winner results

In this section we present additional Follow Suit Winner results and analysis when the Captain
America, Adversarial Standard and Adversarial Captain America decks were used to apply
distributional shifts to the input data points. These results supplement the results and analysis
presented in Sect. 6 for the Batman Joker and Adversarial Batman Joker decks.

A.1 Learned hypothesis evaluation

Firstly, let us present the comparison of FENSL EDL-GEN versus FFNSL Softmax, for 95—
100% distributional shifts and 50 experimental repeats. The results are presented in Fig. 29,
which extend the results presented in Fig. 6.

The results for the Captain America deck in Fig. 29a are very similar to the Batman Joker
deck presented in Fig. 6a, with the exception of FFNSL EDL-GEN with constant penalties
that performed similarly to the FFNSL Softmax approaches. The Adversarial Standard deck
results in Fig. 29b are very similar to the Adversarial Batman Joker results in Fig. 6b, however,
the Adversarial Captain America results in Fig. 29¢ are different to the other decks. The
two FFNSL Softmax approaches had much lower accuracy at 95% shifts compared to the
other decks, and there was a significant gap between FFNSL EDL-GEN with neural network
penalties and FENSL EDL-GEN with constant penalties. Let us now investigate each of these
decks w.r.t. the percentage of incorrect ILP examples and the ILP example weight penalty
ratios calculated from neural network confidence scores. The incorrect ILP example analysis
is presented in Figure 30.

Firstly, with the Captain America deck in Fig. 30a, both Softmax and EDL-GEN had a
very similar percentage of incorrect ILP examples, more similar than the other decks with
the exception of Adversarial Captain America. This explains why FENSL EDL-GEN with
constant penalties performs similarly to FENSL Softmax approaches in Fig. 29a. For the
Adversarial Standard deck in Fig. 30b, the Softmax neural network resulted in a signifi-
cantly higher percentage of incorrect ILP examples compared to EDL-GEN, which explains

@ Springer

Machine Learning (2023) 112:515-569 555

g

2

5
8

g
g
£
:
H
&

Percentage of incorrect ILP examples (%)
g

95 96 97 98 9 100 95 B3 97 98 99 10
Percentage of data points subject to distributional shift (%) Percentage of data points subject to distributional shift (%)

. . (b) Adversarial (c) Adversarial
(a) Captain America Standard Captain America

Fig.30 The effect of applying distributional shifts on the percentage of incorrect ILP examples, Follow Suit
Winner task

°

95 o 97 98 % 10
Percentage of data points subject to distributional shift (%)

Jun

N

o
1

B2 FFNSL Softmax (with const. pens.)

1201 mmm FFNSL Softmax (with const. pens.)
emel FFNSL EDL-GEN (with const. pens.)

mem FFNSL EDL-GEN (with const. pens.)
1100 4 100 A

©
o
1
©
o
1

Percentage of repeats with correct suit rule
(o)
o

Percentage of repeats with correct rank_higher rule
(o)}
s}

40 40
20 4 20 A
0- 0-
BJ CA AS ABJ ACA BJ CA AS ABJ ACA
Deck Deck
(a) rank higher rule (b) suit rule

Fig.31 The percentage of experimental repeats that learned the correct follow suit rules, when 95% of input
data points were subject to distributional shifts

the large performance gap between FFNSL EDL-GEN and FENSL Softmax approaches in
Fig. 29b. For the Adversarial Captain America deck, using the EDL-GEN neural network
resulted in a higher percentage of incorrect ILP examples in Fig. 30c, yet FENSL EDL-GEN
clearly outperformed FENSL Softmax in Fig. 29c¢. To investigate this further, we look at the
percentage of experimental repeats for both FFENSL approaches with constant penalties that
learned the correct rank_higher and suit rules (respectively; the winning player had
a higher ranked card than other players, and the winning player also had the same suit as
player 1), both of which are key to solving the task successfully. The analysis is presented in
Fig. 31 when 95% of the input data points were subject to distributional shifts. The x-axis
labels are the abbreviated names for each deck.

With the Adversarial Captain America deck (ACA in Fig. 31), only 24% of experi-
mental repeats with FENSL Softmax learned the correct rank_higher rule, compared
to 72% with FFNSL EDL-GEN (both with constant penalties). There isn’t much differ-
ence between FFNSL Softmax and FFNSL EDL-GEN in learning the correct suit rule

@ Springer

556 Machine Learning (2023) 112:515-569

2345678910) gk a 2345678910 qka
Playing card rank Playing card rank A 3
(c) Adversarial (d) Adversarial
(a) Captain (b) Captain Captain America, Captain America,

America, Softmax America, EDL-GEN Softmax EDL-GEN

Fig. 32 Distribution of playing card rank predictions for Softmax and EDL-GEN neural networks when the
Captain America and Adversarial Captain America decks were used to apply distributional shift for 95% of
input data points

(Fig. 31b). So, as FFNSL Softmax fails to learn the correct rank_higher rule, this
explains why in Fig. 29c, the FFNSL Softmax approaches performed worse than FFNSL
EDL-GEN approaches. The question now becomes, why does ILASP fail to learn the
correct rank_higher rule for 76% of the experimental repeats with FFNSL Softmax,
despite FFNSL Softmax having a similar or lower percentage of incorrect ILP examples
compared to FFNSL EDL-GEN? To answer this question, Fig. 32 shows the distribution
of playing card rank predictions for both Softmax and EDL-GEN neural networks when
the Captain America and Adversarial Captain America decks were used to apply distribu-
tional shift for 95% of input data points, as these two decks have a similar percentage of
incorrect ILP examples between Softmax and EDL-GEN (see Fig. 30a and c).

