
Vol.:(0123456789)

Machine Learning (2023) 112:1551–1595
https://doi.org/10.1007/s10994-022-06274-w

1 3

Learning programs with magic values

Céline Hocquette1  · Andrew Cropper1

Received: 12 May 2022 / Revised: 5 October 2022 / Accepted: 20 October 2022 /
Published online: 22 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2023

Abstract
A magic value in a program is a constant symbol that is essential for the execution of the
program but has no clear explanation for its choice. Learning programs with magic val-
ues is difficult for existing program synthesis approaches. To overcome this limitation,
we introduce an inductive logic programming approach to efficiently learn programs with
magic values. Our experiments on diverse domains, including program synthesis, drug
design, and game playing, show that our approach can (1) outperform existing approaches
in terms of predictive accuracies and learning times, (2) learn magic values from infi-
nite domains, such as the value of pi, and (3) scale to domains with millions of constant
symbols.

Keywords  Inductive logic programming · Programming synthesis · Relational learning ·
Program induction

1  Introduction

A magic value in a program is a constant symbol that is essential for the good execution
of the program but has no clear explanation for its choice. For instance, consider the prob-
lem of classifying lists. Figure 1 shows positive and negative examples. Figure 2 shows a
hypothesis which discriminates between the positive and negative examples. Learning this
hypothesis involves the identification of the magic number 7.

Magic values are fundamental to many areas of knowledge, including physics and math-
ematics. For instance, the value of pi is essential to compute the area of a disk. Likewise,
the gravitational constant is essential to identify whether an object subject to its weight
is in mechanical equilibrium. Similarly, consider the classical AI task of learning to play

Editors: Alireza Tamaddoni-Nezhad, Alan Bundy, Luc De Raedt, Artur d’Avila Garcez, Sebastijan
Dumančić, Cèsar Ferri, Pascal Hitzler, Nikos Katzouris, Denis Mareschal, Stephen Muggleton, Ute
Schmid.

 *	 Céline Hocquette
	 celine.hocquette@cs.ox.ac.uk

	 Andrew Cropper
	 andrew.cropper@cs.ox.ac.uk

1	 Department of Computer Science, University of Oxford, Oxford, UK

http://orcid.org/0000-0001-6732-1587
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06274-w&domain=pdf

1552	 Machine Learning (2023) 112:1551–1595

1 3

games. To play the game connect four,1 a learner must correctly understand the rules of
this game, which implies that they must discover the magic value four, i.e. four tokens in a
row.

Although fundamental to AI, learning programs with magic values is difficult for exist-
ing program synthesis approaches. For instance, many recent inductive logic programming
(ILP) (Muggleton, 1991; Cropper & Dumancic, 2022) approaches first enumerate all pos-
sible rules allowed in a program (Corapi et al., 2011; Kaminski et al., 2018; Raghothaman
et al., 2019; Evans & Grefenstette, 2018) and then search for a subset of them. For exam-
ple, ASPAL (Corapi et al., 2011) precomputes every possible rule and uses an answer set
solver to find a subset of them. Other approaches similarly represent constants as unary
predicate symbols (Evans & Grefenstette, 2018; Cropper & Morel, 2021). Both approaches
suffer from two major limitations. First, they need a finite and tractable number of con-
stant symbols to search through, which is clearly infeasible for large and infinite domains,
such as when reasoning about continuous values. Second, they might generate rules with
irrelevant magic values that never appear in the data, and thus suffer from performance
issues. Older ILP approaches similarly struggle with magic values. For instance, for Pro-
gol (Muggleton, 1995) to learn a rule with a constant symbol, that constant must appear in
the bottom clause of an example. Progol, therefore, struggles to learn recursive programs
with constant values. It can also struggle when the bottom clause grows extremely large
due to many potential magic values.

The goal of this paper, and therefore its main contribution, is to overcome these limita-
tions by introducing an ILP approach that can efficiently learn programs with magic val-
ues, including values from infinite and continuous domains. The key idea of our approach,
which is heavily inspired by Aleph’s lazy evaluation approach (Srinivasan & Camacho,
1999), is to not enumerate all possible magic values but to instead generate hypotheses
with variables in place of constant symbols that are later filled in by a learner. In other
words, the learner first builds a partial general hypothesis and then lazily fills in the specific

Fig. 1   Positive and negative examples

Fig. 2   Target hypothesis

Fig. 3   Intermediate hypothesis

1  Connect four is a two-player game in which the players take turns dropping coloured tokens into a grid.
The goal of the game is to be the first to form a horizontal, vertical, or diagonal line of four of one’s own
tokens.

1553Machine Learning (2023) 112:1551–1595	

1 3

details (the magic values) by examining the given data. For instance, reconsider the task
of identifying the magic number 7 in a list. The learner first constructs a partial intermedi-
ate hypothesis as the one shown in Fig. 3. In the first clause, the first-order variable B is
marked as a constant with the internal predicate @magic. However, it is not bound to any
particular constant symbol. The value for this magic variable is lazily identified by execut-
ing this hypothesis on the examples.

As the example in Fig. 3 illustrates, the key advantages of our approach compared to
existing ones are that it (1) does not rely on enumeration of all constant symbols but only
considers candidate constant values which can be obtained from the examples, (2) can
learn programs with magic values from large and infinite domains, and (3) can learn magic
values for recursive programs.

To implement our approach, we build on the learning from failures (LFF) (Cropper &
Morel, 2021) approach. LFF is a constraint-driven ILP approach where the goal is to accu-
mulate constraints on the hypothesis space. A LFF learner continually generates and tests
hypotheses, from which it infers constraints. For instance, if a hypothesis is too general (i.e.
entails a negative example), then a generalisation constraint prunes generalisations of this
hypothesis from the hypothesis space.

Current LFF approaches (Cropper & Morel, 2021; Cropper, 2022; Purgał et al., 2022)
cannot, however, reason about partial hypotheses, such as the one shown in Fig. 3. They
must instead enumerate candidate constant symbols using unary predicate symbols. Cur-
rent approaches, therefore, suffer from the same limitations as other recent ILP approaches,
i.e. they struggle to scale to large and infinite domains. We, therefore, extend the LFF con-
straints to prune such intermediate partial hypotheses. Each constraint prunes sets of inter-
mediate hypotheses, each of which represents the set of its instantiations. We prove that
these extended constraints are optimally sound: they do not prune optimal solutions from
the hypothesis space.

We implement our magic value approach in MagicPopper, which, as it builds on the
LFF learner Popper, supports predicate invention (Cropper & Morel, 2021) and learning
recursive programs. MagicPopper can learn programs with magic values from domains
with millions of constant symbols and scale to infinite domains. For instance, we show that
MagicPopper can learn (an approximation of) the value of pi. In addition, in contrast to
existing approaches, MagicPopper does not need to be told which arguments may be bound
to magic values but instead can automatically identify them if any is needed, although this
fully automatic approach comes with a high cost in terms of performance. In particular, it
can cost additional learning time and can lower predictive accuracies.

1.1 � Contributions

We claim that our approach can improve learning performance when learning programs
with magic values. To support our claim, we make the following contributions:

1.	 We introduce a procedure for learning programs in domains with large and potentially
infinite numbers of constant symbols.

2.	 We extend the LFF hypothesis constraints to additionally prune hypotheses with constant
symbols. We prove the optimal soundness of these constraints.

3.	 We implement our approach in MagicPopper, which supports learning recursive pro-
grams and predicate invention.

1554	 Machine Learning (2023) 112:1551–1595

1 3

4.	 We experimentally show on multiple domains (including program synthesis, drug
design, and game playing) that our approach can (1) scale to large search spaces with
millions of constant symbols, (2) learn from infinite domains, and (3) outperform exist-
ing systems in terms of predictive accuracies and learning times when learning programs
with magic values.

2 � Related work

2.1 � Numeric discovery

Early discovery systems identified relevant numerical values using a fixed set of basic
operators, such as linear regression, which combined existing numerical values. The search
followed a combinatorial design (Langley et al., 1983; Zytkow, 1987) or was based on
beam search guided by heuristics, such as correlation (Nordhausen & Langley, 1990) or
qualitative proportionality (Falkenhainer & Michalski, 1986). These systems could redis-
cover physical laws with magic values. However, the class of learnable concepts was lim-
ited. BACON (Langley et al., 1983), for instance, cannot learn disjunctions representing
multiple equations. Conversely, MagicPopper can learn recursive programs and perform
predicate invention. Moreover, MagicPopper can take as input normal logic program back-
ground knowledge and is not restricted to a fixed set of predefined operators.

2.2 � Symbolic regression

Symbolic regression searches a space of mathematical expressions, using genetic program-
ming algorithms (Augusto & Barbosa, 2000) or formulating the problem as a mixed integer
non-linear program (Austel et al., 2017). However, these approaches cannot learn recur-
sive programs nor perform predicate invention and are restricted to learning mathematical
expressions.

2.3 � Program synthesis

Program synthesis (Shapiro, 1983) approaches based on the enumeration of the search
space (Si et al., 2019; Ellis et al., 2021) struggle to learn in domains with a large number
of constant symbols. For instance, the Apperception engine (Evans et al., 2021) disallows
constant symbols in learned hypotheses, apart from the initial conditions represented as
ground facts. To improve the likelihood of identifying relevant constants, Hemberg et al.
(2019) manually identify a set of constants from the problem description. Compared to
generate-and-test approaches, analytical approaches do not enumerate all candidate pro-
grams and can be faster (Kitzelmann, 2009).

Several program synthesis systems consider partial programs in the search. Neo (Feng
et al., 2018) constructs partial programs, successively fills their unassigned parts, and
prunes partial programs which have no feasible completion. By contrast, MagicPopper only
fills partial hypotheses with constant symbols. Moreover, MagicPopper evaluates hypoth-
eses based on logical inference only while Neo also uses statistical inference. Finally, Neo
cannot learn recursive programs. Perhaps the most similar work is Sketch (Solar-Lezama,
2009), which uses an SAT solver to search for suitable constants given a partial program.
This approach expects as input a skeleton of a solution: it is given a partial program and the

1555Machine Learning (2023) 112:1551–1595	

1 3

task is to fill in the magic values with particular constants symbols. Conversely, MagicPop-
per learns both the program and the magic values.

2.4 � ILP

2.4.1 � Bottom clauses

Early ILP approaches, such as Progol (Muggleton, 1995) and Aleph (Srinivasan, 2001),
use bottom clauses (Muggleton, 1995) to identify magic values. The bottom clause is
the logically most-specific clause that explains an example. By constructing the bottom
clause, these approaches restrict the search space and, in particular, identify a subset of
relevant constant symbols to consider. However, this bottom clause approach has multi-
ple limitations. First, the bottom clause may grow large which inhibits scalability. Second,
this approach cannot use constants that do not appear in the bottom clause, which is con-
structed from a single example. Third, this approach struggles to learn recursive programs
and does not support predicate invention. Finally, as they rely on mode declarations (Mug-
gleton, 1995) to build the bottom clause, they need to be told which argument of which
relations should be bound to a constant.

2.4.2 � Lazy evaluation

The most related work is an extension of Aleph that supports lazy evaluation (Srinivasan
& Camacho, 1999). During the construction of the bottom clause, Aleph replaces constant
symbols with existentially quantified output variables. During the refinement search of the
bottom clause, Aleph finds substitutions for these variables by executing the partial hypoth-
esis on the positive and negative examples. In other words, instead of enumerating all con-
stant symbols, lazy evaluation only considers constant symbols computable from the exam-
ples. Therefore, lazy evaluation provides better scalability to large domains. This approach
can identify constant symbols not seen in the bottom clause. Moreover, in contrast with
MagicPopper, it also can identify constant symbols whose value arises from reasoning
from multiple examples, such as coefficients in linear regression or numerical inequali-
ties. It also can predict output numerical variables using custom loss functions measuring
error (Srinivasan et al., 2006). However, this approach inherits some of the limitations of
bottom clause approaches aforementioned including limited learning of recursion and lack
of predicate invention. Moreover, the user needs to provide a definition capable of comput-
ing appropriate constant symbols from lists of inputs, such as a definition for computing a
threshold or regression coefficients from data. The user must also provide a list of variables
that should be lazy evaluated or bound to constant symbols in learned hypotheses.

2.4.3 � Regression

First-order regression (Karalič & Bratko, 1997) and structural regression tree (Kramer,
1996) predict continuous numerical values from examples and background knowledge.
First-order regression builds a logic program that can include literals performing linear
regression, whereas MagicPopper cannot perform linear regression. Structural regression
tree builds trees with a numerical value assigned to each leaf. In contrast with MagicPop-
per, these two approaches do not learn optimal programs.

1556	 Machine Learning (2023) 112:1551–1595

1 3

2.4.4 � Logical decision and clustering trees

Tilde (Blockeel & De Raedt, 1998) and TIC (Blockeel et al., 1998) are logical extensions
of decision tree learners and can learn hypotheses with constant values as part of the nodes
that split the examples. These nodes are conjunctions built from the mode declarations.
Tilde and TIC evaluate each candidate node, and select the one which results in the best
split of the examples. Tilde can also use a discretisation procedure to find relevant numeri-
cal constants from large, potentially infinite domains, while making the induction process
more efficient (Blockeel & De Raedt, 1997). However, this approach only handles numeri-
cal values while MagicPopper can handle magic values of any type. Moreover, Tilde can-
not learn recursive programs and struggles to learn from small numbers of examples.

