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Abstract
A magic value in a program is a constant symbol that is essential for the execution of the 
program but has no clear explanation for its choice. Learning programs with magic val-
ues is difficult for existing program synthesis approaches. To overcome this limitation, 
we introduce an inductive logic programming approach to efficiently learn programs with 
magic values. Our experiments on diverse domains, including program synthesis, drug 
design, and game playing, show that our approach can (1) outperform existing approaches 
in terms of predictive accuracies and learning times, (2) learn magic values from infi-
nite domains, such as the value of pi, and (3) scale to domains with millions of constant 
symbols.

Keywords  Inductive logic programming · Programming synthesis · Relational learning · 
Program induction

1  Introduction

A magic value in a program is a constant symbol that is essential for the good execution 
of the program but has no clear explanation for its choice. For instance, consider the prob-
lem of classifying lists. Figure 1 shows positive and negative examples. Figure 2 shows a 
hypothesis which discriminates between the positive and negative examples. Learning this 
hypothesis involves the identification of the magic number 7.

Magic values are fundamental to many areas of knowledge, including physics and math-
ematics. For instance, the value of pi is essential to compute the area of a disk. Likewise, 
the gravitational constant is essential to identify whether an object subject to its weight 
is in mechanical equilibrium. Similarly, consider the classical AI task of learning to play 
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games. To play the game connect four,1 a learner must correctly understand the rules of 
this game, which implies that they must discover the magic value four, i.e. four tokens in a 
row.

Although fundamental to AI, learning programs with magic values is difficult for exist-
ing program synthesis approaches. For instance, many recent inductive logic programming 
(ILP) (Muggleton, 1991; Cropper & Dumancic, 2022) approaches first enumerate all pos-
sible rules allowed in a program (Corapi et al., 2011; Kaminski et al., 2018; Raghothaman 
et al., 2019; Evans & Grefenstette, 2018) and then search for a subset of them. For exam-
ple, ASPAL (Corapi et al., 2011) precomputes every possible rule and uses an answer set 
solver to find a subset of them. Other approaches similarly represent constants as unary 
predicate symbols (Evans & Grefenstette, 2018; Cropper & Morel, 2021). Both approaches 
suffer from two major limitations. First, they need a finite and tractable number of con-
stant symbols to search through, which is clearly infeasible for large and infinite domains, 
such as when reasoning about continuous values. Second, they might generate rules with 
irrelevant magic values that never appear in the data, and thus suffer from performance 
issues. Older ILP approaches similarly struggle with magic values. For instance, for Pro-
gol (Muggleton, 1995) to learn a rule with a constant symbol, that constant must appear in 
the bottom clause of an example. Progol, therefore, struggles to learn recursive programs 
with constant values. It can also struggle when the bottom clause grows extremely large 
due to many potential magic values.

The goal of this paper, and therefore its main contribution, is to overcome these limita-
tions by introducing an ILP approach that can efficiently learn programs with magic val-
ues, including values from infinite and continuous domains. The key idea of our approach, 
which is heavily inspired by Aleph’s lazy evaluation approach (Srinivasan & Camacho, 
1999), is to not enumerate all possible magic values but to instead generate hypotheses 
with variables in place of constant symbols that are later filled in by a learner. In other 
words, the learner first builds a partial general hypothesis and then lazily fills in the specific 

Fig. 1   Positive and negative examples

Fig. 2   Target hypothesis

Fig. 3   Intermediate hypothesis

1  Connect four is a two-player game in which the players take turns dropping coloured tokens into a grid. 
The goal of the game is to be the first to form a horizontal, vertical, or diagonal line of four of one’s own 
tokens.
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details (the magic values) by examining the given data. For instance, reconsider the task 
of identifying the magic number 7 in a list. The learner first constructs a partial intermedi-
ate hypothesis as the one shown in Fig. 3. In the first clause, the first-order variable B is 
marked as a constant with the internal predicate @magic. However, it is not bound to any 
particular constant symbol. The value for this magic variable is lazily identified by execut-
ing this hypothesis on the examples.

As the example in Fig. 3 illustrates, the key advantages of our approach compared to 
existing ones are that it (1) does not rely on enumeration of all constant symbols but only 
considers candidate constant values which can be obtained from the examples, (2) can 
learn programs with magic values from large and infinite domains, and (3) can learn magic 
values for recursive programs.

To implement our approach, we build on the learning from failures (LFF) (Cropper & 
Morel, 2021) approach. LFF is a constraint-driven ILP approach where the goal is to accu-
mulate constraints on the hypothesis space. A LFF learner continually generates and tests 
hypotheses, from which it infers constraints. For instance, if a hypothesis is too general (i.e. 
entails a negative example), then a generalisation constraint prunes generalisations of this 
hypothesis from the hypothesis space.

Current LFF approaches (Cropper & Morel, 2021; Cropper, 2022; Purgał et al., 2022) 
cannot, however, reason about partial hypotheses, such as the one shown in Fig. 3. They 
must instead enumerate candidate constant symbols using unary predicate symbols. Cur-
rent approaches, therefore, suffer from the same limitations as other recent ILP approaches, 
i.e. they struggle to scale to large and infinite domains. We, therefore, extend the LFF con-
straints to prune such intermediate partial hypotheses. Each constraint prunes sets of inter-
mediate hypotheses, each of which represents the set of its instantiations. We prove that 
these extended constraints are optimally sound: they do not prune optimal solutions from 
the hypothesis space.

We implement our magic value approach in MagicPopper, which, as it builds on the 
LFF learner Popper, supports predicate invention (Cropper & Morel, 2021) and learning 
recursive programs. MagicPopper can learn programs with magic values from domains 
with millions of constant symbols and scale to infinite domains. For instance, we show that 
MagicPopper can learn (an approximation of) the value of pi. In addition, in contrast to 
existing approaches, MagicPopper does not need to be told which arguments may be bound 
to magic values but instead can automatically identify them if any is needed, although this 
fully automatic approach comes with a high cost in terms of performance. In particular, it 
can cost additional learning time and can lower predictive accuracies.