The Softmax neural network predicted the same playing card rank more often than the
EDL-GEN neural network. With the Captain America deck, 45% of playing cards were
predicted with rank 10 (Fig. 32a), and with the Adversarial Captain America deck, nearly
60% of playing cards were predicted with rank King (Fig. 32c). The EDL-GEN neural
network predicted with a more even distribution. Now, with the Softmax neural network
and the Adversarial Captain America deck, ILASP didn’t learn the correct rank_higher
rule very often. Investigating the neural network card predictions within the generated ILP
examples when 95% of distributional shifts were applied, we calculate the percentage of
examples where the ground-truth winner has a predicted card with a higher rank than the
other players. For FENSL Softmax, only 9% of the examples contained a higher ranked card
for the ground-truth winning player, compared to 19% with FFNSL EDL-GEN. Looking
at the Captain America deck, 35% of the examples for FENSL Softmax contained a higher
ranked card for the ground-truth winning player, compared to 37% for FFNSL EDL-GEN.

This explains why, in the Adversarial Captain America deck FFNSL Softmax struggled to
learn the rank_higher rule and therefore, why there was a drop in performance in Fig. 29¢
for FENSL Softmax. As the Softmax neural network failed to predict playing card ranks
correctly, the ILP examples didn’t contain a higher ranked card for the ground-truth winner,
and therefore 76% of the experimental repeats failed to learn the correct rank_higher
rule. Comparing with the Captain America deck in Fig. 29a, the FENSL Softmax approaches
performed much better, because there was a higher number of generated ILP examples that
contained higher ranked card predictions for the ground-truth winning player.

Finally, in Fig. 33c we now investigate the ILP example weight penalty ratio to explain
why there was a significant gap between the two FFNSL EDL-GEN approaches in Fig. 29¢
for the Adversarial Captain America deck.

@ Springer

Machine Learning (2023) 112:515-569 557

—-= FFNSL Softmax (with NN penalties) === FFNSL Softmax (with constant penalties)
—— FFNSL EDL-GEN (with NN penalties) FFNSL EDL-GEN (with constant penalties)

80

®

S
®
S

~
S

-

=)
~
S

@
S

EY
S

w

S

o

S
o
=]

w
S

w

S
w
S

N
S

Correct ILP example penalty ratio
»
5

~

S
N
S

Correct ILP example penalty ratio
8
-
5

Correct ILP example penalty ratio
I
8

e ot A
—————

.

S
-
o

0
95 96 97 98 99 100
Training data points subject to distributional shift (%)

0 95 96 97 98 99 100 0 95 96 97 98 99 100

Training data points subject to distributional shift (%) Training data points subject to distributional shift (%)
. . . c) Adversarial Captain
(a) Captain America (b) Adversarial Standard (c) p

America
Fig. 33 ILP example weight penalty ratio, 95-100% shifts
—-- FFNSL Softmax 104 examples —¢ - Baseline RF 104 examples ¢+ Baseline FCN 104 examples
—— FFNSL EDL-GEN 104 examples Baseline RF 10,400 examples =%+ Baseline FCN 10,400 examples

o
>
)
£

Framework accuracy

o
=

Framework accuracy

Framework accuracy

°
o

0 10 20 30 40 50 60 70 80 90 100
Training and test data points subject to distributional shift (%)

0.
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training and test data points subject to distributional shift (%) ~ Training and test data points subject to distributional shift (%)

(c) Adversarial Captain

(a) Captain America (b) Adversarial Standard America

Fig. 34 Accuracy of the FFNSL framework when training and test data points were subject to distributional
shifts

The weight penalty ratio of FFNSL EDL-GEN with penalties calculated from neural net-
work confidence scores outperformed FFNSL EDL-GEN with constant penalties (Fig. 33c).
As the Adversarial Captain America deck was more challenging for ILASP in terms of the
predictions from the neural networks, the ILP example weight penalties had more impact
on the accuracy of the learned hypotheses, as ILASP was able to focus on covering the ILP
examples that contained the correct neural network predictions.

A.2 FFNSL framework evaluation

Figure 34 presents the accuracy of the entire FENSL framework when both training and test
data points were subject to distributional shifts. The results for the Captain America deck in
Fig. 34a are very similar to the results for the Batman Joker deck presented in Fig. 11a, and
the results for the Adversarial Standard and Adversarial Captain America decks in Fig. 34b
and c are very similar to the results presented in Fig. 11b for the Adversarial Batman Joker
deck.

@ Springer

558 Machine Learning (2023) 112:515-569

B Learned hypotheses

In this section we present a sample of the hypotheses learned by FENSL when distributional
shifts were applied to input data points.

B.1 Follow suit winner

When no distributional shifts were applied, i.e., at points 0% on the x-axes in Fig. 5, the
following hypothesis was learned by FFNSL:

winner(X) :— not pl(X), player(X).

pl(V1l) :(— V2 1= V3; suit(1,V2); suit(VL,V3); player(V1); suit(V2); suit(V3).

pl(V1) :— rank_higher(V2,V1); suit(1,V3); suit(V2,V3); player(V1); player(V2);
suit(V3).

The first rule states that player X is a winner if neither of the bottom two rules hold. The
second rule holds if the suit of player X is different to the suit of player 1, and the final rule
holds if there is another player with a higher ranked card with the same suit as player 1. The
player, suit and rank_higher predicates were defined in the background knowledge
(for details, see Appendix F). As an example, in the case of 100% distributional shifts using
the Batman Joker deck in Fig. 5a, the following rules were learned on one experimental
repeat:

winner(X) :— not pl(X), player(X).
pl(V1) :— rank_higher(V2,V1); player(V1); player(V2).

