
Vol.:(0123456789)

Machine Learning (2023) 112:687–720
https://doi.org/10.1007/s10994-022-06277-7

1 3

Relational data embeddings for feature enrichment
with background information

Alexis Cvetkov‑Iliev1 · Alexandre Allauzen2 · Gaël Varoquaux1

Received: 15 February 2022 / Revised: 8 September 2022 / Accepted: 5 November 2022 /
Published online: 11 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
For many machine-learning tasks, augmenting the data table at hand with features built
from external sources is key to improving performance. For instance, estimating housing
prices benefits from background information on the location, such as the population density
or the average income. However, this information must often be assembled across many
tables, requiring time and expertise from the data scientist. Instead, we propose to replace
human-crafted features by vectorial representations of entities (e.g. cities) that capture the
corresponding information. We represent the relational data on the entities as a graph and
adapt graph-embedding methods to create feature vectors for each entity. We show that two
technical ingredients are crucial: modeling well the different relationships between entities,
and capturing numerical attributes. We adapt knowledge graph embedding methods that
were primarily designed for graph completion. Yet, they model only discrete entities, while
creating good feature vectors from relational data also requires capturing numerical attrib-
utes. For this, we introduce KEN: Knowledge Embedding with Numbers. We thoroughly
evaluate approaches to enrich features with background information on 7 prediction tasks.
We show that a good embedding model coupled with KEN can perform better than manu-
ally handcrafted features, while requiring much less human effort. It is also competitive
with combinatorial feature engineering methods, but much more scalable. Our approach
can be applied to huge databases, creating general-purpose feature vectors reusable in vari-
ous downstream tasks.

Keywords Feature engineering · Feature enrichment · Knowledge graph embedding

Editors: Krzysztof Dembczynski and Emilie Devijver.

 * Alexis Cvetkov-Iliev
 alexis.cvetkov-iliev@inria.fr

1 Soda, INRIA Saclay, 1 Rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France
2 ESPCI Paris, 10 Rue Vauquelin, 75005 Paris, France

http://orcid.org/0000-0003-2643-1848
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06277-7&domain=pdf

688 Machine Learning (2023) 112:687–720

1 3

1 Introduction

For machine learning on data tables, a data scientist may encounter columns with many
different discrete entries or entities, for instance cities in a housing price prediction setting
(Fig. 1a). These city names can be encoded as a categorical variable, but generalizing to
housing in a new city is then impossible. A good solution for such columns is often to use
external sources to bring in information: the GPS coordinates of the cities, the population,
the average income (Fig. 1b)... From a data-science perspective, this requires feature engi-
neering on relational data: merging and aggregating information across data sources to cre-
ate an enriched table with extra features (Fig. 1c). In practice however, such feature engi-
neering is difficult and time consuming for the human analyst, because it requires a good
understanding of both the different data sources and the application domain. For instance
the number of wealthy people living in a city may be important, but estimating it may
require crossing information across many tables to build a single somewhat abstract indica-
tor. In fact, it is often recognized that data preparation is one of the biggest bottlenecks of
data-science (Kaggle Industry Survey, 2018; Lam et al., 2021).

A specificity of learning across a complex relational structure is that different entries
come with very different information. For instance, when collecting information on local
wealth in Wikipedia—querying DBPedia (Lehmann et al., 2015) or YAGO (Mahdisoltani
et al., 2013)—, a data scientist will find for San Francisco the GDP as well as many known
individuals and companies. But for the neighboring locality Muir Beach, none of this is

Features Target

City Area Price

San Francisco 30 m2 450,000$

San Diego 55 m2 ?

(a) Base Table
Features Target

MEAN(City.
Inhabitant_ID.Salary)

City.State.
Poverty_Rate

City.
Population Area Price

70,000$ 12.6% 0.87M 30 m2 450,000$

60,000$ 12.6% 1.4M 55 m2 ?

(c) Enriched Table

(b) External data

State Poverty_Rate

California 12.6%

Inhabitant_ID City Salary

A1 San Francisco 65,000$

A2 San Francisco 75,000$

A3 San Diego 60,000$

San Francisco

San Diego

California

0.87MState

1.4M
Population

Feature engineering

Fig. 1 The classical pipeline of feature enrichment. A base table (a) contains a target to predict and several
features, including a categorical feature with discrete entities (here cities). To boost prediction performance,
external data (b) about the entities of interest is incorporated into the base table –usually via tedious feature
engineering– to obtain the enriched table (c). The external data (b) can come under various formats, e.g.
tables or multi-relational graphs

689Machine Learning (2023) 112:687–720

1 3

available. The data scientist may then need to dig information at the county level, which
has a different set of attributes. The root of the challenge is that the original relational
information is fundamentally irregular and cannot be represented to a learning algorithm as
a fixed set of “features”.

Our goal here is to make it very easy for the data scientist to enrich a feature with infor-
mation from external data sources. Inspired by word embeddings (Mikolov et al., 2013)
which brought a breakthrough to text processing by their ease of use, we strive to associate
entities to general-purpose feature vectors that can be used in multiple downstream tasks.
This requires a feature extraction method that captures well entity attributes, and is scal-
able enough to be used on large databases. For instance, a general-purpose knowledge-base
such as YAGO3 (Mahdisoltani et al., 2013) is a particularly useful source of data, with
information on 75,000 cities; but it is huge: millions of entities and hundreds of attributes.
Existing automatic feature engineering methods, such as Deep Feature Synthesis (DFS)
(Kanter & Veeramachaneni, 2015), are combinatorial: they greedily join and aggregate
entity attributes across tables to create feature vectors. Their combinatorial nature leads to
tractability challenges: running DFS on YAGO3 produces very high dimensional vectors
(d ∼ 10,000–140,000) which entail large storage costs and computational hurdles in down-
stream machine-learning tasks.

Instead, we propose to use embedding models that learn a static vector representa-
tion for each entity. Indeed, they provide compact representations that can encode knowl-
edge about various entities into a fixed, low-dimensional space (e.g. d = 200). We learn
these vectors from the external data, and add them to the base table as new features to
enhance prediction performance. A pioneering work in this direction is RDF2vec (Ristoski
& Paulheim, 2016a) and its variants, which have been used to learn entity embeddings
from multi-relational graphs for various downstream tasks (Egami et al., 2021; Saeed &
Prasanna, 2018; Ristoski et al., 2019; Sousa et al., 2020). These works directly build on
word-embedding tools developed for natural language—namely word2vec (Mikolov et al.,
2013). As such, they leverage contextual information: as San Francisco and California are
connected in the graph they are related. However, they do not account for the nature of
these relations, which requires modeling the relational information: Wikipedia specifies
that San Francisco is in California, but Sacremento is the capital of California. We will see
that capturing well this information is important to generate feature vectors for downstream
analytic applications. Another, more general, drawback of embedding methods is that they
are designed for discrete entities, and are less suited to capture numerical attributes. Yet
these attributes are often useful for the end task: densely populated cities tend to exhibit
high housing prices for instance.

We propose here an approach that addresses these two limitations and provide high-
performance embeddings. To capture relational information, we rely on knowledge graph
embedding models (Wang et al., 2017), widely used for graph completion but not studied
for feature extraction purposes. In such models, embeddings are directly optimized to cap-
ture relationships between entities. We then introduce KEN (Knowledge Embedding with
Numbers), a module that extends knowledge graph embedding models to numerical attrib-
utes. Finally, we conduct a thorough empirical evaluation of our approach, using entity
embeddings to boost machine-learning performance in multiple tasks, and show that:

– Feature vectors obtained via knowledge graph embedding models perform much better
than RDF2vec embeddings.

– Embeddings learned with KEN do capture numerical information, which greatly
improves prediction performance in downstream tasks.

690 Machine Learning (2023) 112:687–720

1 3

– A good embedding model coupled with KEN outperforms manually handcrafted fea-
tures, while requiring much less human effort. It is also competitive with Deep Feature
Synthesis, but is more scalable in terms of computation time, memory and size of the
created features.

– Although designed for multi-relational graphs, simple heuristics allow our approach to
be applied to tabular data, with good performance.

The rest of the paper follows as such: Sect. 2 goes into depth explaining related work,
Sect. 3 details our contributed approach, and Sect. 4 gives a thorough empirical study of
approaches to create features from relational data.

2 Related work: extracting features from relational data

We focus here on two common data structures for data-science: tabular data, as in rela-
tional databases, and multi-relational graphs (a.k.a. knowledge graphs), the backbone of
Linked Open Data (Bauer & Kaltenböck, 2011). We broadly refer to both as relational
data. In this section we give an overview of various lines of work related to creating vec-
tors from relational data, drawing from a variety of scientific communities.

2.1 The classic view: feature engineering

Manual feature engineering Feature engineering across multiple tables traditionally relies
on a human analyst crafting SQL queries or dataframe operations, such as joins or aggre-
gations, to build a single feature matrix. The problem is the same with Linked Open Data
(Paulheim et al., 2013; Ristoski & Paulheim, 2016b): statistical studies require features
extracted from the data, here coming as knowledge graphs rather than multiple tables.
Propositionalization approaches used to mine knowledge graphs (Kramer et al., 2001)
tackle this by creating for each entity (node) of the graph a set of features, statistical finger-
prints and aggregates of its neighbourhood (Paulheim & Fümkranz, 2012; Ristoski & Paul-
heim, 2014). Here again, manual crafting is needed to capture specific information such as
wealth.

Whether it is done on tables or knowledge graphs, feature engineering is a time-con-
suming task: studies show that data scientists spend 60% or more of their time transform-
ing the data for analysis (CrowdFlower, 2016). Indeed, designing the right features often
requires careful effort from the analyst: which information is relevant for the task at hand?
How to query it? This is particularly difficult on large data sources. For instance, a knowl-
edge graph representation of Wikipedia leads to hundreds of entity classes described by
thousands of attributes in DBPedia (Lehmann et al., 2015). Exploring which joins are best
for a given analysis is difficult even for an expert: How to assemble indirect signals that
capture information on the question at hand, for instance estimating the distribution of
wealth in a locality.

Automated feature engineering A few approaches have been proposed to automate
the construction of queries for feature engineering on relational databases. A fundamen-
tal challenge is that assembling such multi-table data transformations calls for discrete
choices—e.g. to join, or not to join?—with combinatorial possibilities that explode on
large databases.

691Machine Learning (2023) 112:687–720

1 3

For instance, Deep Feature Synthesis (DFS) Kanter and Veeramachaneni (2015) is a
greedy approach that denormalizes a database by chaining joins from one reference table to
all related tables and aggregates one-to-many relations using combinations of a small base
of functions (see Fig. 2). Typical aggregation functions include COUNT, MODE (most com-
mon) for categorical features, and MEAN, MIN, MAX, STD for numerical features. A crucial
parameter of DFS is the depth, which limits how many times joins can be chained to cre-
ate new features. Higher depths capture a wider range of information and usually improve
performance, but quickly result in very large feature vectors and computation times, as the
number of possible join paths grows exponentially. This often calls for post-processing
techniques to remove unpredictive or redundant features.

Subsequent works have improved over DFS by adding aggregation functions for other
types of data (text, sequences) (Lam et al., 2017), for instance via recurrent neural net-
works (Lam et al., 2019). Although powerful feature extractors, all these methods remain
combinatorial in nature, and do not scale to large databases. Even with a limited depth, a
large number of entities of different types leads to increasingly wide feature matrices with
many missing values, as the different entities come with different sets of attributes. Finally,
automated feature engineering methods present other drawbacks: the created features often
contain categorical or missing values that must be encoded, and their interpretability (we
can trace back the joins and aggregations needed to compute each feature) is challenged as
their dimension quickly grows.

City

Depth 0 Depth 1 Depth 2

City.
Population

City.
State

City.State.
Poverty_Rate

MEAN(City.
Inhabitant_ID.

Salary)

COUNT(City.
Inhabitant_ID)

COUNT(City.
State.City)

MEAN(City.
State.City.
Population)

San Francisco 0.87M California 12.6% 70,000$ 2 2 2.65M

San Diego 1.4M California 12.6% 60,000$ 1 2 2.65M

Reference
table

State Poverty_Rate

California 12.6%

Inhabitant_ID City Salary

A1 San Francisco 65,000$

A2 San Francisco 75,000

A3 San Diego 60,000$

City Population State

San Francisco 0.87M California

San Diego 1.4M California

Related tables

Deep Feature
Synthesis

Fig. 2 An example of deep feature synthesis. Starting from a reference table with entities of interest (here
cities), new features are created by chaining joins to related tables, up to a certain depth = 2. To aggregate
values from one-to-many relations (e.g. city inhabitants), we use the MEAN and COUNT operators, respec-
tively for numerical and categorical features. Colored arrows indicate join paths across tables for each depth

692 Machine Learning (2023) 112:687–720

1 3

2.2 Entity embeddings in relational data

While entity embeddings come from a body of literature far from that of feature engineer-
ing, they also create feature vectors from relational data (Lavrač et al., 2020).

