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Abstract
For many machine-learning tasks, augmenting the data table at hand with features built 
from external sources is key to improving performance. For instance, estimating housing 
prices benefits from background information on the location, such as the population density 
or the average income. However, this information must often be assembled across many 
tables, requiring time and expertise from the data scientist. Instead, we propose to replace 
human-crafted features by vectorial representations of entities (e.g. cities) that capture the 
corresponding information. We represent the relational data on the entities as a graph and 
adapt graph-embedding methods to create feature vectors for each entity. We show that two 
technical ingredients are crucial: modeling well the different relationships between entities, 
and capturing numerical attributes. We adapt knowledge graph embedding methods that 
were primarily designed for graph completion. Yet, they model only discrete entities, while 
creating good feature vectors from relational data also requires capturing numerical attrib-
utes. For this, we introduce KEN: Knowledge Embedding with Numbers. We thoroughly 
evaluate approaches to enrich features with background information on 7 prediction tasks. 
We show that a good embedding model coupled with KEN can perform better than manu-
ally handcrafted features, while requiring much less human effort. It is also competitive 
with combinatorial feature engineering methods, but much more scalable. Our approach 
can be applied to huge databases, creating general-purpose feature vectors reusable in vari-
ous downstream tasks.
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1 Introduction

For machine learning on data tables, a data scientist may encounter columns with many 
different discrete entries or entities, for instance cities in a housing price prediction setting 
(Fig. 1a). These city names can be encoded as a categorical variable, but generalizing to 
housing in a new city is then impossible. A good solution for such columns is often to use 
external sources to bring in information: the GPS coordinates of the cities, the population, 
the average income (Fig. 1b)... From a data-science perspective, this requires feature engi-
neering on relational data: merging and aggregating information across data sources to cre-
ate an enriched table with extra features (Fig. 1c). In practice however, such feature engi-
neering is difficult and time consuming for the human analyst, because it requires a good 
understanding of both the different data sources and the application domain. For instance 
the number of wealthy people living in a city may be important, but estimating it may 
require crossing information across many tables to build a single somewhat abstract indica-
tor. In fact, it is often recognized that data preparation is one of the biggest bottlenecks of 
data-science (Kaggle Industry Survey, 2018; Lam et al., 2021).

A specificity of learning across a complex relational structure is that different entries 
come with very different information. For instance, when collecting information on local 
wealth in Wikipedia—querying DBPedia (Lehmann et al., 2015) or YAGO (Mahdisoltani 
et al., 2013)—, a data scientist will find for San Francisco the GDP as well as many known 
individuals and companies. But for the neighboring locality Muir Beach, none of this is 

Features Target

City Area Price

San Francisco 30 m2 450,000$

San Diego 55 m2 ?

(a) Base Table
Features Target

MEAN(City.
Inhabitant_ID.Salary)

City.State.
Poverty_Rate

City.
Population Area Price

70,000$ 12.6% 0.87M 30 m2 450,000$

60,000$ 12.6% 1.4M 55 m2 ?

(c) Enriched Table

(b) External data

State Poverty_Rate

California 12.6%

Inhabitant_ID City Salary

A1 San Francisco 65,000$

A2 San Francisco 75,000$

A3 San Diego 60,000$

San Francisco

San Diego

California

0.87MState

1.4M
Population

Feature engineering

Fig. 1  The classical pipeline of feature enrichment. A base table (a) contains a target to predict and several 
features, including a categorical feature with discrete entities (here cities). To boost prediction performance, 
external data (b) about the entities of interest is incorporated into the base table –usually via tedious feature 
engineering– to obtain the enriched table (c). The external data (b) can come under various formats, e.g. 
tables or multi-relational graphs
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available. The data scientist may then need to dig information at the county level, which 
has a different set of attributes. The root of the challenge is that the original relational 
information is fundamentally irregular and cannot be represented to a learning algorithm as 
a fixed set of “features”.

Our goal here is to make it very easy for the data scientist to enrich a feature with infor-
mation from external data sources. Inspired by word embeddings (Mikolov et  al., 2013) 
which brought a breakthrough to text processing by their ease of use, we strive to associate 
entities to general-purpose feature vectors that can be used in multiple downstream tasks. 
This requires a feature extraction method that captures well entity attributes, and is scal-
able enough to be used on large databases. For instance, a general-purpose knowledge-base 
such as YAGO3 (Mahdisoltani et  al., 2013) is a particularly useful source of data, with 
information on 75,000 cities; but it is huge: millions of entities and hundreds of attributes. 
Existing automatic feature engineering methods, such as Deep Feature Synthesis (DFS) 
(Kanter & Veeramachaneni, 2015), are combinatorial: they greedily join and aggregate 
entity attributes across tables to create feature vectors. Their combinatorial nature leads to 
tractability challenges: running DFS on YAGO3 produces very high dimensional vectors 
( d ∼ 10,000–140,000) which entail large storage costs and computational hurdles in down-
stream machine-learning tasks.

Instead, we propose to use embedding models that learn a static vector representa-
tion for each entity. Indeed, they provide compact representations that can encode knowl-
edge about various entities into a fixed, low-dimensional space (e.g. d = 200 ). We learn 
these vectors from the external data, and add them to the base table as new features to 
enhance prediction performance. A pioneering work in this direction is RDF2vec (Ristoski 
& Paulheim, 2016a) and its variants, which have been used to learn entity embeddings 
from multi-relational graphs for various downstream tasks (Egami et al., 2021; Saeed & 
Prasanna, 2018; Ristoski et al., 2019; Sousa et al., 2020). These works directly build on 
word-embedding tools developed for natural language—namely word2vec (Mikolov et al., 
2013). As such, they leverage contextual information: as San Francisco and California are 
connected in the graph they are related. However, they do not account for the nature of 
these relations, which requires modeling the relational information: Wikipedia specifies 
that San Francisco is in California, but Sacremento is the capital of California. We will see 
that capturing well this information is important to generate feature vectors for downstream 
analytic applications. Another, more general, drawback of embedding methods is that they 
are designed for discrete entities, and are less suited to capture numerical attributes. Yet 
these attributes are often useful for the end task: densely populated cities tend to exhibit 
high housing prices for instance.

We propose here an approach that addresses these two limitations and provide high-
performance embeddings. To capture relational information, we rely on knowledge graph 
embedding models (Wang et al., 2017), widely used for graph completion but not studied 
for feature extraction purposes. In such models, embeddings are directly optimized to cap-
ture relationships between entities. We then introduce KEN (Knowledge Embedding with 
Numbers), a module that extends knowledge graph embedding models to numerical attrib-
utes. Finally, we conduct a thorough empirical evaluation of our approach, using entity 
embeddings to boost machine-learning performance in multiple tasks, and show that:

– Feature vectors obtained via knowledge graph embedding models perform much better 
than RDF2vec embeddings.

– Embeddings learned with KEN do capture numerical information, which greatly 
improves prediction performance in downstream tasks.
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– A good embedding model coupled with KEN outperforms manually handcrafted fea-
tures, while requiring much less human effort. It is also competitive with Deep Feature 
Synthesis, but is more scalable in terms of computation time, memory and size of the 
created features.

– Although designed for multi-relational graphs, simple heuristics allow our approach to 
be applied to tabular data, with good performance.

The rest of the paper follows as such: Sect.  2 goes into depth explaining related work, 
Sect. 3 details our contributed approach, and Sect. 4 gives a thorough empirical study of 
approaches to create features from relational data.

2  Related work: extracting features from relational data

We focus here on two common data structures for data-science: tabular data, as in rela-
tional databases, and multi-relational graphs (a.k.a. knowledge graphs), the backbone of 
Linked Open Data (Bauer & Kaltenböck, 2011). We broadly refer to both as relational 
data. In this section we give an overview of various lines of work related to creating vec-
tors from relational data, drawing from a variety of scientific communities.

2.1  The classic view: feature engineering

Manual feature engineering Feature engineering across multiple tables traditionally relies 
on a human analyst crafting SQL queries or dataframe operations, such as joins or aggre-
gations, to build a single feature matrix. The problem is the same with Linked Open Data 
(Paulheim et  al., 2013; Ristoski & Paulheim, 2016b): statistical studies require features 
extracted from the data, here coming as knowledge graphs rather than multiple tables. 
Propositionalization approaches used to mine knowledge graphs (Kramer et  al., 2001) 
tackle this by creating for each entity (node) of the graph a set of features, statistical finger-
prints and aggregates of its neighbourhood (Paulheim & Fümkranz, 2012; Ristoski & Paul-
heim, 2014). Here again, manual crafting is needed to capture specific information such as 
wealth.

Whether it is done on tables or knowledge graphs, feature engineering is a time-con-
suming task: studies show that data scientists spend 60% or more of their time transform-
ing the data for analysis (CrowdFlower, 2016). Indeed, designing the right features often 
requires careful effort from the analyst: which information is relevant for the task at hand? 
How to query it? This is particularly difficult on large data sources. For instance, a knowl-
edge graph representation of Wikipedia leads to hundreds of entity classes described by 
thousands of attributes in DBPedia (Lehmann et al., 2015). Exploring which joins are best 
for a given analysis is difficult even for an expert: How to assemble indirect signals that 
capture information on the question at hand, for instance estimating the distribution of 
wealth in a locality.