1.1 � Contributions

We claim that our approach can improve learning performance when learning programs 
with magic values. To support our claim, we make the following contributions: 

1.	 We introduce a procedure for learning programs in domains with large and potentially 
infinite numbers of constant symbols.

2.	 We extend the LFF hypothesis constraints to additionally prune hypotheses with constant 
symbols. We prove the optimal soundness of these constraints.

3.	 We implement our approach in MagicPopper, which supports learning recursive pro-
grams and predicate invention.
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4.	 We experimentally show on multiple domains (including program synthesis, drug 
design, and game playing) that our approach can (1) scale to large search spaces with 
millions of constant symbols, (2) learn from infinite domains, and (3) outperform exist-
ing systems in terms of predictive accuracies and learning times when learning programs 
with magic values.

2 � Related work

2.1 � Numeric discovery

Early discovery systems identified relevant numerical values using a fixed set of basic 
operators, such as linear regression, which combined existing numerical values. The search 
followed a combinatorial design (Langley et  al., 1983; Zytkow, 1987) or was based on 
beam search guided by heuristics, such as correlation (Nordhausen & Langley, 1990) or 
qualitative proportionality (Falkenhainer & Michalski, 1986). These systems could redis-
cover physical laws with magic values. However, the class of learnable concepts was lim-
ited. BACON (Langley et  al., 1983), for instance, cannot learn disjunctions representing 
multiple equations. Conversely, MagicPopper can learn recursive programs and perform 
predicate invention. Moreover, MagicPopper can take as input normal logic program back-
ground knowledge and is not restricted to a fixed set of predefined operators.

2.2 � Symbolic regression

Symbolic regression searches a space of mathematical expressions, using genetic program-
ming algorithms (Augusto & Barbosa, 2000) or formulating the problem as a mixed integer 
non-linear program (Austel et  al., 2017). However, these approaches cannot learn recur-
sive programs nor perform predicate invention and are restricted to learning mathematical 
expressions.

2.3 � Program synthesis

Program synthesis (Shapiro, 1983) approaches based on the enumeration of the search 
space (Si et al., 2019; Ellis et al., 2021) struggle to learn in domains with a large number 
of constant symbols. For instance, the Apperception engine (Evans et al., 2021) disallows 
constant symbols in learned hypotheses, apart from the initial conditions represented as 
ground facts. To improve the likelihood of identifying relevant constants, Hemberg et al. 
(2019) manually identify a set of constants from the problem description. Compared to 
generate-and-test approaches, analytical approaches do not enumerate all candidate pro-
grams and can be faster (Kitzelmann, 2009).

Several program synthesis systems consider partial programs in the search. Neo (Feng 
et  al., 2018) constructs partial programs, successively fills their unassigned parts, and 
prunes partial programs which have no feasible completion. By contrast, MagicPopper only 
fills partial hypotheses with constant symbols. Moreover, MagicPopper evaluates hypoth-
eses based on logical inference only while Neo also uses statistical inference. Finally, Neo 
cannot learn recursive programs. Perhaps the most similar work is Sketch (Solar-Lezama, 
2009), which uses an SAT solver to search for suitable constants given a partial program. 
This approach expects as input a skeleton of a solution: it is given a partial program and the 
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task is to fill in the magic values with particular constants symbols. Conversely, MagicPop-
per learns both the program and the magic values.

2.4 � ILP

2.4.1 � Bottom clauses

Early ILP approaches, such as Progol (Muggleton, 1995) and Aleph (Srinivasan, 2001), 
use bottom clauses (Muggleton, 1995) to identify magic values. The bottom clause is 
the logically most-specific clause that explains an example. By constructing the bottom 
clause, these approaches restrict the search space and, in particular, identify a subset of 
relevant constant symbols to consider. However, this bottom clause approach has multi-
ple limitations. First, the bottom clause may grow large which inhibits scalability. Second, 
this approach cannot use constants that do not appear in the bottom clause, which is con-
structed from a single example. Third, this approach struggles to learn recursive programs 
and does not support predicate invention. Finally, as they rely on mode declarations (Mug-
gleton, 1995) to build the bottom clause, they need to be told which argument of which 
relations should be bound to a constant.

2.4.2 � Lazy evaluation

The most related work is an extension of Aleph that supports lazy evaluation (Srinivasan 
& Camacho, 1999). During the construction of the bottom clause, Aleph replaces constant 
symbols with existentially quantified output variables. During the refinement search of the 
bottom clause, Aleph finds substitutions for these variables by executing the partial hypoth-
esis on the positive and negative examples. In other words, instead of enumerating all con-
stant symbols, lazy evaluation only considers constant symbols computable from the exam-
ples. Therefore, lazy evaluation provides better scalability to large domains. This approach 
can identify constant symbols not seen in the bottom clause. Moreover, in contrast with 
MagicPopper, it also can identify constant symbols whose value arises from reasoning 
from multiple examples, such as coefficients in linear regression or numerical inequali-
ties. It also can predict output numerical variables using custom loss functions measuring 
error (Srinivasan et al., 2006). However, this approach inherits some of the limitations of 
bottom clause approaches aforementioned including limited learning of recursion and lack 
of predicate invention. Moreover, the user needs to provide a definition capable of comput-
ing appropriate constant symbols from lists of inputs, such as a definition for computing a 
threshold or regression coefficients from data. The user must also provide a list of variables 
that should be lazy evaluated or bound to constant symbols in learned hypotheses.

2.4.3 � Regression

First-order regression (Karalič & Bratko, 1997) and structural regression tree (Kramer, 
1996) predict continuous numerical values from examples and background knowledge. 
First-order regression builds a logic program that can include literals performing linear 
regression, whereas MagicPopper cannot perform linear regression. Structural regression 
tree builds trees with a numerical value assigned to each leaf. In contrast with MagicPop-
per, these two approaches do not learn optimal programs.
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2.4.4 � Logical decision and clustering trees

Tilde (Blockeel & De Raedt, 1998) and TIC (Blockeel et al., 1998) are logical extensions 
of decision tree learners and can learn hypotheses with constant values as part of the nodes 
that split the examples. These nodes are conjunctions built from the mode declarations. 
Tilde and TIC evaluate each candidate node, and select the one which results in the best 
split of the examples. Tilde can also use a discretisation procedure to find relevant numeri-
cal constants from large, potentially infinite domains, while making the induction process 
more efficient (Blockeel & De Raedt, 1997). However, this approach only handles numeri-
cal values while MagicPopper can handle magic values of any type. Moreover, Tilde can-
not learn recursive programs and struggles to learn from small numbers of examples.