Prelude: word embeddings Many embedding methods for relational data take inspira-
tion from word embeddings. By injecting discrete entities (words) in vector spaces, word
embeddings have boosted statistical analyses of text. They rely on the distributional seman-
tics idea, which can be summarized by Firth’s sentence: “a word is characterized by the
company it keeps”. The central model is Skip-Gram with Negative Sampling (SGNS), used
in word2vec (Mikolov et al., 2013). Each word w is associated to an embedding w ∈ ℝ

p1.
SGNS learns these embeddings by optimizing similarities of pairs of words, using a scor-
ing function:

Given a text corpus, embeddings are optimized so that a word w is more similar to a word
w′ observed in the same context—e.g. the same sentence—, than another word w† not in
the context; minimizing a cross-entropy loss2:

After training, word embeddings capture contextual similarities: words with the similar
contexts (neighbors) end up close in the embedding space.

2.2.1 Embedding entities in a table

Word embedding methods, such as SGNS, can be extended to other data structures by
defining a corresponding notion of context (Grohe, 2020). In tables, a common choice is to
view rows as sentences: two entities are in one another context if they appear in the same
row. This was for instance applied to enable semantic queries over tables (Bordawekar &
Shmueli, 2017) and for automatic table completion and retrieval (Zhang et al., 2019). More
recent work integrates intra-row and intra-column information to learn richer representa-
tions. Cappuzzo et al. (2020) link entries of a table to the row and column nodes they
belong to. Random walks through the resulting graph generate “sentences” of tokens, then
fed to a SGNS model.

2.2.2 Embeddings entities in knowledge graphs

Knowledge graphs use a more general representation of relational data than tables. They
replace the notion of columns by that of relations, which enables a uniform representation
over many tables, and helps assembling information from multiple sources of data. Each
piece of information is encoded as a triple (h, r, t), indicating a certain relation r between

(1)Scoring functionf (w,w�) = w⋅w
′

(2)
SGNSL = −

∑

w, w� ∈ context(w),

w† ∉ context(w)

log(�(f (w,w�))) + log(1 − �(f (w,w†)))

1 To be precise, two embeddings are learned for each word. Which one is used in the scoring function
depends if we view it as the context word (w ∈ context(w�)) or not (w� ∈ context(w)).
2 This is actually a simplified version of the loss optimized by word2vec; eg it does not account for multi-
ple negative examples.

693Machine Learning (2023) 112:687–720

1 3

the head and tail entities (h, t). Large knowledge graphs, such as YAGO3 (Mahdisoltani
et al., 2013) or DBPedia (Lehmann et al., 2015) contain millions or even billions of tri-
ples—e.g. (San Francisco, HasState, California)—and cover millions of entities.

Knowledge graph embedding models learn a vector for each entity (node) and relation
(edge) of the graph. They have been mostly developed for two purposes, leading to two
distinct lines of research (Portisch et al., 2022):

(1) Predicting new triples of the knowledge graph for completion purposes, which has
been the main application of knowledge graph embeddings.

(2) Providing feature vectors for downstream tasks outside the knowledge graph, which
received much less attention in the literature, but is our focus here.

Embeddings for downstream tasks RDF2vec (Ristoski & Paulheim, 2016a) is a cen-
tral work applying knowledge graph embeddings in external downstream tasks. It has
been used to incorporate background information in various tasks: geospatial data analy-
sis (Egami et al., 2021), recommender systems (Saeed & Prasanna, 2018; Ristoski et al.,
2019), or biomedical prediction tasks (Sousa et al., 2020). Given a knowledge graph,
RDF2vec generates sequences of tokens by performing random walks on the graph, alter-
nating between entities and relations (see Fig. 3). These sequences are then fed to a SGNS
model to obtain embeddings for entities and relations. An important parameter is the depth,
which limits the number of hops in the random walk, and thus the range of information to
capture. A depth of 1 captures relationships between entities and their nearest neighbors in
the graph, and so on... Similarly to Deep Feature Synthesis, a challenge is that the number
of possible walks increases exponentially with depth. To avoid this, walks are often com-
puted for certain entities of interest only, with a limited number of walks for each entity.

Since RDF2vec, most research efforts focused on the creation of walks, for instance giv-
ing more weight to relations/entities based on their frequency, PageRank or degree, remov-
ing rare entities, or allowing teleportations between entities that share similar properties
(Cochez et al., 2017; Vandewiele et al., 2020).

SanFrancisco

California

0.87M

HasState

MayorOf

HasMember
HasPopulation

USA
LocatedIn

USF

LocatedIn

LondonBreed

DemocraticParty

Knowlege graph Text representation

“USF LocatedIn SanFrancisco
HasPopulation 0.87M”
“LondonBreed MayorOf
SanFrancisco HasState California”

“DemocraticParty HasMember
LondonBreed MayorOf SanFrancisco
HasState California LocatedIn USA”

Random walks

Depth 1

Depth 2

Fig. 3 Graph to text representation in RDF2vec. Random walks are performed on the knowledge graph to
generate sentences of tokens. Often, walks are only computed for a subset of entities, here San Francisco.
The depth parameter limits the number of hops in the random walk, either forward or backward

694 Machine Learning (2023) 112:687–720

1 3

Embeddings for graph completion Knowledge graph embeddings have been widely used
for graph completion, either through link prediction (predicting the missing entity in an
incomplete triple (h, r, ?)) or triple classification (predicting if a triple is True of False).
Similarly to SGNS, these models define a scoring function f(h, r, t) that represent the plau-
sibility of a given triple (h, r, t). Embeddings are then optimized so that observed triples
obtain high scores, while negative ones (typically sampled by corrupting the head or tail
entity in observed triples) obtain low scores.

Scoring functions typically model the different relations between entities as geometrical
operations in the embedding space. For instance, the seminal TransE model (Bordes et al.,
2013) represents a relation r as a translation vector r ∈ ℝ

p between entity embeddings h
and t:

with ‖.‖ a �1 or �2 norm. Given a knowledge graph G , embeddings are trained to minimize
a margin loss:

Many models that improve upon TransE (Wang et al., 2017) focus on better modeling of
one-to-many relationships and certain relational patterns (e.g. symmetry/antisymmetry,
inversion, composition) (Yang et al., 2015; Sun et al., 2019; Balazevic et al., 2019). For
link prediction in knowledge bases, one of the best performing methods (Ali et al., 2020)
is MuRE, Multi-Relational Poincare graph embeddings (Balazevic et al., 2019). The key
component of the method is the model of the link between head and tail entity [homolo-
gous to (3) for TransE]:

where ⊙ is the element-wise multiplication, two vectors �r, rr ∈ ℝ
p represent the relation r,

and the head and tail entities are represented by vectors h, t ∈ ℝ
p and biases bh, bt ∈ ℝ . d is

the Euclidean distance3. The model is optimized by sampling positive and negative triples
(as in (4), but using a logistic loss (2) instead).

Structure of contextual vs relational embeddings Approaches based on SGNS such as
RDF2vec only capture contextual information, while much progress in knowledge graph
embedding has focused on modeling different types of relations separately. As a conse-
quence they induce very different neighborhood structures on entities embeddings.

Contextual embeddings, as RDF2vec, are trained on “sentences” of tokens, where each
entity is surrounded by the relations and entities it co-occurs with in triples (Fig. 3). Two
entities end up close in the embedding space if they have similar contexts: (1) They may
share a relation, but not necessarily with the same entity, e.g. (San Francisco, LocatedIn,
California) and (Paris, LocatedIn, France). This tend to group entities of the same type,
since entities of different nature, like people and cities, share few relations. (2) They may

(3)TransE f (h, r, t) = −‖h + r − t‖

(4)

L =
∑

(h, r, t) ∈ G,

(h�, t�) s.t.(h�, r, t�) ∉ G

with h� = h or t = t�

[f (h�, r, t�) − f (h, r, t) + �]+

(5)MuREf (h, r, t) = −d(�r ⊙ h, t + rr)
2 + bh + bt

3 MuRE can also use the Poincaré non-Euclidean geometry. However in practice (Balazevic et al., 2019)
the Euclidean version is an excellent performer, as good as the non-Euclidean one for p ≥ 150.

695Machine Learning (2023) 112:687–720

1 3

share a connection to a common entity, but not necessarily via the same relation, e.g.
(MathWorks, FoundedIn, California) and (Nevada, HasBorderWith, California). Fig-
ure 4a gives a paradigmatic example: such contextual information is blind to the difference
between Facebook, founded in Massachussetts but headquartered in California, and Math-
Works, founded in California but headquartered in Massachussetts.

Knowledge graph embeddings using the relation type in the scoring function between
two entities create a very different structure in the embedding space. As relations of differ-
ent nature lead to different transformations of the embedding space, they each “pull” enti-
ties in different directions. In addition, modern models can learn transformations that are
not one-to-one –non bijective–, better suited to many-to-one relations, as when many cities
are located in the same state. As a result the different relations can be encoded separately in
the entities embeddings, for instance along different coordinates (Fig. 4b).

Integrating numerical attributes in embeddings Numerical attributes, such as city popu-
lations, are poorly handled by most embedding methods. They are often simply dismissed,
or at best binned and treated as discrete entities (Cappuzzo et al., 2020), which remains
suboptimal as it does not capture the topology of numbers.

Recent knowledge graph embedding models address this issue (Gesese et al., 2021).
TransEA (Wu & Wang, 2018) adds a loss to reconstruct numerical values from embed-
dings with a linear model. LiteralE (Kristiadi et al., 2019) is a state-of-the-art approach
where each entity i is represented by two vectors: ei ∈ ℝ

p representing the entity itself,
and li ∈ ℝ

q , li containing each of its numerical attribute (0 if no value, and where q is the
number of numerical relations in the KG). When used in the scoring function, embeddings
h and t are constructed with a function g that combines the two vectors into a single one:
h = g(eh, lh) , and t = g(et, lt) , both in ℝp . LiteralE implements g as a learnable mechanism
similar to gated recurrent units.

(Facebook, FoundedIn, Massachussetts)
(Facebook, HeadquartersIn, California)
(MathWorks, FoundedIn, California)
(MathWorks, HeadquartersIn,
Massachussetts)
(Google, FoundedIn, California)
(Google, HeadquartersIn, California)
(Apple, FoundedIn, California)
(Apple, HeadquartesIn, California)

Input triples (a) Contextual:
RDF2vec embeddings

(b) Relational: knowledge
graph embeddings

Google

Apple

California

MassachussettsFacebook

MathWorks

FoundedIn

He
ad

qu
ar

te
rs

In

Google

Apple
FoundedIn

HeadquartersIn
MathWorksFacebook

Massachussetts

California

Fig. 4 What drives entity neighborhoods in embedding space? a Contextual embeddings (as RDF2vec)
ignore the nature of the relation: given information on states in which companies have been founded and
have their headquarters, it cannot differentiate Facebook (born in Massachussetts, moved to California),
from MathWorks (born in California, moved to Massachussetts). b Knowledge graph embeddings models
can give rise to different geometric constraints for these two relations, separating out the companies. For
instance here a relation is encoded with a projection

696 Machine Learning (2023) 112:687–720

1 3

3 Contribution: multi‑relational embeddings that capture numbers

We introduce here our approach to automatically extract information from relational data,
creating feature vectors that can be used in downstream tasks. It relies on 3 key ingredients,
that we describe in the following subsections:

(1) Using knowledge graph embedding models designed for graph completion, as opposed
to RDF2vec, to capture well relational information.

(2) KEN (Knowledge Embedding with Numbers), a module that extends knowledge graph
embedding models to numerical attributes.

(3) Representing tables as knowledge graphs, to leverage them in our approach.

Figure 5 summarizes our pipeline for automatic feature extraction from relational data.

3.1 Relational rather than contextual embeddings to encode information

With our goal of creating embeddings as features for downstream tasks, we motivate here
the importance of using relational embeddings, originally designed for knowledge graph
completion, rather than contextual RDF2vec-like models, traditionally used to extract fea-
tures for downstream tasks.