2.4.5 � Meta‑interpretive learning

Meta-interpretive learning (MIL) (Muggleton et al., 2014) uses meta-rules, which are sec-
ond-order clauses acting as program templates, to learn programs. A MIL learner induces
programs by searching for substitutions for the variables in meta-rules. These variables
usually denote predicate variables, i.e. variables that can be bound to a predicate symbol.
For instance, the MIL learner Metagol finds variable substitutions by constructing a proof
of the examples. Metagol can learn programs with magic values by also allowing some
variables in meta-rules to be bound to constant symbols. With this approach, Metagol,
therefore, never considers constants which do not appear in the proof of at least one posi-
tive example and thus does not enumerate all constants in the search space. Our magic
value approach is similar in that we construct a hypothesis with variables in it, then find
substitutions for these variables by testing the hypothesis on the training examples. How-
ever, a key difference is that Metagol needs a user-provided set of meta-rules as input to
precisely define the structure of a hypothesis, which is often difficult to provide, especially
when learning programs with relations of arity greater than two. Moreover, Metagol does
not remember failed hypotheses during the search and might consider again hypotheses
which have already been proved incomplete or inconsistent. Conversely, MagicPopper can
prune the hypothesis space upon failure of completeness or consistency with the examples,
which can improve learning performance.

2.4.6 � Meta‑level ILP

To overcome the limitations of older ILP systems, many recent ILP approaches are meta-
level (Cropper et al., 2020) approaches, which predominately formulate the ILP problem
as a declarative search problem. A key advantage of these approaches is greater ability
to learn recursive and optimal programs. Many of these recent approaches precompute
every possible rule in a hypothesis (Corapi et al., 2011; Kaminski et al., 2018; Evans &
Grefenstette, 2018; Raghothaman et al., 2019). For instance, ASPAL (Corapi et al., 2011)
precomputes every possible rule in a hypothesis space, which means it needs to ground
rules with respect to every allowed constant symbol. This pure enumeration approach is
intractable for domains with large number of constant symbols and impossible for domains
with infinite ones. Moreover, the variables which should be bound to constants must be
provided as part of the mode declarations by the user (Corapi et al., 2011).

1557Machine Learning (2023) 112:1551–1595	

1 3

Other recent meta-level ILP systems, such as � -ILP (Evans & Grefenstette, 2018) and
Popper (Cropper & Morel, 2021), do not directly allow constant symbols in clauses but
instead require that constant symbols are provided as unary predicates. These unary pred-
icates are assumed to be user-provided. Moreover, since the size of the search space is
exponential into the number of predicate symbols, this approach prevents scalability and in
particular handling domains with infinite number of constant symbols. Conversely, Mag-
icPopper identifies relevant constant symbols by executing hypotheses over the positive
examples, and can scale to infinite domains. In addition, it does not express constant sym-
bols with additional predicates and thus can learn shorter hypotheses.

3 � Problem setting

Logic preliminaries
We assume familiarity with logic programming (Lloyd, 2012) but restate some key ter-

minology. A variable is a string of characters starting with an uppercase letter. A function
symbol is a string of characters starting with a lowercase letter. A predicate symbol is a
string of characters starting with a lowercase letter. The arity n of a function or predicate
symbol p is the number of arguments it takes. A unary or monadic predicate is a predicate
with arity one. A constant symbol is a function symbol with arity zero. A term is a variable
or a function symbol of arity n immediately followed by a tuple of n terms. An atom is a
tuple p(t1, ..., tn) , where p is a predicate of arity n and t1 , ..., tn are terms, either variables or
constants. An atom is ground if it contains no variables. A literal is an atom or the negation
of an atom. A clause is a set of literals. A constraint is a clause without a positive literal.
A definite clause is a clause with exactly one positive literal. A program is a set of definite
clauses. A substitution � = {v1∕t1, ..., vn∕tn} is the simultaneous replacement of each vari-
able vi by its corresponding term ti . A clause C1 subsumes a clause C2 if and only if there
exists a substitution � such that C1𝜃 ⊆ C2 . A program H1 subsumes a program H2 , denoted
H1 ⪯ H2 , if and only if ∀C2 ∈ H2,∃C1 ∈ H1 such that C1 subsumes C2 . A program H1 is a
specialisation of a program H2 if and only if H2 ⪯ H1 . A program H1 is a generalisation of a
program H2 if and only if H1 ⪯ H2.

3.1 � Learning from failures

Our problem setting is the learning from failures (LFF) (Cropper & Morel, 2021) setting,
which in turn is based upon the learning from entailment setting (Muggleton & De Raedt,
1994). LFF uses hypothesis constraints to restrict the hypothesis space. LFF assumes a
meta-language L , which is a language about hypotheses. Hypothesis constraints are
expressed in L . A LFF input is defined as:

Definition 1  A LFF input is a tuple (E+,E−,B,H,C) where E+ and E− are sets of ground
atoms representing positive and negative examples respectively, B is a definite program
representing background knowledge, H is a hypothesis space, and C is a set of hypothesis
constraints expressed in the meta-language L.

1558	 Machine Learning (2023) 112:1551–1595

1 3

Given a set of hypotheses constraints C, we say that a hypothesis H is consistent with C
if, when written in L , H does not violate any constraint in C. We call HC the subset of H
consistent with C. We define a LFF solution:

Definition 2  Given a LFF input (E+,E−,B,H,C) , a LFF solution is a hypothesis H ∈ HC
such that H is complete with respect to E+ ( ∀e ∈ E+,B ∪ H ⊧ e ) and consistent with respect
to E− ( ∀e ∈ E−,B ∪ H ̸⊧ e).

Conversely, given a LFF input, a hypothesis H is incomplete when ∃e ∈ E+,H ∪ B ̸⊧ e ,
and is inconsistent when ∃e ∈ E−,H ∪ B ⊧ e.

In general, there might be multiple solutions given a LFF input. We associate a cost to
each hypothesis and prefer the ones with minimal cost. We define an optimal solution:

Definition 3  Given a LFF input (E+,E−,B,H,C) and a cost function cost : H → ℝ ,
a LFF optimal solution H1 is a LFF solution such that, for all LFF solution H2 ,
cost(H1) ≤ cost(H2).

A common bias is to express the cost as the size of a hypothesis. In the following, we
use this bias, and we measure the size of a hypothesis as the number of literals in it.

3.1.1 � Constraints

A hypothesis that is not a solution is called a failure. A LFF learner identifies constraints
from failures to restrict the hypothesis space. We distinguish several kinds of failures,
among which are the following. If a hypothesis is incomplete, a specialisation constraint
prunes its specialisations, as they are provably also incomplete. If a hypothesis is inconsist-
ent, a generalisation constraint prunes its generalisations, as they are provably also incon-
sistent. A hypothesis is totally incomplete when ∀e ∈ E+,H ∪ B ̸⊧ e . If a hypothesis is
totally incomplete, a redundancy constraint prunes hypotheses that contain one of its spe-
cialisations as a subset (Cropper & Morel, 2021). These constraints are optimally sound:
they do not prune optimal solutions from the hypothesis space (Cropper & Morel, 2021).

Example 1  (Hypotheses constraints) We call c2 the unary predicate which holds when its
argument is the number 2. Consider the following positive examples E+ and the hypothesis
H0:

The second example is a list of length 3 while the hypothesis H0 only entails lists of
length 2. Therefore, the hypothesis H0 does not cover the second positive example and thus
is incomplete. We can soundly prune all its specialisations as they also are incomplete. In
particular, we can prune the specialisations H1 and H2:

E+ = {f ([b, a]), f ([c, a, e])}

H0 ∶ f (A) ← length(A,B), c2(B)

H1 ∶ f (A) ← length(A,B), c2(B), head(A,B)

H2 ∶ f (A) ← length(A,B), c2(B), tail(A,C), empty(C)

1559Machine Learning (2023) 112:1551–1595	

1 3

4 � Magic evaluation

The constraints described in the previous section prune hypotheses. In particular, they
can prune hypotheses with constant symbols as shown in Example 1. However, hypoth-
eses identical but with different constant symbols are treated independently despite their
similarities.

For instance, Popper could consider all of the hypotheses represented on the left of
Fig. 4. Each of these hypotheses would be considered independently. For each of them,
Popper learns constraints which prune specialisations, generalisations, or redundancy of
this single hypothesis but do not apply to other hypotheses. By contrast, as shown on the
right of Fig. 4, MagicPopper represents all these hypotheses jointly as a single one by using
variables in place of constant symbols. Thus, MagicPopper reasons simultaneously about
hypotheses with similar program structure but different constant symbols.

MagicPopper extends specialisation, generalisation, and redundancy constraints to apply
to such partial hypotheses.

Moreover, the unary predicate symbols used by Popper must be provided as bias: it is
assumed the user can provide a finite and tractable number of them. Conversely, Magic-
Popper represents the set of hypotheses with similar structure but with different constant
symbols as a single one, and therefore can handle infinite constant domains.

In this section, we introduce MagicPopper’s representation, present these extended con-
straints, and prove they are optimally sound.

4.1 � Magic variables

A LFF learner uses a meta-language L to reason about hypotheses. We extend this meta-
language L to represent partial hypotheses with unbound constant symbols. We define a
magic variable:

Definition 4  A magic variable is an existentially quantified first-order variable.

A magic variable is a placeholder for a constant symbol. It marks a variable as a con-
stant but does not require the particular constant symbol to be identified. Particular con-
stant symbols can be identified in a latter stage. We represent magic variables with the
unary predicate symbol @magic. For example, in the following program H, the variable B
marked with the syntax @magic is a magic variable:

Fig. 4   Some hypotheses considered by Popper (left) and MagicPopper (right). c
1
 , c

2
 , c

3
 , c

4
 , c

5
 , and c

6
 are

unary predicates that hold when their argument is the number 1, 2, 3, 4, 5, or 6 respectively. These unary
predicates are assumed to be user-provided

1560	 Machine Learning (2023) 112:1551–1595

1 3

This magic variable is not yet bound to any particular value. The use of the predicate
symbol @magic allows us to concisely represent the set of all possible substitutions of a
variable.

The predicate symbol @magic is an internal predicate. For this reason, literals with this
predicate symbol are not taken into account in the rule size. For instance, the hypothesis H
above has size 2. Therefore, compared to approaches that use additional unary body literals
to identify constant symbols, our representation represents hypotheses with constant symbols
with fewer literals.

4.2 � Magic hypotheses

A magic hypothesis is a hypothesis with at least one magic variable. An instantiated hypoth-
esis, or instantiation, is the result of substituting magic variables with constant symbols in a
magic hypothesis. Magic evaluation is the process of identifying a relevant subset of substitu-
tions for magic variables in a magic hypothesis to form instantiations.

Example 2  (Magic hypothesis) The magic hypothesis H above may have the following cor-
responding instantiated hypotheses, or instantiations, I1 and I2:

Magic hypotheses allow us to represent the hypothesis space more compactly and to rea-
son about the set of all instantiations of a magic hypothesis simultaneously. For instance,
the magic hypothesis H above represents concisely all its instantiations, including I1 and I2 ,
amongst many other ones. The only instantiation of a non-magic hypothesis is itself.

In practice, we are not interested in all instantiations of a magic hypothesis, but only in a
subset of relevant instantiations. In the following, we consider a magic evaluation procedure
which only considers instantiations that, together with the background knowledge, entail at
least one positive example. We show we can ignore other instantiations.

4.3 � Constraints

To improve learning performance, we prune the hypothesis space with constraints (Cropper
& Morel, 2021). Given our hypothesis representation, each constraint prunes a set of magic
hypotheses, each of which represents the set of its instantiations. In other words, for each
magic hypothesis pruned, we eliminate all its instantiations. We identify constraints that are
optimally sound in that they do not eliminate optimal solutions from the hypothesis space.
Specifically, we consider extensions of specialisation, generalisation, and redundancy con-
straints for magic hypotheses. We describe them in turn. The proofs are in the appendix.

4.3.1 � Extended specialisation constraint

We first extend specialisation constraints. If all the instantiations of a magic hypothesis,
together with the background knowledge, entail at least one positive example and are
incomplete, then all specialisations of this hypothesis are incomplete:

H ∶ f (A) ← length(A,B),@magic(B)

I1 ∶ f (A) ← length(A, 2)

I2 ∶ f (A) ← length(A, 0)

1561Machine Learning (2023) 112:1551–1595	

1 3

Proposition 1  (Extended specialisation constraint) Let (E+,E−,B,H,C) be a LFF input,
H1 ∈ HC , and H2 ∈ HC be two magic hypotheses such that H1 ⪯ H2 . If all instantiation
I1 of H1 such that ∃e ∈ E+,B ∪ I1 ⊧ e are incomplete, then all instantiation of H2 also are
incomplete.

We provide an example to illustrate this proposition.

Example 3  (Extended specialisation constraint) Consider the dyadic predicate head which
takes as input a list and returns its first element. Consider the following positive examples
E+ and the magic hypothesis H0:

This hypothesis holds for lists whose first element is a particular constant symbol to be
determined. This hypothesis H0 has the following two instantiations I0,1 and I0,2 covering at
least one positive example:

The first instantiation I0,1 holds for lists whose head is the element b. This instantiation
covers the first positive example. The second instantiation I0,2 holds for lists whose head is
the element c. It covers the second positive example. However, each of these instantiations
is incomplete and too specific. Therefore, no instantiation of H0 can entail all the positive
examples. As such, all specialisations of H0 can be pruned, including magic hypotheses
such as H1 and H2:

4.3.2 � Extended generalisation constraint

We now extend generalisation constraints. If all the instantiations of a magic hypothesis
together with the background knowledge entail at least one positive example are inconsist-
ent, then we can prune non-recursive generalisations of this hypothesis and they are either
inconsistent or non-optimal:

Proposition 2  (Extended generalisation constraint) Let (E+,E−,B,H,C) be a LFF
input, H1 ∈ HC and H2 ∈ HC be two magic hypotheses such that H2 is non-recursive and
H2 ⪯ H1 . If all instantiation I1 of H1 such that ∃e ∈ E+,B ∪ I1 ⊧ e are inconsistent, then all
instantiations of H2 are inconsistent or non-optimal.

We illustrate generalisation constraints with the following example and give a counter-
example to explain why non-recursive hypotheses cannot be pruned.