2.4.5 � Meta‑interpretive learning

Meta-interpretive learning (MIL) (Muggleton et al., 2014) uses meta-rules, which are sec-
ond-order clauses acting as program templates, to learn programs. A MIL learner induces 
programs by searching for substitutions for the variables in meta-rules. These variables 
usually denote predicate variables, i.e. variables that can be bound to a predicate symbol. 
For instance, the MIL learner Metagol finds variable substitutions by constructing a proof 
of the examples. Metagol can learn programs with magic values by also allowing some 
variables in meta-rules to be bound to constant symbols. With this approach, Metagol, 
therefore, never considers constants which do not appear in the proof of at least one posi-
tive example and thus does not enumerate all constants in the search space. Our magic 
value approach is similar in that we construct a hypothesis with variables in it, then find 
substitutions for these variables by testing the hypothesis on the training examples. How-
ever, a key difference is that Metagol needs a user-provided set of meta-rules as input to 
precisely define the structure of a hypothesis, which is often difficult to provide, especially 
when learning programs with relations of arity greater than two. Moreover, Metagol does 
not remember failed hypotheses during the search and might consider again hypotheses 
which have already been proved incomplete or inconsistent. Conversely, MagicPopper can 
prune the hypothesis space upon failure of completeness or consistency with the examples, 
which can improve learning performance.

2.4.6 � Meta‑level ILP

To overcome the limitations of older ILP systems, many recent ILP approaches are meta-
level (Cropper et al., 2020) approaches, which predominately formulate the ILP problem 
as a declarative search problem. A key advantage of these approaches is greater ability 
to learn recursive and optimal programs. Many of these recent approaches precompute 
every possible rule in a hypothesis (Corapi et al., 2011; Kaminski et al., 2018; Evans & 
Grefenstette, 2018; Raghothaman et al., 2019). For instance, ASPAL (Corapi et al., 2011) 
precomputes every possible rule in a hypothesis space, which means it needs to ground 
rules with respect to every allowed constant symbol. This pure enumeration approach is 
intractable for domains with large number of constant symbols and impossible for domains 
with infinite ones. Moreover, the variables which should be bound to constants must be 
provided as part of the mode declarations by the user (Corapi et al., 2011).
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Other recent meta-level ILP systems, such as � -ILP (Evans & Grefenstette, 2018) and 
Popper (Cropper & Morel, 2021), do not directly allow constant symbols in clauses but 
instead require that constant symbols are provided as unary predicates. These unary pred-
icates are assumed to be user-provided. Moreover, since the size of the search space is 
exponential into the number of predicate symbols, this approach prevents scalability and in 
particular handling domains with infinite number of constant symbols. Conversely, Mag-
icPopper identifies relevant constant symbols by executing hypotheses over the positive 
examples, and can scale to infinite domains. In addition, it does not express constant sym-
bols with additional predicates and thus can learn shorter hypotheses.

3 � Problem setting

Logic preliminaries
We assume familiarity with logic programming (Lloyd, 2012) but restate some key ter-

minology. A variable is a string of characters starting with an uppercase letter. A function 
symbol is a string of characters starting with a lowercase letter. A predicate symbol is a 
string of characters starting with a lowercase letter. The arity n of a function or predicate 
symbol p is the number of arguments it takes. A unary or monadic predicate is a predicate 
with arity one. A constant symbol is a function symbol with arity zero. A term is a variable 
or a function symbol of arity n immediately followed by a tuple of n terms. An atom is a 
tuple p(t1, ..., tn) , where p is a predicate of arity n and t1 , ..., tn are terms, either variables or 
constants. An atom is ground if it contains no variables. A literal is an atom or the negation 
of an atom. A clause is a set of literals. A constraint is a clause without a positive literal. 
A definite clause is a clause with exactly one positive literal. A program is a set of definite 
clauses. A substitution � = {v1∕t1, ..., vn∕tn} is the simultaneous replacement of each vari-
able vi by its corresponding term ti . A clause C1 subsumes a clause C2 if and only if there 
exists a substitution � such that C1𝜃 ⊆ C2 . A program H1 subsumes a program H2 , denoted 
H1 ⪯ H2 , if and only if ∀C2 ∈ H2,∃C1 ∈ H1 such that C1 subsumes C2 . A program H1 is a 
specialisation of a program H2 if and only if H2 ⪯ H1 . A program H1 is a generalisation of a 
program H2 if and only if H1 ⪯ H2.

3.1 � Learning from failures

Our problem setting is the learning from failures (LFF) (Cropper & Morel, 2021) setting, 
which in turn is based upon the learning from entailment setting (Muggleton & De Raedt, 
1994). LFF uses hypothesis constraints to restrict the hypothesis space. LFF assumes a 
meta-language L , which is a language about hypotheses. Hypothesis constraints are 
expressed in L . A LFF input is defined as:

Definition 1  A LFF input is a tuple (E+,E−,B,H,C) where E+ and E− are sets of ground 
atoms representing positive and negative examples respectively, B is a definite program 
representing background knowledge, H is a hypothesis space, and C is a set of hypothesis 
constraints expressed in the meta-language L.
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Given a set of hypotheses constraints C, we say that a hypothesis H is consistent with C 
if, when written in L , H does not violate any constraint in C. We call HC the subset of H 
consistent with C. We define a LFF solution:

Definition 2  Given a LFF input (E+,E−,B,H,C) , a LFF solution is a hypothesis H ∈ HC 
such that H is complete with respect to E+ ( ∀e ∈ E+,B ∪ H ⊧ e ) and consistent with respect 
to E− ( ∀e ∈ E−,B ∪ H ̸⊧ e).