From a big picture perspective, given an entity h of interest (e.g. a city), we would like
an embedding h that encodes as well as possible the information related to h in the data. At
the very least, it implies representing well the various relationships h has to other entities

Input data

Inhabitant_ID City Salary

A1 San Francisco 65,000$

A2 San Francisco 75,000$

A3 San Diego 60,000$

San Francisco

San Diego

California

0.87MState

1.4M
Population

San Francisco

San Diego

California

0.87MState

1.4M
Population

City

A2A1

Salary

A3

65k$

60k$

75k$

Knowledge graph
representation Embeddings

San Francisco
San Diego

Population

0.87M

Population

Salary

KEN

Knowledge graph embedding

f(San Francisco, Population, 0.87M)

f(San Diego, Population, 0.87M)

negative
sampling

Features Target

City Embedding Area Price

San Francisco 0.1 -0.3 … 0.7 30 m2 450,000$

San Diego 0.15 -0.2 … 0.8 55 m2 ?

Downstream task

Fig. 5 Our pipeline for automatic feature extraction from relational data. (1) The input data, which may
contain tables, is transformed into a knowledge graph. (2) We use a knowledge graph embedding model to
learn a vector for each entity, and leverage numerical values by embedding them in the same space as other
entities with KEN. (3) After training, entity embeddings can be easily added as new features in downstream
tasks

697Machine Learning (2023) 112:687–720

1 3

(e.g. its state), to make them available to the machine-learning model used in the down-
stream task. Representing not only the related entity t but also the nature of the relation r is
often important: knowing whether a person A is the mother, the sister, or the daughter of a
person B informs on the age difference.

In contextual embeddings such as RDF2vec, the presence of a link between a entity h to
another entity t is modeled somewhat independently from the nature r of the link, i.e. the
type of the relation. Indeed, the scoring function used in SNGS—Eq. (1)—is only applied
to pairs (h, t), (h, r) and (r, t). Structure between h, r, and t is created indirectly as they
appear in the same context.

In contrast, relational embeddings developed for knowledge graph embeddings use a
scoring function involving h, r, and t jointly. As this scoring function is minimized for
triples in the graph, it induces algebraic relations between the corresponding embeddings:
for TransE t ≈ h + r , or for MuRE t ≈ �r ⊙ h − rr . These algebraic relations imply that t
captures the link to h in a way that is specific to r and hence a downstream analysis model
can recover this specific information, e.g. selecting on the mother, and not all relatives.

Figure 4 illustrates the specificity of the link: for RDF2vec the relations are encoded as
vectors which lie in the middle of the embeddings of the entities while a knowledge graph
embedding encodes the relations as a transformation of these vectors (here a projection),
and allows the different relations to be expressed on different coordinates of the vectors.

3.2 Capturing numerical attributes with KEN

Numerical attributes are omnipresent in relational data, and often contain precious infor-
mation for downstream tasks, e.g. a city’s wealth influences housing prices. While they are
readily-available as numbers, the irregular nature of the information prevents from merely
adding them as coordinates to the feature vectors. A first challenge is that different entities
have different numerical attributes. A more serious one arises when aggregating numerical
information across many-to-one relations: there are many ways of doing so. For instance,
to characterize wealth in a county from the GDP of its cities, the mean, the Gini index, the
percentiles, etc. are all useful aggregates. As a result, Deep Feature Synthesis generates
more than 2000 features derived from numerical attributes for cities in YAGO3.

We strive for lower-dimensional representations, and thus aim to capture numerical
information in entity embeddings. However, embedding methods are formulated in terms
of discrete elements (Sect. 2.2): words, entities. A naive way to adapt them to numerical
attributes would be to consider numbers as tokens and learn an independent embedding for
each value. Yet doing so discards the topology underlying those numbers: close numerical
values should have similar representations. Binning values before embedding reduces this
effect, but remains suboptimal. To tackle this, we introduce here KEN (Knowledge Embed-
ding with Numbers), a module that adapts embedding models to numerical attributes.

The KEN module Entity-embedding approaches can be seen as relying on a linear
encoder to associate an entity h with its vector representation h ∈ ℝ

p . In this light, we pro-
pose to inject numerical values in the same vector space also with an encoder, learning a
function e ∶ ℝ → ℝ

p that maps numerical values to embeddings.
We use as function a single-layer neural network with a ReLU activation to embed

numerical values. To embed different types of attribute separately (e.g. city populations
and GPS coordinates), we learn a function er for each attribute r:

(6)er(x) = ReLU(xwr + br)

698 Machine Learning (2023) 112:687–720

1 3

with x ∈ ℝ the numerical value to embed, and wr, br ∈ ℝ
p the weights and biases of the

linear layer. Embeddings er(x) of numerical values can then be used in place of tail embed-
dings t in the scoring function f(h, r, t).

Comparison with other methods capturing numerical attributes An asset of KEN is that
it comes with no hyper-parameters to tune. This is unlike TransEA (Wu & Wang, 2018),
where the importance of numerical attributes must be controlled, with the danger that the
optimal value might differ for each attribute. Another important difference with TransEA
is that KEN can capture non-linear interactions between entities and numerical attributes,
thanks to the ReLU activation. For instance, cities in California are associated to lati-
tudes between 32◦ N and 41◦ N which cannot be expressed by a mere threshold on a linear
representation.

Importantly, KEN uses numerical values x during the training as new triples (h, r, x) to
be predicted, which forces entity embeddings to capture these numerical attributes. This is
different from LiteralE (Kristiadi et al., 2019), where numerical values are incorporated to
entity embeddings to better predict non-numerical triples (h, r, t). LiteralE therefore only
captures the information in numerical values useful to triangulate other entities, and not the
values in themselves. In particular non discriminant numerical attributes can be discarded
by the gate mechanism. As an extreme example, an entity linked to numerical attributes but
not to other entities will not be embedded in LiteralE, as there is no training data.

In contrast, KEN draws no major distinction between discrete entities and numerical
values: they are embedded in the same space. Each type of numerical attribute is associated
to a specific relation and thus embedded on a specific line segment via Eq. (6). An ana-
lytic model for a downstream task can extract this information, proceeding in a similar way
as with discrete information (as described in Sect. 3.1). The numerical attributes that an
entity has and its relations to other entities may contribute to create similar neighborhood
structures: for a city to be locatedIn California is equivalent to its GPS coordinate taking
specific value ranges.

Making the architecture robust to attribute distribution One challenge of heterogeneous
data is that different numerical attributes have very different distributions. We normalize
numerical values x ∈ ℝ to the interval [0, 1] before embedding them. With neural net-
works, a common way to do so is “min-max" normalization: x� = x−xmin

xmax−xmin
 . However it is

problematic when dealing with heavy-tailed distributions, such as city populations. Indeed,
after normalization, most values x′ will be very close to zero and have similar representa-
tions er(x�) ≃ ReLU(br) . This makes it difficult for instance to distinguish a village with
1000 inhabitants from a medium-sized town of 10,000 people.

Ideally, we would like the values x′ to be evenly distributed in [0, 1], to separate as well
as possible their embeddings. We achieve this with quantile normalization, which maps
numerical values to their quantile in the attribute distribution, using an empirical estimate
of the cumulative distribution function: x� = CDF(x).

Figure 6 summarizes the complete picture of numerical value embedding with KEN.

Fig. 6 Embedding numerical
values with KEN

2.2M

Population

0.9

CDF(2.2M)

-0.3

-1.7

-0.8

wr

br

.00

1.7

0.8

ReLU

er(2.2M)

699Machine Learning (2023) 112:687–720

1 3

3.3 Representing tables as knowledge graphs

To create embeddings with rich semantics, the source data must contain as much detail as
possible about the entities under study. This often requires to leverage data from different
sources, for instance combining broad but shallow information (e.g. city populations) from
large knowledge graphs with more granular data (e.g. recent house prices at the neighbour-
hood-level) from domain-specific tables. Although our approach inputs knowledge graphs
(i.e. triples (h, r, t)), this representation is general enough to easily encode information
from other data structures. We focus here on tabular data, and explore a few strategies to
represent tables as knowledge graphs.

The core idea to generate triples from tables is to link entities from the same rows with
different relations. For instance, an exhaustive strategy consists in building all possible tri-
ples from the table, linking all discrete entries to other entities or numerical values from
the same rows (Fig. 7a). One asset of this method is that it produces good embeddings for
all entities, as they are directly connected to their attributes in the graph. But it generates a
large number of triples: O(n2

cols
nrows) , which increases the training time of embeddings. If

we know beforehand the entities of interest, i.e. those used in the end task (e.g. cities), we
can instead build triples from these entities only (Fig. 7b). This greatly reduces the num-
ber of triples to (ncols − 1) nrows (these entities generally come from a single column) and
returns embeddings tailored for the entities under study. However, this approach neglects
other entities: they are not directly connected to the entries of the row and are thus likely

City Population State

San Francisco 0.87M California

San Diego 1.4M California

Anchorage 0.29M Alaska

Input table

(b) Head entities = Cities

San Diego

0.87M

1.4M

0.29M

California

Alaska

Anchorage

San Francisco

San Diego

0.87M

1.4M

0.29M

California

Alaska

Anchorage

San Francisco

California

Alaska

San Francisco

San Diego

Anchorage

Population
State

City-Population

State-Population

State-City

City-State

(a) Head entities = All (c) Head entities = Row IDs

Row IDs

R1

R2

R3

R1 0.87M

San Francisco

California

San Diego

1.4M

R2

R3

0.29M

Anchorage

Alaska

Population

City

State

Fig. 7 Representing tables with triples. For each row of the table, we generate triples by linking its entries
through different relations. The methods we present here differ on their choice of head entities when build-
ing triples: a using all discrete entries as heads b using only the entities of interest (generally from the same
column) and c introducing a “row id” entity for each row and using it as head entity

700 Machine Learning (2023) 112:687–720

1 3

to underperform in other applications. Finally, we consider a third heuristic that assigns a
row id to each row of the table, treats this row id as an entity, and then links it to the vari-
ous entries of the row (Fig. 7c). This method combines benefits of the previous methods: it
does not require any prior knowledge of the downstream application and generates a light
graph with ncols nrows triples. Yet learning an additional embedding for each row also raises
scalability issues if there are much more rows than distinct entities to embed.

A desirable property of table-to-graph methods is their ability to represent joint infor-
mation across columns. For instance Fig. 8a considers two cities A, B with their number of
companies in different fields of activity. Taken alone, the two columns are not very inform-
ative: what matters here is the number of companies in a certain field of activity, which
requires to consider both columns jointly. Methods that build triples from table entries such
as cities encode the attributes “field of activity” and “number of companies“ independently,
and thus cannot distinguish A and B from their triples (Fig. 8b). In contrast, introducing
row entities allows to capture row data jointly and differentiate the two cities (Fig. 8c).

Finally, if missing data are present in the table, we encode them with specific entities
(one for each column).

4 Empirical study

We compare our approach with automatic feature extraction techniques, such as Deep Fea-
ture Synthesis (DFS) or RDF2vec, and focus on two criteria:

– the quality of the extracted features: how well do they improve performance in down-
stream tasks?

– the scalability of the approach: time and space complexity, size of the feature vectors

4.1 Downstream tasks

We evaluate our approach on 7 prediction tasks on various types of entities. In each task,
we extract features for the entities of interest (i.e. target entities) from a source dataset, and
add them to a target dataset containing the variable to predict. To showcase the versatility

City Field of
activity

Number of
companies

A Tech 10

A Retail 1

B Tech 1

B Retail 10

(b) Head entities = Cities

TechA
Row IDs

R1

R2

R3

R4

Retail
10
1

TechB
Retail
10
1

(c) Head entities = Row IDs

A Tech
Retail

10
1B

R1

R2

R3

R4

(a) Table with joint columns

Fig. 8 Capturing joint information across columns. a A table describing cities with two joint attributes that
must be considered together to be meaningful. b Using cities as head entities encodes the two attributes
separately, hence we cannot differentiate them from their triples. c Introducing row entities allows to cap-
ture all attributes jointly and distinguish the two cities

701Machine Learning (2023) 112:687–720

1 3

of our method, we consider tables and knowledge graphs as source data. More details about
the downstream tasks and datasets are given in the Appendix 7.1.

Tabular data We first consider two classification tasks: KDD14 (classification of edu-
cational crowdfunding projects) and KDD15 (student dropout prediction in MOOCs). For
these tasks the source data consists of multiple tables describing the target entities. To lev-
erage this data in our approach, we represent it as a knowledge graph by using target enti-
ties as head entities and linking them to other entries from the same rows, similarly to
Fig. 7b.

Knowledge graphs To support our claim that general-purpose embeddings can be
learned from large databases and used in various end tasks, we consider a more challeng-
ing setup: enriching several downstream tasks with background information from Wiki-
pedia. To that end, we leverage YAGO3, a knowledge graph representation of common
knowledge, built from Wikipedia and other sources (Mahdisoltani et al., 2013).