Automated feature engineering A few approaches have been proposed to automate 
the construction of queries for feature engineering on relational databases. A fundamen-
tal challenge is that assembling such multi-table data transformations calls for discrete 
choices—e.g. to join, or not to join?—with combinatorial possibilities that explode on 
large databases.
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For instance, Deep Feature Synthesis (DFS) Kanter and Veeramachaneni (2015) is a 
greedy approach that denormalizes a database by chaining joins from one reference table to 
all related tables and aggregates one-to-many relations using combinations of a small base 
of functions (see Fig. 2). Typical aggregation functions include COUNT, MODE (most com-
mon) for categorical features, and MEAN, MIN, MAX, STD for numerical features. A crucial 
parameter of DFS is the depth, which limits how many times joins can be chained to cre-
ate new features. Higher depths capture a wider range of information and usually improve 
performance, but quickly result in very large feature vectors and computation times, as the 
number of possible join paths grows exponentially. This often calls for post-processing 
techniques to remove unpredictive or redundant features.

Subsequent works have improved over DFS by adding aggregation functions for other 
types of data (text, sequences) (Lam et  al., 2017), for instance via recurrent neural net-
works (Lam et al., 2019). Although powerful feature extractors, all these methods remain 
combinatorial in nature, and do not scale to large databases. Even with a limited depth, a 
large number of entities of different types leads to increasingly wide feature matrices with 
many missing values, as the different entities come with different sets of attributes. Finally, 
automated feature engineering methods present other drawbacks: the created features often 
contain categorical or missing values that must be encoded, and their interpretability (we 
can trace back the joins and aggregations needed to compute each feature) is challenged as 
their dimension quickly grows.

City

Depth 0 Depth 1 Depth 2

City.
Population

City.
State

City.State.
Poverty_Rate

MEAN(City.
Inhabitant_ID.

Salary)

COUNT(City.
Inhabitant_ID)

COUNT(City.
State.City)

MEAN(City.
State.City.
Population)

San Francisco 0.87M California 12.6% 70,000$ 2 2 2.65M

San Diego 1.4M California 12.6% 60,000$ 1 2 2.65M

Reference
table

State Poverty_Rate

California 12.6%

Inhabitant_ID City Salary

A1 San Francisco 65,000$

A2 San Francisco 75,000

A3 San Diego 60,000$

City Population State

San Francisco 0.87M California

San Diego 1.4M California

Related tables

Deep Feature
Synthesis

Fig. 2  An example of deep feature synthesis. Starting from a reference table with entities of interest (here 
cities), new features are created by chaining joins to related tables, up to a certain depth = 2. To aggregate 
values from one-to-many relations (e.g. city inhabitants), we use the MEAN and COUNT operators, respec-
tively for numerical and categorical features. Colored arrows indicate join paths across tables for each depth
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2.2  Entity embeddings in relational data

While entity embeddings come from a body of literature far from that of feature engineer-
ing, they also create feature vectors from relational data (Lavrač et al., 2020).

Prelude: word embeddings Many embedding methods for relational data take inspira-
tion from word embeddings. By injecting discrete entities (words) in vector spaces, word 
embeddings have boosted statistical analyses of text. They rely on the distributional seman-
tics idea, which can be summarized by Firth’s sentence: “a word is characterized by the 
company it keeps”. The central model is Skip-Gram with Negative Sampling (SGNS), used 
in word2vec (Mikolov et al., 2013). Each word w is associated to an embedding w ∈ ℝ

p1. 
SGNS learns these embeddings by optimizing similarities of pairs of words, using a scor-
ing function:

Given a text corpus, embeddings are optimized so that a word w is more similar to a word 
w′ observed in the same context—e.g. the same sentence—, than another word w† not in 
the context; minimizing a cross-entropy loss2:

After training, word embeddings capture contextual similarities: words with the similar 
contexts (neighbors) end up close in the embedding space.

2.2.1  Embedding entities in a table

Word embedding methods, such as SGNS, can be extended to other data structures by 
defining a corresponding notion of context (Grohe, 2020). In tables, a common choice is to 
view rows as sentences: two entities are in one another context if they appear in the same 
row. This was for instance applied to enable semantic queries over tables (Bordawekar & 
Shmueli, 2017) and for automatic table completion and retrieval (Zhang et al., 2019). More 
recent work integrates intra-row and intra-column information to learn richer representa-
tions. Cappuzzo et  al. (2020) link entries of a table to the row and column nodes they 
belong to. Random walks through the resulting graph generate “sentences” of tokens, then 
fed to a SGNS model.

2.2.2  Embeddings entities in knowledge graphs

Knowledge graphs use a more general representation of relational data than tables. They 
replace the notion of columns by that of relations, which enables a uniform representation 
over many tables, and helps assembling information from multiple sources of data. Each 
piece of information is encoded as a triple (h, r, t), indicating a certain relation r between 

(1)Scoring functionf (w,w�) = w⋅w
′

(2)
SGNSL = −

∑

w, w� ∈ context(w),

w† ∉ context(w)

log(�(f (w,w�))) + log(1 − �(f (w,w†)))

1 To be precise, two embeddings are learned for each word. Which one is used in the scoring function 
depends if we view it as the context word ( w ∈ context(w�) ) or not ( w� ∈ context(w)).
2 This is actually a simplified version of the loss optimized by word2vec; eg it does not account for multi-
ple negative examples.
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the head and tail entities (h,  t). Large knowledge graphs, such as YAGO3 (Mahdisoltani 
et al., 2013) or DBPedia (Lehmann et al., 2015) contain millions or even billions of tri-
ples—e.g. (San Francisco, HasState, California)—and cover millions of entities.

Knowledge graph embedding models learn a vector for each entity (node) and relation 
(edge) of the graph. They have been mostly developed for two purposes, leading to two 
distinct lines of research (Portisch et al., 2022): 

(1) Predicting new triples of the knowledge graph for completion purposes, which has 
been the main application of knowledge graph embeddings.

(2) Providing feature vectors for downstream tasks outside the knowledge graph, which 
received much less attention in the literature, but is our focus here.

Embeddings for downstream tasks RDF2vec (Ristoski & Paulheim, 2016a) is a cen-
tral work applying knowledge graph embeddings in external downstream tasks. It has 
been used to incorporate background information in various tasks: geospatial data analy-
sis (Egami et al., 2021), recommender systems (Saeed & Prasanna, 2018; Ristoski et al., 
2019), or biomedical prediction tasks (Sousa et  al., 2020). Given a knowledge graph, 
RDF2vec generates sequences of tokens by performing random walks on the graph, alter-
nating between entities and relations (see Fig. 3). These sequences are then fed to a SGNS 
model to obtain embeddings for entities and relations. An important parameter is the depth, 
which limits the number of hops in the random walk, and thus the range of information to 
capture. A depth of 1 captures relationships between entities and their nearest neighbors in 
the graph, and so on... Similarly to Deep Feature Synthesis, a challenge is that the number 
of possible walks increases exponentially with depth. To avoid this, walks are often com-
puted for certain entities of interest only, with a limited number of walks for each entity.

Since RDF2vec, most research efforts focused on the creation of walks, for instance giv-
ing more weight to relations/entities based on their frequency, PageRank or degree, remov-
ing rare entities, or allowing teleportations between entities that share similar properties 
(Cochez et al., 2017; Vandewiele et al., 2020).

SanFrancisco

California

0.87M

HasState

MayorOf

HasMember
HasPopulation

USA
LocatedIn

USF

LocatedIn

LondonBreed

DemocraticParty

Knowlege graph Text representation

“USF LocatedIn SanFrancisco
HasPopulation 0.87M”
“LondonBreed MayorOf
SanFrancisco HasState California”

“DemocraticParty HasMember
LondonBreed MayorOf SanFrancisco
HasState California LocatedIn USA”

Random walks

Depth 1

Depth 2

Fig. 3  Graph to text representation in RDF2vec. Random walks are performed on the knowledge graph to 
generate sentences of tokens. Often, walks are only computed for a subset of entities, here San Francisco. 
The depth parameter limits the number of hops in the random walk, either forward or backward



694 Machine Learning (2023) 112:687–720

1 3

Embeddings for graph completion Knowledge graph embeddings have been widely used 
for graph completion, either through link prediction (predicting the missing entity in an 
incomplete triple (h, r, ?)) or triple classification (predicting if a triple is True of False). 
Similarly to SGNS, these models define a scoring function f(h, r, t) that represent the plau-
sibility of a given triple (h, r, t). Embeddings are then optimized so that observed triples 
obtain high scores, while negative ones (typically sampled by corrupting the head or tail 
entity in observed triples) obtain low scores.

Scoring functions typically model the different relations between entities as geometrical 
operations in the embedding space. For instance, the seminal TransE model (Bordes et al., 
2013) represents a relation r as a translation vector r ∈ ℝ

p between entity embeddings h 
and t:

with ‖.‖ a �1 or �2 norm. Given a knowledge graph G , embeddings are trained to minimize 
a margin loss:

Many models that improve upon TransE (Wang et al., 2017) focus on better modeling of 
one-to-many relationships and certain relational patterns (e.g. symmetry/antisymmetry, 
inversion, composition) (Yang et al., 2015; Sun et al., 2019; Balazevic et al., 2019). For 
link prediction in knowledge bases, one of the best performing methods (Ali et al., 2020) 
is MuRE, Multi-Relational Poincare graph embeddings (Balazevic et al., 2019). The key 
component of the method is the model of the link between head and tail entity [homolo-
gous to (3) for TransE]:

where ⊙ is the element-wise multiplication, two vectors �r, rr ∈ ℝ
p represent the relation r, 

and the head and tail entities are represented by vectors h, t ∈ ℝ
p and biases bh, bt ∈ ℝ . d is 

the Euclidean distance3. The model is optimized by sampling positive and negative triples 
(as in (4), but using a logistic loss (2) instead).