In this hypothesis, a player is the winner if they have played the highest ranked card. In
this case, the rule denoting the suit having to match the suit of player 1 was missed.

B.2 Sudoku grid validity

For the 4 x 4 and 9 x 9 grid Sudoku tasks, when no distributional shifts were applied (i.e., at
points 0% on the x-axes in Fig. 14), the following hypothesis was learned by FENSL, which
states that a Sudoku grid is invalid if there are two of the same digits in a block, column or
row:

invalid :— neq(V2,Vl), digit(V1,V3), block(V2,V0), block(VI,V0), digit(V2,V3).
invalid :— neq(V1,V0), digit(V0,V2), digit(V1,V2), row(V0,V3), row(V1,V3).
invalid :— neq(V1,V0), digit(VO0,V3), digit(V1,V3), col(V0,V2), col(V1,V2).

The neq, digit, block, row and col predicates were defined in the background
knowledge (for details, see Appendix F). For the 4 x 4 grid task, when 100% of the training
data points were subject to distributional shifts in Fig. 14a, the following hypothesis was
learned:

invalid :— neq(V2,V1l), neq(V3,Vl), neq(V3,V2), block(V2,V0), block(V3,V0),
block(V1,V0).

invalid :— not block(V1,V0), block(V2,V0), col(V2,V3), col(V1,V3).

invalid :— not block(V2,V0), block(V1,V0), row(V1,V3), row(V2,V3).

The first argument in the block, row and col predicates is a string representing cell
coordinates and the second argument is an identifier (e.g., block 1, block 2, etc...). The first

@ Springer

Machine Learning (2023) 112:515-569 559

rule states that a grid is invalid if there are three cells in the same block that have different
coordinates. The second rule states that a grid is invalid if there are two cells within the same
column that are in different blocks and the third rule states that a grid is invalid if there are
two cells within the same row that are in different blocks. Therefore, this hypothesis always
returned invalid at test-time.

B.3 Crop yield prediction

When no distributional shift was applied, the following hypothesis was learned by FFNSL.
Note that we trim the number of rules for compactness and the full listing is available in the
experiment code:'?

yield(0) :— disease(bacterial_spot), location(18).
yield(0) :— disease(black_rot), location(18).
yield(2) :— disease(late_blight), location(6).
yield(2) :— disease(leaf_scorch).

yield(2) :— location(16).

yield(2) :— disease(healthy), location(7).
yield(2) :— disease(healthy), location(17).
yield(2) :— location(11).

At 100% shifts, the following hypothesis was learned:

yield(0) :— location(19), disease(early_blight).
yield(1) :— location(7), disease(bacterial_spot).
yield(2) :— location(16).

yield(2) :— location(11).

yield(2) :— species(corn), disease(healthy).
yield(2) :— disease(powdery_mildew), location(7).
yield(0) :— location(19), species(potato).

Here you can see the yield quality has changed for the bacterial spot disease, and this also
depends on a different location. This is due to incorrect neural network predictions for the
bacterial spot disease.

B.4 Indoor scene classification

When no distributional shift was applied, the following hypothesis was learned by FFNSL.
Note that we also trim the number of rules for compactness and the full listing is available
in the experiment code:

label(4) :— image(meeting_room).
label(2) :— image(inside_subway).
label(2) :— image(elevator).
label(3) :— image(bowling).
label(0) :— image(shoeshop).
label(4) :— image(classroom).

12 https://github.com/DanCunnington/FFNSL.

@ Springer

https://github.com/DanCunnington/FFNSL

560 Machine Learning (2023) 112:515-569

At 100% shifts, the following hypothesis was learned:

label(4) :— image(meeting_room).
label(2) :— image(inside_subway).
label(2) :— image(elevator).
label(3) :— image(bowling).
label(0) :— image(shoeshop).
label(2) :— image(airport_inside).

Analysing these rules further, it appears that at 100% shifts, whilst some super-class rules
are correct, others were not learned at all. For example, the classroom rule is missing. In
total, there were 46 rules learned at 100% shifts, compared to the full set of 67 rules at 0%
shifts. In Figure 26b you can see the number of rules in the learned hypothesis decreases at
100% shifts.

C Dataset details

Follow suit winner

The Follow Suit Winner dataset was generated by simulating multiple games, where each
game began with a randomly shuffled deck of playing cards split between the four players.
Each game consisted of 13 tricks and the card played by each player along with the winner
of each trick was stored. The small training datasets contained 104 example tricks from 8
games and the large training datasets contained 10,400 example tricks from 800 games. A
test set was created containing 1001 example tricks from 77 games. For the neural network,
an image was taken of every playing card in a standard deck. The ImageDataGenerator class
from the Keras image pre-processing library'® was used to apply transformations to each
playing card image, generating 750 variations of each image. We set the rotation range to
55, brightness range to 0.5-1.5, shear range to 15, channel shift range to 2.5, zoom range
to 0.1 and enable horizontal flip. From a total of 39,000 images, we created a training set
of 27,300 images and a test set of 11,700 images (70%/30% split), maintaining an equal
representation of each playing card. Similarly to the Sudoku Grid Validity task, the test set
was further split into two datasets (~70%/30%), maintaining an equal representation of each
playing card, as follows. The first, denoted CARDS_TEST_A contains 8164 images and was
used to create FENSL training sets for learning a hypothesis. Playing cards in the Follow
Suit Winner training sets were replaced with a random image of the corresponding playing
card from CARDS_TEST_A. The second split, denoted CARDS_TEST_B contained 3536
images and was used to create a hold out test set such that FFNSL can be evaluated on unseen
data once a hypothesis has been learned.