Our version of YAGO3 contains 2.8 million entities, described by 7.2 million triples.
We learn embeddings for various entities that are common in data science problems (coun-
ties, cities, people, companies, movies...) and use them in 5 regression tasks on socio-eco-
nomic topics4:

– Elections: predict the number of votes per party in 3000 US counties.
– Housing prices: predict the average housing price in 23000 US cities.
– Accidents: predict the number of accidents in 8500 US cities.
– Movie revenues: predict the box-office revenues of 4900 movies.
– Employees: predict the number of employees in 3000 companies.

Note that there exists a more recent version of Tanon et al. (2020), with a much greater
coverage of information: 64 million entities, with about 2 billion triples. However, we
could not include it in our empirical study as the DFS baseline was intractable on such a
large database.

4.2 Approaches considered for evaluation

We describe below the feature extraction approaches that we include in our empirical study.
Our approach We implement KEN on top of 3 embedding algorithms: TransE (Bordes

et al., 2013), the seminal work that introduced relations as translations of embeddings,
DistMult (Yang et al., 2015), with scoring function f (h, r, t) = h⋅(r⊙ t) , and MuRE (Bal-
azevic et al., 2019) because it emerged as a top-performing method in link prediction
(Ali et al., 2020). We learn 200-dimensional embeddings and keep all hyper-parameters
constant, except for the number of epochs ∈ [2, 4, 8, 16, 24, 32, 40] that we tune (see the
Appendix 7.2 for the exact parameters used). We base our implementations on Ali et al.
(2021), a Python library for learning knowledge graph embeddings. In addition, PyKEEN
implements a version of DistMult that leverages numerical values with LiteralE (Kristiadi
et al., 2019), which allows for a comparison with KEN.

Deep Feature Synthesis We compare our embedding approach to Deep Feature Syn-
thesis (DFS, see Fig. 2). We use an implementation of DFS from the Python package fea-
turetools and extract features at depths (0, 1, 2, 3) with the default aggregation functions:

4 Target entities for which we extract features from YAGO3 are underlined.

702 Machine Learning (2023) 112:687–720

1 3

MEAN, MIN, MAX, STD, SKEW, SUM for numerical features, MODE, NUM_
UNIQUE for categorical features and COUNT for both. Categorical features are one-hot
encoded to their 10 most common categories. To apply DFS on YAGO3, we convert it to
tabular format by creating a table with two columns (head, tail) for each forward/inverse
relation.

Manual feature engineering Besides DFS, we include manual feature engineering to our
empirical study. The objective is to estimate how well an analyst would perform given a
time budget of 1–2 h per dataset. Results obviously depend on the analyst and could be
improved with more effort, but they provide a simple baseline for a time-constrained analy-
sis. See Appendix 7.2 for a description of the handcrafted features we used.

RDF2vec Finally, we also compare our approach to RDF2vec, traditionally used to
extract features for downstream tasks. For each entity under study, we generate all possible
walks of depth 2, going through forward and backward relations (as in Fig. 3). However, as
the number of walks can be very high for certain entities (e.g. tens of millions), we cap this
number to 10,000, and checked empirically that this value is large enough to impact only a
small fraction of entities. We then feed these sequences to a SGNS model with embedding
dimension = 200, window size = 4 (which allows to capture 1-hop and 2-hop neighbor-
hoods), and pick the epoch ∈ [1, 5, 10, 20] that performs best. We used the pyRDF2Vec
package (Vandewiele et al., 2022) to run the experiments.

4.3 Quality of the extracted features

Methodology We first study how well feature vectors created from a source database can
improve performance in data-science tasks. For this, we consider the prediction problems
introduced in Sect. 4.1 and the feature extraction approaches presented in Sect. 4.2: TransE,
DistMult and MuRE with and without KEN; Deep Feature Synthesis; manual feature engi-
neering; and RDF2vec.

We measure performance with cross-validation scores, and only use entity representa-
tions to predict the target values.5 For regression and classification, we use two analytic
models from the scikit-learn library: k-nearest neighbors and gradient boosted trees, whose
hyper-parameters are tuned. We report in Table 1 fivefold cross-validation scores, averaged
over multiple seeds for shuffling the data and training the embedding models. See Appen-
dix 7.3 for a more detailed description of the experimental setup.

Results When using entity-embeddings as feature vectors, DistMult and MuRE overall
outperform RDF2vec by a wide margin (except on the Employees dataset, where RDF2vec
gets surprisingly good results), with MuRE appearing as the best approach. We explain
this gap by their ability to capture well relational information. In particular, MuRE is more
expressive than TransE and DistMult (their scoring functions can be seen as speczial cases
of MuRE) and thus better model complex relations. In contrast, TransE does not model
well many-to-one relationships: if we have (h, r, t) and (h�, r, t) , then h and h′ are forced to
have very close embeddings h = h′ = t − r . Similarly, the scoring function of DistMult is
symmetrical, i.e. f(h, r, t) = f(t, r, h), which is not suited for non symmetrical relations like
locatedIn. We can also see from Table 1 that leveraging numerical attributes with KEN

5 Except in the Elections dataset, where we also include the political party when predicting the number of
votes.

703Machine Learning (2023) 112:687–720

1 3

always improves performance in TransE, DistMult and MuRE, and that it is superior to
LiteralE in DistMult.

We now compare the performance of MuRE + KEN (the best embedding approach) to
manual and automatic feature engineering methods. When using powerful prediction mod-
els (gradient boosted trees), MuRE + KEN does not consistently outperforms DFS, but
is often competitive for depths ≤ 2, and almost always outperforms manual feature engi-
neering. However, when using simpler prediction models (K-Nearest Neighbors), MuRE
+ KEN significantly outperforms DFS for all depths. Indeed, embeddings tend to be well

Table 1 Quality of the extracted features: cross-validation scores on target datasets using either embed-
dings, deep feature synthesis, or manually handcrafted vectors as features

The scoring metrics are: average precision (KDD14), AUC (KDD15) and R2 for the remaining datasets.
Best scores are in bold. Second best scores are underlined. Italic cells indicate when MuRE + KEN outper-
forms deep feature synthesis. Results with standard deviations are given in the appendix (Table 11)

Approach Feature enrich-
ment from
domain-specific
tables

Feature enrichment from a general-purpose knowledge graph,
YAGO3

KDD14 KDD15 Elections Housing prices Accidents Movie revenues Employees

Advanced analytic models: gradient boosted trees
Feature vectors tailored for target entities

Manual feature
handcrafting

0.267 0.869 0.955 0.273 0.360 0.141 0.367

DFS, depth 0 0.158 0.584 0.836 0.165 0.162 0.016 0.126
DFS, depth 1 0.461 0.880 0.960 0.369 0.423 0.153 0.382
DFS, depth 2 0.463 0.880 0.964 0.605 0.570 0.163 0.384
DFS, depth 3 0.499 0.881 0.969 0.683 0.590 0.189 0.381
DFS, depth 3 +

ontology
0.958 0.686 0.589 0.259 0.390

RDF2vec 0.173 0.849 0.873 0.355 0.236 0.074 0.380
General-purpose feature vectors

TransE 0.242 0.854 0.899 0.321 0.256 0.092 0.003
TransE + KEN 0.334 0.875 0.939 0.447 0.381 0.095 0.214
DistMult 0.264 0.859 0.916 0.525 0.454 0.145 0.117
DistMult +

LiteralE
0.286 0.870 0.841 0.484 0.443 0.110 0.227

DistMult + KEN 0.386 0.879 0.921 0.542 0.486 0.162 0.242
MuRE 0.287 0.863 0.945 0.571 0.461 0.165 0.109
MuRE + KEN 0.443 0.883 0.966 0.604 0.524 0.175 0.313
MuRE + KEN +

ontology
0.957 0.602 0.541 0.266 0.345

Simple analytic models: K-nearest neighbors
DFS, depth 0 0.078 0.504 0.742 0.004 0.130 − 0.026 0.004
DFS, depth 1 0.110 0.821 0.715 0.297 0.320 0.121 0.144
DFS, depth 2 0.107 0.821 0.763 0.395 0.349 0.119 0.086
DFS, depth 3 0.142 0.816 0.618 0.503 0.361 0.043 0.025
MuRE + KEN 0.205 0.830 0.936 0.536 0.488 0.136 0.273

704 Machine Learning (2023) 112:687–720

1 3

structured (as induced by the scoring function) and have homogeneous coefficients with
similar distributions, which facilitates the downstream learning. In contrast, DFS creates
a huge number of heterogeneous features, which even after scaling are hard to leverage by
simple models.

We also study whether injecting taxonomic information into embedding models
improves performance. Following (d’Amato et al., 2021), we augment YAGO3 with triples
describing its ontology, such as entity types and their relations (subClassOf and disjoint-
With). We apply MuRE + KEN on this augmented version of YAGO3 and observe that it
generally improves prediction performance and reduces the gap with DFS.

Capturing entity types Finally, we investigate whether knowledge graph embeddings
capture entity types, for instance differentiating cities from movies or counties. Such infor-
mation can be useful in certain tasks that we did not consider in our previous experiments,
e.g. clustering. To evaluate this, we take many entities of various types (cities, counties,
movies, companies) from our previous tasks on YAGO3, and measure how well entity
types can be predicted from their MuRE + KEN embeddings. We use a simple K-Nearest
Neighbor model, whose number of neighbors is tuned and obtain a ROC AUC score of
0.996, showing that knowledge graph embeddings indeed capture entity types. We detail
the experimental setup in Appendix 7.3.

4.4 Scalability concerns

Large databases, such as YAGO3, bear promises to provide general-purpose feature enrich-
ment. For this, the scalability of features extraction methods is crucial. To that end, we
compare in Table 2 the scalability of various approaches: Deep Feature Synthesis (for 0 ≤
depth ≤ 3), RDF2vec and MuRE (with and without KEN).

Methodology We quantify computational scalability with several metrics capturing:

(1) The scalability of feature extraction: duration and RAM usage when computing the
feature vectors.

(2) The scalability of feature usage: dimension of the feature vectors, disk memory needed
to store them, and duration of cross-validated evaluation in prediction tasks (using
gradient boosted trees).

A benefit of knowledge graph embedding models is that they learn representations for all
entities at once (e.g. cities, counties, movies in YAGO3). This is unlike DFS and RDF2vec
which typically extracts feature vectors for target entities only. Given our objective to pro-
vide representations for many different entities, we thus benchmark DFS and RDF2vec
when extracting features for all entities.

In some cases (KDD14 with depth 3 and YAGO3 with depth 2/3), DFS breaks the RAM
capacity of our machine (400 GB) and does not terminate, even when splitting entities into
1000 chunks to lower the RAM usage. For these cases, we extrapolate the total duration
based on the duration for a subset of entities, and the disk memory required to store fea-
tures based on the memory it takes for a smaller number of features.

Similarly, we were not able to learn RDF2vec embeddings for all YAGO3 entities due to
memory overflow. We tried limiting the number of walks to 100 per entity, and only gen-
erating them from the 1% most frequent ones, but we still could not compute them in less
than a day, even with parallelization over 40 CPUs. We thus interrupted the process, and
measured the duration and RAM usage just before stopping.