Structure of contextual vs relational embeddings Approaches based on SGNS such as 
RDF2vec only capture contextual information, while much progress in knowledge graph 
embedding has focused on modeling different types of relations separately. As a conse-
quence they induce very different neighborhood structures on entities embeddings.

Contextual embeddings, as RDF2vec, are trained on “sentences” of tokens, where each 
entity is surrounded by the relations and entities it co-occurs with in triples (Fig. 3). Two 
entities end up close in the embedding space if they have similar contexts: (1) They may 
share a relation, but not necessarily with the same entity, e.g. (San Francisco, LocatedIn, 
California) and (Paris, LocatedIn, France). This tend to group entities of the same type, 
since entities of different nature, like people and cities, share few relations. (2) They may 

(3)TransE f (h, r, t) = −‖h + r − t‖

(4)

L =
∑

(h, r, t) ∈ G,

(h�, t�) s.t.(h�, r, t�) ∉ G

with h� = h or t = t�

[f (h�, r, t�) − f (h, r, t) + �]+

(5)MuREf (h, r, t) = −d(�r ⊙ h, t + rr)
2 + bh + bt

3 MuRE can also use the Poincaré non-Euclidean geometry. However in practice (Balazevic et al., 2019) 
the Euclidean version is an excellent performer, as good as the non-Euclidean one for p ≥ 150.



695Machine Learning (2023) 112:687–720 

1 3

share a connection to a common entity, but not necessarily via the same relation, e.g. 
(MathWorks, FoundedIn, California) and (Nevada, HasBorderWith, California). Fig-
ure 4a gives a paradigmatic example: such contextual information is blind to the difference 
between Facebook, founded in Massachussetts but headquartered in California, and Math-
Works, founded in California but headquartered in Massachussetts.

Knowledge graph embeddings using the relation type in the scoring function between 
two entities create a very different structure in the embedding space. As relations of differ-
ent nature lead to different transformations of the embedding space, they each “pull” enti-
ties in different directions. In addition, modern models can learn transformations that are 
not one-to-one –non bijective–, better suited to many-to-one relations, as when many cities 
are located in the same state. As a result the different relations can be encoded separately in 
the entities embeddings, for instance along different coordinates (Fig. 4b).

Integrating numerical attributes in embeddings Numerical attributes, such as city popu-
lations, are poorly handled by most embedding methods. They are often simply dismissed, 
or at best binned and treated as discrete entities (Cappuzzo et  al., 2020), which remains 
suboptimal as it does not capture the topology of numbers.

Recent knowledge graph embedding models address this issue (Gesese et  al., 2021). 
TransEA (Wu & Wang, 2018) adds a loss to reconstruct numerical values from embed-
dings with a linear model. LiteralE (Kristiadi et  al., 2019) is a state-of-the-art approach 
where each entity i is represented by two vectors: ei ∈ ℝ

p representing the entity itself, 
and li ∈ ℝ

q , li containing each of its numerical attribute (0 if no value, and where q is the 
number of numerical relations in the KG). When used in the scoring function, embeddings 
h and t are constructed with a function g that combines the two vectors into a single one: 
h = g(eh, lh) , and t = g(et, lt) , both in ℝp . LiteralE implements g as a learnable mechanism 
similar to gated recurrent units.

(Facebook, FoundedIn, Massachussetts)
(Facebook, HeadquartersIn, California)
(MathWorks, FoundedIn, California)
(MathWorks, HeadquartersIn,
Massachussetts)
(Google, FoundedIn, California)
(Google, HeadquartersIn, California)
(Apple, FoundedIn, California)
(Apple, HeadquartesIn, California)

Input triples (a) Contextual: 
RDF2vec embeddings

(b) Relational: knowledge
graph embeddings

Google

Apple

California

MassachussettsFacebook

MathWorks

FoundedIn

He
ad

qu
ar

te
rs

In

Google

Apple
FoundedIn

HeadquartersIn
MathWorksFacebook

Massachussetts

California

Fig. 4  What drives entity neighborhoods in embedding space? a Contextual embeddings (as RDF2vec) 
ignore the nature of the relation: given information on states in which companies have been founded and 
have their headquarters, it cannot differentiate Facebook (born in Massachussetts, moved to California), 
from MathWorks (born in California, moved to Massachussetts). b Knowledge graph embeddings models 
can give rise to different geometric constraints for these two relations, separating out the companies. For 
instance here a relation is encoded with a projection
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3  Contribution: multi‑relational embeddings that capture numbers

We introduce here our approach to automatically extract information from relational data, 
creating feature vectors that can be used in downstream tasks. It relies on 3 key ingredients, 
that we describe in the following subsections: 

(1) Using knowledge graph embedding models designed for graph completion, as opposed 
to RDF2vec, to capture well relational information.

(2) KEN (Knowledge Embedding with Numbers), a module that extends knowledge graph 
embedding models to numerical attributes.

(3) Representing tables as knowledge graphs, to leverage them in our approach.

Figure 5 summarizes our pipeline for automatic feature extraction from relational data.

3.1  Relational rather than contextual embeddings to encode information

With our goal of creating embeddings as features for downstream tasks, we motivate here 
the importance of using relational embeddings, originally designed for knowledge graph 
completion, rather than contextual RDF2vec-like models, traditionally used to extract fea-
tures for downstream tasks.

From a big picture perspective, given an entity h of interest (e.g. a city), we would like 
an embedding h that encodes as well as possible the information related to h in the data. At 
the very least, it implies representing well the various relationships h has to other entities 

Input data

Inhabitant_ID City Salary

A1 San Francisco 65,000$

A2 San Francisco 75,000$

A3 San Diego 60,000$

San Francisco

San Diego

California

0.87MState

1.4M
Population

San Francisco

San Diego

California

0.87MState

1.4M
Population

City

A2A1

Salary

A3

65k$

60k$

75k$

Knowledge graph
representation Embeddings

San Francisco
San Diego

Population

0.87M

Population

Salary

KEN

Knowledge graph embedding

f(San Francisco, Population, 0.87M)

f(San Diego,   Population, 0.87M)

negative
sampling

Features Target

City Embedding Area Price

San Francisco 0.1   -0.3   …   0.7 30 m2 450,000$

San Diego 0.15   -0.2   …   0.8 55 m2 ?

Downstream task

Fig. 5  Our pipeline for automatic feature extraction from relational data. (1) The input data, which may 
contain tables, is transformed into a knowledge graph. (2) We use a knowledge graph embedding model to 
learn a vector for each entity, and leverage numerical values by embedding them in the same space as other 
entities with KEN. (3) After training, entity embeddings can be easily added as new features in downstream 
tasks
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(e.g. its state), to make them available to the machine-learning model used in the down-
stream task. Representing not only the related entity t but also the nature of the relation r is 
often important: knowing whether a person A is the mother, the sister, or the daughter of a 
person B informs on the age difference.

In contextual embeddings such as RDF2vec, the presence of a link between a entity h to 
another entity t is modeled somewhat independently from the nature r of the link, i.e. the 
type of the relation. Indeed, the scoring function used in SNGS—Eq. (1)—is only applied 
to pairs (h,  t), (h, r) and (r,  t). Structure between h, r, and t is created indirectly as they 
appear in the same context.

In contrast, relational embeddings developed for knowledge graph embeddings use a 
scoring function involving h, r, and t jointly. As this scoring function is minimized for 
triples in the graph, it induces algebraic relations between the corresponding embeddings: 
for TransE t ≈ h + r , or for MuRE t ≈ �r ⊙ h − rr . These algebraic relations imply that t 
captures the link to h in a way that is specific to r and hence a downstream analysis model 
can recover this specific information, e.g. selecting on the mother, and not all relatives.

Figure 4 illustrates the specificity of the link: for RDF2vec the relations are encoded as 
vectors which lie in the middle of the embeddings of the entities while a knowledge graph 
embedding encodes the relations as a transformation of these vectors (here a projection), 
and allows the different relations to be expressed on different coordinates of the vectors.

3.2  Capturing numerical attributes with KEN

Numerical attributes are omnipresent in relational data, and often contain precious infor-
mation for downstream tasks, e.g. a city’s wealth influences housing prices. While they are 
readily-available as numbers, the irregular nature of the information prevents from merely 
adding them as coordinates to the feature vectors. A first challenge is that different entities 
have different numerical attributes. A more serious one arises when aggregating numerical 
information across many-to-one relations: there are many ways of doing so. For instance, 
to characterize wealth in a county from the GDP of its cities, the mean, the Gini index, the 
percentiles, etc. are all useful aggregates. As a result, Deep Feature Synthesis generates 
more than 2000 features derived from numerical attributes for cities in YAGO3.

We strive for lower-dimensional representations, and thus aim to capture numerical 
information in entity embeddings. However, embedding methods are formulated in terms 
of discrete elements (Sect. 2.2): words, entities. A naive way to adapt them to numerical 
attributes would be to consider numbers as tokens and learn an independent embedding for 
each value. Yet doing so discards the topology underlying those numbers: close numerical 
values should have similar representations. Binning values before embedding reduces this 
effect, but remains suboptimal. To tackle this, we introduce here KEN (Knowledge Embed-
ding with Numbers), a module that adapts embedding models to numerical attributes.