Conversely, given a LFF input, a hypothesis H is incomplete when ∃e ∈ E+,H ∪ B ̸⊧ e , 
and is inconsistent when ∃e ∈ E−,H ∪ B ⊧ e.

In general, there might be multiple solutions given a LFF input. We associate a cost to 
each hypothesis and prefer the ones with minimal cost. We define an optimal solution:

Definition 3  Given a LFF input (E+,E−,B,H,C) and a cost function cost : H → ℝ , 
a LFF optimal solution H1 is a LFF solution such that, for all LFF solution H2 , 
cost(H1) ≤ cost(H2).

A common bias is to express the cost as the size of a hypothesis. In the following, we 
use this bias, and we measure the size of a hypothesis as the number of literals in it.

3.1.1 � Constraints

A hypothesis that is not a solution is called a failure. A LFF learner identifies constraints 
from failures to restrict the hypothesis space. We distinguish several kinds of failures, 
among which are the following. If a hypothesis is incomplete, a specialisation constraint 
prunes its specialisations, as they are provably also incomplete. If a hypothesis is inconsist-
ent, a generalisation constraint prunes its generalisations, as they are provably also incon-
sistent. A hypothesis is totally incomplete when ∀e ∈ E+,H ∪ B ̸⊧ e . If a hypothesis is 
totally incomplete, a redundancy constraint prunes hypotheses that contain one of its spe-
cialisations as a subset (Cropper & Morel, 2021). These constraints are optimally sound: 
they do not prune optimal solutions from the hypothesis space (Cropper & Morel, 2021).

Example 1  (Hypotheses constraints) We call c2 the unary predicate which holds when its 
argument is the number 2. Consider the following positive examples E+ and the hypothesis 
H0:

The second example is a list of length 3 while the hypothesis H0 only entails lists of 
length 2. Therefore, the hypothesis H0 does not cover the second positive example and thus 
is incomplete. We can soundly prune all its specialisations as they also are incomplete. In 
particular, we can prune the specialisations H1 and H2:

E+ = {f ([b, a]), f ([c, a, e])}

H0 ∶ f (A) ← length(A,B), c2(B)

H1 ∶ f (A) ← length(A,B), c2(B), head(A,B)

H2 ∶ f (A) ← length(A,B), c2(B), tail(A,C), empty(C)
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4 � Magic evaluation

The constraints described in the previous section prune hypotheses. In particular, they 
can prune hypotheses with constant symbols as shown in Example 1. However, hypoth-
eses identical but with different constant symbols are treated independently despite their 
similarities.

For instance, Popper could consider all of the hypotheses represented on the left of 
Fig.  4. Each of these hypotheses would be considered independently. For each of them, 
Popper learns constraints which prune specialisations, generalisations, or redundancy of 
this single hypothesis but do not apply to other hypotheses. By contrast, as shown on the 
right of Fig. 4, MagicPopper represents all these hypotheses jointly as a single one by using 
variables in place of constant symbols. Thus, MagicPopper reasons simultaneously about 
hypotheses with similar program structure but different constant symbols.

MagicPopper extends specialisation, generalisation, and redundancy constraints to apply 
to such partial hypotheses.

Moreover, the unary predicate symbols used by Popper must be provided as bias: it is 
assumed the user can provide a finite and tractable number of them. Conversely, Magic-
Popper represents the set of hypotheses with similar structure but with different constant 
symbols as a single one, and therefore can handle infinite constant domains.

In this section, we introduce MagicPopper’s representation, present these extended con-
straints, and prove they are optimally sound.

4.1 � Magic variables

A LFF learner uses a meta-language L to reason about hypotheses. We extend this meta-
language L to represent partial hypotheses with unbound constant symbols. We define a 
magic variable:

Definition 4  A magic variable is an existentially quantified first-order variable.

A magic variable is a placeholder for a constant symbol. It marks a variable as a con-
stant but does not require the particular constant symbol to be identified. Particular con-
stant symbols can be identified in a latter stage. We represent magic variables with the 
unary predicate symbol @magic. For example, in the following program H, the variable B 
marked with the syntax @magic is a magic variable:

Fig. 4   Some hypotheses considered by Popper (left) and MagicPopper (right). c
1
 , c

2
 , c

3
 , c

4
 , c

5
 , and c

6
 are 

unary predicates that hold when their argument is the number 1, 2, 3, 4, 5, or 6 respectively. These unary 
predicates are assumed to be user-provided
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This magic variable is not yet bound to any particular value. The use of the predicate 
symbol @magic allows us to concisely represent the set of all possible substitutions of a 
variable.

The predicate symbol @magic is an internal predicate. For this reason, literals with this 
predicate symbol are not taken into account in the rule size. For instance, the hypothesis H 
above has size 2. Therefore, compared to approaches that use additional unary body literals 
to identify constant symbols, our representation represents hypotheses with constant symbols 
with fewer literals.

4.2 � Magic hypotheses

A magic hypothesis is a hypothesis with at least one magic variable. An instantiated hypoth-
esis, or instantiation, is the result of substituting magic variables with constant symbols in a 
magic hypothesis. Magic evaluation is the process of identifying a relevant subset of substitu-
tions for magic variables in a magic hypothesis to form instantiations.

Example 2  (Magic hypothesis) The magic hypothesis H above may have the following cor-
responding instantiated hypotheses, or instantiations, I1 and I2:

Magic hypotheses allow us to represent the hypothesis space more compactly and to rea-
son about the set of all instantiations of a magic hypothesis simultaneously. For instance, 
the magic hypothesis H above represents concisely all its instantiations, including I1 and I2 , 
amongst many other ones. The only instantiation of a non-magic hypothesis is itself.

In practice, we are not interested in all instantiations of a magic hypothesis, but only in a 
subset of relevant instantiations. In the following, we consider a magic evaluation procedure 
which only considers instantiations that, together with the background knowledge, entail at 
least one positive example. We show we can ignore other instantiations.