705Machine Learning (2023) 112:687–720

1 3

Ta
bl

e
2

 Sc
al

ab
ili

ty
 o

f f
ea

tu
re

 e
xt

ra
ct

io
n

m
et

ho
ds

: c
om

pu
ta

tio
na

l s
ca

la
bi

lit
y

of
 e

m
be

dd
in

g
m

od
el

s v
er

su
s d

ee
p

fe
at

ur
e

sy
nt

he
si

s

Ita
lic

-o
ut

 c
el

ls
 in

di
ca

te
 m

od
el

s w
hi

ch
 a

re
 le

ss
 tr

ac
ta

bl
e

th
an

 M
uR

E
+

 K
EN

. B
ol

di
ta

lic
 te

xt
 in

di
ca

te
s w

he
n

D
FS

 b
re

ak
s t

he
 R

A
M

 c
ap

ac
ity

 o
f o

ur
 m

ac
hi

ne
 (4

00
 G

B
)

Sc
al

ab
ili

ty
 m

et
ric

s
D

at
as

et
D

ee
p

fe
at

ur
e

sy
nt

he
si

s
M

uR
E

M
uR

E
+

 K
EN

R
D

F
2v

ec

D
ep

th
 1

D
ep

th
 2

D
ep

th
 3

Ex
tra

ct
in

g
fe

at
ur

e
ve

ct
or

s f
or

 a
ll

en
tit

ie
s

D
ur

at
io

n
(s

)
K

D
D

14
10

14
11

,1
23

≃
 1

10
 K

21
46

67
08

52
,0

00
K

D
D

15
17

0
48

9
51

07
30

23
35

66
17

10
YA

G
O

3
69

0
≃

 3
3

K
≃

 8
.5

 M
11

08
17

62
≥

 1
00

 K
R

A
M

 u
sa

ge
 (G

B
)

K
D

D
14

10
.5

48
≥

 4
00

13
.2

18
.6

24
0

K
D

D
15

4.
9

8.
2

57
.7

14
.8

18
.8

95
YA

G
O

3
40

.1
≥

 4
00

≥
 4

00
15

.9
16

.1
≥

 3
0

U
si

ng
 fe

at
ur

e
ve

ct
or

s i
n

do
w

ns
tre

am
 ta

sk
s

D
im

en
si

on
 o

f f
ea

tu
re

 v
ec

to
rs

K
D

D
14

37
2

22
02

19
,3

79
20

0
20

0
20

0
K

D
D

15
16

3
27

7
18

70
20

0
20

0
20

0
YA

G
O

3
27

1
10

,2
81

14
1

K
20

0
20

0
20

0
D

is
k

m
em

or
y

ne
ed

ed
 to

 st
or

e
fe

at
ur

es
 (G

B
)

YA
G

O
3

2.
8

10
7

14
71

2.
1

2.
1

2.
1

D
ur

at
io

n
of

 c
ro

ss
-v

al
id

at
ed

 e
va

lu
at

io
n

(s
)

K
D

D
14

48
91

16
84

10
3

10
3

10
3

K
D

D
15

4
4

9.
9

19
19

19
El

ec
tio

ns
10

0
27

6
89

89
17

6
17

6
17

6
H

ou
si

ng
 p

ric
es

89
33

0
11

,5
89

14
5

14
5

14
5

A
cc

id
en

ts
92

31
7

11
,4

96
14

6
14

6
14

6
M

ov
ie

 re
ve

nu
es

56
35

6
14

,9
88

13
2

13
2

13
2

Em
pl

oy
ee

s
72

44
9

15
,7

62
88

88
88

706 Machine Learning (2023) 112:687–720

1 3

Results We report in Table 2 the scalability metrics described above. As expected, DFS
quickly becomes intractable on large databases: it requires huge amounts of time and RAM
to run, and returns very high-dimensional feature vectors that need a lot of memory to be
stored and a lot of time to be leveraged by machine-learning models. Interestingly, we saw
in Table 1 that DFS must be computed at a depth of 2 or more to outperform MuRE +
KEN (using powerful gradient boosted tree models). Yet based on this scalability study,
this is already too deep to run DFS for all entities in YAGO3, due to memory issues. In the
end, DFS produces high-performance features, but its usage is limited to small databases,
or when the downstream task is known beforehand so as to extract features for a subset
of entities only. Unlike knowledge graph embedding models, it cannot be used to create
general-purpose feature vectors from large databases with millions of entities.

We observe similar trends with RDF2vec: feature extraction for all entities overall
requires much more time and memory than MuRE. Actually, even creating feature vec-
tors for target entities only with RDF2vec can take more time (e.g. 9300s for 23000 cities
in Housing prices) than applying MuRE to all YAGO3 entities, and must be repeated for
every new downstream task.

4.5 KEN helps embeddings capture numerical attributes

As visible on Fig. 9, KEN provides embeddings that represent in a much simpler way the
numerical information associated with entities. When embedding counties from YAGO3,
the structure of KEN embeddings reflects well the population density, with a direc-
tion grouping together metropolitan areas such as Chicago (Cook county), Los Angeles
(Orange County), Houston (Harris county), and Phoenix (Maricopa county), well sepa-
rated from rural counties. On the other hand, this information is more diluted in standard
MuRE embeddings.

Methodology To evaluate quantitatively the ability of embeddings to capture numeri-
cal information, we compare the performance of simple supervised models to predict the
numerical attributes of entities (e.g. county populations) from their embeddings. In practice

County Pop

King, Texas 286
Sierra, California 3 240
Hardeman, Texas 4 432
Pope, Illinois 4 442
Calhoun, Illinois 5 087
Orange, California 3 010 232
Maricopa, Arizona 3 942 169
Harris, Texas 4 173 079
Cook, Illinois 5 206 862

Fig. 9 Embeddings of counties using only categorical attributes (MuRE) or all attributes (KEN-E) from
YAGO3: PCA projection of the 200-dimension embeddings in 2D. The color represents the county popula-
tion and the symbols the state of the county. We randomly draw high and low population counties in the
same state. Cook, Orange, Harris, and Maricopa counties correspond to major cities: Chicago, Los Angeles,
Houston, and Phoenix. The global structure of MuRE + KEN embeddings better reflects the population of
the counties, in particular separating the rural counties from those related to major cities. A simple linear
projection of the MuRE + KEN embeddings suffices to roughly capture the rural-urban gradients, while it
is less clear on MuRE embeddings

707Machine Learning (2023) 112:687–720

1 3

we use K-Nearest Neighbors models (whose hyper-parameters are tuned) and aim to pre-
dict statistics about donations to projects in KDD14, students connections to MOOCs in
KDD15 and county attributes in YAGO3. We measure performance with cross-validation
scores. See Appendix 7.4 for the exact evaluation setup.

Results The scores reported in Table 3 confirms that adding KEN significantly improves
the ability to capture numerical information related to the entities: in all settings adding
KEN leads to better reconstruction of numerical attributes, and also outperforms LiteralE
by a wide margin. In addition, results show that these embeddings capture to some extent
the whole distribution of numerical attributes: their mean, but also their quantiles.

4.6 Ablation study

We study in this section the influence of two ingredients of KEN on the quality of entity-
embeddings: (1) the quantile normalization of numerical values at the input, and (2) the
presence of a ReLU activation function at the output (Fig. 6).

Methodology We measure the drop in performance relative to the original MuRE +
KEN when: (1) replacing the quantile normalization by a min-max normalization
x� =

x−xmin

xmax−xmin
 and 2) removing the ReLU activation. We also compare KEN to a standard

binning practice, where numerical values are divided into bins and an embedding is learned
for each bin. In practice we use 20 bins and split values evenly across bins to be robust to
fat-tailed distributions: the first bin corresponds to values in the top 5%, the second bin to
values in the range 5–10%, and so on... We use gradient boosted tree models for prediction,
and the same setup as in Table 1.

Results Table 4 shows that all ingredients of KEN are important, especially the quantile
normalization, and confirms that KEN leads to markedly better features than binning.

Table 3 Reconstructing numerical attributes: cross-validation scores (R2) of simple nearest-neighbour
models predicting the numerical attributes associated to an entity from its embedding

Best scores are in bold

Target DistMult DistMult +
LiteralE

DistMult +
KEN

MuRE MuRE +
KEN

Donation amount
(KDD14)

Mean 0.20 ± 0.05 0.58 ± 0.14 0.62 ± 0.12 0.22 ± 0.06 0.66 ± 0.12

1st quartile 0.34 ± 0.05 0.46 ± 0.05 0.67 ± 0.10 0.34 ± 0.06 0.72 ± 0.12
3rd quartile 0.33 ± 0.05 0.48 ± 0.05 0.57 ± 0.10 0.33 ± 0.05 0.59 ± 0.09

Connection time
(KDD15)

Mean 0.09 ± 0.01 0.33 ± 0.01 0.92 ± 0.01 0.10 ± 0.02 0.97 ± 0.01

1st quartile 0.15 ± 0.01 0.27 ± 0.01 0.78 ± 0.01 0.15 ± 0.01 0.82 ± 0.01
3rd quartile 0.39 ± 0.02 0.45 ± 0.01 0.74 ± 0.01 0.39 ± 0.02 0.84 ± 0.01

County attributes
(YAGO3)

Population 0.73 ± 0.17 0.71 ± 0.22 0.73 ± 0.15 0.32 ± 0.08 0.51 ± 0.16

Latitude 0.92 ± 0.01 0.72 ± 0.03 0.93 ± 0.01 0.72 ± 0.03 0.91 ± 0.01
Longitude 0.83 ± 0.07 0.72 ± 0.05 0.90 ± 0.07 0.64 ± 0.06 0.81 ± 0.06

708 Machine Learning (2023) 112:687–720

1 3

4.7 Capturing deep features with embeddings

Methodology We want to determine if embeddings can capture information deep in the
knowledge graph, indirectly chaining relations as in Deep Feature Synthesis. For this pur-
pose, we compare in Table 5 cross-validation scores of gradient boosted tree models with
embeddings trained either on the full YAGO3 database, or on a subset of YAGO3 contain-
ing only the triples related to the target entities. For example, a subset with city-related
triples would contain direct information about cities (e.g. the state in which they belong),
but no information about the states themselves. Such “deep” information can however be
helpful for analytical tasks, and should be captured by embeddings models. The evaluation
setup is the same as in Table 1.

Results Table 5 shows that adding triples indirectly related to the target entities improves
the quality of their embeddings; hence embedding models do capture deep information.

4.8 Influence of table representations

Methodology When the source data consists of tables, it must be represented as a knowl-
edge graph to be leveraged by our approach. We introduced in Sect. 3.3 three table-to-
graph strategies, which differ on which entities are used as heads when generating triples
(Fig. 7). We either use: (1) all entities, (2) only target entities (which require some prior
knowledge of the downstream application) or (3) row ids. We evaluate the performance
of these strategies with cross-validation scores on KDD14 and KDD15, using gradient
boosted tree models for prediction (as in Table 1). To show the importance of choosing
well the column with the target entities in the second approach, we also evaluate a simple
baseline taking entities from another column.

Results Based on Table 6, the top performing table-to-graph strategy consists in generat-
ing triples from target entities. Indeed, the resulting graph directly connects them to their
attributes, which facilitates the learning of embeddings. This intuition is confirmed when
taking instead entities from another column, as we observe a sharp drop in performance.
Interestingly, using all entities or row ids as head entities return embeddings that perform
reasonably well without being tailored for the specific task at hand. These methods can

Table 4 Ablation study: drop in cross-validation scores of variants of MuRE + KEN and binning, relatively
to the original MuRE + KEN

Scoring metrics are: average precision (KDD14), AUC (KDD15) and R2 for other datasets

Dataset Binning Variants of MuRE + KEN

No quantile normaliza-
tion

No ReLU tactivation

KDD14 − 0.044 − 0.068 − 0.045
KDD15 − 0.002 0 − 0.001
Elections − 0.008 − 0.020 − 0.004
Housing prices − 0.091 − 0.023 − 0.021
Accidents − 0.063 − 0.037 − 0.010
Movie revenues − 0.015 − 0.112 − 0.030
Employees − 0.011 − 0.007 0.002
Average across datasets − 0.038 − 0.047 − 0.016

709Machine Learning (2023) 112:687–720

1 3

provide general-purpose embeddings that perform well for various entities and applica-
tions. However, they either increase the number of triples (and thus the training time of
embeddings) or the number of entities.

5 Discussion

5.1 Embeddings capturing numerical information can provide feature enrichment

By relying on entity embeddings, our feature-synthesis pipeline departs strongly from the
standard approach of feature engineering in databases. Our extensive experiments confirm
that features created via knowledge graph embedding do capture the information needed

Table 5 Embedding can capture deep features: cross-validation scores (R2) of gradient boosted tree models
using as features either embeddings trained on the full YAGO3 dataset, or on a subset of YAGO3 contain-
ing only the triples related to the target entities

Dataset YAGO3 TransE TransE + KEN MuRE MuRE + KEN

Elections Subset 0.846 0.854 0.837 0.926
Full 0.899 0.939 0.945 0.966

Housing prices Subset 0.079 0.203 0.231 0.338
Full 0.321 0.447 0.571 0.604

Accidents Subset 0.117 0.170 0.243 0.345
Full 0.256 0.381 0.461 0.524

Movie revenues Subset − 0.003 − 0.004 0.052 0.064
Full 0.092 0.095 0.165 0.175

Employees Subset − 0.015 0.071 0.087 0.297
Full 0.003 0.214 0.109 0.313

Table 6 Influence of table representations: cross-validation scores of different strategies to represent tables
as a knowledge graph

Best scores are in bold. Second best scores are underlined
Scoring metrics are average precision (KDD14) and AUC (KDD15). We also report the number of entities
and triples in the graph from each method

Head entities in gener-
ated triples

KDD14 KDD15 # triples
(KDD14,
KDD15)

entities
(KDD14,
KDD15)MuRE MuRE + KEN MuRE MuRE + KEN

Embeddings tailored for specific entities

 Target entities 0.287 0.443 0.863 0.883 44 M 33 M 0.94 M 0.27 M
 Entities from

another column
0.227 0.233 0.861 0.863 44 M 33 M 0.94 M 0.27 M

General-purpose embeddings

 All entities 0.289 0.406 0.864 0.883 155 M 66 M 0.94 M 0.27 M
 Row IDs 0.282 0.409 0.856 0.878 51 M 41 M 8.4 M 8.5 M

710 Machine Learning (2023) 112:687–720

1 3

for a statistical task. Embedding models coupled with KEN improve over manual feature
engineering on almost all tasks.