Example 4  (Extended generalisation constraint) Consider the following positive examples
E+ , the negative examples E− and the magic hypothesis H0:

E+ = {f ([b, a]), f ([c, a, e])}

H0 ∶ f (A) ← head(A,B),@magic(B)

I0,1 ∶ f (A) ← head(A, b)

I0,2 ∶ f (A) ← head(A, c)

H1 ∶ f (A) ← head(A,B),@magic(B), odd(B)

H2 ∶ f (A) ← head(A,B),@magic(B), tail(A,C), head(C,D),@magic(D)

1562	 Machine Learning (2023) 112:1551–1595

1 3

This hypothesis H0 has the following two instantiations I0,1 and I0,2 covering at least one of
these positive examples:

The first instantiation I0,1 holds for lists whose head is the element b. This instantiation
covers the first positive example and the first negative example. The second instantiation
I0,2 holds for lists whose head is the element c. It covers the second positive example and
the second negative example. Each of these instantiations is inconsistent and thus is too
general. As such, all non-recursive generalisations of H0 can be pruned. In particular, the
magic hypotheses H1 and H2 below are non-recursive generalisations of H0 and can be
pruned:

However, there might exist other instantiations of H0 which do not cover any positive
examples but are not inconsistent, such as I0,3:

This instantiation could be used to construct a recursive solution, such as I:

The instantiation I holds for list which contain the element a at any position.

4.3.3 � Extended redundancy constraint

We extend redundancy constraints for magic hypotheses. If a magic hypothesis has
no instantiations which, together with the background knowledge, entail at least one
positive example, we show that it is redundant when included in any non-recursive
hypothesis.

Proposition 3  (Extended redundancy constraint) Let (E+,E−,B,H,C) be a LFF input,
H1 ∈ HC be a magic hypothesis. If H1 has no instantiation I1 such that ∃e ∈ E+,B ∪ I1 ⊧ e ,
then all non-recursive magic hypotheses H2 which contain a specialisation of H1 as a sub-
set are non-optimal.

We illustrate this proposition with the following example and provide a counter-example
to explain why non-recursive hypotheses cannot be pruned.

E+ = {f ([b, a]), f ([c, a, e])}

E− = {f ([b]), f ([c])} H0 ∶ f (A) ← head(A,B),@magic(B)

I0,1 ∶ f (A) ← head(A, b)

I0,2 ∶ f (A) ← head(A, c)

H1 ∶

{
f (A) ← head(A,B),@magic(B)
f (A) ← length(A,B),@magic(B)

H2 ∶

{
f (A) ← head(A,B),@magic(B)
f (A) ← head(A,B), negative(B)

I0,3 ∶ f (A) ← head(A, a)

I ∶

{
f (A) ← head(A, a)
f (A) ← tail(A,B), f (B)

1563Machine Learning (2023) 112:1551–1595	

1 3

Example 5  (Extended redundancy constraint) Consider the following positive examples E+
and the magic hypothesis H0:

This hypothesis H0 holds for lists which contain a single element which is a particular con-
stant to be determined. However, both examples have length greater or equal to 2. There-
fore, among the possible instantiations of the hypothesis H0 , there are no instantiations
which, together with the background knowledge, cover at least one positive example. H0
cannot entail any of the positive examples and is redundant when included in a non-recur-
sive hypothesis. As such, all hypotheses which contain a specialisation of H0 as a subset
are non-optimal. In particular, the magic hypotheses H1 and H2 below contain a specialisa-
tion of H0 as a subset. They are non-optimal and can be pruned:

However, there might exist other instantiations of H0 which are not redundant in recur-
sive hypotheses. For instance, the following recursive instantiated hypothesis I includes an
instantiation of H0 as a subset but may not be non-optimal:

This instantiation holds for lists whose last element is the constant c. It covers both positive
examples but none of the negative examples.

While extended specialisation constraints are sound, extended redundancy and gen-
eralisation constraints are only optimally sound. They might prune solutions from the
hypothesis space but do not prune optimal solutions.

4.3.4 � Constraint summary

We summarise our constraint framework as follows. Given a magic hypothesis H, the
learner can infer the following extended constraints under the following conditions:

1.	 If all instantiations of H which, together with the background knowledge, entail at least
one positive example are incomplete, according to Proposition 1, we can prune all its
specialisations.

2.	 If all instantiations of H which, together with the background knowledge, entail at least
one positive example are inconsistent, according to Proposition 2, we can prune all its
non-recursive generalisations.

3.	 If the magic hypothesis H has no instantiation which, together with the background
knowledge, entail at least one positive example, according to Proposition 3, we can
prune all non-recursive hypotheses which contain one of its specialisations as a subset.

E+ = {f ([b, c]), f ([f , g, c])} H0 ∶ f (A) ← head(A,B),@magic(B), tail(A,C), empty(C)

H1 ∶

{
f (A) ← head(A,B),@magic(B), odd(B), tail(A,C), empty(C)
f (A) ← length(A,B),@magic(B)

H2 ∶

{
f (A) ← head(A,B),@magic(B), tail(A,C), empty(C), length(A,D), odd(D)
f (A) ← head(A,B), negative(B)

I ∶

{
f (A) ← head(A, c), tail(A,C), empty(C)
f (A) ← tail(A,B), f (B)

1564	 Machine Learning (2023) 112:1551–1595

1 3

While Proposition 1 can prune recursive hypotheses, Proposition 2 and Proposition 3 do
not prune recursive hypotheses. Therefore, pruning is stronger when recursion is disabled.

We have described our representation of the hypothesis space with magic hypotheses.
We have extended specialisation, generalisation, and redundancy constraints to prune
magic hypotheses and we have demonstrated these extended constraints are optimally
sound. The next section theoretically evaluates the gain over the size of the search space of
using magic hypotheses compared to identifying constant symbols with unary predicates.

4.4 � Theoretical analysis

Our representation includes magic hypotheses which contain magic variables. Each magic
variable stands for the set of its substitutions. Therefore, we do not enumerate constant
symbols in the hypothesis space by opposition with existing approach. Our experiments
focus on comparing MagicPopper with approaches which enumerate possible constant
symbols with unary body predicates. We focus in this section on theoretically evaluating
the reduction over the hypothesis space size of not enumerating all candidate constant sym-
bols as unary predicates, and instead using magic variables.

Proposition 4  Let Db be the number of body predicates available in the search space, m
be the maximum number of body literals allowed in a clause, c the number of constant
symbols available, and n the maximum number of clauses allowed in a hypothesis. Then
the maximum number of hypotheses in the hypothesis space can be multiplied by a factor
of (Db+c

Db

)mn if representing constants with unary predicate symbols, one per allowed con-
stant symbol, compared to using magic variables.

A proof of Proposition 4 is in the appendix. Proposition 4 shows that allowing magic
variables can reduce the size of the hypothesis space compared to enumerating constant
symbols through unary predicate symbols. The ratio is a increasing function of the number
of constant symbols available and the complexity of hypotheses, measured as the number
of clauses allowed in hypotheses n and the number of body literals allowed in clauses m.
Similar analysis can be conducted for approaches which enumerate constant symbols in the
arguments of clauses. More generally, Proposition 4 suggests that enumerating constant
symbols can increase the size of the hypothesis space compared to using magic variables.

5 � Implementation

We now describe MagicPopper, which implements our magic evaluation idea. We first
describe Popper, on which MagicPopper is based.

5.1 � Popper

Popper (Cropper & Morel, 2021) is a LFF learner. It takes as input a LFF input, which
contains a set of positive ( E+ ) and negative ( E− ) examples, background knowledge
(B), a bound over the size of hypotheses allowed in H , and a set of hypotheses con-
straints (C). Popper represents hypotheses in a meta-language L . This meta-language L
contains literals head_literal/4 and body_literal/4 representing head and body literals

1565Machine Learning (2023) 112:1551–1595	

1 3

respectively. These literals have arguments (Clause,Pred,Arity,Vars) and denote that
there is a head or body literal in the clause Clause, with the predicate symbol Pred, arity
Arity, and variables Vars. For instance, the following set of literals:

represents the following clause with id 0:

To generate hypotheses, Popper uses an ASP program P whose models are hypothesis solu-
tions represented in the meta-language L . In other words, each model (answer set) of P
represents a hypothesis. A simplified version of the base ASP program (without the predi-
cate declarations which are problem specific) is represented in Fig. 5. Popper uses a gener-
ate, test, and constrain loop to find a solution. First, it generates a hypothesis as a solution
to the ASP program P with the ASP system Clingo (Gebser et al., 2014). Popper searches
for hypotheses by increasing size, the size being evaluated as the number of literals in a
hypothesis. Popper tests this hypothesis against the examples, typically using Prolog. If the
hypothesis is a solution, it is returned. Otherwise, the hypothesis is a failure: Popper identi-
fies the kind of failure and builds constraints accordingly. For instance, if the hypothesis is
inconsistent (entails a negative example) Popper builds a generalisation constraint. Popper
adds these constraints to the ASP program P to constrain the subsequent generate steps.
This loop repeats until a hypothesis solution is found or until there are no more models to
the ASP program P.

{head_literal(0, empty, 1, (0)), body_literal(0, length, 2, (0, 1)), body_literal(0, zero, 1, (1))}

empty(A) ← length(A,B), zero(B)

Fig. 5   Simplified Popper ASP base program for single clause programs. There is exactly one head literal per
clause. There are at most N body literals per clause, where N is a user-provided parameter describing the
maximum number of body literals allowed in a clause. Our modification is highlighted in bold: we allow at
most M variables to be magic variables, where M is a user-provided parameter

1566	 Machine Learning (2023) 112:1551–1595

1 3

5.2 � MagicPopper

MagicPopper builds on Popper to support magic evaluation. MagicPopper likewise follows
a generate, test, and constrain loop to find a solution. We describe in turn how each of
these steps works.

5.2.1 � Generate

Figure 5 shows our modification to Popper’s base ASP encoding in bold. In addition to
head_literal/4 and body_literal/4, MagicPopper can express magic_literal/2. Magic liter-
als have arguments (Clause,Var) and denote that the variable Var in the clause Clause is
a magic variable. There can be at most M magic literals in a clause, where M is a user
defined parameter with default value 4. This setting expresses the trade-off between search
complexity and expressivity.

In addition to the standard Popper input, and a maximum number of magic values per
clause, MagicPopper can receive information about which variables can be magic varia-
bles. This information can be provided with three different settings: Arguments, Types, and
All. For instance, given the predicate declarations represented in Fig. 6, Fig. 7 illustrates
how the user can provide additional bias with each of these settings. A user can specify
individually a list of some arguments of some predicates (Arguments) or a list of variable
types (Types). Otherwise, if no information is given, MagicPopper treats any variable as a
potential magic variable (All). For any of these settings, MagicPopper searches for a subset
of the variables specified by the user for the magic variables. Therefore, All always consid-
ers a larger hypothesis space than Arguments and Types. Arguments is the setting closest
to mode declarations (Muggleton, 1995; Blockeel & De Raedt, 1998; Srinivasan, 2001;
Corapi et al., 2011). Mode declarations however impose a stricter bias: while Arguments
treats the flagged arguments as potential magic values, mode declarations specify an exact

Fig. 6   Predicate declarations for the krk task. The task is to learn a hypothesis to describe that the white
king protects the white rook in the chess endgame king-rook-king

Fig. 7   Example of the different bias settings for MagicPopper. Variables that can be magic variables are
represented in bold. Arguments can treat as magic variables some specified arguments of specified predi-
cates. Type can treat as a magic variable any variable of the specified types. All expects no additional infor-
mation and may treat any variable as a magic variable

1567Machine Learning (2023) 112:1551–1595	

1 3

list of arguments which must be constant symbols.2 With the All setting, MagicPopper can
automatically identify which variable to treat as magic variables at the expense of more
search. In Sect. 6.7, we experimentally evaluate the impact on learning performance of
these different settings. In Sect. 6.8, we evaluate the impact on learning performance of
allowing magic values (All setting) when it is unnecessary.

The output of the generate step is a hypothesis which may contain magic variables, such
as the one shown on the right of Fig. 4. By contrast, most ILP approaches (Corapi et al.,
2011; Evans & Grefenstette, 2018; Cropper & Morel, 2021) cannot generate hypotheses
with magic variables but instead require enumerating constant symbols. Popper and � -ILP
use unary predicates to represent constant symbols, as shown on the left of Fig. 4. Aspal
precomputes all possible rules with some arguments grounded to constant symbols. Con-
versely, owing to the use of magic variables, MagicPopper benefits from a more compact
representation of the hypothesis space.

5.2.2 � Test

Magic evaluation is executed during the test step. To identify substitutions for magic variables,
we add magic variables as new head arguments. We execute the resulting program on the posi-
tive examples. We save the substitutions for the new head variables. We then bound these sub-
stitutions to their corresponding magic variables and remove the additional head arguments.

Example 6  (Magic evaluation) Consider the magic hypothesis H1 below:

We add magic variables as new head variables. H thus becomes H′
1
.

We execute H′
1
 on the positive examples to find substitutions for the magic variable B.

Assume the single positive example f([a, b, c]). We transform it into f([a, b, c], B) and we
find the substitution 3 for the variable B. We bind this value to the magic variable in the
hypothesis, which results in the following instantiation:

Example 7  (Magic evaluation of recursive hypothesis) Similarly, the recursive hypothesis
H2 below becomes H′

2
.

We execute H′
2
 on the positive examples to find substitutions for the magic variables B and

D.