The KEN module Entity-embedding approaches can be seen as relying on a linear 
encoder to associate an entity h with its vector representation h ∈ ℝ

p . In this light, we pro-
pose to inject numerical values in the same vector space also with an encoder, learning a 
function e ∶ ℝ → ℝ

p that maps numerical values to embeddings.
We use as function a single-layer neural network with a ReLU activation to embed 

numerical values. To embed different types of attribute separately (e.g. city populations 
and GPS coordinates), we learn a function er for each attribute r:

(6)er(x) = ReLU(xwr + br)
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with x ∈ ℝ the numerical value to embed, and wr, br ∈ ℝ
p the weights and biases of the 

linear layer. Embeddings er(x) of numerical values can then be used in place of tail embed-
dings t in the scoring function f(h, r, t).

Comparison with other methods capturing numerical attributes An asset of KEN is that 
it comes with no hyper-parameters to tune. This is unlike TransEA (Wu & Wang, 2018), 
where the importance of numerical attributes must be controlled, with the danger that the 
optimal value might differ for each attribute. Another important difference with TransEA 
is that KEN can capture non-linear interactions between entities and numerical attributes, 
thanks to the ReLU activation. For instance, cities in California are associated to lati-
tudes between 32◦ N and 41◦ N which cannot be expressed by a mere threshold on a linear 
representation.

Importantly, KEN uses numerical values x during the training as new triples (h, r, x) to 
be predicted, which forces entity embeddings to capture these numerical attributes. This is 
different from LiteralE (Kristiadi et al., 2019), where numerical values are incorporated to 
entity embeddings to better predict non-numerical triples (h, r, t). LiteralE therefore only 
captures the information in numerical values useful to triangulate other entities, and not the 
values in themselves. In particular non discriminant numerical attributes can be discarded 
by the gate mechanism. As an extreme example, an entity linked to numerical attributes but 
not to other entities will not be embedded in LiteralE, as there is no training data.

In contrast, KEN draws no major distinction between discrete entities and numerical 
values: they are embedded in the same space. Each type of numerical attribute is associated 
to a specific relation and thus embedded on a specific line segment via Eq.  (6). An ana-
lytic model for a downstream task can extract this information, proceeding in a similar way 
as with discrete information (as described in Sect. 3.1). The numerical attributes that an 
entity has and its relations to other entities may contribute to create similar neighborhood 
structures: for a city to be locatedIn California is equivalent to its GPS coordinate taking 
specific value ranges.

Making the architecture robust to attribute distribution One challenge of heterogeneous 
data is that different numerical attributes have very different distributions. We normalize 
numerical values x ∈ ℝ to the interval [0,  1] before embedding them. With neural net-
works, a common way to do so is “min-max" normalization: x� = x−xmin

xmax−xmin
 . However it is 

problematic when dealing with heavy-tailed distributions, such as city populations. Indeed, 
after normalization, most values x′ will be very close to zero and have similar representa-
tions er(x�) ≃ ReLU(br) . This makes it difficult for instance to distinguish a village with 
1000 inhabitants from a medium-sized town of 10,000 people.

Ideally, we would like the values x′ to be evenly distributed in [0, 1], to separate as well 
as possible their embeddings. We achieve this with quantile normalization, which maps 
numerical values to their quantile in the attribute distribution, using an empirical estimate 
of the cumulative distribution function: x� = CDF(x).

Figure 6 summarizes the complete picture of numerical value embedding with KEN.

Fig. 6  Embedding numerical 
values with KEN
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3.3  Representing tables as knowledge graphs

To create embeddings with rich semantics, the source data must contain as much detail as 
possible about the entities under study. This often requires to leverage data from different 
sources, for instance combining broad but shallow information (e.g. city populations) from 
large knowledge graphs with more granular data (e.g. recent house prices at the neighbour-
hood-level) from domain-specific tables. Although our approach inputs knowledge graphs 
(i.e. triples (h,  r,  t)), this representation is general enough to easily encode information 
from other data structures. We focus here on tabular data, and explore a few strategies to 
represent tables as knowledge graphs.

The core idea to generate triples from tables is to link entities from the same rows with 
different relations. For instance, an exhaustive strategy consists in building all possible tri-
ples from the table, linking all discrete entries to other entities or numerical values from 
the same rows (Fig. 7a). One asset of this method is that it produces good embeddings for 
all entities, as they are directly connected to their attributes in the graph. But it generates a 
large number of triples: O(n2

cols
nrows) , which increases the training time of embeddings. If 

we know beforehand the entities of interest, i.e. those used in the end task (e.g. cities), we 
can instead build triples from these entities only (Fig. 7b). This greatly reduces the num-
ber of triples to (ncols − 1) nrows (these entities generally come from a single column) and 
returns embeddings tailored for the entities under study. However, this approach neglects 
other entities: they are not directly connected to the entries of the row and are thus likely 

City Population State

San Francisco 0.87M California

San Diego 1.4M California

Anchorage 0.29M Alaska

Input table

(b) Head entities = Cities 

San Diego

0.87M

1.4M

0.29M

California

Alaska

Anchorage

San Francisco

San Diego

0.87M

1.4M

0.29M

California

Alaska

Anchorage

San Francisco

California

Alaska

San Francisco

San Diego

Anchorage

Population
State

City-Population

State-Population

State-City

City-State

(a) Head entities = All (c) Head entities = Row IDs

Row IDs

R1

R2

R3

R1 0.87M

San Francisco

California

San Diego

1.4M

R2

R3

0.29M

Anchorage

Alaska

Population

City

State

Fig. 7  Representing tables with triples. For each row of the table, we generate triples by linking its entries 
through different relations. The methods we present here differ on their choice of head entities when build-
ing triples: a using all discrete entries as heads b using only the entities of interest (generally from the same 
column) and c introducing a “row id” entity for each row and using it as head entity
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to underperform in other applications. Finally, we consider a third heuristic that assigns a 
row id to each row of the table, treats this row id as an entity, and then links it to the vari-
ous entries of the row (Fig. 7c). This method combines benefits of the previous methods: it 
does not require any prior knowledge of the downstream application and generates a light 
graph with ncols nrows triples. Yet learning an additional embedding for each row also raises 
scalability issues if there are much more rows than distinct entities to embed.

A desirable property of table-to-graph methods is their ability to represent joint infor-
mation across columns. For instance Fig. 8a considers two cities A, B with their number of 
companies in different fields of activity. Taken alone, the two columns are not very inform-
ative: what matters here is the number of companies in a certain field of activity, which 
requires to consider both columns jointly. Methods that build triples from table entries such 
as cities encode the attributes “field of activity” and “number of companies“ independently, 
and thus cannot distinguish A and B from their triples (Fig. 8b). In contrast, introducing 
row entities allows to capture row data jointly and differentiate the two cities (Fig. 8c).

Finally, if missing data are present in the table, we encode them with specific entities 
(one for each column).

4  Empirical study

We compare our approach with automatic feature extraction techniques, such as Deep Fea-
ture Synthesis (DFS) or RDF2vec, and focus on two criteria:

– the quality of the extracted features: how well do they improve performance in down-
stream tasks?

– the scalability of the approach: time and space complexity, size of the feature vectors

4.1  Downstream tasks

We evaluate our approach on 7 prediction tasks on various types of entities. In each task, 
we extract features for the entities of interest (i.e. target entities) from a source dataset, and 
add them to a target dataset containing the variable to predict. To showcase the versatility 

City Field of
activity

Number of 
companies

A Tech 10

A Retail 1

B Tech 1

B Retail 10

(b) Head entities = Cities 

TechA
Row IDs

R1

R2

R3

R4

Retail
10
1

TechB
Retail
10
1

(c) Head entities = Row IDs

A Tech
Retail

10
1B

R1

R2

R3

R4

(a) Table with joint columns

Fig. 8  Capturing joint information across columns. a A table describing cities with two joint attributes that 
must be considered together to be meaningful. b Using cities as head entities encodes the two attributes 
separately, hence we cannot differentiate them from their triples. c Introducing row entities allows to cap-
ture all attributes jointly and distinguish the two cities
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of our method, we consider tables and knowledge graphs as source data. More details about 
the downstream tasks and datasets are given in the Appendix 7.1.

Tabular data We first consider two classification tasks: KDD14 (classification of edu-
cational crowdfunding projects) and KDD15 (student dropout prediction in MOOCs). For 
these tasks the source data consists of multiple tables describing the target entities. To lev-
erage this data in our approach, we represent it as a knowledge graph by using target enti-
ties as head entities and linking them to other entries from the same rows, similarly to 
Fig. 7b.

Knowledge graphs To support our claim that general-purpose embeddings can be 
learned from large databases and used in various end tasks, we consider a more challeng-
ing setup: enriching several downstream tasks with background information from Wiki-
pedia. To that end, we leverage YAGO3, a knowledge graph representation of common 
knowledge, built from Wikipedia and other sources (Mahdisoltani et al., 2013).