Distributional shifts were applied by replacing playing card images from the standard
deck with playing card images from alternative decks in an increasing percentage of data
points in the Follow Suit Winner training sets. We used playing card images from Batman
Joker and Captain America decks and also created adversarial data points from each deck,
placing the candidate playing card image on a background containing playing card images
from the standard deck. We applied the same image transformations to the alternative decks
such that standard playing card images can be directly swapped with a corresponding card
image from an alternative deck. Figure 3 shows an example queen of hearts playing card

13 https://keras.io/api/preprocessing/image/.

@ Springer

https://keras.io/api/preprocessing/image/

Machine Learning (2023) 112:515-569 561

image from each deck: Standard (3a), Batman Joker (3b), Captain America (3c),
Adversarial Standard (3d), Adversarial Batman Joker (3e) and Adversarial Captain America
(31).

Sudoku grid validity

The Sudoku Grid Validity datasets were generated using valid 4 x 4 and 9 x 9 Sudoku
starting configurations obtained from Hanssen’s Sudoku puzzle generator.'* Invalid starting
configurations were obtained by taking a valid example (that didn’t exist in the set of valid data
points) and changing one digit at random in a row, column or block to match another digit in
the same row, column or block. All sets of invalid data points contained an equal distribution
of data points containing two of the same digit in a row, column or block. The small training
datasets contained 320 data points, each consisting of 160 valid starting configurations and
160 invalid starting configurations. The large training datasets contained 32,000 data points,
with 16,000 valid and 16,000 invalid data points. Finally, separate test sets were created for
4 x 4 and 9 x 9 grids, which contained 1000 data points: 500 valid and 500 invalid.

For the neural network used in the 4 x 4 grids, we used digit classes 1-4 from the standard
MNIST dataset (LeCun et al., 1998) and created a training set of 24,674 data points and a test
set of 4,160 data points. The MNIST test set was further split (~70%/30%), maintaining an
equal representation of digits, into two datasets as follows. The first, denoted MNIST_TEST_A
contained 2910 images and was used to create FENSL training sets for learning a hypothesis.
Digits in the Sudoku training sets were replaced with a random image of the corresponding
digit from MNIST_TEST_A. The second split, denoted MNIST _TEST_B contained 1249
images and was used to create a hold out test set such that FFNSL could be evaluated on
unseen data once a hypothesis was learned. Digits in the Sudoku test set were replaced with
arandom image of the corresponding image from MNIST_TEST_B.

For the neural network used in the 9 x 9 grids, we used digit classes 1-9 from the standard
MNIST dataset (LeCun et al., 1998) and created a training set of 54,078 data points and a test
set of 9,021 data points. The MNIST test set was further split (~70%/30%), maintaining an
equal representation of digits, into two datasets as follows. The first, denoted MNIST_TEST _C
contained 6310 images and was used to create FFNSL training sets for learning a hypothesis.
Digits in the Sudoku training sets were replaced with a random image of the corresponding
digit from MNIST_TEST_C. The second split, denoted MNIST_TEST_D contained 2710
images and was used to create a hold out test set such that FENSL could be evaluated on
unseen data once a hypothesis was learned. Digits in the Sudoku test set were replaced with a
random image of the corresponding image from MNIST_TEST_D. Note that data observed
by FENSL at learning time was completely unseen by the neural network and was therefore
vulnerable to distributional shifts. Also, data observed by FFNSL at evaluation time was
completely unseen by the neural network and also FFENSL itself during learning.

Distributional shifts were applied by rotating MNIST digit images 90° clockwise in an
increasing percentage of data points in the Sudoku training sets. When we evaluated with
unstructured test data, the same procedure applied to the Sudoku test set, i.e., when we
evaluated a hypothesis learned from a training set with 20% of the data points containing
rotated images, 20% of the test set data points also contained rotated images.

14 https://www.menneske.no/sudoku/2.

@ Springer

https://www.menneske.no/sudoku/2

562 Machine Learning (2023) 112:515-569

D Neural network and baseline details

Follow suit winner

Firstly, for FENSL Softmax, we trained a Softmax-based CNN with 4 2D convolutional
layers and 2 fully connected layers for 20 epochs in PyTorch. The network accepts 3-channel
RGB input with images of size 274x174 pixels and outputs a 52 dimensional Softmax vector
to predict each playing card. Secondly, for FFNSL EDL-GEN, we trained an uncertainty-
aware neural network based on evidential deep learning (Sensoy et al., 2020). We used the
available architecture and implementation in TensorFlow,'> and modified k, the number of
outputs to 52 and the layer dimensions to accept 274x174 RGB card images. We also trained
this neural network for 20 epochs.

The baseline random forest model was implemented with scikit-learn 0.23.2 and tuned
on the first small dataset with O data points subject to distributional shift. The number of
estimators was tuned across: {10, 20, 50, 100, 200}. The best performing parameter value of
100 estimators was chosen and used for all Follow Suit Winner experiments. The random
seed was set to 0 to enable reproducability.

The baseline FCN consists of 3 fully connected layers with the ReLLU activation function
applied to each layer. Dropout was also applied after the first and second layers. Finally, a
Softmax layer squashed the final logits into 4 classes, representing each possible winner. The
input consisted of one-hot encoded suit values and the rank value of the playing card for each
player. Therefore, the input size to the first fully connected layer was 20. We implemented
the architecture in PyTorch v1.7.0.

To tune the FCN, we sampled the number of output units in the first and second layers,
ie., I1 € {20,32,46,52} and I2 € {52, 64, 74, 80} respectively, along with the dropout
probability in both dropout layers dr € {0.1,0.2, 0.5}. We sampled all possible parameter
combinations and tuned on the first small dataset, with no data points subject to distributional
shift, trained for 50 epochs. The best performing parameter values of /1 = 20, /2 = 74 and
dr = 0.1 were chosen. These parameters were then fixed for all models trained and following
tuning, each model was trained for 50 epochs. Finally, the random seed was set to 0 to enable
reproducability.