H1 ∶ f (A) ← length(A,B),@magic(B)

H�
1
∶ f (A,B) ← length(A,B),@magic(B)

H�
1
∶ f (A,B) ← length(A, 3)

H2 ∶

{
f (A) ← length(A,B),@magic(B)
f (A) ← head(A,B),@magic(B), tail(A,C), f (C)

H�
2
∶

{
f (A,B,D) ← length(A,B),@magic(B)
f (A,B,D) ← head(A,D),@magic(D), tail(A,C), f (C,B,D)

2  Forcing variables to be magic variables is not a setting currently available in MagicPopper.

1568	 Machine Learning (2023) 112:1551–1595

1 3

With this procedure, MagicPopper only identifies constants which can be obtained from the
positive examples. In this sense, MagicPopper does not consider irrelevant constant symbols.

Example 8  (Relevant instantiations) Given the positive examples E+ = {f ([a, e]), f ([])} ,
we consider only the two instantiations I1,1 and I1,2 for the magic hypothesis H1:

We use Prolog to execute programs because of its ability to use lists and handle
large, potentially infinite, domains. As a consequence of using Prolog, our reasoning to
deduce candidate magic values is based on backward chaining, in contrast to systems
that rely on forward chaining (Corapi et al., 2011; Evans & Grefenstette, 2018; Kamin-
ski et al., 2018; Evans et al., 2021).

A limitation of the aforementioned approach is the execution time of learned pro-
grams to identify all possible bindings. This approach is especially expensive when
a hypothesis contains multiple magic variables, in which case one must consider the
combinations of their possible bindings.

Example 9  (Execution time complexity) Consider the hypothesis H:

The hypothesis H is the disjunction of two clauses, each of which contains one magic
value, respectively B1 and B2. Since B1 and B2 can be bound to different constant sym-
bols, this hypothesis is allowed in the search space despite having two clauses with the
exact same literals. More generally, we allow identical clauses with magic variables.

This hypothesis means that any of two particular elements appears in a list. We search
for substitutions for the magic variables B1 and B2. We call n the size of input lists. The
number of substitutions for the magic variable B1 in the first clause is O(n). Similarly, the
number of substitutions for the magic variable B2 in the second clause is O(n). Therefore,
the number of instantiations for H is O(n2).

5.2.3 � Constrain

If MagicPopper identifies that a hypothesis has no instantiation, no complete instantia-
tion, or no consistent instantiation, it generates constraints as explained in Sect. 4.3.4.
Additionally, MagicPopper generates a banish constraint if no other constraints can
be inferred. The banish constraint prunes this single hypothesis from the hypothesis
space. In other words, it ensures that the same hypothesis will not be generated again
in subsequent generate steps (Cropper & Morel, 2021). These constraints prune the
hypothesis space and constrain the following iterations.

H1 ∶ f (A) ← length(A,B),@magic(B)

I1,1 ∶ f (A) ← length(A, 2)

I1,2 ∶ f (A) ← length(A, 0)

H ∶

{
f (A) ← member(A,B1),@magic(B1)
f (A) ← member(A,B2),@magic(B2)

1569Machine Learning (2023) 112:1551–1595	

1 3

6 � Experiments

We now evaluate our approach.

6.1 � Experimental design

Our main claim is that MagicPopper can improve learning performance compared to cur-
rent ILP systems when learning programs with magic values. Our experiments, therefore,
aim to answer the question:

Q1	� How well does MagicPopper perform compared to other approaches?

To answer Q1, we compare MagicPopper against Metagol, Aleph, and Popper.3 Magic-
Popper uses different biases than Metagol and Aleph. Therefore a direct comparison is dif-
ficult and our results should be interpreted as indicative only. By contrast, as MagicPopper
is based on Popper, the comparison against Popper is more controlled. The experimental
difference between the two is the addition of our magic evaluation procedure and the use of
extended constraints.

A key limitation of approaches that enumerate all possible constants allowed in a rule
(Corapi et al., 2011; Evans & Grefenstette, 2018; Cropper & Morel, 2021) is difficulty
learning programs from infinite domains. By contrast, we claim that MagicPopper can
learn in infinite domains. Therefore, our experiments aim to answer the question:

Q2	� Can MagicPopper learn in infinite domains?

To answer Q2, we consider several tasks in infinite and continuous domains that require
magic values as real numbers or integers.

Proposition 4 shows that our magic evaluation procedure can reduce the search space
and thus improve learning performance compared to using unary body predicates. We thus
claim that MagicPopper can improve scalability compared to Popper. To explore this claim,
our experiments aim to answer the question:

Q3	� How well does MagicPopper scale?

To answer Q3, we vary the number of (1) constant symbols in the background knowl-
edge, (2) magic values in the target hypotheses, and (3) training examples. We use as
baseline Popper. We compare our experimental results with our theoretical analysis from
Sect. 4.4.

Unlike existing approaches, MagicPopper does not need to be told which variables may
be magic variables but can automatically identify this information. However, it can use this
information if provided by a user. To evaluate the importance of this additional informa-
tion, our experiments aim to answer the question:

Q4	� What effect does additional bias about magic variables have on the learning perfor-
mance of MagicPopper?

3  We also considered ASPAL (Corapi et al., 2011). However, as it precomputes every possible rule in a
hypothesis, it does not scale to our experimental domains.

1570	 Machine Learning (2023) 112:1551–1595

1 3

To investigate Q4, we compare different settings for MagicPopper, each of which
assumes different information regarding which variables may be magic variables. We use
as baseline Popper.

Our approach should improve learning performance when learning programs with
magic values. However, in practical applications, it is unknown whether magic values are
necessary. To evaluate the cost in performance when magic values are unnecessary, our
experiments aim to answer the question:

Q5	� What effect does allowing magic values have on the learning performance when
magic values are unnecessary?

 To answer Q5, we compare the learning performance of MagicPopper and Popper on
problems that should not require magic values. We set MagicPopper to allow any variable
to potentially be a magic value.

6.1.1 � Experimental settings

Given p positive and n negative examples, tp true positives and tn true negatives, we define
the predictive accuracy as 1

2
(tp
p
+ tn

n
) . We measure mean predictive accuracies, mean learn-

ing times, and standard errors of the mean over 10 repetitions. We use an 8-Core 3.2 GHz
Apple M1 and a single CPU.4

6.1.2 � Systems settings

Aleph
Aleph is allowed constant symbols through the mode declarations or lazy evaluation.

Metagol
Metagol needs as input second-order clauses called metarules. We provide Metagol

with a set of almost universal metarules for a singleton-free fragment of monadic and
dyadic Datalog (Cropper & Tourret, 2020) and additional curry metarules to identify con-
stant symbols as existentially quantified first-order variables.

Popper and MagicPopper
Both systems use Popper 2.0.0 (also known as Popper+) (Cropper & Hocquette, 2022).

We provide Popper with one unary predicate symbol for each constant symbol available
in the background knowledge. We set for both systems the same parameters bounding the
search space (maximum number of variables and maximum number of literals in the body
of clauses). Therefore, since MagicPopper does not count magic literals in program sizes, it
considers a larger search space than Popper. We provide both systems with types for predi-
cate symbols. In particular, unary predicates provided to Popper are typed. Therefore, to
ensure a fair comparison, we provide MagicPopper with a list of types to describe the set of
variables which may be magic variables. As explained in Sect. 5.2, we could have instead
provided MagicPopper with a list of arguments of particular predicate symbols to describe
the set of variables which may be magic variables. Providing a list of predicate arguments
would have been a setting closer to mode declarations, which Aleph uses. However, when

4  The experimental data and code for reproducing the experiments are available at https://​github.​com/​celin​
ehocq​uette/​magic​popper.​git.

https://github.com/celinehocquette/magicpopper.git
https://github.com/celinehocquette/magicpopper.git

1571Machine Learning (2023) 112:1551–1595	

1 3

specifying types for magic variables, the search space is larger than when specifying par-
ticular arguments of some predicates symbols. Moreover, our setting specifies which vari-
ables can be magic variables, and MagicPopper searches for a subset of these variables.
Conversely, modes specify which variables must be constant symbols. In this sense, this
setting for MagicPopper considers a larger hypothesis space than Aleph. In Sect. 6.7, we
evaluate and compare the effect on learning performance of these different settings for
specifying magic variables.

6.2 � Q1: comparison with other systems

6.2.1 � Experimental domains

We compare MagicPopper against state-of-the-art ILP systems. This experiment aims to
answer Q1. We consider several domains. Full descriptions of these domains are in the
appendix. We use a timeout of 600s for each task.

IGGP
In inductive general game playing (IGGP) (Cropper et al., 2020), agents are given game

traces from the general game playing competition (Genesereth & Björnsson, 2013). The
task is to induce a set of game rules that could have produced these traces. We use four
IGGP games which contain constant symbols: md (minimal decay), buttons, coins, and gt-
centipede. We learn the next relation in each game, the goal relation for buttons, coins, gt-
centipede and the legal relation for gt-centipede. These tasks involve the identification of
respectively 5, 31, 3, 14, 6, 4, 29 and 8 magic values. Figures 8 and 9 represent examples
of some target hypotheses. We measure balanced accuracies and learning times.

KRK
The task is to learn a chess pattern in the king-rook-king (krk) endgame, which is the

chess ending with white having a king and a rook and black having a king. We learn the
concept of rook protection by its king (Hocquette & Muggleton, 2020). An example target
solution is presented in Fig. 10. This task involves identifying 4 magic values.

Program synthesis: list, powerof2 and append
For list, we learn a hypothesis describing the existence of the magic number ‘7’ in a list.

Figure 2 in the introduction shows an example solution. For powerof2, we learn a hypoth-
esis which describes whether a number is of the form 2k , with k integer. These two prob-
lems involve learning a recursive hypothesis. For append, we learn that lists must have a
particular suffix of size 2. For list, there are 4000 constants in the background knowledge.
Examples are lists of size 500. For powerof2, examples are numbers between 2 and 1000,
there are 1000 constants in the background knowledge. For append, examples are lists of
size 10, there are 1000 constants in the background knowledge.

Fig. 8   Example solution for the IGGP md next task. This hypothesis states that the value becomes 5 when
the player presses the button, and is the true value minus 1 if the player does not act. Magic values are rep-
resented in bold

1572	 Machine Learning (2023) 112:1551–1595

1 3

6.2.2 � Results

Table 1 shows the learning times. It shows MagicPopper can solve each of the tasks in at
most 100s, often a few seconds. To put these results into perspective, an approach that
precomputes the hypothesis space (Corapi et al., 2011) would need to precompute at least
(#preds#constants)#literals rules. For instance, for buttons-next, this approach would need to
precompute at least (5 ∗ 16)10 = O(1019) rules, which is infeasible. Conversely, MagicPop-
per solves this task in 3 seconds.

Popper is based on enumeration of possible constant symbols: it uses unary predicate
symbols, one for each possible constant symbol. Compared to Popper, MagicPopper has
shorter learning times on seven tasks (md, buttons-goal, coins-goal, gt-centipede-goal,
gt-centipede-legal, gt-centipede-next, krk, list, powerof2 and append) and longer learning
times on two tasks (buttons-next and coins-next). A paired t-test confirms the significance
of the difference for these ten tasks at the p < 0.01 level. For instance, MagicPopper can
solve the krk problem in 6s while Popper requires almost 35s.

There are three main reasons for this improvement. First, MagicPopper reasons about
magic hypotheses while Popper cannot. Each magic hypothesis represents the set of its pos-
sible instantiations, which alleviates the need to enumerate all possible constant symbols.
The constraints MagicPopper formulates eliminate magic hypotheses, which prunes more
instantiated programs. Second, compared to Popper, MagicPopper does not need additional
unary predicates to represent constant symbols. This feature allows MagicPopper to learn
shorter hypotheses with constant symbols as arguments instead. For instance, in the krk
experiment, MagicPopper typically learns a hypothesis with 3 body literals while Popper
typically needs 6 body literals, including 3 body literals to represent constant symbols. Pop-
per thus needs to search up to a larger depth compared to MagicPopper. As demonstrated
by Proposition 4, these two reasons lead to a smaller hypothesis space. Finally, MagicPop-
per tests hypotheses against the positive examples and only considers instantiations which,
together with the background knowledge, entail at least one positive example. In this sense,
MagicPopper never considers irrelevant constant symbols. For these three reasons, Magic-
Popper considers fewer hypotheses which explains the shorter learning times.

Fig. 9   Example solution for the
IGGP buttons-next task. The
first clause states that the next
value becomes q if the current
value is q and the agent presses
the button a. Magic values are
represented in bold

Fig. 10   Example solution for the krk task. This hypothesis describes the concept of rook protected in the
chess krk endgame. This hypothesis states that the white king protects the white rook when the white king
and the white rook are at distance 1 of each other. Magic values are represented in bold

1573Machine Learning (2023) 112:1551–1595	

1 3

However, given a search bound, MagicPopper searches a larger space than Popper since
it does not count the magic literals in the program size. MagicPopper considers the same
programs as Popper, but also programs with magic values whose size would exceed the
search bound if representing magic values with unary predicate symbols. Therefore, Mag-
icPopper can require longer running time than Popper, which is the case for two tasks (but-
tons-next and coins-next).

Aleph restricts the possible constants to constants appearing in the bottom clause, which
is the logically most-specific clause that explains an example. Aleph also can identify con-
stant symbols through a lazy evaluation procedure (Srinivasan & Camacho, 1999), which
has inspired our magic evaluation procedure. Therefore, Aleph does not consider irrelevant
constant symbols but only symbols that can be obtained from the examples. Compared to
Aleph, MagicPopper has shorter learning times on four tasks (buttons-next, coins-next, list,
append). A paired t-test confirms the significance of the difference in learning times for
these tasks at the p < 0.01 level. However, in contrast to Aleph, MagicPopper searches for
optimal solutions. Moreover, MagicPopper is given a weaker bias about which variables
can be magic variables.

Metagol identifies relevant constant symbols by constructing a proof for the positive
examples. Therefore, it also considers only relevant constant symbols that can be obtained
from the examples. Compared to MagicPopper, Metagol has longer learning times on 6
tasks, similar learning times on 3 tasks, and better learning time on three tasks.