Our version of YAGO3 contains 2.8 million entities, described by 7.2 million triples. 
We learn embeddings for various entities that are common in data science problems (coun-
ties, cities, people, companies, movies...) and use them in 5 regression tasks on socio-eco-
nomic topics4:

– Elections: predict the number of votes per party in 3000 US counties.
– Housing prices: predict the average housing price in 23000 US cities.
– Accidents: predict the number of accidents in 8500 US cities.
– Movie revenues: predict the box-office revenues of 4900 movies.
– Employees: predict the number of employees in 3000 companies.

Note that there exists a more recent version of Tanon et al. (2020), with a much greater 
coverage of information: 64 million entities, with about 2 billion triples. However, we 
could not include it in our empirical study as the DFS baseline was intractable on such a 
large database.

4.2  Approaches considered for evaluation

We describe below the feature extraction approaches that we include in our empirical study.
Our approach We implement KEN on top of 3 embedding algorithms: TransE (Bordes 

et  al., 2013), the seminal work that introduced relations as translations of embeddings, 
DistMult (Yang et al., 2015), with scoring function f (h, r, t) = h⋅(r⊙ t) , and MuRE (Bal-
azevic et  al., 2019) because it emerged as a top-performing method in link prediction 
(Ali et  al., 2020). We learn 200-dimensional embeddings and keep all hyper-parameters 
constant, except for the number of epochs ∈ [2, 4, 8, 16, 24, 32, 40] that we tune (see the 
Appendix 7.2 for the exact parameters used). We base our implementations on Ali et al. 
(2021), a Python library for learning knowledge graph embeddings. In addition, PyKEEN 
implements a version of DistMult that leverages numerical values with LiteralE (Kristiadi 
et al., 2019), which allows for a comparison with KEN.

Deep Feature Synthesis We compare our embedding approach to Deep Feature Syn-
thesis (DFS, see Fig. 2). We use an implementation of DFS from the Python package fea-
turetools and extract features at depths (0, 1, 2, 3) with the default aggregation functions: 

4 Target entities for which we extract features from YAGO3 are underlined.
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MEAN, MIN, MAX, STD, SKEW, SUM for numerical features, MODE, NUM_
UNIQUE for categorical features and COUNT for both. Categorical features are one-hot 
encoded to their 10 most common categories. To apply DFS on YAGO3, we convert it to 
tabular format by creating a table with two columns (head, tail) for each forward/inverse 
relation.

Manual feature engineering Besides DFS, we include manual feature engineering to our 
empirical study. The objective is to estimate how well an analyst would perform given a 
time budget of 1–2 h per dataset. Results obviously depend on the analyst and could be 
improved with more effort, but they provide a simple baseline for a time-constrained analy-
sis. See Appendix 7.2 for a description of the handcrafted features we used.

RDF2vec Finally, we also compare our approach to RDF2vec, traditionally used to 
extract features for downstream tasks. For each entity under study, we generate all possible 
walks of depth 2, going through forward and backward relations (as in Fig. 3). However, as 
the number of walks can be very high for certain entities (e.g. tens of millions), we cap this 
number to 10,000, and checked empirically that this value is large enough to impact only a 
small fraction of entities. We then feed these sequences to a SGNS model with embedding 
dimension = 200, window size = 4 (which allows to capture 1-hop and 2-hop neighbor-
hoods), and pick the epoch ∈ [1, 5, 10, 20] that performs best. We used the pyRDF2Vec 
package (Vandewiele et al., 2022) to run the experiments.

4.3  Quality of the extracted features

Methodology We first study how well feature vectors created from a source database can 
improve performance in data-science tasks. For this, we consider the prediction problems 
introduced in Sect. 4.1 and the feature extraction approaches presented in Sect. 4.2: TransE, 
DistMult and MuRE with and without KEN; Deep Feature Synthesis; manual feature engi-
neering; and RDF2vec.

We measure performance with cross-validation scores, and only use entity representa-
tions to predict the target values.5 For regression and classification, we use two analytic 
models from the scikit-learn library: k-nearest neighbors and gradient boosted trees, whose 
hyper-parameters are tuned. We report in Table 1 fivefold cross-validation scores, averaged 
over multiple seeds for shuffling the data and training the embedding models. See Appen-
dix 7.3 for a more detailed description of the experimental setup.

Results When using entity-embeddings as feature vectors, DistMult and MuRE overall 
outperform RDF2vec by a wide margin (except on the Employees dataset, where RDF2vec 
gets surprisingly good results), with MuRE appearing as the best approach. We explain 
this gap by their ability to capture well relational information. In particular, MuRE is more 
expressive than TransE and DistMult (their scoring functions can be seen as speczial cases 
of MuRE) and thus better model complex relations. In contrast, TransE does not model 
well many-to-one relationships: if we have (h, r, t) and (h�, r, t) , then h and h′ are forced to 
have very close embeddings h = h′ = t − r . Similarly, the scoring function of DistMult is 
symmetrical, i.e. f(h, r, t) = f(t, r, h), which is not suited for non symmetrical relations like 
locatedIn. We can also see from Table 1 that leveraging numerical attributes with KEN 

5 Except in the Elections dataset, where we also include the political party when predicting the number of 
votes.
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always improves performance in TransE, DistMult and MuRE, and that it is superior to 
LiteralE in DistMult.

We now compare the performance of MuRE + KEN (the best embedding approach) to 
manual and automatic feature engineering methods. When using powerful prediction mod-
els (gradient boosted trees), MuRE + KEN does not consistently outperforms DFS, but 
is often competitive for depths ≤ 2, and almost always outperforms manual feature engi-
neering. However, when using simpler prediction models (K-Nearest Neighbors), MuRE 
+ KEN significantly outperforms DFS for all depths. Indeed, embeddings tend to be well 

Table 1  Quality of the extracted features: cross-validation scores on target datasets using either embed-
dings, deep feature synthesis, or manually handcrafted vectors as features

The scoring metrics are: average precision (KDD14), AUC (KDD15) and R2 for the remaining datasets. 
Best scores are in bold. Second best scores are underlined. Italic cells indicate when MuRE + KEN outper-
forms deep feature synthesis. Results with standard deviations are given in the appendix (Table 11)

Approach Feature enrich-
ment from 
domain-specific 
tables

Feature enrichment from a general-purpose knowledge graph, 
YAGO3

KDD14 KDD15 Elections Housing prices Accidents Movie revenues Employees

Advanced analytic models: gradient boosted trees
Feature vectors tailored for target entities

Manual feature 
handcrafting

0.267 0.869 0.955 0.273 0.360 0.141 0.367

DFS, depth 0 0.158 0.584 0.836 0.165 0.162 0.016 0.126
DFS, depth 1 0.461 0.880 0.960 0.369 0.423 0.153 0.382
DFS, depth 2 0.463 0.880 0.964 0.605 0.570 0.163 0.384
DFS, depth 3 0.499 0.881 0.969 0.683 0.590 0.189 0.381
DFS, depth 3 + 

ontology
0.958 0.686 0.589 0.259 0.390

RDF2vec 0.173 0.849 0.873 0.355 0.236 0.074 0.380
General-purpose feature vectors

TransE 0.242 0.854 0.899 0.321 0.256 0.092 0.003
TransE + KEN 0.334 0.875 0.939 0.447 0.381 0.095 0.214
DistMult 0.264 0.859 0.916 0.525 0.454 0.145 0.117
DistMult + 

LiteralE
0.286 0.870 0.841 0.484 0.443 0.110 0.227

DistMult + KEN 0.386 0.879 0.921 0.542 0.486 0.162 0.242
MuRE 0.287 0.863 0.945 0.571 0.461 0.165 0.109
MuRE + KEN 0.443 0.883 0.966 0.604 0.524 0.175 0.313
MuRE + KEN + 

ontology
0.957 0.602 0.541 0.266 0.345

Simple analytic models: K-nearest neighbors
DFS, depth 0 0.078 0.504 0.742 0.004 0.130 − 0.026 0.004
DFS, depth 1 0.110 0.821 0.715 0.297 0.320 0.121 0.144
DFS, depth 2 0.107 0.821 0.763 0.395 0.349 0.119 0.086
DFS, depth 3 0.142 0.816 0.618 0.503 0.361 0.043 0.025
MuRE + KEN 0.205 0.830 0.936 0.536 0.488 0.136 0.273
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structured (as induced by the scoring function) and have homogeneous coefficients with 
similar distributions, which facilitates the downstream learning. In contrast, DFS creates 
a huge number of heterogeneous features, which even after scaling are hard to leverage by 
simple models.

We also study whether injecting taxonomic information into embedding models 
improves performance. Following (d’Amato et al., 2021), we augment YAGO3 with triples 
describing its ontology, such as entity types and their relations (subClassOf and disjoint-
With). We apply MuRE + KEN on this augmented version of YAGO3 and observe that it 
generally improves prediction performance and reduces the gap with DFS.

Capturing entity types Finally, we investigate whether knowledge graph embeddings 
capture entity types, for instance differentiating cities from movies or counties. Such infor-
mation can be useful in certain tasks that we did not consider in our previous experiments, 
e.g. clustering. To evaluate this, we take many entities of various types (cities, counties, 
movies, companies) from our previous tasks on YAGO3, and measure how well entity 
types can be predicted from their MuRE + KEN embeddings. We use a simple K-Nearest 
Neighbor model, whose number of neighbors is tuned and obtain a ROC AUC score of 
0.996, showing that knowledge graph embeddings indeed capture entity types. We detail 
the experimental setup in Appendix 7.3.