We observe clear trends in the experimental results: Table 1 reveals the importance of
capturing well (1) the numerical attributes and (2) relational, rather than contextual infor-
mation. Indeed, across all analytic tasks and embedding methods explored, adding KEN
leads to features that better capture numerical attributes and improve the downstream
analytic task (Tables 3, 1). It also improves over binning and LiteralE by a large margin.
The ingredients that we introduced in KEN, such as the quantile normalization to account
for the distribution of numerical attributes significantly improves performance (Table 4).
Improving models of relations makes a strong difference in how useful the resulting fea-
tures are for downstream tasks: there are notable improvements from RDF2vec—no
explicit model of the relation—to MuRE (Table 1).

5.2 Deep feature synthesis cannot go so deep

Automated feature-engineering methods like Deep Feature Synthesis greatly reduce the
human cost of manually handcrafting features across tables, while achieving excellent
results on all datasets. With deep-enough features, DFS performs consistently better than
manual feature engineering and often slightly better that MuRE + KEN (Table 1).

But this ability to generate good features comes at the price of scalability. Since DFS
combines aggregation functions and features at each depth, the time and space complexity,
as well as the number of created features grow exponentially (Table 2). Even on relatively
small databases like KDD14 or YAGO3, building features for all entities with DFS at a
depth of 2 or 3 becomes intractable, with the memory requirements greatly exceeding our
machine capacity (400 GB). Besides memory limitations, the number of features quickly
reaches tens or hundreds of thousands, making statistical models harder and slower to train
(e.g. 180x longer on Employees), and reducing feature interpretability.

Yet, the databases that we have explored are smaller than the latest repositories of gen-
eral knowledge: YAGO3 is 50 times smaller than YAGO4 Tanon et al. (2020). Progress
in linked open data is continuously increasing the amount of information available in a
consistent representation: DBPedia (Lehmann et al., 2015) currently contains 900 millions
triplets, and growth by a factor of 1.5 to 2 every two years (DBPedia Web Page, 2021). For
instance, we could not run DFS, even with a depth of 1, on YAGO4. Even if it could run, it
would provide a huge number of features, hard to leverage.

Embeddings, on the opposite, readily provide low-dimension representations (p = 200)
which are able to capture “deep” information, indirectly chaining relations (Table 5).
Finally, knowledge graph embedding methods are very scalable: embeddings are optimized
with stochastic gradient descent (O(#triplets)), and can be trained on huge amounts of data.
Further optimizations can make embedding techniques 2 − 5× faster than the implementa-
tions that we used (Zheng et al., 2020).

Knowledge graph embedding models are also naturally suited to capture complex rela-
tional patterns between discrete elements. This is unlike DFS, which struggles to encode
categorical features: ensembles of discrete entities (e.g. the cities located in a county) are
aggregated by their most common element and then one-hot encoded, discarding a lot of
information in the process.

711Machine Learning (2023) 112:687–720

1 3

5.3 Current limitations call for further work

Interpretability The biggest drawback of automatic feature generation is that it leads to
models harder to interpret. Indeed, features are often manually crafted to capture a quantity
of interest, such as wealth of a locality. Data scientists can then reason about the role of the
corresponding quantity, for instance the impact of local wealth on housing prices. A chal-
lenge to these interpretations is that the crafted feature must represent well the quantity, but
for this the burden is on the analyst and not the tool. With automatically generated features,
the quantities of interest must be identified from the features. This is typically hard: even
in DFS where features are associated with descriptive labels, we may have to distinguish
between many partly redundant features. This is even harder in embedding models, which
are black-box and do not associate human-understandable labels to individual features.

Matching and out-of-vocabulary The target data may come with different naming con-
ventions as the source, for instance county names in the Elections dataset are written dif-
ferently than in YAGO3. In such case, a form of matching must be performed (e.g. Cook
County → Cook, Illinois). This is often done manually using domain-knowledge. Further
work should explore automated techniques, for instance using fuzzy or similarity joins
(Mann et al., 2016; Silva et al., 2010), or adapting NLP techniques used to create embed-
dings robust to out-of-vocabulary entities (Bojanowski et al., 2016; Pinter et al., 2017;
Chen et al., 2022).

6 Conclusion

We have shown how turn-key extraction of embeddings from relational data can distill
valuable information from a database, synthesizing feature vectors for data enrichment in
downstream analytic tasks. For these feature vectors to be most useful in the analytic tasks,
experiments show that embedding methods must model well the different relations between
entities, and capture their numerical attributes. For this, we proposed to use knowledge
graph embedding models designed for link prediction, and extended them to numerical
attribute with KEN. Our extensive experiments show that these embeddings improve mark-
edly upon manual feature engineering and embedding methods traditionally used for fea-
ture extraction such as RDF2vec. They are also competitive with automatic feature engi-
neering methods based on systematic denormalizations like Deep Feature Synthesis, but do
not face the same scalability challenges.

A pipeline to minimize human effort Our pipeline is designed to facilitate data prepara-
tion. Not only does it circumvent the human labor of designing manual features, but also
is minimizes data integration and wrangling challenges. Operating on a triple representa-
tion –sometimes automatically built from tables– removes many tedious aspects of data
input. For instance it works well on tables in “long” or “wide” formats. It also allows to
capture and mix information from various data structures: tables, knowledge graphs... Yet,
richer representations may be useful in the long run to better capture complex relationships
within the data, such as temporal dependencies (Arora & Bedathur, 2020).

Towards general-purpose feature enrichment The scalability of our approach enabled to
easily extract embeddings from YAGO3, capturing the corresponding information drawn
from Wikipedia. These could readily be used as feature enrichment to improve statistical
analysis on 5 different socio-economic datasets we investigated. Our work thus opens a
path to capturing the large and complex stores of general information into feature vectors

712 Machine Learning (2023) 112:687–720

1 3

easy to integrate into any analysis. As such it contributes a major step towards facilitating
data science with less manual data preparation.

Appendix

Downstream tasks

Tabular data

– The KDD14 competition aims to predict “exciting” educational projects on a crowd-
funding platform (binary target). The source data consists of three tables describing
the projects, the donations they received, and the resources they need. The exact col-
umns used in our experiments are described in Table 7. Since embedding models with
KEN are designed for discrete entities or numerical values, we perform minimal pre-
processing on a few columns with different data types. For instance, we encode dona-
tions_message (free text) by their length. Temporal data, such as donation_timestamp
are converted to a number of days after the project posting date. We also convert date_
posted to a number of days after an arbitrary reference date. For a fair comparison, we
use the same preprocessed features when running DFS.

– The KDD15 challenge aims to predict student dropout prediction in MOOCs (binary
target), using as source data 4 tables that contain information about the courses and
how often students interacted with them (see Table 8). To account for the temporal
information in KDD15, we replace logs times (date) by numbers in [0, 1], describing
when they occur relatively to the courses start/end dates. We also replace the courses
starting dates by a number of days after a reference date, and drop the ending dates as
all courses have the same duration (29 days), making this feature uninformative.

Datasets augmented with YAGO3 embeddings

– Elections: we consider voting statistics in the 2020 presidential election, and aim to
predict the number of votes per party in 3000 US counties. As the original data (MIT
Election Data Science Lab, 2018) come with no general information about counties, we
enrich them with county embeddings learned on YAGO3.

– Housing prices: we want to predict the typical housing price in 23000 US cities using
their YAGO3 embeddings. We take target estimates from the Zillow group (Zillow,
2021).

– Accidents: we aim to predict the number of accidents in 8500 US cities between 2016
and 2020 using their YAGO3 embeddings. We use data described in Moosavi et al.
(2019).

– Movie revenues: we aim to predict the box-office revenues of 4900 movies using their
YAGO3 embeddings. We used data from: https:// www. kaggle. com/ rouna kbanik/ the-
movies- datas et.

– Employees - We aim to predict the number of employees in 3000 companies using their
YAGO3 embeddings. We used data from: https:// www. kaggle. com/ peopl edata labssf/
free-7- milli on- compa ny- datas et.

https://www.kaggle.com/rounakbanik/the-movies-dataset
https://www.kaggle.com/rounakbanik/the-movies-dataset
https://www.kaggle.com/peopledatalabssf/free-7-million-company-dataset
https://www.kaggle.com/peopledatalabssf/free-7-million-company-dataset

713Machine Learning (2023) 112:687–720

1 3

Since all these targets span over several orders of magnitude. We predict log(target) instead
of the target in our experiments.

Statistics on source datasets We give in Table 9 the number of entities, relations
and triples in the knowledge graph representations of the source data used to learn
entity-embeddings.

Table 7 Description of the KDD14 dataset

The outcomes table contains the target entities project_id for which we want to create feature vectors, and
the binary value to predict is_exciting. We always use project_id as the head column when building the
graph

Outcomes
 Project_id (str)
 Is_exciting (target)

Donations
 Project_id (str)
 Donor_city (str)
 Donor_state (str)
 Is_teacher_acct (bool)
 Donation_timestamp (date)
 Donation_to_project (float)
 Donation_optional_support (float)
 Donation_message (text)

Resources
 Project_id (str)
 Project_resource_type (str)
 Item_unit_price (float)
 Item_quantity (int)

Projects
 Project_id (str)
 Teacher_id (str)
 School_id (str)
 School_city (str)
 School_state (str)
 Primary_focus_subject (str)
 Primary_focus_area (str)
 Secondary_focus_subject (str)
 Secondary_focus_area (str)
 Resource_type (str)
 Poverty_level (str)
 Grade_level (str)
 Eligible_double_your_impact_match (bool)
 Eligible_almost_home_match (bool)
 Total_price_excluding_optional_support (float)
 Total_price_including_optional_support (float)
 Students_reached (float)
 Date_posted (date)

714 Machine Learning (2023) 112:687–720

1 3

Approaches considered for evaluation

Our approach When training embedding models (MuRE, DistMult and TransE), we do not
tune hyper-parameters and use the following values in all experiments:

– Embedding dimension = 200.
– Distance in scoring function: �2 norm for MuRE, �1 norm for TransE and DistMult.
– Batch size = 105.
– Optimizer: Adam with learning rate = 10−3.
– Loss function: margin loss with � = 4 in TransE, and a softplus loss for MuRE and

DistMult.
– Negative sampling: for each positive triple (h, r, t), we generate 10 negative samples by

replacing the head h by a random entity h′ that co-occurs with the relation r. Doing so
provides harder negative triples and improves the results.

We then train each model for 40 epochs, and pick the epoch ∈ [2, 4, 8, 16, 24, 32, 40] that
leads to the best cross-validation scores in downstream tasks.

A technical subtlety with MuRE is that we must define biases bt(x) for numerical values
x. We do so by learning a constant bias br for each numerical attribute r: ∀x, bt(x) = br.

Table 8 Description of the KDD15 dataset

The outcomes table contains the target entities enrollment_id for which we want to create feature vectors,
and the binary value to predict dropout. We use the first column of each table as head column when build-
ing the graph

Outcomes
 Enrollment_id (str)
 Dropout (target)

Enrollments
 Enrollment_id (str)
 Student_id (str)
 Course_id (str)

Dates
 Course_id (str)
 From (date)—Course starting date
 To (date)—Course ending date

Objects (course modules)
 Module_id (str) — A module of a course
 Course_id (str)
 Category (str)

Logs (student interactions with courses)
 Enrollment_id (str)
 Event (str)—type of interaction
 Source (str)—event source
 Object (str)—module being interacted with
 Time (date)—time of the event

715Machine Learning (2023) 112:687–720

1 3

Manual feature engineering We describe below the typical feature engineering steps
that we performed. See Table 10 for the exact list of handcrafted features.

– Identifying relevant features.
– Building features using joins and simple aggregation functions (mean, counts).
– One-hot encoding of low-cardinality categorical features.
– Removing irrelevant, redundant, or hard to encode features (e.g. with high cardinality).