Table 2 shows the predictive accuracies. MagicPopper achieves higher or equal accu-
racies than Metagol, Aleph, and Popper, apart on gt-centipede-goal. This improvement
can be explained by the fact that MagicPopper can learn in domains other systems can-
not handle. For instance, MagicPopper supports learning with predicate symbols of arity
more than two, which is necessary for the IGGP games and the krk domain. By contrast,

Table 1   Learning times. We
round times to the nearest
second. The error is standard
deviation

Tasks marked with the symbol * have infinite constant domains while
other tasks have finite domains

Task Aleph Metagol Popper MagicPopper

md 0 ± 0 timeout 1 ± 0 0 ± 0
buttons-next 32 ± 1 timeout 3 ± 0 4 ± 0
coins-next timeout 0 ± 0 53 ± 0 99 ± 1
buttons-goal 0 ± 0 0 ± 0 1 ± 0 0 ± 0
coins-goal 0 ± 0 0 ± 0 0 ± 0 0 ± 0
gt-centipede-goal 0 ± 0 0 ± 0 23 ± 0 6 ± 0
gt-centipede-legal 0 ± 0 0 ± 0 4 ± 0 1 ± 0
gt-centipede-next 0 ± 0 timeout 10 ± 0 0 ± 0
krk 0 ± 0 541 ± 60 35 ± 6 6 ± 0
list 66 ± 1 36 ± 8 timeout 2 ± 0
powerof2 0 ± 0 463 ± 78 18 ± 0 0 ± 0
append 1 ± 0 0 ± 0 298 ± 49 0 ± 0
pi* 4 ± 1 0 ± 0 timeout 1 ± 0
equilibrium* 0 ± 0 0 ± 0 209 ± 7 72 ± 17
drug design* 5 ± 1 timeout 1 ± 0 6 ± 3
next* 0 ± 0 timeout 1 ± 0 25 ± 0
sumk* 0 ± 0 timeout 0 ± 0 99 ± 1

1574	 Machine Learning (2023) 112:1551–1595

1 3

Metagol cannot learn hypotheses with arity greater than 2 given the set of metarules pro-
vided. Compared to MagicPopper, Aleph struggles to learn recursive hypotheses. However,
Aleph performs well on the tasks which do not require recursion, reaching similar or better
accuracy than MagicPopper on seven tasks (md, buttons-goal, gt-centipede-goal, gt-centi-
pede-legal, gt-centipede-next krk, and append). Finally, compared to Popper, MagicPop-
per can achieve higher accuracies. For instance, on the list problem, MagicPopper reaches
100% accuracy while Popper achieves the default accuracy. Since it does not enumerate
constant symbols, MagicPopper can search a smaller space than Popper, and thus its learn-
ing time can be shorter. Therefore, it is more likely to find a solution before timeout. Also,
according to the Blumer bound (Blumer et al., 1989), given two hypotheses spaces of dif-
ferent sizes, searching the smaller space can result in higher predictive accuracy compared
to searching the larger one if a target hypothesis is in both.

Given these results, we can positively answer Q1 and confirm that MagicPopper can
outperform existing approaches in terms of learning times and predictive accuracies when
learning programs with magic values.

6.3 � Q2: learning in infinite domains

We evaluate the performance of MagicPopper in infinite domains and compare it against
the performance of Popper, Aleph, and Metagol. This experiment aims to answer Q1 and

Table 2   Predictive accuracies.
We round to the closest integer.
The error is standard deviation

Tasks marked with the symbol * have infinite constant domains while
other tasks have finite domains

Task Aleph Metagol Popper MagicPopper

md 100 ± 0 50 ± 0 100 ± 0 100 ± 0
buttons-next 81 ± 0 50 ± 0 100 ± 0 100 ± 0
coins-next 50 ± 0 50 ± 0 100 ± 0 100 ± 0
buttons-goal 100 ± 0 50 ± 0 98 ± 1 100 ± 0
coins-goal 50 ± 0 50 ± 0 100 ± 0 100 ± 0
gt-centipede-goal 99 ± 0 50 ± 0 75 ± 0 75 ± 0
gt-centipede-legal 100 ± 0 50 ± 0 100 ± 0 100 ± 0
gt-centipede-next 100 ± 0 50 ± 0 100 ± 0 100 ± 0
krk 100 ± 0 54 ± 4 96 ± 1 99 ± 0
list 50 ± 0 100 ± 0 49 ± 0 100 ± 0
powerof2 86 ± 1 58 ± 5 84 ± 1 100 ± 0
append 95 ± 1 99 ± 0 96 ± 1 96 ± 1
pi* 100 ± 0 50 ± 0 50 ± 0 99 ± 0
equilibrium* 100 ± 0 50 ± 0 62 ± 1 86 ± 7
drug design* 63 ± 7 50 ± 0 50 ± 0 98 ± 0
next* 50 ± 0 50 ± 0 49 ± 0 100 ± 0
sumk* 50 ± 0 50 ± 0 50 ± 0 100 ± 0

1575Machine Learning (2023) 112:1551–1595	

1 3

Q2. We consider five tasks. Full descriptions are in the appendix. We use a timeout of 600s
for each of these tasks.

6.3.1 � Experimental domains

Learning Pi
The goal of this task is to learn a mathematical equation over real numbers express-

ing the relation between the radius of a disk and its area.
This task involves identifying the magic value pi up to floating-point precision. We

allow a precision error of 10−3 . Figure 11 shows an example solution.

Equilibrium
The task is to identify a relation describing mechanical equilibrium for an object

subject to its weight and other forces whose values are known. This task involves iden-
tifying the gravitational constant g up to floating-point precision. We allow a precision
error of 10−3 . Figure 12 shows an example of the target hypothesis.

Drug design
The goal of this task is to identify molecule properties representing suitable medici-

nal activity. An example is a molecule which is represented by the atoms it contains
and the pairwise distance between these atoms. Atoms have varying types. Figure 13
shows an example solution. This task involves identifying two magic values represent-
ing the particular atom types “o” and “h” and one magic value representing a specific
distance between two atoms.

Program Synthesis: next and sumk
For next, we learn a hypothesis for identifying the element following a magic value

in a list. For example, given the magic value 4.543, we may have the positive example
next([1.246, 4.543, 2.156],2.156). Figure 14 shows an example solution. Examples are

Fig. 11   Example solution for the pi task. The magic constant pi is represented in bold

Fig. 12   Example solution for the equilibrium task. The gravitational constant g is represented in bold

Fig. 13   Example solution for the drug design task. Magic values for atom types and an example of magic
value for the distance are represented in bold

1576	 Machine Learning (2023) 112:1551–1595

1 3

lists of size 500 of float numbers. For sumk, we learn a relation describing that two ele-
ments of a list have a sum equal to k, where k is an integer magic value. Examples are
lists of size 50 of integer numbers. Figure 15 shows an example of target hypothesis.

6.3.2 � Results

Tables 1 and 2 show the results. They show that, compared to Popper, MagicPopper
achieves higher accuracy.5 Popper cannot identify hypotheses with magic values in infi-
nite domains because it cannot represent an infinite number of constant symbols. Thus, it
achieves the default accuracy. Metagol cannot learn hypotheses with arity greater than 2
given the metarules provided and therefore struggles on these tasks. It also struggles when
the proof length is large, such as when examples are lists of large size. Aleph, through the
use of lazy evaluation, performs well on the tasks which do not require recursion, espe-
cially pi and equilibrium. However, it struggles on next and sumk which both require recur-
sion. The learning time of MagicPopper is better than that’s of Aleph on one of the two
tasks Aleph can solve, but worse on the other. However, in contrast to Aleph, MagicPopper
searches for optimal hypotheses. Moreover, MagicPopper searches a larger search space
since it is given as bias the types of variables which can be magic variables while Aleph is
given the arguments of some predicate symbols through the mode declarations.

These results demonstrate that MagicPopper can identify magic values in infinite
domains. These results confirm our answer to Q1. Also, we positively answer Q2.

6.4 � Q3: scalability with respect to the number of constant symbols

We now evaluate how well our approach scales. First, we evaluate how well our approach
scales with the number of constant symbols. To do so, we need domains in which we can
control the number of constant symbols. We consider two domains: list and md. In the list
experiment, described in Sect. 6.2.1, we use an increasingly larger set of constant symbols
disjoint from {7} in the background knowledge. In the md experiment, also described in
Sect. 6.2.1, we vary the number of next values available. We use a timeout of 60s for each
task. Full details are in the appendix.

6.4.1 � Results

Figures 16 and 17 show the learning times of Popper, MagicPopper, Aleph, and Metagol
versus the number of constant symbols. These results show that MagicPopper has a sig-
nificantly shorter learning time than Popper. Popper needs a unary predicate symbol in the

Fig. 14   Example solution for the next task. An example of magic constant is represented in bold

Fig. 15   Example solution for the sumk task. An example of magic constant is represented in bold

5  MagicPopper does not always achieve maximal accuracy due to floating-point precision errors.

1577Machine Learning (2023) 112:1551–1595	

1 3

background knowledge for each constant symbol, thus the search space grows with the
number of constant symbols. Moreover, Popper considers individually and exhaustively
each of the candidate constant symbols. Therefore, Popper cannot scale to large back-
ground knowledge including a large number of constant symbols. It is overwhelmed by
800 constant symbols in the list domain and 200 constant symbols in the md domain, and
it systematically reaches timeout after. By contrast, MagicPopper does not consider every
constant symbol but only relevant ones which can be identified from executing the hypoth-
eses on the examples. Thus, it can scale better and can learn from domains with more than
3 million constant symbols. This result supports Proposition 4, which demonstrated that
allowing magic variables can reduce the size of the hypothesis space compared to adding
unary predicate symbols and that the difference in the size of the search spaces increases
with the number of constant symbols available in the background knowledge.

Figures 18 and 19 show the predictive accuracy of Popper, MagicPopper, Aleph,
and Metagol versus the number of constant symbols. Popper rapidly converges to the
default accuracy (50%) since it reaches timeout. Conversely, MagicPopper constantly
achieves maximal accuracy and outperforms all other systems. In the md domain, nega-
tive examples must be sampled from a large number of constant symbols, which also
can explain the drops in accuracy. Aleph struggles to learn recursive programs which

Fig. 16   List: learning time versus
the number of constant symbols.
Axes are log scaled

Fig. 17   Md: learning time versus
the number of constant symbols.
Axes are log scaled

1578	 Machine Learning (2023) 112:1551–1595

1 3

explains its low predictive accuracy in the list domain. Moreover, Aleph is based on
the construction of a bottom clause. The bottom clause can grow very large in both
domains when the number of constant symbols augments, which can overwhelm the
search. Metagol can learn programs with constant symbols using the curry metarules.
It performs well and scales to a large number of constant symbols in the list experiment.
However, the metarules provided are not expressive enough to support learning with
higher-arity predicates, which in particular prevents Metagol from learning a solution
for md for any of the numbers of constants tested.

These results confirm our answer to Q1. They also show that the answer to Q3 is
that MagicPopper can scale well with the number of constant symbols, up to millions of
constant symbols.

6.5 � Q3: scalability with respect to the number of magic values

To evaluate scalability with respect to the number of magic values, we vary the number
of magic values within the target hypothesis. We vary the number of magic values along

Fig. 18   List: accuracy versus the
number of constant symbols. The
horizontal axis is log scaled

Fig. 19   Md: accuracy versus the
number of constant symbols. The
horizontal axis is log scaled

1579Machine Learning (2023) 112:1551–1595	

1 3

two dimensions (1) the number of magic values within one clause, and (2) the number
of magic values in different independent clauses.

6.5.1 � Magic values in one clause

We first evaluate scalability with respect to the number of magic values in the same clause.
We learn hypotheses of the form presented in Fig. 20, where the number of body literals
varies. There are 100 constants in the background knowledge. Lists have size 100. We use
a timeout of 60s for each task. Full experimental details are in the appendix.

Results
Figures 21 and 22 show the learning times and predictive accuracies. These results show

that, for a small number of magic values, MagicPopper achieves shorter learning times than
Popper. This results in higher predictive accuracies since Popper might not find a solution
before timeout. From 3 magic values, both systems reach timeout and their performance is

Fig. 20   Example solution. Examples of magic values are represented in bold

Fig. 21   Same clause: learning
time versus the number of magic
values

Fig. 22   Same clause: accuracy
versus the number of magic
values

1580	 Machine Learning (2023) 112:1551–1595

1 3

similar. When increasing the number of magic values, the number of body literals increases
and more search is needed. In particular, Popper requires twice as many body literals com-
pared to MagicPopper, as it needs unary predicates to represent constant symbols. Magic-
Popper evaluates magic values within the same clause jointly. For each positive example,
it considers the cartesian product of their possible values. The complexity is of the order
O(nk) , where n is the size of lists and k is the number of magic values. The complexity is
exponential in the number of magic values, which limits scalability when increasing the
number of magic values. These results show that MagicPopper can scale as well as Popper
with respect to the number of magic values in the same clause, thus answering Q3. How-
ever, scalability is limited for both systems. More generally, scalability with respect to the
number of magic values is limited for large inseparable programs, such as programs with
several magic values in the same clause or in recursive clauses with the same head predi-
cate symbol.

6.5.2 � Magic values in multiple clauses

We now evaluate scalability with respect to the number of magic values in different inde-
pendent clauses. We learn hypotheses of the form presented in Fig. 23, where the number
of clauses varies. There are 500 constants in the background knowledge. Lists have size
500. Each clause is independent. We use a timeout of 60s for each task. Full experimental
details are in the appendix.