Sudoku grid validity

Within FENSL, we trained two types of neural networks. Firstly, for FENSL Softmax, we
adopted the CNN architecture available in the MNIST PyTorch tutorial'® and replaced the
LogSoftmax layer with a Softmax layer and the Negative Log Likelihood loss function with
Cross-Entropy Loss. This is to satisfy the neural network definition in Sect. 3 such that a
confidence score ¢ € [0, 1] is returned for k possible feature values. For the two grid sizes,
4 x 4 and 9x9, we train two separate networks. For 4 x 4 grids, we set k = 4 and train on
digits 1-4 inclusive, whilst for 9 x 9 grids we set k = 9 and train on digits 1-9 inclusive. We
adopted all existing hyper-parameter values and trained for 20 epochs.

Secondly, for FENSL EDL-GEN, we trained two uncertainty-aware neural networks (Sen-
soy et al., 2020) using the available architecture and implementation in TensorFlow!?, and
set k, the number of outputs, to 4 and 9, for 4 x 4 and 9 x 9 grids respectively. We used
existing hyper-parameter values and trained for 20 epochs.

The baseline random forest model was implemented with scikit-learn 0.23.2 and tuned
on the first small dataset with no data points subject to distributional shift. The number of
estimators was tuned across: {10, 20, 50, 100, 200}. The best performing parameter value of

15 https://muratsensoy.github.io/gen.html.
16 https://github.com/pytorch/examples/tree/master/mnist.

@ Springer

https://muratsensoy.github.io/gen.html
https://github.com/pytorch/examples/tree/master/mnist

Machine Learning (2023) 112:515-569 563

100 estimators was chosen and used for all Sudoku Grid Validity experiments. The random
seed was set to 0 to enable reproducability.

The baseline CNN-LSTM consisted of an embedding layer, followed by a 1D convolu-
tional layer with a kernel size of 3 and the ReLLU activation function. Then, a 1D max pooling
layer with pool size 2 was used, followed by a dropout layer, an LSTM layer and a second
dropout layer. Finally, a dense fully connected layer with the sigmoid activation function was
used to produce a binary classification of the input digit sequence. The input sequence length
to the embedding layer was 16 for 4 x 4 grids and 81 for 9 x 9 grids, representing each cell
on the Sudoku grid. We implemented the architecture in PyTorch v1.7.0.

To tune the CNN-LSTM, we sampled the learning rate /r € {0.1,0.001, 0.0001}, the
embedding dimension of the embedding layer ed € {32, 96, 256}, the number of output
channels of the 1D convolution layer oc € {64, 96}, the number of hidden features in the
LSTM layer [h € {32, 96, 128} and the dropout probability dr € {0.01, 0.05, 0.1} in both
dropout layers. We performed 10 samples and evaluated the model on the first large dataset
with 0 data points subject to distributional shift, trained for 2 epochs. The best performing
parameter values of /r = 0.0001, ed = 96, oc = 64, lh = 96 and dr = 0.01 were chosen.
These parameters were then fixed for all models trained and following tuning, each model
was trained for 5 epochs. Finally, the random seed was set to 0 to enable reproducability.

E System details

All experiments in this paper (with the exception of the deep neural network baselines) were
run on the same machine with the following specifications:

Hardware: QEMU KVM virtual machine standard PC (i440FX + PIIX 1996) with 10 nodes
of 8-core AMD EPYC Zen 2 CPUs (80 cores total), 16GB RAM.

Operating System: Ubuntu 18.04.4 LTS.

Software: FastLAS 1.1 (FastLAS 3 for 4 x 4 Sudoku Grid Validity with reduced background
knowledge), ILASP 4, Python 3.7.3, PyTorch 1.7.0, TensorFlow 1.14.0, Keras 2.4.0, scikit-
learn 0.23.2, numpy 1.19.1, problog 2.1.0.42. The neural network baselines were run on a
machine with the following specifications:

Hardware: x86 compute node with 24 cores (CPU) and an NVIDIA Tesla K80 GPU, 512GB
RAM.

Operating System: Red Hat Enterprise Linux 7.6.

Software: Same as above.

F ILP task listings
F.1 Follow suit winner

For the Follow Suit Winner task, we used the ILASP (Law, 2018) ILP system as ILASP
supports predicate invention (Stahl, 1993). Predicate invention was required for this task to
link the winning player to the suit and rank of other players cards. We encoded as background
knowledge possible suit and rank values, the four players, as well as the definition of the
rank_higher predicate. The set of body mode declarations included a suit predicate,
which linked a player’s card to a suit, alongside the rank_higher predicate. The set of head
mode declarations included a player variable, specified to support predicate invention. The

@ Springer

564 Machine Learning (2023) 112:515-569

hypothesis space for this task contained 96 possible rules (therefore 2°¢ potential hypotheses,
computed as the power set).

Background Knowledge

% Suits
suit(h).
suit(s).
suit(d).
suit(c).

% Ranks
rank(a).
rank(2).
rank(3).
rank(4).
rank(5).
rank(6).
rank (7).
rank (8).
rank (9).
rank(10).
rank(j).
rank(q).
rank (k).

% Rank Value
rank_value(2, 2).
rank_value(3, 3).
rank_value(4, 4).
rank_value(5, 5).
rank_value(6, 6).
rank_value(7, 7).
rank_value(8, 8).
rank_value(9, 9).
rank_value(10, 10).
rank_value(j, 11).
rank_value(q, 12).
rank_value(k, 13).
rank_value(a, 14).

% 4 Players
player(1..4).