Table 9 Statistics of
the knowledge graphs
representations for the data
used to train embeddings in our
experiments

Numbers in parenthesis describe the part of numerical relations and
triplets in the total

Source data Entities Relations Triples

KDD14 945 K 27 (10) 44 M (22.3 M)
KDD15 227 K 9 (2) 33 M (8.2 M)
YAGO3 2.8 M 58 (21) 7.2 M (1.6 M)

Table 10 Manually handcrafted features for each dataset

Dataset Handcrafted features

Numerical Categorical
(one-hot encoded)

KDD14 –Donation_to_project (mean, counts)
–Length_donation_message (mean) –Primary_focus_subject
–Students_reached –Primary_focus_area
–Total_price_excluding_optional_support –Resource_type
–Total_price_including_optional_support –Poverty_level
–Eligible_double_your_impact_match –Grade_level
–Eligible_almost_home_match

KDD15 –# of interactions (events) with courses –Course_id
–Mean event time (relative to the course starting/ending dates)
–Course starting date
–# of modules per course

Elections County population, latitude, longitude, area, population
density

Housing prices City population, latitude, longitude, area, population density
Accidents City population, latitude, longitude, area, population density
Movie revenues –Duration of the movie –Country of production

–Number of actors, creators, editors, directors, music writers
Employees –Mean value of all numerical attributes that exist for at least

5% of the companies
–Counts of all non-numerical attributes that exist for at least

5% of the companies

716 Machine Learning (2023) 112:687–720

1 3

Ta
bl

e
11

Q

ua
lit

y
of

 th
e

ex
tra

ct
ed

 fe
at

ur
es

: c
ro

ss
-v

al
id

at
io

n
sc

or
es

 a
nd

 s
ta

nd
ar

d
de

vi
at

io
ns

 o
n

ta
rg

et
 d

at
as

et
s

us
in

g
ei

th
er

 e
m

be
dd

in
gs

, d
ee

p
fe

at
ur

e
sy

nt
he

si
s,

or
 m

an
ua

lly

ha
nd

cr
af

te
d

ve
ct

or
s a

s f
ea

tu
re

s

B
es

t s
co

re
s a

re
 in

 b
ol

d.
 S

ec
on

d
be

st
sc

or
es

 a
re

 u
nd

er
lin

ed

A
pp

ro
ac

h
Fe

at
ur

e
en

ric
hm

en
t f

ro
m

 d
om

ai
n-

sp
ec

ifi
c

ta
bl

es
Fe

at
ur

e
en

ric
hm

en
t f

ro
m

 a
 g

en
er

al
-p

ur
po

se
 k

no
w

le
dg

e
gr

ap
h,

 Y
A

G
O

3

K
D

D
14

K
D

D
15

El
ec

tio
ns

H
ou

si
ng

 p
ric

es
A

cc
id

en
ts

M
ov

ie
 re

ve
nu

es
Em

pl
oy

ee
s

Ad
va

nc
ed

 a
na

ly
tic

 m
od

el
s:

 g
ra

di
en

t b
oo

ste
d

tre
es

F
ea

tu
re

 v
ec

to
rs

 ta
ilo

re
d

fo
r

ta
rg

et
 e

nt
iti

es

M
an

ua
l f

ea
tu

re
 h

an
dc

ra
fti

ng
0.

26
7

±
 0

.0
04

0.
86

9
±

 0
.0

02
0.

95
5

±
 0

.0
03

0.
27

3
±

 0
.0

11
0.

36
0

±
 0

.0
21

0.
14

1
±

 0
.0

17
0.

36
7

±
 0

.0
35

D
FS

, d
ep

th
 0

0.
15

8
±

 0
.0

02
0.

58
4

±
 0

.0
05

0.
83

6
±

 0
.0

07
0.

16
5

±
 0

.0
10

0.
16

2
±

 0
.0

16
0.

01
6

±
 0

.0
10

0.
12

6
±

 0
.0

36
D

FS
, d

ep
th

 1
0.

46
1

±
 0

.0
06

0.
88

0
±

 0
.0

03
0.

96
0

±
 0

.0
03

0.
36

9
±

 0
.0

14
0.

42
3

±
 0

.0
20

0.
15

3
±

 0
.0

19
0.

38
2

±
 0

.0
35

D
FS

, d
ep

th
 2

0.
46

3
±

 0
.0

06
0.

88
0

±
 0

.0
03

0.
96

4
±

 0
.0

03
0.

60
5

±
 0

.0
29

0.
57

0
±

 0
.0

16
0.

16
3

±
 0

.0
19

0.
38

4
±

 0
.0

35
D

FS
, d

ep
th

 3
0.
49
9

±
 0

.0
07

0.
88

1
±

 0
.0

03
0.
96
9

±
 0

.0
02

0.
68

3
±

 0
.0

19
0.
59
0

±
 0

.0
14

0.
18

9
±

 0
.0

23
0.

38
1

±
 0

.0
33

D
FS

, d
ep

th
 3

 +
 o

nt
ol

og
y

0.
95

8
±

 0
.0

05
0.
68
6

±
 0

.0
19

0.
58

9
±

 0
.0

15
0.

25
9

±
 0

.0
23

0.
39
0

±
 0

.0
31

R
D

F2
ve

c
0.

17
3

±
 0

.0
03

0.
84

9
±

 0
.0

03
0.

87
3

±
 0

.0
09

0.
35

5
±

 0
.0

29
0.

23
6

±
 0

.0
19

0.
07

4
±

 0
.0

14
0.

38
0

±
 0

.0
47

G
en

er
al

-p
ur

po
se

 fe
at

ur
e

ve
ct

or
s

Tr
an

sE
0.

24
2

±
 0

.0
04

0.
85

4
±

 0
.0

03
0.

89
9

±
 0

.0
05

0.
32

1
±

 0
.0

46
0.

25
6

±
 0

.0
19

0.
09

2
±

 0
.0

16
0.

00
3

±
 0

.0
16

Tr
an

sE
 +

 K
EN

0.
33

4
±

 0
.0

04
0.

87
5

±
 0

.0
03

0.
93

9
±

 0
.0

06
0.

44
7

±
 0

.0
30

0.
38

1
±

 0
.0

20
0.

09
5

±
 0

.0
18

0.
21

4
±

 0
.0

31
D

ist
M

ul
t

0.
26

4
±

 0
.0

04
0.

85
9

±
 0

.0
03

0.
91

6
±

 0
.0

43
0.

52
5

±
 0

.0
22

0.
45

4
±

 0
.0

23
0.

14
5

±
 0

.0
19

0.
11

7
±

 0
.0

32
D

ist
M

ul
t +

 L
ite

ra
lE

0.
28

6
±

 0
.0

05
0.

87
0

±
 0

.0
03

0.
84

1
±

 0
.0

38
0.

48
4

±
 0

.0
13

0.
44

3
±

 0
.0

22
0.

11
0

±
 0

.0
21

0.
22

7
±

 0
.0

29
D

ist
M

ul
t +

 K
EN

0.
38

6
±

 0
.0

07
0.

87
9

±
 0

.0
03

0.
92

1
±

 0
.0

53
0.

54
2

±
 0

.0
20

0.
48

6
±

 0
.0

22
0.

16
2

±
 0

.0
21

0.
24

2
±

 0
.0

34
M

uR
E

0.
28

7
±

 0
.0

05
0.

86
3

±
 0

.0
03

0.
94

5
±

 0
.0

15
0.

57
1

±
 0

.0
30

0.
46

1
±

 0
.0

21
0.

16
5

±
 0

.0
22

0.
10

9
±

 0
.0

38
M

uR
E

+
 K

EN
0.

44
3

±
 0

.0
06

0.
88
3

±
 0

.0
03

0.
96

6
±

 0
.0

05
0.

60
4

±
 0

.0
20

0.
52

4
±

 0
.0

20
0.

17
5

±
 0

.0
25

0.
31

3
±

 0
.0

39
M

uR
E

+
 K

EN
 +

 o
nt

ol
og

y
0.

95
7

±
 0

.0
14

0.
60

2
±

 0
.0

28
0.

54
1

±
 0

.0
22

0.
26
6

±
 0

.0
30

0.
34

5
±

 0
.0

40
Si

m
pl

e
an

al
yt

ic
 m

od
el

s:
 K

-N
ea

re
st

 N
ei

gh
bo

rs
D

FS
, d

ep
th

 0
0.

07
8

±
 0

.0
01

0.
50

4
±

 0
.0

30
0.

74
2

±
 0

.0
24

0.
00

4
±

 0
.0

27
0.

13
0

±
 0

.0
21

−
 0

.0
26

 ±
 0

.0
61

0.
00

4
±

 0
.1

40
D

FS
, d

ep
th

 1
0.

11
0

±
 0

.0
02

0.
82

1
±

 0
.0

04
0.

71
5

±
 0

.0
19

0.
29

7
±

 0
.0

15
0.

32
0

±
 0

.0
23

0.
12

1
±

 0
.0

21
0.

14
4

±
 0

.0
20

D
FS

, d
ep

th
 2

0.
10

7
±

 0
.0

01
0.

82
1

±
 0

.0
04

0.
76

3
±

 0
.0

15
0.

39
5

±
 0

.0
10

0.
34

9
±

 0
.0

20
0.

11
9

±
 0

.0
22

0.
08

6
±

 0
.0

28
D

FS
, d

ep
th

 3
0.

14
2

±
 0

.0
02

0.
81

6
±

 0
.0

03
0.

61
8

±
 0

.0
50

0.
50

3
±

 0
.0

11
0.

36
1

±
 0

.0
21

0.
04

3
±

 0
.0

37
0.

02
5

±
 0

.0
22

M
uR

E
+

 K
EN

0.
20
5

±
 0

.0
03

0.
83
0

±
 0

.0
03

0.
93
6

±
 0

.0
17

0.
53
6

±
 0

.0
13

0.
48
8

±
 0

.0
21

0.
13
6

±
 0

.0
24

0.
27
3

±
 0

.0
34

717Machine Learning (2023) 112:687–720

1 3

Quality of the extracted features

When using gradient boosted tree models (which offer native support for missing values),
we use the default parameters from sklearn, except on the smaller datasets using YAGO3
embeddings. For these datasets, we tune the following model parameters with a cross-vali-
dated grid search: max_depth ∈ [2, 4, 6, None] and min_samples_leaf ∈ [4, 6, 10, 20].

When using KNNs, we tune the number of neighbors ∈ [1, 3, 5, 10, 30], except on
KDD14/15. We also impute missing values (common in DFS) with the median of each fea-
ture, and then normalize feature values between 0 and 1 with min-max scaling.

We report in Table 1 fivefold cross-validation scores, averaged across 5 random shuf-
fles of the data (3 for KDD14/15) and over 3 different seeds for training the RDF2vec and
knowledge graph embeddings (1 for KDD14/15). We also provide in Table the standard
deviations across train-test splits associated to these scores.

To evaluate the ability of knowledge graph embedding models to capture entity types,
we sample 1000 entities from the following datasets: Elections (counties), Housing prices
(cities), Movie revenues (movies), Employees (companies), for a total of 4000 entities.
When then measure with cross-validation how well MuRE + KEN embeddings predict
entity types, using a simple KNN model whose number of neighbors ∈ [1, 3, 5, 10, 30] is
tuned. The cross-validation parameters are the same as above.

KEN helps embeddings capture numerical attributes

We obtain the results from Table 3 by predicting certain numerical attributes of entities
from their embeddings, using simple K-Nearest Neighbors models. For the embeddings,
we kept those from Table 1. We also tuned the hyper-parameters of nearest neighbors mod-
els to maximize prediction performance, using a cross-validated grid search over the fol-
lowing parameters:

– Number of neighbors ∈ [1, 2, 3, 4, 8, 16].
– Distance: �1 or �2 norm.
– Weighting of the neighbors: uniform or proportional to the distance with the target

entity.

The final scores are then obtained with fivefold cross-validation, averaged over 5 repeats.

Author Contributions Alexis Cvetkov-Iliev and Gaël Varoquaux conceived of the presented idea. Alexis
Cvetkov-Iliev implemented the approach and carried out the experiments. Gaël Varoquaux and Alexandre
Allauzen were involved in supervising the project and helped designing the experiments. All authors dis-
cussed the results and contributed to the final manuscript.

Funding The research leading to these results received funding from the French Agence Nationale de la
Recherche, under Grant Agreement LearnI ANR-20-CHIA-0026.

Availability of data and materials The data used to produce these results can be downloaded at https:// drive.
google. com/ file/d/ 1v4tw xrOe_ I9GSY 9Xd7G EqnGL h3- 4cGxn/ view? usp= shari ng.