Results
Figure 24 shows the learning times. The accuracy is maximal for both systems for any

of the numbers of magic values tested. This result shows that MagicPopper and Popper

Fig. 23   Example solution. Magic
values are represented in bold

Fig. 24   Multiple clauses: learn-
ing time versus the number of
magic values

1581Machine Learning (2023) 112:1551–1595	

1 3

both can handle a large number of magic values in different clauses, up to at least 70.
Moreover, MagicPopper significantly outperforms Popper in terms of learning times. For
instance, MagicPopper can learn a hypothesis with 50 magic values in 50 different clauses
in about 2s, while Popper requires 14s. This result shows that MagicPopper can scale well,
in particular better than Popper, with respect to the number of magic values in different
clauses, thus answering Q3.

As the number of magic values increases, the target hypothesis has more clauses. Both
systems must consider an increasingly larger number of programs to test. However, Mag-
icPopper considers magic programs and only considers instantiations which cover at least
one example, which is more efficient than enumerating all possible instantiations.

We use a version of Popper (Cropper, 2022) which learns non-separable programs inde-
pendently and then combines them. This strategy is efficient to learn disjunctions of inde-
pendent clauses, which explains the difference in scale from the previous experiment. For
non-separable hypotheses, MagicPopper must evaluate magic variables jointly as described
in the previous experiment.

6.6 � Q3: scalability with respect to the number of examples

This experiment aims to evaluate how well MagicPopper scales with the number of exam-
ples. We learn the same hypothesis as in Sect. 6.4. This task involves learning a recursive
hypothesis to identify a magic value in a list. We compare Popper and MagicPopper. We
use the same material and methods as in Sect. 6.4. We vary the number of examples: for n
between 1 and 3000, we sample n positive examples and n negative ones. Lists have size at
most 50, and there are 200 constant symbols in the background knowledge. We use a time-
out of 60s for each task.

6.6.1 � Results

Figures 25 and 26 show the results. They show both MagicPopper and Popper can learn
with up to thousands of examples. However, MagicPopper reaches timeout from 4000
examples while Popper reaches timeout from 9000 examples. Their accuracy conse-
quently drops to the default accuracy from these points respectively. This result shows that

Fig. 25   Learning time versus the
number of examples

1582	 Machine Learning (2023) 112:1551–1595

1 3

MagicPopper has worse scalability than Popper with respect to the number of examples,
thus answering Q3. For both Popper and MagicPopper, we observe a linear increase in
the learning time with the number of examples. When increasing the number of exam-
ples, executing the candidate hypotheses over the examples takes more time. In particular,
MagicPopper searches for substitutions for the magic variables which cover at least one
positive example. Therefore potentially more bindings for magic variables can be identi-
fied. Then, more bindings are tried out over the remaining examples as the number of
examples increases. MagicPopper eventually needs to consider every constant symbol as
a candidate constant. Moreover, since MagicPopper does not take in account the magic
literals into the program size, it can consider a larger number of programs with constant
symbols than Popper for any given program size bound, which also explains how its learn-
ing time increases faster than the learning time of Popper. This result highlights one limi-
tation of MagicPopper.

6.7 � Q4: effect of the bias about magic variables

In contrast to mode-directed approaches (Muggleton, 1995; Srinivasan & Camacho, 1999;
Corapi et al., 2011), MagicPopper does not need to be provided as input which variables
should be magic variables but instead can automatically identify them. It can, however, use
this additional information if given as input. We investigate the impact of this additional
bias on learning performance and thus aim to answer Q4.

6.7.1 � Material and methods

We consider the domains presented in Sect. 6.2.1. We compare three variants of
MagicPopper:

All	� we allow any variable to potentially be a magic variable.

Fig. 26   Accuracy versus the
number of examples

1583Machine Learning (2023) 112:1551–1595	

1 3

Types	� we allow any variable of types manually chosen to potentially be a magic
variable. For instance, for md, we allow any variable of type agent, action
and int to potentially be a magic variable.

Arguments	� we manually specify a list of arguments of some predicates symbols that
can potentially be magic variables. For instance, for md, we flag the second
argument of next and the second and third arguments of does.

 Arguments is most closely related to mode declarations approaches, which expect a speci-
fication for each argument of each predicate. However, the specifications of Arguments are
more flexible since MagicPopper considers the flagged variables as potential magic vari-
ables and searches for a subset of these variables to bind to constant symbols. By contrast,
mode declarations are stricter and specify exactly which arguments must be constants.
Types is comparable to Popper, which is provided with types for the unary predicates in our
experiments. Types, Arguments and mode declarations require a user to specify some infor-
mation about which variables can be bound to constant symbols.

The variables which may be a magic variable in Arguments are a subset of those of
Types, which themselves are a subset of those of All. In this sense, the search space is
increasingly larger. We compare learning times and predictive accuracies for each of these
systems. We provide learning times of Popper as a baseline. We use a timeout of 600s per
task.

6.7.2 � Results

Table 3 shows the learning times. These results show that in general, All requires learn-
ing times longer than or equal to Types, which in turn requires learning times longer than
or equal to Arguments. For instance, All reaches timeout on the task list, while Types and
Arguments require respectively 2s and 1s. In some experiments such as krk, Types and
Arguments have equivalent bias, because the arguments specified are the only arguments of
the types specified. Popper is provided with types for the unary predicates in these domains
and thus rather is comparable with Types. Yet, Types outperforms Popper in terms of learn-
ing times. This result can be explained by the fact that Types is a variant of MagicPop-
per. As such, it considers magic hypotheses which represent the set of their instantiations.

Table 3   Learning times. We
round times to the nearest
second. The error is standard
deviation

Task All Types Arguments Popper

md 0 ± 0 0 ± 0 0 ± 0 1 ± 0
buttons-next 6 ± 0 4 ± 0 2 ± 0 3 ± 0
coins-next timeout 139 ± 11 97 ± 5 80 ± 12
buttons-goal 0 ± 0 0 ± 0 0 ± 0 1 ± 0
coins-goal 0 ± 0 0 ± 0 0 ± 0 0 ± 0
gt-centipede-goal 8 ± 0 6 ± 0 3 ± 0 23 ± 0
gt-centipede-legal 2 ± 0 1 ± 0 0 ± 0 4 ± 0
gt-centipede-next 0 ± 0 0 ± 0 0 ± 0 10 ± 0
krk 30 ± 2 8 ± 1 7 ± 0 40 ± 6
list timeout 2 ± 0 1 ± 0 timeout
powerof2 0 ± 0 0 ± 0 0 ± 0 18 ± 0
append 0 ± 0 0 ± 0 0 ± 0 262 ± 43

1584	 Machine Learning (2023) 112:1551–1595

1 3

Therefore, in contrast to Popper, Types does not enumerate all possible candidate constants.
Moreover, Types only considers instantiations which, together with the background knowl-
edge, entail at least one positive example, while Popper considers every possible constant
in the search space equally. Also, because Types does not require additional unary predi-
cates, it can express hypotheses more compactly and can search up to a smaller depth. Pop-
per can also achieve longer learning times than All whereas All searches a larger space. For
instance, Popper requires 18s to solve the task powerof2 while All solves it in less than 1s.

Table 4 shows the predictive accuracies. These results show All can achieve lower pre-
dictive accuracies than Types and Arguments. For instance, All reaches 92% accuracy on
coins-next while Types and Arguments reach 100% accuracy. There are two main reasons
explaining this difference. First, All has a more expressive language, and in particular can
express more specific hypotheses through the use of more constant symbols. It is thus more
prone to overfitting. Second, All searches a larger search space. It consequently might not
find an optimal solution before timeout. Moreover, according to the Blumer bound (Blumer
et al., 1989), searching a larger search space can result in lower predictive accuracies.

We can conclude that MagicPopper can benefit from additional bias about which vari-
ables should be magic variables, and in particular it can achieve better learning perfor-
mance. We thus can positively answer Q4. This experiment illustrates the impact of more
bias. More bias can help reduce the search space and thus improve learning performance.
However, this bias must be user provided.

More generally, choosing an appropriate bias is a key challenge in ILP (Cropper &
Dumancic, 2022).

6.8 � Q5: effect on learning performance for problems which do not require magic
values

Our approach can improve learning performance for problems which require magic values.
However, magic values are not always required and it is not always known whether a good
solution requires magic values. We investigate in this experiment the impact on learning
performance of unnecessarily allowing magic values and thus aim to answer Q5.

Table 4   Predictive accuracy. We
round to the closest integer. The
error is standard deviation

Task All Types Arguments Popper

md 100 ± 0 100 ± 0 100 ± 0 100 ± 0
buttons-next 98 ± 0 100 ± 0 100 ± 0 100 ± 0
coins-next 92 ± 1 100 ± 0 100 ± 0 100 ± 0
buttons-goal 100 ± 0 100 ± 0 100 ± 0 96 ± 1
coins-goal 96 ± 0 100 ± 0 100 ± 0 100 ± 0
gt-centipede-goal 82 ± 0 75 ± 0 75 ± 0 75 ± 0
gt-centipede-legal 100 ± 0 100 ± 0 100 ± 0 100 ± 0
gt-centipede-next 100 ± 0 100 ± 0 100 ± 0 100 ± 0
krk 98 ± 0 98 ± 0 98 ± 0 98 ± 0
list 50 ± 0 100 ± 0 100 ± 0 50 ± 0
powerof2 100 ± 0 100 ± 0 100 ± 0 84 ± 1
append 95 ± 1 95 ± 1 96 ± 1 96 ± 1

1585Machine Learning (2023) 112:1551–1595	

1 3

6.8.1 � Material and methods

To answer Q5, we compare systems which allow constant symbols with systems which dis-
allow constant symbols. Since it is unknown which variables should be constant symbols,
we allow any variable to be a constant symbol. Therefore, we use the All setting for Mag-
icPopper. We call Alephc the version of Aleph for which any argument is allowed to be a
constant symbol, and Aleph̸c the version of Aleph which disallows constant symbols. At
the end, we compare MagicPopper with Popper and Alephc with Aleph̸c . We use a timeout
of 600s per task. We consider two different domains.

Michalski trains
The goal of these tasks is to find a hypothesis that distinguishes eastbound and west-

bound trains (Larson & Michalski, 1977). We use four increasingly complex tasks. There
are 1000 examples but the distribution of positive and negative examples is different for
each task. We randomly sample the examples and split them into 80/20 train/test partitions.

Program synthesis: evens, last, member, sorted
We use the same material and methods as Cropper and Morel (2021). These problems

all involve learning recursive hypotheses.

Table 5   Learning times. We
round times to the nearest
second. The error is standard
deviation

Task Aleph
c

Aleph ̸c MagicPopper Popper

trains1 timeout 1 ± 0 7 ± 0 3 ± 0
trains2 timeout 1 ± 0 4 ± 0 3 ± 0
trains3 timeout 2 ± 0 31 ± 0 24 ± 0
trains4 timeout 5± 0 25 ± 0 21 ± 0
evens 14 ± 1 0 ± 0 5 ± 1 1 ± 0
last 16 ± 1 0 ± 0 180 ± 91 1 ± 0
member 15 ± 1 0 ± 0 0 ± 0 0 ± 0
sorted 5 ± 1 0 ± 0 86 ± 24 70 ± 58

Table 6   Predictive accuracy. We
round to the closest integer. The
error is standard deviation

Task Aleph
c

Aleph ̸c MagicPopper Popper

trains1 50 ± 0 100 ± 0 100 ± 0 100 ± 0
trains2 50 ± 0 98 ± 2 99 ± 0 99 ± 0
trains3 50 ± 0 100 ± 0 100 ± 0 100 ± 0
trains4 50 ± 0 100 ± 0 100 ± 0 100 ± 0
evens 51 ± 0 54 ± 4 100 ± 0 100 ± 0
last 50 ± 0 50 ± 0 85 ± 7 100 ± 0
member 53 ± 1 50 ± 0 100 ± 0 100 ± 0
sorted 75 ± 2 72 ± 3 90 ± 5 97 ± 2

1586	 Machine Learning (2023) 112:1551–1595

1 3

6.8.2 � Results

Tables 5 and 6 show the results. They show Popper always outperforms MagicPopper and
Aleph̸c always outperforms Alephc in terms of learning times. For instance, MagicPopper
takes 7s when solving the trains1 task while Popper solves it in 3s. Alephc reaches time-
out on all trains tasks while Aleph̸c solves them in a few seconds. Because it searches a
larger space, MagicPopper and Alephc require longer learning times compared to Popper
and Aleph̸c respectively.

This increase in learning time can reduce predictive accuracies since MagicPopper
or Alephc consequently might not find a solution before timeout. For instance, Alephc
reaches timeout and thus achieves the default accuracy on the trains tasks while Aleph
achieves maximal accuracy. Moreover, MagicPopper and Alephc are more prone to over-
fitting. For instance, MagicPopper learns overly specific hypotheses for last. Finally,
according to the Blumer bound (Blumer et al., 1989), searching a larger space can result
in lower predictive accuracies. However, allowing constant symbols in programs provides
better expressivity, since more hypotheses can be formulated compared to disallowing
constant symbols. In particular, it might allow the learner to formulate more accurate
hypotheses. For instance, Alephc achieves better accuracies than Aleph̸c on member and
sorted.

To conclude, these results show that allowing magic values when unnecessary can
impair learning performance, in particular learning times and predictive accuracies, which
answers Q5. Future work is needed to automatically identify when magic values are neces-
sary and which variables could be magic values. More generally, identifying a suitable bias
is a major challenge in ILP (Cropper & Dumancic, 2022).

7 � Conclusion and limitations

Learning programs with magic values is fundamental to many AI applications. However,
current program synthesis approaches rely on enumerating candidate constant symbols,
which inhibits scalability and prohibits learning them from continuous domains. To over-
come this limitation, we have introduced an ILP approach to efficiently learn programs
with magic values from potentially large or infinite domains. Inspired by Aleph’s lazy
evaluation procedure (Srinivasan & Camacho, 1999), our approach builds partial hypoth-
eses with variables in place of constant symbols. Therefore, our approach does not enu-
merate all candidate constants when constructing hypotheses. The particular constant
symbols are identified by executing the hypothesis on the examples. Thus, our approach
only considers relevant constant symbols which can be obtained from the examples. Our
approach extends the LFF framework with constraints to prune partial hypotheses, which
each represent a set of instantiated hypotheses. For these reasons, our approach can effi-
ciently learn in large, potentially infinite, domains. Our experiments on several domains
show that our approach can (1) outperform state-of-the-art approaches and (2) scale to
domains with millions of constant symbols and even infinite ones, including continuous
domains.