4.3 � Constraints

To improve learning performance, we prune the hypothesis space with constraints (Cropper 
& Morel, 2021). Given our hypothesis representation, each constraint prunes a set of magic 
hypotheses, each of which represents the set of its instantiations. In other words, for each 
magic hypothesis pruned, we eliminate all its instantiations. We identify constraints that are 
optimally sound in that they do not eliminate optimal solutions from the hypothesis space. 
Specifically, we consider extensions of specialisation, generalisation, and redundancy con-
straints for magic hypotheses. We describe them in turn. The proofs are in the appendix.

4.3.1 � Extended specialisation constraint

We first extend specialisation constraints. If all the instantiations of a magic hypothesis, 
together with the background knowledge, entail at least one positive example and are 
incomplete, then all specialisations of this hypothesis are incomplete:

H ∶ f (A) ← length(A,B),@magic(B)

I1 ∶ f (A) ← length(A, 2)

I2 ∶ f (A) ← length(A, 0)
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Proposition 1  (Extended specialisation constraint) Let (E+,E−,B,H,C) be a LFF input, 
H1 ∈ HC , and H2 ∈ HC be two magic hypotheses such that H1 ⪯ H2 . If all instantiation 
I1 of H1 such that ∃e ∈ E+,B ∪ I1 ⊧ e are incomplete, then all instantiation of H2 also are 
incomplete.

We provide an example to illustrate this proposition.

Example 3  (Extended specialisation constraint) Consider the dyadic predicate head which 
takes as input a list and returns its first element. Consider the following positive examples 
E+ and the magic hypothesis H0:

This hypothesis holds for lists whose first element is a particular constant symbol to be 
determined. This hypothesis H0 has the following two instantiations I0,1 and I0,2 covering at 
least one positive example:

The first instantiation I0,1 holds for lists whose head is the element b. This instantiation 
covers the first positive example. The second instantiation I0,2 holds for lists whose head is 
the element c. It covers the second positive example. However, each of these instantiations 
is incomplete and too specific. Therefore, no instantiation of H0 can entail all the positive 
examples. As such, all specialisations of H0 can be pruned, including magic hypotheses 
such as H1 and H2:

4.3.2 � Extended generalisation constraint

We now extend generalisation constraints. If all the instantiations of a magic hypothesis 
together with the background knowledge entail at least one positive example are inconsist-
ent, then we can prune non-recursive generalisations of this hypothesis and they are either 
inconsistent or non-optimal:

Proposition 2  (Extended generalisation constraint) Let (E+,E−,B,H,C) be a LFF 
input, H1 ∈ HC and H2 ∈ HC be two magic hypotheses such that H2 is non-recursive and 
H2 ⪯ H1 . If all instantiation I1 of H1 such that ∃e ∈ E+,B ∪ I1 ⊧ e are inconsistent, then all 
instantiations of H2 are inconsistent or non-optimal.

We illustrate generalisation constraints with the following example and give a counter-
example to explain why non-recursive hypotheses cannot be pruned.

Example 4  (Extended generalisation constraint) Consider the following positive examples 
E+ , the negative examples E− and the magic hypothesis H0:

E+ = {f ([b, a]), f ([c, a, e])}

H0 ∶ f (A) ← head(A,B),@magic(B)

I0,1 ∶ f (A) ← head(A, b)

I0,2 ∶ f (A) ← head(A, c)

H1 ∶ f (A) ← head(A,B),@magic(B), odd(B)

H2 ∶ f (A) ← head(A,B),@magic(B), tail(A,C), head(C,D),@magic(D)
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This hypothesis H0 has the following two instantiations I0,1 and I0,2 covering at least one of 
these positive examples:

The first instantiation I0,1 holds for lists whose head is the element b. This instantiation 
covers the first positive example and the first negative example. The second instantiation 
I0,2 holds for lists whose head is the element c. It covers the second positive example and 
the second negative example. Each of these instantiations is inconsistent and thus is too 
general. As such, all non-recursive generalisations of H0 can be pruned. In particular, the 
magic hypotheses H1 and H2 below are non-recursive generalisations of H0 and can be 
pruned:

However, there might exist other instantiations of H0 which do not cover any positive 
examples but are not inconsistent, such as I0,3:

This instantiation could be used to construct a recursive solution, such as I:

The instantiation I holds for list which contain the element a at any position.

4.3.3 � Extended redundancy constraint

We extend redundancy constraints for magic hypotheses. If a magic hypothesis has 
no instantiations which, together with the background knowledge, entail at least one 
positive example, we show that it is redundant when included in any non-recursive 
hypothesis.

Proposition 3  (Extended redundancy constraint) Let (E+,E−,B,H,C) be a LFF input, 
H1 ∈ HC be a magic hypothesis. If H1 has no instantiation I1 such that ∃e ∈ E+,B ∪ I1 ⊧ e , 
then all non-recursive magic hypotheses H2 which contain a specialisation of H1 as a sub-
set are non-optimal.

We illustrate this proposition with the following example and provide a counter-example 
to explain why non-recursive hypotheses cannot be pruned.

E+ = {f ([b, a]), f ([c, a, e])}

E− = {f ([b]), f ([c])} H0 ∶ f (A) ← head(A,B),@magic(B)

I0,1 ∶ f (A) ← head(A, b)

I0,2 ∶ f (A) ← head(A, c)

H1 ∶

{
f (A) ← head(A,B),@magic(B)
f (A) ← length(A,B),@magic(B)

H2 ∶

{
f (A) ← head(A,B),@magic(B)
f (A) ← head(A,B), negative(B)

I0,3 ∶ f (A) ← head(A, a)

I ∶

{
f (A) ← head(A, a)
f (A) ← tail(A,B), f (B)
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Example 5  (Extended redundancy constraint) Consider the following positive examples E+ 
and the magic hypothesis H0:

This hypothesis H0 holds for lists which contain a single element which is a particular con-
stant to be determined. However, both examples have length greater or equal to 2. There-
fore, among the possible instantiations of the hypothesis H0 , there are no instantiations 
which, together with the background knowledge, cover at least one positive example. H0 
cannot entail any of the positive examples and is redundant when included in a non-recur-
sive hypothesis. As such, all hypotheses which contain a specialisation of H0 as a subset 
are non-optimal. In particular, the magic hypotheses H1 and H2 below contain a specialisa-
tion of H0 as a subset. They are non-optimal and can be pruned:

However, there might exist other instantiations of H0 which are not redundant in recur-
sive hypotheses. For instance, the following recursive instantiated hypothesis I includes an 
instantiation of H0 as a subset but may not be non-optimal:

This instantiation holds for lists whose last element is the constant c. It covers both positive 
examples but none of the negative examples.