Code availability The code used to produce these results can be found at https:// github. com/ alexis- cvetk ov/
KEN.

https://drive.google.com/file/d/1v4twxrOe_I9GSY9Xd7GEqnGLh3-4cGxn/view?usp=sharing
https://drive.google.com/file/d/1v4twxrOe_I9GSY9Xd7GEqnGLh3-4cGxn/view?usp=sharing
https://github.com/alexis-cvetkov/KEN
https://github.com/alexis-cvetkov/KEN

718 Machine Learning (2023) 112:687–720

1 3

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

Ethical approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

References

Ali, M., Berrendorf, M., Hoyt, C. T., Vermue, L., Galkin, M., Sharifzadeh, S., Fischer, A., Tresp, V., &
Lehmann, J. (2020). Bringing light into the dark: A large-scale evaluation of knowledge graph embed-
ding models under a unified framework. arXiv preprintarXiv: 2006. 13365.

Ali, M., Berrendorf, M., Hoyt, C. T., Vermue, L., Sharifzadeh, S., Tresp, V., & Lehmann, J. (2021). Pykeen
1.0: A python library for training and evaluating knowledge graph embeddings. Journal of Machine
Learning Research, 22(82):1–6.

Arora, S., & Bedathur, S. (2020). On embeddings in relational databases. arXiv: 2005. 06437.
Balazevic, I., Allen, C., & Hospedales, T. (2019). Multi-relational poincaré graph embeddings. Neural

Information Processing Systems, 32, 4463.
Bauer, F., & Kaltenböck, M. (2011). Linked open data: The essentials (Vol. 710). Edition mono/mono-

chrom, Vienna.
Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword informa-

tion. arXiv: 1607. 04606.
Bordawekar, R., & Shmueli, O. (2017). Using word embedding to enable semantic queries in relational

databases. In Proceedings of the 1st workshop on data management for end-to-end machine learning.
DEEM.

Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., & Yakhnenko, O. (2013). Translating embeddings for
modeling multi-relational data. In Neural information processing systems (p. 2787).

Cappuzzo, R., Papotti, P., & Thirumuruganathan, S. (2020). Creating embeddings of heterogeneous rela-
tional datasets for data integration tasks. In SIGMOD (p. 1335).

Chen, L., Varoquaux, G., & Suchanek, F. (2022). Imputing out-of-vocabulary embeddings with love makes
language models robust with little cost. In ACL 2022-60th annual meeting of the association for com-
putational linguistics.

Cochez, M., Ristoski, P., Ponzetto, S. P., & Paulheim, H. (2017). Global rdf vector space embeddings. In
International semantic web conference (pp. 190–207). Springer.

CrowdFlower. (2016). Data science report. Retrieved from https:// visit. figure- eight. com/ rs/ 416- ZBE- 142/
images/ Crowd Flower_ DataS cienc eRepo rt_ 2016. pdf.

d’Amato, C., Quatraro, N. F., & Fanizzi, N. (2021). Injecting background knowledge into embedding models
for predictive tasks on knowledge graphs. In 18th extended semantic web conference—research track.

DBPedia web page. Retrieved November 18, 2021, from https:// www. dbped ia. org/ resou rces/ latest- core
Egami, S., Nishimura, S., & Fukuda, K. (2021). A framework for constructing and augmenting knowledge

graphs using virtual space: Towards analysis of daily activities. In 2021 IEEE 33rd international con-
ference on tools with artificial intelligence (ICTAI) (pp. 1226–1230).

Gesese, G. A., Biswas, R., Alam, M., & Sack, H. (2021). A survey on knowledge graph embeddings with
literals: Which model links better literal-ly? Semantic Web, 12(4) 617–647. https:// doi. org/ 10. 3233/
SW- 200404

Grohe, M. (2020). Word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of
structured data. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI symposium on principles of
database systems, PODS’20.

Kaggle Machine Learning & Data Science Survey (2017). https:// www. kaggle. com/ ash316/ novice- to- grand
master.

Kanter, J. M., & Veeramachaneni, K. (2015). Deep feature synthesis: Towards automating data science
endeavors. In IEEE international conference on data science and advanced analytics (DSAA) (pp.
1–10).

http://arxiv.org/abs/2006.13365
http://arxiv.org/abs/2005.06437
http://arxiv.org/abs/1607.04606
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf
https://www.dbpedia.org/resources/latest-core
https://doi.org/10.3233/SW-200404
https://doi.org/10.3233/SW-200404
https://www.kaggle.com/ash316/novice-to-grandmaster
https://www.kaggle.com/ash316/novice-to-grandmaster

719Machine Learning (2023) 112:687–720

1 3

Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining, (pp.
262–286). Springer.

Kristiadi, A., Khan, M. A., Lukovnikov, D., Lehmann, J., & and Fischer, A. (2019). Incorporating liter-
als into knowledge graph embeddings. In International Semantic Web Conference (pp. 347–363).
Springer, Cham.

Lam, H. T., Buesser, B., Min, H., Minh, T. N., Wistuba, M., Khurana, U., Bramble, G., Salonidis, T., Wang,
D., & Samulowitz, H. (2021). Automated data science for relational data. In International Conference
on Data Engineering (ICDE) (p. 2689). IEEE.

Lam, H. T., Minh, T. N., Sinn, M., Buesser, B., & Wistuba, M. (2019). Neural feature learning from rela-
tional database. arXiv: 1801. 05372.

Lam, H. T., Thiebaut, J. M., Sinn, M., Chen, B., Mai, T., & Alkan, O. (2017). One button machine for auto-
mating feature engineering in relational databases. arXiv: 1706. 00327.

Lavrač, N., Škrlj, B., & Robnik-Šikonja, M. (2020). Propositionalization and embeddings: Two sides of the
same coin. Machine Learning, 109(7), 1465–1507.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., et al. (2015). Dbpedia—A
large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web, 6, 167.

Mahdisoltani, F., Biega, J., & Suchanek, F. (2013). YAGO3: A knowledge base from multilingual Wikipe-
dias. In CIDR.

Mann, W., Augsten, N., & Bouros, P. (2016). An empirical evaluation of set similarity join techniques. Pro-
ceedings of the VLDB Endowment, 9, 636.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances in Neural Information Processing Systems (p.
3111).

MIT Election Data Science Lab. (2018). County presidential election returns 2000–2020. Harvard Data-
verse. https:// doi. org/ 10. 7910/ DVN/ VOQCHQ

Moosavi, S., Samavatian, M.H., Parthasarathy, S., & Ramnath, R. (2019). A countrywide traffic accident
dataset. arXiv: 1906. 05409.

Paulheim, H. (2013). Exploiting linked open data as background knowledge in data mining. In Proceedings
of the 2013 international conference on data mining on linked data, DMoLD’13 (pp. 1–10).

Paulheim, H., & Fümkranz, J. (2012). Unsupervised generation of data mining features from linked open
data. In Proceedings of the 2nd international conference on web intelligence, mining and semantics,
WIMS ’12.

Pellissier Tanon, T., Weikum, G., & Suchanek, F. (2020). Yago 4: A reason-able knowledge base. In A.
Harth, S. Kirrane, A.-C. Ngonga Ngomo, H. Paulheim, A. Rula, A. L. Gentile, et al. (Eds.), The
semantic web (pp. 583–596). Springer.

Pinter, Y., Guthrie, R., & Eisenstein, J. (2017). Mimicking word embeddings using subword RNNs. arXiv:
1707. 06961.

Portisch, J., Heist, N., & Paulheim, H. (2022). Knowledge graph embedding for data mining vs. knowledge
graph embedding for link prediction—Two sides of the same coin? Semantic Web, 13(3), 399–422.
https:// doi. org/ 10. 3233/ SW- 212892.

Ristoski, P., & Paulheim, H. (2014). A comparison of propositionalization strategies for creating features
from linked open data. Linked Data for Knowledge Discovery, 6.

Ristoski, P., & Paulheim, H. (2016). Rdf2vec: Rdf graph embeddings for data mining. In SEMWEB.
Ristoski, P., & Paulheim, H. (2016). Semantic web in data mining and knowledge discovery: A comprehen-

sive survey. Journal of Web Semantics, 36, 1–22.
Ristoski, P., Rosati, J., Noia, T. D., De Leone, R., & Paulheim, H. (2019). Rdf2vec: Rdf graph embeddings

and their applications. Semantic Web, 10, 721.
Saeed, M. R., & Prasanna, V. K. (2018). Extracting entity-specific substructures for RDF graph embedding.

In 2018 IEEE international conference on information reuse and integration (IRI) (pp. 378–385).
Silva, Y. N., Aref, W. G., & Ali, M. H. (2010). The similarity join database operator. In International con-

ference on data engineering (ICDE) (p. 892). IEEE.
Sousa, R., Silva, S., & Pesquita, C. (2020). Evolving knowledge graph similarity for supervised learn-

ing in complex biomedical domains. BMC Bioinformatics, 21(1), 1–19. https:// doi. org/ 10. 1186/
s12859- 019- 3296-1

Sun, Z., Deng, Z. H., Nie, J. Y., & Tang, J. (2019). Rotate: Knowledge graph embedding by relational rota-
tion in complex space. In International Conference on Learning Representations

Vandewiele, G., Steenwinckel, B., Agozzino, T., & Ongenae, F. (2022). pyrdf2vec: A python implementa-
tion and extension of rdf2vec. arXiv: 2205. 02283.

http://arxiv.org/abs/1801.05372
http://arxiv.org/abs/1706.00327
https://doi.org/10.7910/DVN/VOQCHQ
http://arxiv.org/abs/1906.05409
http://arxiv.org/abs/1707.06961
http://arxiv.org/abs/1707.06961
https://doi.org/10.3233/SW-212892
https://doi.org/10.1186/s12859-019-3296-1
https://doi.org/10.1186/s12859-019-3296-1
http://arxiv.org/abs/2205.02283

720 Machine Learning (2023) 112:687–720

1 3

Vandewiele, G., Steenwinckel, B., Bonte, P., Weyns, M., Paulheim, H., Ristoski, P., De Turck, F., & Onge-
nae, F. (2020). Walk extraction strategies for node embeddings with rdf2vec in knowledge graphs.
arXiv: 2009. 04404.

Wang, Q., Mao, Z., Wang, B., & Guo, L. (2017). Knowledge graph embedding: A survey of approaches and
applications. IEEE Transactions on Knowledge and Data Engineering, 29, 2724.

Wu, Y., & Wang, Z. (2018). Knowledge graph embedding with numeric attributes of entities. In Workshop
on representation learning for NLP (p. 132).

Yang, B., Yih, W. T., He, X., Gao, J., & Deng, L. (2015). Embedding entities and relations for learning and
inference in knowledge bases. In International Conference on Learning Representations.

Zhang, L., Zhang, S., & Balog, K. (2019). Table2vec: Neural word and entity embeddings for table popula-
tion and retrieval. In Proceedings of the 42nd international ACM SIGIR conference on research and
development in information retrieval (p. 1029).

Zheng, D., Song, X., Ma, C., Tan, Z., Ye, Z., Dong, J., Xiong, H., Zhang, Z. and Karypis, G. (2020). Dgl-ke:
Training knowledge graph embeddings at scale. In Proceedings of the 43rd international ACM SIGIR
conference on research and development in information retrieval (pp. 739–748).

Zillow. (2021). Home value index. Retrieved July 31, 2021, from https:// www. zillow. com/ resea rch/ data/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

http://arxiv.org/abs/2009.04404
https://www.zillow.com/research/data/

	Relational data embeddings for feature enrichment with background information
	Abstract
	1 Introduction
	2 Related work: extracting features from relational data
	2.1 The classic view: feature engineering
	2.2 Entity embeddings in relational data
	2.2.1 Embedding entities in a table
	2.2.2 Embeddings entities in knowledge graphs

	3 Contribution: multi-relational embeddings that capture numbers
	3.1 Relational rather than contextual embeddings to encode information
	3.2 Capturing numerical attributes with KEN
	3.3 Representing tables as knowledge graphs

	4 Empirical study
	4.1 Downstream tasks
	4.2 Approaches considered for evaluation
	4.3 Quality of the extracted features
	4.4 Scalability concerns
	4.5 KEN helps embeddings capture numerical attributes
	4.6 Ablation study
	4.7 Capturing deep features with embeddings
	4.8 Influence of table representations

	5 Discussion
	5.1 Embeddings capturing numerical information can provide feature enrichment
	5.2 Deep feature synthesis cannot go so deep
	5.3 Current limitations call for further work

	6 Conclusion
	References