4.4  Scalability concerns

Large databases, such as YAGO3, bear promises to provide general-purpose feature enrich-
ment. For this, the scalability of features extraction methods is crucial. To that end, we 
compare in Table 2 the scalability of various approaches: Deep Feature Synthesis (for 0 ≤ 
depth ≤ 3 ), RDF2vec and MuRE (with and without KEN).

Methodology We quantify computational scalability with several metrics capturing: 

(1) The scalability of feature extraction: duration and RAM usage when computing the 
feature vectors.

(2) The scalability of feature usage: dimension of the feature vectors, disk memory needed 
to store them, and duration of cross-validated evaluation in prediction tasks (using 
gradient boosted trees).

A benefit of knowledge graph embedding models is that they learn representations for all 
entities at once (e.g. cities, counties, movies in YAGO3). This is unlike DFS and RDF2vec 
which typically extracts feature vectors for target entities only. Given our objective to pro-
vide representations for many different entities, we thus benchmark DFS and RDF2vec 
when extracting features for all entities.

In some cases (KDD14 with depth 3 and YAGO3 with depth 2/3), DFS breaks the RAM 
capacity of our machine (400 GB) and does not terminate, even when splitting entities into 
1000 chunks to lower the RAM usage. For these cases, we extrapolate the total duration 
based on the duration for a subset of entities, and the disk memory required to store fea-
tures based on the memory it takes for a smaller number of features.

Similarly, we were not able to learn RDF2vec embeddings for all YAGO3 entities due to 
memory overflow. We tried limiting the number of walks to 100 per entity, and only gen-
erating them from the 1% most frequent ones, but we still could not compute them in less 
than a day, even with parallelization over 40 CPUs. We thus interrupted the process, and 
measured the duration and RAM usage just before stopping.
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Results We report in Table 2 the scalability metrics described above. As expected, DFS 
quickly becomes intractable on large databases: it requires huge amounts of time and RAM 
to run, and returns very high-dimensional feature vectors that need a lot of memory to be 
stored and a lot of time to be leveraged by machine-learning models. Interestingly, we saw 
in Table 1 that DFS must be computed at a depth of 2 or more to outperform MuRE + 
KEN (using powerful gradient boosted tree models). Yet based on this scalability study, 
this is already too deep to run DFS for all entities in YAGO3, due to memory issues. In the 
end, DFS produces high-performance features, but its usage is limited to small databases, 
or when the downstream task is known beforehand so as to extract features for a subset 
of entities only. Unlike knowledge graph embedding models, it cannot be used to create 
general-purpose feature vectors from large databases with millions of entities.

We observe similar trends with RDF2vec: feature extraction for all entities overall 
requires much more time and memory than MuRE. Actually, even creating feature vec-
tors for target entities only with RDF2vec can take more time (e.g. 9300s for 23000 cities 
in Housing prices) than applying MuRE to all YAGO3 entities, and must be repeated for 
every new downstream task.

4.5  KEN helps embeddings capture numerical attributes

As visible on Fig. 9, KEN provides embeddings that represent in a much simpler way the 
numerical information associated with entities. When embedding counties from YAGO3, 
the structure of KEN embeddings reflects well the population density, with a direc-
tion grouping together metropolitan areas such as Chicago (Cook county), Los Angeles 
(Orange County), Houston (Harris county), and Phoenix (Maricopa county), well sepa-
rated from rural counties. On the other hand, this information is more diluted in standard 
MuRE embeddings.

Methodology To evaluate quantitatively the ability of embeddings to capture numeri-
cal information, we compare the performance of simple supervised models to predict the 
numerical attributes of entities (e.g. county populations) from their embeddings. In practice 

County Pop

King, Texas 286
Sierra, California 3 240
Hardeman, Texas 4 432
Pope, Illinois 4 442
Calhoun, Illinois 5 087
Orange, California 3 010 232
Maricopa, Arizona 3 942 169
Harris, Texas 4 173 079
Cook, Illinois 5 206 862

Fig. 9  Embeddings of counties using only categorical attributes (MuRE) or all attributes (KEN-E) from 
YAGO3: PCA projection of the 200-dimension embeddings in 2D. The color represents the county popula-
tion and the symbols the state of the county. We randomly draw high and low population counties in the 
same state. Cook, Orange, Harris, and Maricopa counties correspond to major cities: Chicago, Los Angeles, 
Houston, and Phoenix. The global structure of MuRE + KEN embeddings better reflects the population of 
the counties, in particular separating the rural counties from those related to major cities. A simple linear 
projection of the MuRE + KEN embeddings suffices to roughly capture the rural-urban gradients, while it 
is less clear on MuRE embeddings
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we use K-Nearest Neighbors models (whose hyper-parameters are tuned) and aim to pre-
dict statistics about donations to projects in KDD14, students connections to MOOCs in 
KDD15 and county attributes in YAGO3. We measure performance with cross-validation 
scores. See Appendix 7.4 for the exact evaluation setup.

Results The scores reported in Table 3 confirms that adding KEN significantly improves 
the ability to capture numerical information related to the entities: in all settings adding 
KEN leads to better reconstruction of numerical attributes, and also outperforms LiteralE 
by a wide margin. In addition, results show that these embeddings capture to some extent 
the whole distribution of numerical attributes: their mean, but also their quantiles.

4.6  Ablation study

We study in this section the influence of two ingredients of KEN on the quality of entity-
embeddings: (1) the quantile normalization of numerical values at the input, and (2) the 
presence of a ReLU activation function at the output (Fig. 6).

Methodology We measure the drop in performance relative to the original MuRE + 
KEN when: (1) replacing the quantile normalization by a min-max normalization 
x� =

x−xmin

xmax−xmin
 and 2) removing the ReLU activation. We also compare KEN to a standard 

binning practice, where numerical values are divided into bins and an embedding is learned 
for each bin. In practice we use 20 bins and split values evenly across bins to be robust to 
fat-tailed distributions: the first bin corresponds to values in the top 5%, the second bin to 
values in the range 5–10%, and so on... We use gradient boosted tree models for prediction, 
and the same setup as in Table 1.

Results Table 4 shows that all ingredients of KEN are important, especially the quantile 
normalization, and confirms that KEN leads to markedly better features than binning.

Table 3  Reconstructing numerical attributes: cross-validation scores (R2) of simple nearest-neighbour 
models predicting the numerical attributes associated to an entity from its embedding

Best scores are in bold

Target DistMult DistMult + 
LiteralE

DistMult + 
KEN

MuRE MuRE + 
KEN

Donation amount 
(KDD14)

Mean 0.20 ± 0.05 0.58 ± 0.14 0.62 ± 0.12 0.22 ± 0.06 0.66 ± 0.12

1st quartile 0.34 ± 0.05 0.46 ± 0.05 0.67 ± 0.10 0.34 ± 0.06 0.72 ± 0.12
3rd quartile 0.33 ± 0.05 0.48 ± 0.05 0.57 ± 0.10 0.33 ± 0.05 0.59 ± 0.09

Connection time 
(KDD15)

Mean 0.09 ± 0.01 0.33 ± 0.01 0.92 ± 0.01 0.10 ± 0.02 0.97 ± 0.01

1st quartile 0.15 ± 0.01 0.27 ± 0.01 0.78 ± 0.01 0.15 ± 0.01 0.82 ± 0.01
3rd quartile 0.39 ± 0.02 0.45 ± 0.01 0.74 ± 0.01 0.39 ± 0.02 0.84 ± 0.01

County attributes 
(YAGO3)

Population 0.73 ± 0.17 0.71 ± 0.22 0.73 ± 0.15 0.32 ± 0.08 0.51 ± 0.16

Latitude 0.92 ± 0.01 0.72 ± 0.03 0.93 ± 0.01 0.72 ± 0.03 0.91 ± 0.01
Longitude 0.83 ± 0.07 0.72 ± 0.05 0.90 ± 0.07 0.64 ± 0.06 0.81 ± 0.06
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4.7  Capturing deep features with embeddings

Methodology We want to determine if embeddings can capture information deep in the 
knowledge graph, indirectly chaining relations as in Deep Feature Synthesis. For this pur-
pose, we compare in Table 5 cross-validation scores of gradient boosted tree models with 
embeddings trained either on the full YAGO3 database, or on a subset of YAGO3 contain-
ing only the triples related to the target entities. For example, a subset with city-related 
triples would contain direct information about cities (e.g. the state in which they belong), 
but no information about the states themselves. Such “deep” information can however be 
helpful for analytical tasks, and should be captured by embeddings models. The evaluation 
setup is the same as in Table 1.

Results Table 5 shows that adding triples indirectly related to the target entities improves 
the quality of their embeddings; hence embedding models do capture deep information.

4.8  Influence of table representations

Methodology When the source data consists of tables, it must be represented as a knowl-
edge graph to be leveraged by our approach. We introduced in Sect.  3.3 three table-to-
graph strategies, which differ on which entities are used as heads when generating triples 
(Fig. 7). We either use: (1) all entities, (2) only target entities (which require some prior 
knowledge of the downstream application) or (3) row ids. We evaluate the performance 
of these strategies with cross-validation scores on KDD14 and KDD15, using gradient 
boosted tree models for prediction (as in Table 1). To show the importance of choosing 
well the column with the target entities in the second approach, we also evaluate a simple 
baseline taking entities from another column.