While extended specialisation constraints are sound, extended redundancy and gen-
eralisation constraints are only optimally sound. They might prune solutions from the 
hypothesis space but do not prune optimal solutions.

4.3.4 � Constraint summary

We summarise our constraint framework as follows. Given a magic hypothesis H, the 
learner can infer the following extended constraints under the following conditions: 

1.	 If all instantiations of H which, together with the background knowledge, entail at least 
one positive example are incomplete, according to Proposition 1, we can prune all its 
specialisations.

2.	 If all instantiations of H which, together with the background knowledge, entail at least 
one positive example are inconsistent, according to Proposition 2, we can prune all its 
non-recursive generalisations.

3.	 If the magic hypothesis H has no instantiation which, together with the background 
knowledge, entail at least one positive example, according to Proposition 3, we can 
prune all non-recursive hypotheses which contain one of its specialisations as a subset.

E+ = {f ([b, c]), f ([f , g, c])} H0 ∶ f (A) ← head(A,B),@magic(B), tail(A,C), empty(C)

H1 ∶

{
f (A) ← head(A,B),@magic(B), odd(B), tail(A,C), empty(C)
f (A) ← length(A,B),@magic(B)

H2 ∶

{
f (A) ← head(A,B),@magic(B), tail(A,C), empty(C), length(A,D), odd(D)
f (A) ← head(A,B), negative(B)

I ∶

{
f (A) ← head(A, c), tail(A,C), empty(C)
f (A) ← tail(A,B), f (B)
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While Proposition 1 can prune recursive hypotheses, Proposition 2 and Proposition 3 do 
not prune recursive hypotheses. Therefore, pruning is stronger when recursion is disabled.

We have described our representation of the hypothesis space with magic hypotheses. 
We have extended specialisation, generalisation, and redundancy constraints to prune 
magic hypotheses and we have demonstrated these extended constraints are optimally 
sound. The next section theoretically evaluates the gain over the size of the search space of 
using magic hypotheses compared to identifying constant symbols with unary predicates.

4.4 � Theoretical analysis

Our representation includes magic hypotheses which contain magic variables. Each magic 
variable stands for the set of its substitutions. Therefore, we do not enumerate constant 
symbols in the hypothesis space by opposition with existing approach. Our experiments 
focus on comparing MagicPopper with approaches which enumerate possible constant 
symbols with unary body predicates. We focus in this section on theoretically evaluating 
the reduction over the hypothesis space size of not enumerating all candidate constant sym-
bols as unary predicates, and instead using magic variables.

Proposition 4  Let Db be the number of body predicates available in the search space, m 
be the maximum number of body literals allowed in a clause, c the number of constant 
symbols available, and n the maximum number of clauses allowed in a hypothesis. Then 
the maximum number of hypotheses in the hypothesis space can be multiplied by a factor 
of (Db+c

Db

)mn if representing constants with unary predicate symbols, one per allowed con-
stant symbol, compared to using magic variables.

A proof of Proposition 4 is in the appendix. Proposition 4 shows that allowing magic 
variables can reduce the size of the hypothesis space compared to enumerating constant 
symbols through unary predicate symbols. The ratio is a increasing function of the number 
of constant symbols available and the complexity of hypotheses, measured as the number 
of clauses allowed in hypotheses n and the number of body literals allowed in clauses m. 
Similar analysis can be conducted for approaches which enumerate constant symbols in the 
arguments of clauses. More generally, Proposition 4 suggests that enumerating constant 
symbols can increase the size of the hypothesis space compared to using magic variables.

5 � Implementation

We now describe MagicPopper, which implements our magic evaluation idea. We first 
describe Popper, on which MagicPopper is based.

5.1 � Popper

Popper (Cropper & Morel, 2021) is a LFF learner. It takes as input a LFF input, which 
contains a set of positive ( E+ ) and negative ( E− ) examples, background knowledge 
(B), a bound over the size of hypotheses allowed in H , and a set of hypotheses con-
straints (C). Popper represents hypotheses in a meta-language L . This meta-language L 
contains literals head_literal/4 and body_literal/4 representing head and body literals 
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respectively. These literals have arguments (Clause,Pred,Arity,Vars) and denote that 
there is a head or body literal in the clause Clause, with the predicate symbol Pred, arity 
Arity, and variables Vars. For instance, the following set of literals:

represents the following clause with id 0:

To generate hypotheses, Popper uses an ASP program P whose models are hypothesis solu-
tions represented in the meta-language L . In other words, each model (answer set) of P 
represents a hypothesis. A simplified version of the base ASP program (without the predi-
cate declarations which are problem specific) is represented in Fig. 5. Popper uses a gener-
ate, test, and constrain loop to find a solution. First, it generates a hypothesis as a solution 
to the ASP program P with the ASP system Clingo (Gebser et al., 2014). Popper searches 
for hypotheses by increasing size, the size being evaluated as the number of literals in a 
hypothesis. Popper tests this hypothesis against the examples, typically using Prolog. If the 
hypothesis is a solution, it is returned. Otherwise, the hypothesis is a failure: Popper identi-
fies the kind of failure and builds constraints accordingly. For instance, if the hypothesis is 
inconsistent (entails a negative example) Popper builds a generalisation constraint. Popper 
adds these constraints to the ASP program P to constrain the subsequent generate steps. 
This loop repeats until a hypothesis solution is found or until there are no more models to 
the ASP program P.