% Definition of higher rank
rank_higher(P1, P2) :— card(P1, Rl, _), card(P2, R2, _), rank value(Rl, V1),
rank_value(R2, V2), V1 > V2.

% Link player’s card to suit
suit(P1, S) :— card(P1, _, S).

@ Springer

Machine Learning (2023) 112:515-569 565

Mode declarations

PX) :— QX), identity (P, Q).

P(X) :— player(X), not QX), inverse(P, Q).
#modem(2, inverse(target/1, invented/1)).
#modem(2, identity(target/1, invented/1)).
#predicate(target, winner/1).
#predicate(invented, pl/1).

#constant(player, 1).

#constant(player, 2).

#constant(player, 3).

#constant(player, 4).

#modeh(pl(var(player))).

#modeb(1, var(suit) != var(suit)).

#modeb(1, suit(var(player), var(suit)), (positive)).
#modeb(1, suit(const(player), var(suit)), (positive)).
#modeb(1, rank_higher(var(player),var(player)),(positive)).

F.2 Sudoku grid validity

There are two variations of ILP tasks presented in this paper, where knowledge of the Sudoku
grid was specified, and where grid knowledge was removed and replaced with a division
predicate, which enabled FastLLAS to learn column, row and block identifiers, based on the
cell coordinates given in the example contexts. Both of these variations are presented below,
with an example for 9 x 9 grids with the grid knowledge, and 4 x 4 grids without the grid
knowledge. For each variation, we present the background knowledge specified and the mode
declarations used. The argument in quotes for each column, row and block fact is a unique
identifier for each cell. The subset of the hypothesis space computed by FastLAS for both
4 x 4 and 9 x 9 grids contained 2350 possible rules (therefore 2233 potential hypotheses,
computed as the power set).

Encoding the Sudoku grid: background knowledge For 9 x 9 Sudoku grids:

col("1, 1", 1).
col("1, 2", 2).
col("1, 3", 3).
col("1, 4", 4).
col("1, 5", 5).
col("1, 6", 6).
col("1, 7", 7).
col("1, 8", 8).
col("1, 9", 9).
row("1, 1", 1).
row("1, 2", 1).
row("1, 3", 1).
row("1, 4", 1).

@ Springer

566 Machine Learning (2023) 112:515-569

row("1, 5", 1).
row("1, 6", 1).
row("1, 7", 1).
row("1, 8", 1).
row("1, 9", 1).

block("1, 1", 1).
block("1, 2", 1).
block("1, 3", 1).
block("2, 1", 1).
block("2, 2", 1).
block("2, 3", 1).
block("3, 1", 1).
block("3, 2", 1).
block("3, 3", 1).

Encoding the sudoku grid: mode declarations For 9 x 9 Sudoku grids:

#modeh(invalid).
#modeb(digit(var(cell), var(num))).
#modeb(row(var(cell), var(row))).
#modeb(col(var(cell), var(col))).
#modeb(block (var(cell), var(block))).
#modeb(neq(var(cell), var(cell))).
#maxv(4).

num(1..9).

row(1..9).

col(1..9).

block(1..9).

cell(C) :— digit(C, _).

neq(X, Y) :— cellX), cell(Y), X !=Y.

Without encoding the Sudoku grid: Background knowledge For 4 x 4 Sudoku grids:

div_samel(X,Y,C) :— X—1) / C= (- 1) / C, idx1(X), idx1(Y), X <Y, quotient(C).
div_same2(X,Y,C) :— X—1) / C= (Y- 1) / C, idx2(X), idx2(Y), X< Y, quotient(C).

quotient(1..3).
idx1(1..4).
idx2(1..4).

Without encoding the Sudoku grid: Mode Declarations For 4 x 4 Sudoku grids:

#modeh(invalid).

#modeb(digit(var(idx1), var(idx2), var(num))).
#modeb(div_samel (var(idx1), var(idxl), const(quotient))).
#modeb(div_same2(var(idx2), var(idx2), const(quotient))).

#maxv(5).
mum(1..4).

#bias("penalty (1, head).").

#bias("penalty (1, body(X)) :— in_body(X).").
#ground_without_replacement.

@ Springer

Machine Learning (2023) 112:515-569 567

F.3 Crop yield prediction

Background Knowledge and Mode Declarations

— yield(X), yield(Y), X< Y.

yield_type(0).
yield_type(1).
yield_type(2).

#modeh(yield (const(yield_type))).
#modeb(1, location(const(location))).
#modeb(1, species(const(species))).
#modeb(1, disease(const(disease))).

F.4 Indoor scene classification

Mode Declarations

label_type(0).
label_type(1).
label_type(2).
label_type(3).
label_type(4).

#modeh(label (const(label_type))).
#modeb(1,image(const(image))).

References

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., et al. (2021). A review of
uncertainty quantification in deep learning: Techniques, applications and challenges. Information Fusion,
76, 243-297.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F., Schulman, J., & Mané, D. (2016). Concrete problems
in Al safety . http://arxiv.org/abs/1606.06565

Bellodi, E., & Riguzzi, F. (2013). Structure learning of probabilistic logic programs by searching the clause
space. Theory and Practice of Logic Programming, 15.

Besold, T., Garcez, A., Bader, S., Bowman, H., Domingos, P., Hitzler, P., Kiihnberger, K.-U., Lamb, L., Lowd,
D., Lima, P., de Penning, L., Pinkas, G., Poon, H.,& Zaverucha, G. (2017). Neural-symbolic learning
and reasoning: A survey and interpretation. http://arxiv.org/abs/1711.03902

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015). Weight uncertainty in neural network.
In International conference on machine learning (pp. 1613-1622).