1587Machine Learning (2023) 112:1551–1595	

1 3

7.1 � Limitations and future work

Noise
In contrast to other ILP systems (Karalič & Bratko, 1997; Blockeel & De Raedt, 1998;

Srinivasan, 2001), MagicPopper cannot identify magic values from noisy examples. Previ-
ous work (Wahlig, 2022) has extended LFF to support learning from noisy examples by
relaxing the completeness and consistency conditions as well as hypotheses constraints
applications. This extension should be directly applicable to MagicPopper, which we will
address as future work.

Scalability
To find magic values in a same clause, our approach must search through the cartesian

product of each potential magic value. Therefore, its scalability is limited when increasing
the number of magic values in the same clause, as shown in the experiment presented in
Sect. 6.5.1. Also, MagicPopper finds candidate constant symbols from executing hypoth-
eses on the training examples. As shown in Sect. 6.6, its scalability is limited when increas-
ing the number of examples.

Bias
MagicPopper can be provided as bias which variables can be bound to constant sym-

bols, if this bias is known, or can automatically identify these variables at the expense of
more search. Our experiments presented in Sects. 6.7 and 6.8 have shown that without this
additional bias, learning performance can be degraded, in particular learning times and
predictive accuracies. Choosing an appropriate bias more generally is a major issue with
ILP systems (Cropper & Dumancic, 2022). As far as we are aware, no system can auto-
matically identify suitable bias which future work should address.

Numerical values
Our magic value evaluation procedure identifies bindings by executing the hypothesis

over each example independently. Therefore, it can only find magic values which value
arises from single positive examples. In particular, it cannot identify magic values for
which multiple examples are required for their evaluation. For example, it cannot identify
parameters of linear or polynomial equations in contrast to other ILP systems (Karalič &
Bratko, 1997; Srinivasan & Camacho, 1999). Likewise, it cannot identify values requir-
ing numerical reasoning, such as identifying an optimal threshold (Blockeel & De Raedt,
1997; Srinivasan & Camacho, 1999). For the same reason, our method cannot create new
constant symbols which are not part of the domain. To overcome this limitation, we plan to
use SMT solvers to identify magic values from reasoning from multiple examples, positive
and negative.

8 � Declarations

For Open Access, the author has applied a CC BY public copyright licence to any Author
Accepted Manuscript version arising from this submission. All data supporting this study
is provided as supplementary information accompanying this paper.

1588	 Machine Learning (2023) 112:1551–1595

1 3

Appendix A Proofs

A.1 Extended constraints

We first state three lemmas. These lemmas justify why we can restrict the search for instan-
tiations to instantiations which cover at least one positive example.

Lemma 1  Let (E+,E−,B,H,C) be an LFF input and H a magic hypothesis, if all the
instantiations I of H such that ∃e ∈ E+,B ∪ I ⊧ e are incomplete, then all instantiations of
H are incomplete.

Proof 1  Instantiations I such that ∄e ∈ E+,B ∪ I ⊧ e are incomplete. 	� ◻

Lemma 2  Let (E+,E−,B,H,C) be an LFF input and H a magic hypothesis, if all the
instantiations I of H such that ∃e ∈ E+,B ∪ I ⊧ e are inconsistent, then all instantiations of
H are totally incomplete or inconsistent.

Proof 2  Instantiations I such that ∄e ∈ E+,B ∪ I ⊧ e are totally incomplete. 	� ◻

Lemma 3  Let (E+,E−,B,H,C) be an LFF input and H a magic hypothesis, if H has
no instantiation I such that ∃e ∈ E+,B ∪ I ⊧ e , then all instantiations of H are totally
incomplete.

Proof 3  Instantiations I such that ∄e ∈ E+,B ∪ I ⊧ e are totally incomplete. 	� ◻

We now introduce extensions of specialisation, generalisation, and redundancy con-
straints which prune magic hypotheses. We use the three lemmas above to prove these con-
straints are optimally sound.

Proposition 1  Let (E+,E−,B,H,C) be an LFF input, H1 ∈ HC , and H2 ∈ HC
be two magic hypotheses such that H1 ⪯ H2 . If all instantiation I1 of H1 such that
∃e ∈ E+,B ∪ I1 ⊧ e are incomplete, then all instantiation of H2 also are incomplete.

Proof 4  All instantiations I1 of H1 such that ∃e ∈ E+,B ∪ I1 ⊧ e are incomplete. Therefore,
according to Lemma 1, all instantiations of H1 are incomplete. Let H2 be a specialisation
of H1 . Let I2 be an instantiation of H2 . I2 is a specialisation of an instantiation I1 of H1 . I1 is
incomplete. Since subsumption implies entailment, then I2 also is incomplete. 	� ◻

Proposition 2  Let (E+,E−,B,H,C) be an LFF input, H1 ∈ HC and H2 ∈ HC be two
magic hypotheses such that H2 is non-recursive and H2 ⪯ H1 . If all instantiation I1 of H1
such that ∃e ∈ E+,B ∪ I1 ⊧ e are inconsistent, then all instantiations of H2 are inconsistent
or non-optimal.

Proof 5  Let H2 be a non-recursive generalisation of H1 . Let I2 be an instantiation of H2 .
I2 is a generalisation of an instantiation I1 of H1 . By assumption, all instantiations I1 of H1
such that ∃e ∈ E+,B ∪ I1 ⊧ e are inconsistent. Therefore, according to Lemma 2, all instan-
tiations of H1 are (1) inconsistent or (2) totally incomplete. For (1), if I1 is inconsistent, then
I2 also is inconsistent. For (2), assume I1 is totally incomplete. Since I2 is a generalisation of

1589Machine Learning (2023) 112:1551–1595	

1 3

I1 and is non-recursive, then I1 is an independent subset of I2 of totally incomplete clauses.
Therefore, I1 is a subset of clauses which is redundant in I2 and thus I2 is non-optimal. 	
� ◻

Proposition 3  Let (E+,E−,B,H,C) be an LFF input, H1 ∈ HC be a magic hypothesis.
If H1 has no instantiation I1 such that ∃e ∈ E+,B ∪ I1 ⊧ e , then all non-recursive magic
hypotheses H2 which contain a specialisation of H1 as a subset are non-optimal.

Proof 6  Let H2 be a non-recursive hypothesis which contains a specialisation of H1 as a
subset. Let I2 be an instantiation of H2 . Then I2 contains as a subset a specialisation of
an instantiation I1 of H1 . H1 has no instantiation I1 such that ∃e ∈ E+,B ∪ I1 ⊧ e , there-
fore, according to Lemma 3, all instantiations of H1 are totally incomplete. Therefore, I1 is
totally incomplete. Moreover, I2 is non-recursive by assumption. Then I1 is an independent
subset of redundant clauses in I2 and thus I2 is non-optimal. 	� ◻

A.2 Theoretical analysis

The following proposition evaluates the reduction over the hypothesis space of using magic
values instead of enumerating all candidate constant symbols as unary predicates.

Proposition 4  Let Db be the number of body predicates available in the search space, m
be the maximum number of body literals allowed in a clause, c the number of constant
symbols available, and n the maximum number of clauses allowed in a hypothesis. Then
the maximum number of hypotheses in the hypothesis space can be multiplied by a factor
of (Db+c

Db

)mn if representing constants with unary predicate symbols, one per allowed con-
stant symbol, compared to using magic variables.

Proof 7  Let Let Dh be the number of head predicates in the search space, a be the maxi-
mum arity of predicates and v be the maximum number of unique variables allowed in
a clause. From Cropper and Morel (2021), the maximum number of hypotheses in the
hypothesis space is:

Given that 0 ≤ i <∣ Db ∣ v
a , we have:

Therefore:

And similarly, we have:

n�
j=1

⎛
⎜⎜⎝
∣ Dh ∣ v

a
∑m

i=1

�
∣ Db ∣ v

a

i

�

j

⎞⎟⎟⎠

(
∣ Db ∣ v

a

i

)
≤

(∣ Db ∣ v
a)i

i!

∣ Dh ∣ v
a

m∑
i=1

(
∣ Db ∣ v

a

i

)
<∣ Dh ∣ v

am(∣ Db ∣ v
a)m

1590	 Machine Learning (2023) 112:1551–1595

1 3

If adding one unary predicate symbol per constant symbol, then there are Db + c body
predicates available. Then, the maximum number of hypotheses in the hypothesis space
above becomes:

Therefore, representing constants with magic variables can reduce the maximum size of
the hypothesis space by a factor of:

	� ◻

Appendix B Experiments

B.1 Domains

We describe the domains used in our experiments.

IGGP
Figures 27, 28, 29, 30, 31 and 32 represent some example solutions for these tasks.

n�
j=1

⎛⎜⎜⎝
∣ Dh ∣ v

a
∑m

i=1

�
∣ Db ∣ v

a

i

�

j

⎞⎟⎟⎠
≤ n(∣ Dh ∣ v

am(∣ Db ∣ v
a)m)n

n�
j=1

⎛⎜⎜⎝
∣ Dh ∣ v

a
∑m

i=1

�
∣ (Db + c) ∣ va

i

�

j

⎞⎟⎟⎠
≤ n(∣ Dh ∣ v

am(∣ (Db + c) ∣ va)m)n

(
Db + c

Db

)mn

Fig. 27   Example solution for the IGGP coins-next task. Magic values are represented in bold

Fig. 28   Example solution for the IGGP coins-goal task. Magic values are represented in bold

Fig. 29   Example solution for the buttons-goal task. Magic values are represented in bold

1591Machine Learning (2023) 112:1551–1595	

1 3

KRK
We provide each system with the quadratic predicate cell and the triadic predicate dis-

tance. For MagicPopper, any variable of type type, color or int is allowed to be a magic
value. Training sets contain 10 positive examples and 10 negative ones.

Program synthesis: list
Positive examples are generated by randomly choosing a position for the element 7

and sampling the remaining elements from the constants available in the background
knowledge. Negative examples are generated by randomly sampling elements from the
constants in the background knowledge. Lists have size 500. We generate 10 positive
and 10 negative training examples. Therefore, the default accuracy is 50%. We provide
each learning system with the dyadic predicates head, tail, length, last, geq, and the
monadic predicate empty. For MagicPopper, any variable of type element is allowed to
be a magic value.

Program synthesis: powerof2
Figure 33 represents an example of target hypothesis. Positive examples are powers

of 2 between 2 and 210 . Negative examples are numbers between 2 and 210 which are not

Fig. 30   Example solution for the gt-centipede-goal task. Magic values are represented in bold

Fig. 31   Example solution for the
gt-centipede-legal task. Magic
values are represented in bold

Fig. 32   Example solution for the gt-centipede-next task. Magic values are represented in bold

Fig. 33   Example solution for the powerof2 task. Magic values are represented in bold

1592	 Machine Learning (2023) 112:1551–1595

1 3

a power of 2. We sample 10 positive and 10 negative examples. We provide each system
with the triadic predicate div. For MagicPopper, any variable is of type number and thus
can be a magic variable.

Program synthesis: append
Examples are lists of size 10 of elements from the set of available constants. A magic

suffix of size 2 is randomly sampled from the set of constants. Positive examples are
lists ending with the magic suffix. Negative examples are lists that do not end with the
magic suffix. We sample 10 positive and 10 negative examples. We provide each system
with the triadic predicate append, the dyadic predicates head and tail. For MagicPopper,
any variable is of type list and thus can be a magic variable.

Learning Pi
An example is a pair radius / area. Radius are real numbers sampled between 0 and 10.

We sample 20 training examples, half positive and half negative. We provide each system
with the triadic predicates add, subtract, multiply, divide and the dyadic predicate square.

Equilibrium
An example is an object, its mass and the forces it is subject to are real numbers sam-

pled between 0 and 10. There are 7 forces applied to an object. We sample 10 training
examples, half positive and half negative. We provide each system with the triadic predi-
cates add, subtract, multiply, divide and the dyadic predicates sum, square, mass and force.
For MagicPopper, any variable of type number is allowed to be a magic value.

Drug design
Each molecule contains 10 atoms, pairwise distances are floats sampled between 0

and 10. There are 10 different atom types in the domain. A positive example contains two
atoms, one of type o and one of type h, separated by the target distance. Target distances
are randomly generated for each run. We sample 20 training examples, half positive and
half negative. We provide each system with the triadic predicate distance and the dyadic
predicates atom and atom_type. For MagicPopper, any variable of type type or number is
allowed to be a magic value.

Program synthesis: next
The target magic value and list elements are real numbers chosen at random. An exam-

ple is a pair list/value where the value is an element of the list. We provide each learning
system with the dyadic background predicates head, tail, length, last, geq and the monadic
predicate empty. For MagicPopper, any variable of type number is allowed to be a magic
value. We sample 20 training examples, half positive and half negative.

Program synthesis: sumk
The target sum and list elements are integers chosen at random. We provide each learn-

ing system with the dyadic background predicates member and triadic predicate sum. For
MagicPopper, any variable of type number is allowed to be a magic value. We sample 20
training examples, half positive and half negative.

1593Machine Learning (2023) 112:1551–1595	

1 3

Material and methods

We describe our experimental designs.

Minimal decay
We generate an ordered set of constant symbols S of varying size. An example is a state

described by a true value from S, a next value from S and a player action from {press_but-
ton, noop} . True values and player actions are chosen at random. For each positive exam-
ple, a set of negative examples are generated by taking a subset of size at most 1000 of the
available constants as next value for which the target theory does not hold. We generate 10
positive training examples for each task.