{head_literal(0, empty, 1, (0)), body_literal(0, length, 2, (0, 1)), body_literal(0, zero, 1, (1))}

empty(A) ← length(A,B), zero(B)

Fig. 5   Simplified Popper ASP base program for single clause programs. There is exactly one head literal per 
clause. There are at most N body literals per clause, where N is a user-provided parameter describing the 
maximum number of body literals allowed in a clause. Our modification is highlighted in bold: we allow at 
most M variables to be magic variables, where M is a user-provided parameter
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5.2 � MagicPopper

MagicPopper builds on Popper to support magic evaluation. MagicPopper likewise follows 
a generate, test, and constrain loop to find a solution. We describe in turn how each of 
these steps works.

5.2.1 � Generate

Figure  5 shows our modification to Popper’s base ASP encoding in bold. In addition to 
head_literal/4 and body_literal/4, MagicPopper can express magic_literal/2. Magic liter-
als have arguments (Clause,Var) and denote that the variable Var in the clause Clause is 
a magic variable. There can be at most M magic literals in a clause, where M is a user 
defined parameter with default value 4. This setting expresses the trade-off between search 
complexity and expressivity.

In addition to the standard Popper input, and a maximum number of magic values per 
clause, MagicPopper can receive information about which variables can be magic varia-
bles. This information can be provided with three different settings: Arguments, Types, and 
All. For instance, given the predicate declarations represented in Fig. 6,  Fig. 7 illustrates 
how the user can provide additional bias with each of these settings. A user can specify 
individually a list of some arguments of some predicates (Arguments) or a list of variable 
types (Types). Otherwise, if no information is given, MagicPopper treats any variable as a 
potential magic variable (All). For any of these settings, MagicPopper searches for a subset 
of the variables specified by the user for the magic variables. Therefore, All always consid-
ers a larger hypothesis space than Arguments and Types. Arguments is the setting closest 
to mode declarations (Muggleton, 1995; Blockeel & De Raedt, 1998; Srinivasan, 2001; 
Corapi et al., 2011). Mode declarations however impose a stricter bias: while Arguments 
treats the flagged arguments as potential magic values, mode declarations specify an exact 

Fig. 6   Predicate declarations for the krk task. The task is to learn a hypothesis to describe that the white 
king protects the white rook in the chess endgame king-rook-king

Fig. 7   Example of the different bias settings for MagicPopper. Variables that can be magic variables are 
represented in bold. Arguments can treat as magic variables some specified arguments of specified predi-
cates. Type can treat as a magic variable any variable of the specified types. All expects no additional infor-
mation and may treat any variable as a magic variable
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list of arguments which must be constant symbols.2 With the All setting, MagicPopper can 
automatically identify which variable to treat as magic variables at the expense of more 
search. In Sect.  6.7, we experimentally evaluate the impact on learning performance of 
these different settings. In Sect.  6.8, we evaluate the impact on learning performance of 
allowing magic values (All setting) when it is unnecessary.

The output of the generate step is a hypothesis which may contain magic variables, such 
as the one shown on the right of Fig. 4. By contrast, most ILP approaches (Corapi et al., 
2011; Evans & Grefenstette, 2018; Cropper & Morel, 2021) cannot generate hypotheses 
with magic variables but instead require enumerating constant symbols. Popper and � -ILP 
use unary predicates to represent constant symbols, as shown on the left of Fig. 4. Aspal 
precomputes all possible rules with some arguments grounded to constant symbols. Con-
versely, owing to the use of magic variables, MagicPopper benefits from a more compact 
representation of the hypothesis space.

5.2.2 � Test

Magic evaluation is executed during the test step. To identify substitutions for magic variables, 
we add magic variables as new head arguments. We execute the resulting program on the posi-
tive examples. We save the substitutions for the new head variables. We then bound these sub-
stitutions to their corresponding magic variables and remove the additional head arguments.

Example 6  (Magic evaluation) Consider the magic hypothesis H1 below:

We add magic variables as new head variables. H thus becomes H′
1
.

We execute H′
1
 on the positive examples to find substitutions for the magic variable B. 

Assume the single positive example f([a, b, c]). We transform it into f([a, b, c], B) and we 
find the substitution 3 for the variable B. We bind this value to the magic variable in the 
hypothesis, which results in the following instantiation:

Example 7  (Magic evaluation of recursive hypothesis) Similarly, the recursive hypothesis 
H2 below becomes H′

2
.

We execute H′
2
 on the positive examples to find substitutions for the magic variables B and 

D.

H1 ∶ f (A) ← length(A,B),@magic(B)

H�
1
∶ f (A,B) ← length(A,B),@magic(B)

H�
1
∶ f (A,B) ← length(A, 3)

H2 ∶

{
f (A) ← length(A,B),@magic(B)
f (A) ← head(A,B),@magic(B), tail(A,C), f (C)

H�
2
∶

{
f (A,B,D) ← length(A,B),@magic(B)
f (A,B,D) ← head(A,D),@magic(D), tail(A,C), f (C,B,D)

2  Forcing variables to be magic variables is not a setting currently available in MagicPopper.
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With this procedure, MagicPopper only identifies constants which can be obtained from the 
positive examples. In this sense, MagicPopper does not consider irrelevant constant symbols.

Example 8  (Relevant instantiations) Given the positive examples E+ = {f ([a, e]), f ([])} , 
we consider only the two instantiations I1,1 and I1,2 for the magic hypothesis H1:

We use Prolog to execute programs because of its ability to use lists and handle 
large, potentially infinite, domains. As a consequence of using Prolog, our reasoning to 
deduce candidate magic values is based on backward chaining, in contrast to systems 
that rely on forward chaining (Corapi et al., 2011; Evans & Grefenstette, 2018; Kamin-
ski et al., 2018; Evans et al., 2021).

A limitation of the aforementioned approach is the execution time of learned pro-
grams to identify all possible bindings. This approach is especially expensive when 
a hypothesis contains multiple magic variables, in which case one must consider the 
combinations of their possible bindings.

Example 9  (Execution time complexity) Consider the hypothesis H:

The hypothesis H is the disjunction of two clauses, each of which contains one magic 
value, respectively B1 and B2. Since B1 and B2 can be bound to different constant sym-
bols, this hypothesis is allowed in the search space despite having two clauses with the 
exact same literals. More generally, we allow identical clauses with magic variables.