Cohen, W. W. (2016). Tensorlog: A differentiable deductive database. http://arxiv.org/abs/1605.06523

Dai, W.-Z., & Muggleton, S. (2021). Abductive knowledge induction from raw data. In: Z.-H. Zhou (Ed.),
Proceedings of the thirtieth international joint conference on artificial intelligence, IJCAI-21 (pp. 1845—
1851). https://doi.org/10.24963/ijcai.2021/254.

Dai, W.-Z., Xu, Q., Yu, Y., & Zhou, Z.-H. (2019). Bridging machine learning and logical reasoning by abductive
learning. Advances in Neural Information Processing Systems, 32.

Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and expressive power of logic pro-
gramming. ACM Computing Surveys (CSUR), 33(3), 374-425.

De Raedt, L., Dries, A., Thon, I., Van den Broeck, G., & Verbeke, M. (2015). Inducing probabilistic relational
rules from probabilistic examples. In Proceedings of 24th international joint conference on artificial
intelligence (IJCAI) (Vol. 2015-January, pp. 1835-1842). IICAI-INT JOINT CONF ARTIF INTELL,
United States.

De Raedt, L., Kimmig, A., Toivonen, H. (2007). Problog: A probabilistic prolog and its application in link
discovery. In IJCAI (Vol. 7, pp. 2462-2467).

@ Springer

http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1711.03902
http://arxiv.org/abs/1605.06523
https://doi.org/10.24963/ijcai.2021/254

568 Machine Learning (2023) 112:515-569

Donadello, I., Serafini, L., & d’Avila Garcez, A. S. (2017). Logic tensor networks for semantic image inter-
pretation. In Proceedings of the twenty-sixth international joint conference on artificial intelligence (pp.
1596-1602). IJCAL, California, USA.

Evans, R., & Grefenstette, E. (2018). Learning explanatory rules from noisy data. Journal of Artificial Intel-
ligence Research, 61, 1-64.

Flaminio, T., & Marchioni, E. (2006). T-norm based logics with an independent involutive negation. Fuzzy
Sets and Systems, 157, 3125-3144.

Garcez, A.d., & Lamb, L.C. (2020). Neurosymbolic Al: the 3rd wave. http://arxiv.org/abs/2012.05876

Gelfond, M., & Kahl, Y. (2014). Knowledge representation, reasoning, and the design of intelligent agents:
The answer-set programming approach. Cambridge: Cambridge University Press.

Gilpin, L., Bau, D., Yuan, B., Bajwa, A., Specter, M.,& Kagal, L. (2018). Explaining explanations: An overview
of interpretability of machine learning. In 2018 IEEE 5th International Conference on Data Science and
Advanced Analytics (DSAA) (pp. 80-89).

Hughes, D. P., & Salathé, M. (2015). An open access repository of images on plant health to enable the develop-
ment of mobile disease diagnostics through machine learning and crowdsourcing. CoRR abs/1511.08060.

Hiillermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: An intro-
duction to concepts and methods. Machine Learning, 110(3), 457-506.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of Computer Computations
(pp. 85-103).

Koh, P. W,, Nguyen, T., Tang, Y. S., Mussmann, S., Pierson, E., Kim, B., & Liang, P. (2020). Concept bottleneck
models. In International conference on machine learning (pp. 5338-5348).

Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016). Interpretable decision sets: A joint framework for descrip-
tion and prediction. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining (pp. 1675-1684).

Law, M. (2018). Inductive learning of answer set programs. PhD thesis, Imperial College London.

Law, M., Russo, A., & Broda, K. (2019). Logic-based learning of answer set programs. In Reasoning Web.
Explainable Artificial Intelligence - 15th International Summer School 2019, Bolzano, Italy, September
20-24, 2019, Tutorial Lectures (pp. 196-231).

Law, M., Russo, A., Bertino, E., Broda, K., & Lobo, J. (2020). Fastlas: scalable inductive logic programming
incorporating domain-specific optimisation criteria. In Proceedings of the AAAI conference on artificial
intelligence (Vol. 34, pp. 2877-2885).

Law, M., Russo, A., & Broda, K. (2018). Inductive learning of answer set programs from noisy examples.
Advances in Cognitive Systems, 7, 57-76.

Law, M., Russo, A., & Broda, K. (2018). The complexity and generality of learning answer set programs.
Artificial Intelligence, 259, 110-146.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11), 2278-2324.

Loépez-Cifuentes, A., Escudero-Viiolo, M., & Bescds, J. (2020). Alvaro Garcfa-Martin: Semantic-aware scene
recognition. Pattern Recognition, 102, 107256. https://doi.org/10.1016/j.patcog.2020.107256.

Mackay, D.J. C. (1995). Probable networks and plausible predictions—A review of practical bayesian methods
for supervised neural networks. Network: Computation in Neural Systems, 6(3), 469-505.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T.,& De Raedt, L. (2018). Deepproblog: Neural prob-
abilistic logic programming. In Advances in neural information processing systems (pp. 3749-3759).

Metcalfe, G., Olivetti, N., & Gabbay, D. M. (2008). Proof Theory for Fuzzy Logics (Vol. 36). Springer.

Minervini, P, Bosnjak, M., Rocktischel, T., Riedel, S., & Grefenstette, E. (2020). Differentiable reasoning
on large knowledge bases and natural language. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020 (pp. 5182-5190).

Minervini, P, Riedel, S., Stenetorp, P., Grefenstette, E., & Rocktidschel, T. (2020). Learning reasoning strategies
in end-to-end differentiable proving. In Proceedings of the 37th international conference on machine
learning, ICML 2020, 13-18 July 2020, Virtual event (pp. 6938—6949).

Molnar, C. (2019). Interpretable Machine Learning, Online.