Magic values in one clause
We generate 10 positive and 10 negative examples. For successive values of n, we sam-

ple a set of n magic values. To generate a positive example, we assign n different position
in the list, one for each of the magic values. Other values in the list are chosen at random
among the set of other available constant symbols. To generate a negative example, we
choose n − 1 magic values, which we assign to n − 1 different position in the list. Other val-
ues are chosen at random among the set of other available constant symbols. We allow the
dyadic body predicate member in the background knowledge.

Magic values in multiple clauses
We sample a set S of constant symbols, among which we sample a subset M of varying

size representing target magic values. Examples are lists of elements from S. A positive
example is an example which head element is in M. We generate 200 positive and 200
negative training examples. We check that each training positive example set contains at
least one example for each clause to ensure the target is identifiable.

Program synthesis
We give each system the following dyadic relations head, tail, decrement, geq and the

monadic relations empty, zero, one, even, and odd.

Acknowledgements  The authors thank Håkan Kjellerstrand, Rolf Morel, and Oghenejokpeme Orhobor for
valuable feedback.

Author Contributions  CH wrote all sections and AC provided feedback on all sections of the paper.

Funding  The first author is supported by the EPSRC grant Explainable Drug Design. The second author is
supported by the EPSRC fellowship The Automatic Computer Scientist (EP/V040340/1).

Availability of data and materials  The experimental data and material for reproducing the experiments are
available at https://​github.​com/​celin​ehocq​uette/​magic​popper.​git.

Code availability  The code is available at https://​github.​com/​celin​ehocq​uette/​magic​popper.​git.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interets.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

https://github.com/celinehocquette/magicpopper.git
https://github.com/celinehocquette/magicpopper.git

1594	 Machine Learning (2023) 112:1551–1595

1 3

Ethics approval  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Augusto, D. A., & Barbosa, H. J. (2000). Symbolic regression via genetic programming. In Proceedings.
Vol. 1. Sixth Brazilian symposium on neural networks (pp. 173–178). IEEE.

Austel, V., Dash, S., Gunluk, O., Horesh, L., Liberti, L., Nannicini, G., & Schieber, B. (2017). Globally
optimal symbolic regression. In Interpretable ML, satellite workshop of NIPS 2017.

Blockeel, H., De Raedt, L., & Ramon, J. (1998). Top-down induction of clustering trees. In ICML.
Blockeel, H., & De Raedt, L. (1997). Lookahead and discretization in ILP. In N. Lavrač & S. Džeroski

(Eds.), Inductive Logic Programming (pp. 77–84). Berlin: Springer.
Blockeel, H., & De Raedt, L. (1998). Top-down induction of first-order logical decision trees. Artificial

Intelligence, 101(1–2), 285–297.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989). Learnability and the Vapnik–

Chervonenkis dimension. Journal of the ACM (JACM), 36(4), 929–965.
Corapi, D., Russo, A., & Lupu, E. (2011). Inductive logic programming in answer set programming. In

Inductive logic programming—21st international conference (pp. 91–97).
Cropper, A. (2022). Learning logic programs though divide, constrain, and conquer. In Thirty-sixth AAAI

conference on artificial intelligence, AAAI 2022, thirty-fourth conference on innovative applications of
artificial intelligence, IAAI 2022, the twelveth symposium on educational advances in artificial intel-
ligence, EAAI 2022 virtual event, February 22–March 1, 2022 (pp. 6446–6453). AAAI Press. https://​
ojs.​aaai.​org/​index.​php/​AAAI/​artic​le/​view/​20596.

Cropper, A., & Hocquette, C. (2022). Learning programs by combining programs. arXiv. arxiv:​2206.​01614.
Cropper, A., & Morel, R. (2021). Predicate invention by learning from failures. arXiv preprint arXiv:​2104.​

14426.
Cropper, A., Dumančić, S., & Muggleton, S. H. (2020). Turning 30: New ideas in inductive logic program-

ming. In Proceedings of the twenty-nineth international joint conference on artificial intelligence,
IJCAI (pp. 4833–4839).

Cropper, A., & Dumancic, S. (2022). Inductive logic programming at 30: A new introduction. Journal of
Artificial Intelligence Research, 74, 765–850. https://​doi.​org/​10.​1613/​jair.1.​13507.

Cropper, A., Evans, R., & Law, M. (2020). Inductive general game playing. Machine Learning, 109(7),
1393–1434.

Cropper, A., & Morel, R. (2021). Learning programs by learning from failures. Machine Learning, 110(4),
801–856.

Cropper, A., & Tourret, S. (2020). Logical reduction of metarules. Machine Learning, 109(7), 1323–1369.
https://​doi.​org/​10.​1007/​s10994-​019-​05834-x.

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L., Hewitt, L., et al. (2021). DreamCoder: Boot-
strapping inductive program synthesis with wake-sleep library learning (pp. 835–850). New York:
Association for Computing Machinery. https://​doi.​org/​10.​1145/​34534​83.​34540​80.

Evans, R., & Grefenstette, E. (2018). Learning explanatory rules from noisy data. Journal of Artificial Intel-
ligence Research, 61, 1–64.

Evans, R., Hernández-Orallo, J., Welbl, J., Kohli, P., & Sergot, M. (2021). Making sense of sensory input.
Artificial Intelligence, 293, 103438. https://​doi.​org/​10.​1016/j.​artint.​2020.​103438.

Falkenhainer, B. C., & Michalski, R. S. (1986). Integrating quantitative and qualitative discovery: The
ABACUS system. Machine Learning, 1(4), 367–401.

Feng, Y., Martins, R., Bastani, O., & Dillig, I. (2018). Program synthesis using conflict-driven learning.
ACM SIGPLAN Notices, 53(4), 420–435.

http://creativecommons.org/licenses/by/4.0/
https://ojs.aaai.org/index.php/AAAI/article/view/20596
https://ojs.aaai.org/index.php/AAAI/article/view/20596
http://arxiv.org/abs/2206.01614
http://arxiv.org/abs/2104.14426
http://arxiv.org/abs/2104.14426
https://doi.org/10.1613/jair.1.13507
https://doi.org/10.1007/s10994-019-05834-x
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1016/j.artint.2020.103438

1595Machine Learning (2023) 112:1551–1595	

1 3

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2014). Clingo= ASP+ control: Preliminary report.
arXiv preprint arXiv:​1405.​3694.

Genesereth, M., & Björnsson, Y. (2013). The international general game playing competition. AI Magazine,
34(2), 107–107.

Hemberg, E., Kelly, J., & O’Reilly, U.-M. (2019). On domain knowledge and novelty to improve program
synthesis performance with grammatical evolution. In Proceedings of the genetic and evolutionary
computation conference (pp. 1039–1046).

Hocquette, C., & Muggleton, S. H. (2020). Complete bottom-up predicate invention in meta-interpre-
tive learning. In Proceedings of the 29th international joint conference artificial intelligence (pp.
2312–2318).

Kaminski, T., Eiter, T., & Inoue, K. (2018). Exploiting answer set programming with external sources for
meta-interpretive learning. Theory and Practice of Logic Programming, 18(3–4), 571–588. https://​doi.​
org/​10.​1017/​S1471​06841​80002​61.

Karalič, A., & Bratko, I. (1997). First order regression. Machine Learning, 26(2), 147–176.
Kitzelmann, E. (2009). Inductive programming: A survey of program synthesis techniques. In International

workshop on approaches and applications of inductive programming (pp. 50–73). Springer.
Kramer, S. (1996). Structural regression trees. In AAAI/IAAI (Vol. 1, pp. 812–819). Citeseer.
Langley, P., Bradshaw, G. L., & Simon, H. A. (1983). In: R. S. Michalski, J. G. Carbonell & T. M. Mitchell

(Eds.), Rediscovering chemistry with the Bacon system (pp. 307–329). Berlin: Springer. https://​doi.​org/​
10.​1007/​978-3-​662-​12405-5_​10.

Larson, J., & Michalski, R. S. (1977). Inductive inference of vl decision rules. ACM SIGART Bulletin, 63,
38–44.

Lloyd, J. W. (2012). Foundations of logic programming. Berlin: Springer.
Muggleton, S. H. (1991). Inductive logic programming. New Generation Computing, 8(4), 295–318. https://​

doi.​org/​10.​1007/​BF030​37089.
Muggleton, S. H. (1995). Inverse entailment and progol. New Generation Computing, 13(3 &4), 245–286.

https://​doi.​org/​10.​1007/​BF030​37227.
Muggleton, S. H., Lin, D., Pahlavi, N., & Tamaddoni-Nezhad, A. (2014). Meta-interpretive learning: appli-

cation to grammatical inference. Machine Learning, 94, 25–49.
Muggleton, S. H., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. The Jour-

nal of Logic Programming, 19–20, 629–679. https://​doi.​org/​10.​1016/​0743-​1066(94)​90035-3. (Special
Issue: Ten Years of Logic Programming).

Nordhausen, B., & Langley, P. (1990). A robust approach to numeric discovery. In B. Porter & R. Mooney
(Eds.), Machine learning proceedings 1990 (pp. 411–418). San Francisco: Morgan Kaufmann. https://​
doi.​org/​10.​1016/​B978-1-​55860-​141-3.​50052-3.

Purgał, S. J., Cerna, D. M., & Kaliszyk, C. (2022). Learning higher-order logic programs from failures. In
IJCAI 2022 (pp. 2726–2733). https://​doi.​org/​10.​24963/​ijcai.​2022/​378.

Raghothaman, M., Mendelson, J., Zhao, D., Naik, M., & Scholz, B. (2019). Provenance-guided synthesis of
datalog programs. In Proceedings of the ACM on programming languages (Vol. 4(POPL), pp. 1–27).

Shapiro, E. Y. (1983). Algorithmic program debugging. Cambridge: MIT Press.
Si, X., Raghothaman, M., Heo, K., & Naik, M. (2019). Synthesizing datalog programs using numerical

relaxation. In 28th international joint conference on artificial intelligence, IJCAI 2019. International
joint conferences on artificial intelligence (pp. 6117–6124).

Solar-Lezama, A. (2009). The sketching approach to program synthesis. In Asian symposium on program-
ming languages and systems (pp. 4–13). Springer.

Srinivasan, A. (2001). The ALEPH manual. Machine Learning at the Computing Laboratory.
Srinivasan, A., & Camacho, R. (1999). Numerical reasoning with an ILP system capable of lazy evaluation

and customised search. The Journal of Logic Programming, 40(2), 185–213. https://​doi.​org/​10.​1016/​
S0743-​1066(99)​00018-7.

Srinivasan, A., Page, D., Camacho, R., & King, R. (2006). Quantitative pharmacophore models with induc-
tive logic programming. Machine Learning, 64(1), 65–90.

Wahlig, J. (2022). Learning logic programs from noisy failures. CoRR arxiv:​2201.​03702.
Zytkow, J. M. (1987). Combining many searches in the FAHRENHEIT discovery system. In Proceedings of

the fourth international workshop on machine learning (pp. 281–287). Elsevier.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1405.3694
https://doi.org/10.1017/S1471068418000261
https://doi.org/10.1017/S1471068418000261
https://doi.org/10.1007/978-3-662-12405-5_10
https://doi.org/10.1007/978-3-662-12405-5_10
https://doi.org/10.1007/BF03037089
https://doi.org/10.1007/BF03037089
https://doi.org/10.1007/BF03037227
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1016/B978-1-55860-141-3.50052-3
https://doi.org/10.1016/B978-1-55860-141-3.50052-3
https://doi.org/10.24963/ijcai.2022/378
https://doi.org/10.1016/S0743-1066(99)00018-7
https://doi.org/10.1016/S0743-1066(99)00018-7
http://arxiv.org/abs/2201.03702

	Learning programs with magic values
	Abstract
	1 Introduction
	1.1 Contributions

	2 Related work
	2.1 Numeric discovery
	2.2 Symbolic regression
	2.3 Program synthesis
	2.4 ILP
	2.4.1 Bottom clauses
	2.4.2 Lazy evaluation
	2.4.3 Regression
	2.4.4 Logical decision and clustering trees
	2.4.5 Meta-interpretive learning
	2.4.6 Meta-level ILP

	3 Problem setting
	3.1 Learning from failures
	3.1.1 Constraints

	4 Magic evaluation
	4.1 Magic variables
	4.2 Magic hypotheses
	4.3 Constraints
	4.3.1 Extended specialisation constraint
	4.3.2 Extended generalisation constraint
	4.3.3 Extended redundancy constraint
	4.3.4 Constraint summary

	4.4 Theoretical analysis

	5 Implementation
	5.1 Popper
	5.2 MagicPopper
	5.2.1 Generate
	5.2.2 Test
	5.2.3 Constrain

	6 Experiments
	6.1 Experimental design
	6.1.1 Experimental settings
	6.1.2 Systems settings

	6.2 Q1: comparison with other systems
	6.2.1 Experimental domains
	6.2.2 Results

	6.3 Q2: learning in infinite domains
	6.3.1 Experimental domains
	6.3.2 Results

	6.4 Q3: scalability with respect to the number of constant symbols
	6.4.1 Results

	6.5 Q3: scalability with respect to the number of magic values
	6.5.1 Magic values in one clause
	6.5.2 Magic values in multiple clauses

	6.6 Q3: scalability with respect to the number of examples
	6.6.1 Results

	6.7 Q4: effect of the bias about magic variables
	6.7.1 Material and methods
	6.7.2 Results

	6.8 Q5: effect on learning performance for problems which do not require magic values
	6.8.1 Material and methods
	6.8.2 Results

	7 Conclusion and limitations
	7.1 Limitations and future work

	8 Declarations
	Appendix A Proofs
	A.1 Extended constraints
	A.2 Theoretical analysis

	Appendix B Experiments
	B.1 Domains
	Material and methods

	Acknowledgements
	References