Results Based on Table 6, the top performing table-to-graph strategy consists in generat-
ing triples from target entities. Indeed, the resulting graph directly connects them to their 
attributes, which facilitates the learning of embeddings. This intuition is confirmed when 
taking instead entities from another column, as we observe a sharp drop in performance. 
Interestingly, using all entities or row ids as head entities return embeddings that perform 
reasonably well without being tailored for the specific task at hand. These methods can 

Table 4  Ablation study: drop in cross-validation scores of variants of MuRE + KEN and binning, relatively 
to the original MuRE + KEN

Scoring metrics are: average precision (KDD14), AUC (KDD15) and R2 for other datasets

Dataset Binning Variants of MuRE + KEN

No quantile normaliza-
tion

No ReLU tactivation

KDD14 − 0.044 − 0.068 − 0.045
KDD15 − 0.002 0 − 0.001
Elections − 0.008 − 0.020 − 0.004
Housing prices − 0.091 − 0.023 − 0.021
Accidents − 0.063 − 0.037 − 0.010
Movie revenues − 0.015 − 0.112 − 0.030
Employees − 0.011 − 0.007 0.002
Average across datasets − 0.038 − 0.047 − 0.016
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provide general-purpose embeddings that perform well for various entities and applica-
tions. However, they either increase the number of triples (and thus the training time of 
embeddings) or the number of entities.

5  Discussion

5.1  Embeddings capturing numerical information can provide feature enrichment

By relying on entity embeddings, our feature-synthesis pipeline departs strongly from the 
standard approach of feature engineering in databases. Our extensive experiments confirm 
that features created via knowledge graph embedding do capture the information needed 

Table 5  Embedding can capture deep features: cross-validation scores (R2) of gradient boosted tree models 
using as features either embeddings trained on the full YAGO3 dataset, or on a subset of YAGO3 contain-
ing only the triples related to the target entities

Dataset YAGO3 TransE TransE + KEN MuRE MuRE + KEN

Elections Subset 0.846 0.854 0.837 0.926
Full 0.899 0.939 0.945 0.966

Housing prices Subset 0.079 0.203 0.231 0.338
Full 0.321 0.447 0.571 0.604

Accidents Subset 0.117 0.170 0.243 0.345
Full 0.256 0.381 0.461 0.524

Movie revenues Subset − 0.003 − 0.004 0.052 0.064
Full 0.092 0.095 0.165 0.175

Employees Subset − 0.015 0.071 0.087 0.297
Full 0.003 0.214 0.109 0.313

Table 6  Influence of table representations: cross-validation scores of different strategies to represent tables 
as a knowledge graph

Best scores are in bold. Second best scores are underlined
Scoring metrics are average precision (KDD14) and AUC (KDD15). We also report the number of entities 
and triples in the graph from each method

Head entities in gener-
ated triples

KDD14 KDD15 # triples 
(KDD14, 
KDD15)

# entities 
(KDD14, 
KDD15)MuRE MuRE + KEN MuRE MuRE + KEN

Embeddings tailored for specific entities

   Target entities 0.287 0.443 0.863 0.883 44 M 33 M 0.94 M 0.27 M
   Entities from 

another column
0.227 0.233 0.861 0.863 44 M 33 M 0.94 M 0.27 M

General-purpose embeddings

   All entities 0.289 0.406 0.864 0.883 155 M 66 M 0.94 M 0.27 M
   Row IDs 0.282 0.409 0.856 0.878 51 M 41 M 8.4 M 8.5 M
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for a statistical task. Embedding models coupled with KEN improve over manual feature 
engineering on almost all tasks.

We observe clear trends in the experimental results: Table 1 reveals the importance of 
capturing well (1) the numerical attributes and (2) relational, rather than contextual infor-
mation. Indeed, across all analytic tasks and embedding methods explored, adding KEN 
leads to features that better capture numerical attributes and improve the downstream 
analytic task (Tables 3, 1). It also improves over binning and LiteralE by a large margin. 
The ingredients that we introduced in KEN, such as the quantile normalization to account 
for the distribution of numerical attributes significantly improves performance (Table 4). 
Improving models of relations makes a strong difference in how useful the resulting fea-
tures are for downstream tasks: there are notable improvements from RDF2vec—no 
explicit model of the relation—to MuRE (Table 1).

5.2  Deep feature synthesis cannot go so deep

Automated feature-engineering methods like Deep Feature Synthesis greatly reduce the 
human cost of manually handcrafting features across tables, while achieving excellent 
results on all datasets. With deep-enough features, DFS performs consistently better than 
manual feature engineering and often slightly better that MuRE + KEN (Table 1).

But this ability to generate good features comes at the price of scalability. Since DFS 
combines aggregation functions and features at each depth, the time and space complexity, 
as well as the number of created features grow exponentially (Table 2). Even on relatively 
small databases like KDD14 or YAGO3, building features for all entities with DFS at a 
depth of 2 or 3 becomes intractable, with the memory requirements greatly exceeding our 
machine capacity (400 GB). Besides memory limitations, the number of features quickly 
reaches tens or hundreds of thousands, making statistical models harder and slower to train 
(e.g. 180x longer on Employees), and reducing feature interpretability.

Yet, the databases that we have explored are smaller than the latest repositories of gen-
eral knowledge: YAGO3 is 50 times smaller than YAGO4 Tanon et al. (2020). Progress 
in linked open data is continuously increasing the amount of information available in a 
consistent representation: DBPedia (Lehmann et al., 2015) currently contains 900 millions 
triplets, and growth by a factor of 1.5 to 2 every two years (DBPedia Web Page, 2021). For 
instance, we could not run DFS, even with a depth of 1, on YAGO4. Even if it could run, it 
would provide a huge number of features, hard to leverage.

Embeddings, on the opposite, readily provide low-dimension representations ( p = 200 ) 
which are able to capture “deep” information, indirectly chaining relations (Table  5). 
Finally, knowledge graph embedding methods are very scalable: embeddings are optimized 
with stochastic gradient descent ( O(#triplets) ), and can be trained on huge amounts of data. 
Further optimizations can make embedding techniques 2 − 5× faster than the implementa-
tions that we used (Zheng et al., 2020).

Knowledge graph embedding models are also naturally suited to capture complex rela-
tional patterns between discrete elements. This is unlike DFS, which struggles to encode 
categorical features: ensembles of discrete entities (e.g. the cities located in a county) are 
aggregated by their most common element and then one-hot encoded, discarding a lot of 
information in the process.
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5.3  Current limitations call for further work

Interpretability The biggest drawback of automatic feature generation is that it leads to 
models harder to interpret. Indeed, features are often manually crafted to capture a quantity 
of interest, such as wealth of a locality. Data scientists can then reason about the role of the 
corresponding quantity, for instance the impact of local wealth on housing prices. A chal-
lenge to these interpretations is that the crafted feature must represent well the quantity, but 
for this the burden is on the analyst and not the tool. With automatically generated features, 
the quantities of interest must be identified from the features. This is typically hard: even 
in DFS where features are associated with descriptive labels, we may have to distinguish 
between many partly redundant features. This is even harder in embedding models, which 
are black-box and do not associate human-understandable labels to individual features.

Matching and out-of-vocabulary The target data may come with different naming con-
ventions as the source, for instance county names in the Elections dataset are written dif-
ferently than in YAGO3. In such case, a form of matching must be performed (e.g. Cook 
County → Cook, Illinois). This is often done manually using domain-knowledge. Further 
work should explore automated techniques, for instance using fuzzy or similarity joins 
(Mann et al., 2016; Silva et al., 2010), or adapting NLP techniques used to create embed-
dings robust to out-of-vocabulary entities (Bojanowski et  al., 2016; Pinter et  al., 2017; 
Chen et al., 2022).

6  Conclusion

We have shown how turn-key extraction of embeddings from relational data can distill 
valuable information from a database, synthesizing feature vectors for data enrichment in 
downstream analytic tasks. For these feature vectors to be most useful in the analytic tasks, 
experiments show that embedding methods must model well the different relations between 
entities, and capture their numerical attributes. For this, we proposed to use knowledge 
graph embedding models designed for link prediction, and extended them to numerical 
attribute with KEN. Our extensive experiments show that these embeddings improve mark-
edly upon manual feature engineering and embedding methods traditionally used for fea-
ture extraction such as RDF2vec. They are also competitive with automatic feature engi-
neering methods based on systematic denormalizations like Deep Feature Synthesis, but do 
not face the same scalability challenges.

A pipeline to minimize human effort Our pipeline is designed to facilitate data prepara-
tion. Not only does it circumvent the human labor of designing manual features, but also 
is minimizes data integration and wrangling challenges. Operating on a triple representa-
tion –sometimes automatically built from tables– removes many tedious aspects of data 
input. For instance it works well on tables in “long” or “wide” formats. It also allows to 
capture and mix information from various data structures: tables, knowledge graphs... Yet, 
richer representations may be useful in the long run to better capture complex relationships 
within the data, such as temporal dependencies (Arora & Bedathur, 2020).

Towards general-purpose feature enrichment The scalability of our approach enabled to 
easily extract embeddings from YAGO3, capturing the corresponding information drawn 
from Wikipedia. These could readily be used as feature enrichment to improve statistical 
analysis on 5 different socio-economic datasets we investigated. Our work thus opens a 
path to capturing the large and complex stores of general information into feature vectors 
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easy to integrate into any analysis. As such it contributes a major step towards facilitating 
data science with less manual data preparation.