Muggleton, S. (1991). Inductive logic programming. New Generation Computing, 8(4), 295-318.

Muggleton, S. H., Lin, D., & Tamaddoni-Nezhad, A. (2015). Meta-interpretive learning of higher-order dyadic
datalog: Predicate invention revisited. Machine Learning, 100(1), 49-73.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J.V., Lakshminarayanan, B., & Snoek,
J. (2019). Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift.
In 33rd conference on neural information processing systems (NeurIPS) (pp. 13969-13980).

@ Springer

http://arxiv.org/abs/2012.05876
https://doi.org/10.1016/j.patcog.2020.107256

Machine Learning (2023) 112:515-569 569

Pearce, T., Brintrup, A., & Zhu, J. (2021). Understanding Softmax confidence and uncertainty. http://arxiv.
org/abs/2106.04972

Quattoni, A., & Torralba, A. (2009). Recognizing indoor scenes. In 2009 IEEE conference on computer vision
and pattern recognition (pp. 413-420). IEEE.

Rasmussen, C. E.(2003). Gaussian processes in machine learning. In Summer School on Machine Learning
(pp- 63-71)

Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1-2), 107-136.

Riegel, R., Gray, A., Luus, F., Khan, N., Makondo, N., Akhalwaya, I. Y., Qian, H., Fagin, R., Barahona, F.,
Sharma, U., et al. (2020). Logical neural networks . http://arxiv.org/abs/2006.13155

Rocktischel, T., & Riedel, S. (2017). End-to-end differentiable proving. In Advances in neural information
processing systems 30: Annual conference on neural information processing systems 2017, December
4-9, 2017, Long Beach, CA, USA (pp. 3788-3800).

Sen, P., de Carvalho, B. W., Riegel, R., & Gray, A. (2021). Neuro-symbolic inductive logic programming with
logical neural networks. http://arxiv.org/abs/2112.03324

Sensoy, M., Kaplan, L., & Kandemir, M. (2018). Evidential deep learning to quantify classification uncertainty.
In Advances in neural information processing systems (pp. 3179-3189).

Sensoy, M., Kaplan, L., Cerutti, F., & Saleki, M. (2020). Uncertainty-aware deep classifiers using generative
models. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, pp. 5620-5627).
Serafini, L.,& d’Avila Garcez, A. S. (2016). Logic tensor networks: Deep learning and logical reasoning from

data and knowledge. http://arxiv.org/abs/1606.04422

Stahl, I. (1993). Predicate invention in ilp-an overview. In European conference on machine learning (pp.
311-322).

Tsamoura, E., Hospedales, T., & Michael, L. (2021). Neural-symbolic integration: A compositional perspec-
tive. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, pp. 5051-5060).

Tuckey, D., Broda, K., & Russo, A. (2020). Towards structure learning under the credal semantics. In: C.
Dodaro, G. A. Elder, W. Faber, J. Fandinno, M. Gebser, M. Hecher, E. LeBlanc, M. Morak, & J. Zangari
(Eds.), International Conference on Logic Programming 2020 Workshop Proceedings Co-located with
36th International Conference on Logic Programming (ICLP 2020), Rende, Italy, September 18-19, 2020.
CEUR Workshop Proceedings, vol. 2678. CEUR-WS.org, Italy.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., & Broeck, G. (2018). A semantic loss function for deep learning
with symbolic knowledge. In International conference on machine learning (pp. 5502-5511). PMLR.

Yang, Z., Ishay, A.,& Lee, J. (2020). Neurasp: Embracing neural networks into answer set programming. In C.
Bessiere (Ed.) Proceedings of the twenty-ninth international joint conference on artificial intelligence,
IJCAI-20 (pp. 1755-1762).

Yang, F., Yang, Z., & Cohen, W. W. (2017). Differentiable learning of logical rules for knowledge base
reasoning. In Advances in neural information processing systems 30: Annual conference on neural
information processing systems 2017, December 4-9, 2017, Long Beach, CA, USA (pp. 2319-2328).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

http://arxiv.org/abs/2106.04972
http://arxiv.org/abs/2106.04972
http://arxiv.org/abs/2006.13155
http://arxiv.org/abs/2112.03324
http://arxiv.org/abs/1606.04422

	FFNSL: Feed-Forward Neural-Symbolic Learner
	Abstract
	1 Introduction
	2 Background
	2.1 Learning from answer sets
	2.2 Uncertainty-aware neural networks

	3 FFNSL framework
	4 FFNSL with LAS systems
	4.1 Follow suit winner
	4.2 Sudoku grid validity
	4.3 Crop yield prediction
	4.4 Indoor scene classification

	5 Evaluation methodology
	5.1 Learned hypothesis evaluation
	5.2 FFNSL framework evaluation
	5.3 Experimental setting

	6 Follow suit winner
	6.1 Learned hypothesis evaluation
	6.2 FFNSL framework evaluation

	7 Sudoku grid validity
	7.1 Learned hypothesis evaluation
	7.2 FFNSL framework evaluation

	8 Real-world datasets
	8.1 Learned hypothesis evaluation
	8.2 FFNSL framework evaluation

	9 Related work
	10 Conclusion
	Acknowledgements
	A Additional follow suit winner results
	A.1 Learned hypothesis evaluation
	A.2 FFNSL framework evaluation

	B Learned hypotheses
	B.1 Follow suit winner
	B.2 Sudoku grid validity
	B.3 Crop yield prediction
	B.4 Indoor scene classification

	C Dataset details
	D Neural network and baseline details
	E System details
	F ILP task listings
	F.1 Follow suit winner
	F.2 Sudoku grid validity
	F.3 Crop yield prediction
	F.4 Indoor scene classification

	References