Appendix

Downstream tasks

Tabular data

– The KDD14 competition aims to predict “exciting” educational projects on a crowd-
funding platform (binary target). The source data consists of three tables describing 
the projects, the donations they received, and the resources they need. The exact col-
umns used in our experiments are described in Table 7. Since embedding models with 
KEN are designed for discrete entities or numerical values, we perform minimal pre-
processing on a few columns with different data types. For instance, we encode dona-
tions_message (free text) by their length. Temporal data, such as donation_timestamp 
are converted to a number of days after the project posting date. We also convert date_
posted to a number of days after an arbitrary reference date. For a fair comparison, we 
use the same preprocessed features when running DFS.

– The KDD15 challenge aims to predict student dropout prediction in MOOCs (binary 
target), using as source data 4 tables that contain information about the courses and 
how often students interacted with them (see Table  8). To account for the temporal 
information in KDD15, we replace logs times (date) by numbers in [0, 1], describing 
when they occur relatively to the courses start/end dates. We also replace the courses 
starting dates by a number of days after a reference date, and drop the ending dates as 
all courses have the same duration (29 days), making this feature uninformative.

Datasets augmented with YAGO3 embeddings

– Elections: we consider voting statistics in the 2020 presidential election, and aim to 
predict the number of votes per party in 3000 US counties. As the original data (MIT 
Election Data Science Lab, 2018) come with no general information about counties, we 
enrich them with county embeddings learned on YAGO3.

– Housing prices: we want to predict the typical housing price in 23000 US cities using 
their YAGO3 embeddings. We take target estimates from the Zillow group (Zillow, 
2021).

– Accidents: we aim to predict the number of accidents in 8500 US cities between 2016 
and 2020 using their YAGO3 embeddings. We use data described in Moosavi et  al. 
(2019).

– Movie revenues: we aim to predict the box-office revenues of 4900 movies using their 
YAGO3 embeddings. We used data from: https:// www. kaggle. com/ rouna kbanik/ the- 
movies- datas et.

– Employees - We aim to predict the number of employees in 3000 companies using their 
YAGO3 embeddings. We used data from: https:// www. kaggle. com/ peopl edata labssf/ 
free-7- milli on- compa ny- datas et.

https://www.kaggle.com/rounakbanik/the-movies-dataset
https://www.kaggle.com/rounakbanik/the-movies-dataset
https://www.kaggle.com/peopledatalabssf/free-7-million-company-dataset
https://www.kaggle.com/peopledatalabssf/free-7-million-company-dataset
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Since all these targets span over several orders of magnitude. We predict log(target) instead 
of the target in our experiments.

Statistics on source datasets We give in Table  9 the number of entities, relations 
and triples in the knowledge graph representations of the source data used to learn 
entity-embeddings.

Table 7  Description of the KDD14 dataset

The outcomes table contains the target entities project_id for which we want to create feature vectors, and 
the binary value to predict is_exciting. We always use project_id as the head column when building the 
graph

Outcomes
   Project_id (str)
   Is_exciting (target)

Donations
   Project_id (str)
   Donor_city (str)
   Donor_state (str)
   Is_teacher_acct (bool)
   Donation_timestamp (date)
   Donation_to_project (float)
   Donation_optional_support (float)
   Donation_message (text)

Resources
   Project_id (str)
   Project_resource_type (str)
   Item_unit_price (float)
   Item_quantity (int)

Projects
   Project_id (str)
   Teacher_id (str)
   School_id (str)
   School_city (str)
   School_state (str)
   Primary_focus_subject (str)
   Primary_focus_area (str)
   Secondary_focus_subject (str)
   Secondary_focus_area (str)
   Resource_type (str)
   Poverty_level (str)
   Grade_level (str)
   Eligible_double_your_impact_match (bool)
   Eligible_almost_home_match (bool)
   Total_price_excluding_optional_support (float)
   Total_price_including_optional_support (float)
   Students_reached (float)
   Date_posted (date)
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Approaches considered for evaluation

Our approach When training embedding models (MuRE, DistMult and TransE), we do not 
tune hyper-parameters and use the following values in all experiments:

– Embedding dimension = 200.
– Distance in scoring function: �2 norm for MuRE, �1 norm for TransE and DistMult.
– Batch size = 105.
– Optimizer: Adam with learning rate = 10−3.
– Loss function: margin loss with � = 4 in TransE, and a softplus loss for MuRE and 

DistMult.
– Negative sampling: for each positive triple (h, r, t), we generate 10 negative samples by 

replacing the head h by a random entity h′ that co-occurs with the relation r. Doing so 
provides harder negative triples and improves the results.

We then train each model for 40 epochs, and pick the epoch ∈ [2, 4, 8, 16, 24, 32, 40] that 
leads to the best cross-validation scores in downstream tasks.

A technical subtlety with MuRE is that we must define biases bt(x) for numerical values 
x. We do so by learning a constant bias br for each numerical attribute r: ∀x, bt(x) = br.

Table 8  Description of the KDD15 dataset

The outcomes table contains the target entities enrollment_id for which we want to create feature vectors, 
and the binary value to predict dropout. We use the first column of each table as head column when build-
ing the graph

Outcomes
   Enrollment_id (str)
   Dropout (target)

Enrollments
   Enrollment_id (str)
   Student_id (str)
   Course_id (str)

Dates
   Course_id (str)
   From (date)—Course starting date
   To (date)—Course ending date

Objects (course modules)
   Module_id (str) — A module of a course
   Course_id (str)
   Category (str)

Logs (student interactions with courses)
   Enrollment_id (str)
   Event (str)—type of interaction
   Source (str)—event source
   Object (str)—module being interacted with
   Time (date)—time of the event
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Manual feature engineering We describe below the typical feature engineering steps 
that we performed. See Table 10 for the exact list of handcrafted features.

– Identifying relevant features.
– Building features using joins and simple aggregation functions (mean, counts).
– One-hot encoding of low-cardinality categorical features.
– Removing irrelevant, redundant, or hard to encode features (e.g. with high cardinality).

Table 9  Statistics of 
the knowledge graphs 
representations for the data 
used to train embeddings in our 
experiments

Numbers in parenthesis describe the part of numerical relations and 
triplets in the total

Source data Entities Relations Triples

KDD14 945 K 27 (10) 44 M (22.3 M)
KDD15 227 K 9 (2) 33 M (8.2 M)
YAGO3 2.8 M 58 (21) 7.2 M (1.6 M)

Table 10  Manually handcrafted features for each dataset

Dataset Handcrafted features

Numerical Categorical  
(one-hot encoded)

KDD14 –Donation_to_project (mean, counts)
–Length_donation_message (mean) –Primary_focus_subject
–Students_reached –Primary_focus_area
–Total_price_excluding_optional_support –Resource_type
–Total_price_including_optional_support –Poverty_level
–Eligible_double_your_impact_match –Grade_level
–Eligible_almost_home_match

KDD15 –# of interactions (events) with courses –Course_id
–Mean event time (relative to the course starting/ending dates)
–Course starting date
–# of modules per course

Elections County population, latitude, longitude, area, population 
density

Housing prices City population, latitude, longitude, area, population density
Accidents City population, latitude, longitude, area, population density
Movie revenues –Duration of the movie –Country of production

–Number of actors, creators, editors, directors, music writers
Employees –Mean value of all numerical attributes that exist for at least 

5% of the companies
–Counts of all non-numerical attributes that exist for at least 

5% of the companies
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Quality of the extracted features

When using gradient boosted tree models (which offer native support for missing values), 
we use the default parameters from sklearn, except on the smaller datasets using YAGO3 
embeddings. For these datasets, we tune the following model parameters with a cross-vali-
dated grid search: max_depth ∈ [2, 4, 6, None] and min_samples_leaf ∈ [4, 6, 10, 20].

When using KNNs, we tune the number of neighbors ∈ [1, 3, 5, 10, 30], except on 
KDD14/15. We also impute missing values (common in DFS) with the median of each fea-
ture, and then normalize feature values between 0 and 1 with min-max scaling.

We report in Table 1 fivefold cross-validation scores, averaged across 5 random shuf-
fles of the data (3 for KDD14/15) and over 3 different seeds for training the RDF2vec and 
knowledge graph embeddings (1 for KDD14/15). We also provide in Table the standard 
deviations across train-test splits associated to these scores.

To evaluate the ability of knowledge graph embedding models to capture entity types, 
we sample 1000 entities from the following datasets: Elections (counties), Housing prices 
(cities), Movie revenues (movies), Employees (companies), for a total of 4000 entities. 
When then measure with cross-validation how well MuRE + KEN embeddings predict 
entity types, using a simple KNN model whose number of neighbors ∈ [1, 3, 5, 10, 30] is 
tuned. The cross-validation parameters are the same as above.

KEN helps embeddings capture numerical attributes

We obtain the results from Table 3 by predicting certain numerical attributes of entities 
from their embeddings, using simple K-Nearest Neighbors models. For the embeddings, 
we kept those from Table 1. We also tuned the hyper-parameters of nearest neighbors mod-
els to maximize prediction performance, using a cross-validated grid search over the fol-
lowing parameters:

– Number of neighbors ∈ [1, 2, 3, 4, 8, 16].
– Distance: �1 or �2 norm.
– Weighting of the neighbors: uniform or proportional to the distance with the target 

entity.

The final scores are then obtained with fivefold cross-validation, averaged over 5 repeats.
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