This hypothesis means that any of two particular elements appears in a list. We search 
for substitutions for the magic variables B1 and B2. We call n the size of input lists. The 
number of substitutions for the magic variable B1 in the first clause is O(n). Similarly, the 
number of substitutions for the magic variable B2 in the second clause is O(n). Therefore, 
the number of instantiations for H is O(n2).

5.2.3 � Constrain

If MagicPopper identifies that a hypothesis has no instantiation, no complete instantia-
tion, or no consistent instantiation, it generates constraints as explained in Sect. 4.3.4. 
Additionally, MagicPopper generates a banish constraint if no other constraints can 
be inferred. The banish constraint prunes this single hypothesis from the hypothesis 
space. In other words, it ensures that the same hypothesis will not be generated again 
in subsequent generate steps (Cropper & Morel, 2021). These constraints prune the 
hypothesis space and constrain the following iterations.

H1 ∶ f (A) ← length(A,B),@magic(B)

I1,1 ∶ f (A) ← length(A, 2)

I1,2 ∶ f (A) ← length(A, 0)

H ∶

{
f (A) ← member(A,B1),@magic(B1)
f (A) ← member(A,B2),@magic(B2)
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6 � Experiments

We now evaluate our approach.

6.1 � Experimental design

Our main claim is that MagicPopper can improve learning performance compared to cur-
rent ILP systems when learning programs with magic values. Our experiments, therefore, 
aim to answer the question: 

Q1	� How well does MagicPopper perform compared to other approaches?

To answer Q1, we compare MagicPopper against Metagol, Aleph, and Popper.3 Magic-
Popper uses different biases than Metagol and Aleph. Therefore a direct comparison is dif-
ficult and our results should be interpreted as indicative only. By contrast, as MagicPopper 
is based on Popper, the comparison against Popper is more controlled. The experimental 
difference between the two is the addition of our magic evaluation procedure and the use of 
extended constraints.

A key limitation of approaches that enumerate all possible constants allowed in a rule 
(Corapi et  al., 2011; Evans & Grefenstette, 2018; Cropper & Morel, 2021) is difficulty 
learning programs from infinite domains. By contrast, we claim that MagicPopper can 
learn in infinite domains. Therefore, our experiments aim to answer the question: 

Q2	� Can MagicPopper learn in infinite domains?

To answer Q2, we consider several tasks in infinite and continuous domains that require 
magic values as real numbers or integers.

Proposition 4 shows that our magic evaluation procedure can reduce the search space 
and thus improve learning performance compared to using unary body predicates. We thus 
claim that MagicPopper can improve scalability compared to Popper. To explore this claim, 
our experiments aim to answer the question: 

Q3	� How well does MagicPopper scale?

To answer Q3, we vary the number of (1) constant symbols in the background knowl-
edge, (2) magic values in the target hypotheses, and (3) training examples. We use as 
baseline Popper. We compare our experimental results with our theoretical analysis from 
Sect. 4.4.

Unlike existing approaches, MagicPopper does not need to be told which variables may 
be magic variables but can automatically identify this information. However, it can use this 
information if provided by a user. To evaluate the importance of this additional informa-
tion, our experiments aim to answer the question: 

Q4	� What effect does additional bias about magic variables have on the learning perfor-
mance of MagicPopper?

3  We also considered ASPAL (Corapi et  al., 2011). However, as it precomputes every possible rule in a 
hypothesis, it does not scale to our experimental domains.
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To investigate Q4, we compare different settings for MagicPopper, each of which 
assumes different information regarding which variables may be magic variables. We use 
as baseline Popper.

Our approach should improve learning performance when learning programs with 
magic values. However, in practical applications, it is unknown whether magic values are 
necessary. To evaluate the cost in performance when magic values are unnecessary, our 
experiments aim to answer the question: 

Q5	� What effect does allowing magic values have on the learning performance when 
magic values are unnecessary?

 To answer Q5, we compare the learning performance of MagicPopper and Popper on 
problems that should not require magic values. We set MagicPopper to allow any variable 
to potentially be a magic value.

6.1.1 � Experimental settings

Given p positive and n negative examples, tp true positives and tn true negatives, we define 
the predictive accuracy as 1

2
( tp
p
+ tn

n
) . We measure mean predictive accuracies, mean learn-

ing times, and standard errors of the mean over 10 repetitions. We use an 8-Core 3.2 GHz 
Apple M1 and a single CPU.4

6.1.2 � Systems settings

Aleph
Aleph is allowed constant symbols through the mode declarations or lazy evaluation.

Metagol
Metagol needs as input second-order clauses called metarules. We provide Metagol 

with a set of almost universal metarules for a singleton-free fragment of monadic and 
dyadic Datalog (Cropper & Tourret, 2020) and additional curry metarules to identify con-
stant symbols as existentially quantified first-order variables.

Popper and MagicPopper
Both systems use Popper 2.0.0 (also known as Popper+) (Cropper & Hocquette, 2022). 

We provide Popper with one unary predicate symbol for each constant symbol available 
in the background knowledge. We set for both systems the same parameters bounding the 
search space (maximum number of variables and maximum number of literals in the body 
of clauses). Therefore, since MagicPopper does not count magic literals in program sizes, it 
considers a larger search space than Popper. We provide both systems with types for predi-
cate symbols. In particular, unary predicates provided to Popper are typed. Therefore, to 
ensure a fair comparison, we provide MagicPopper with a list of types to describe the set of 
variables which may be magic variables. As explained in Sect. 5.2, we could have instead 
provided MagicPopper with a list of arguments of particular predicate symbols to describe 
the set of variables which may be magic variables. Providing a list of predicate arguments 
would have been a setting closer to mode declarations, which Aleph uses. However, when 

4  The experimental data and code for reproducing the experiments are available at https://​github.​com/​celin​
ehocq​uette/​magic​popper.​git.

https://github.com/celinehocquette/magicpopper.git
https://github.com/celinehocquette/magicpopper.git
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specifying types for magic variables, the search space is larger than when specifying par-
ticular arguments of some predicates symbols. Moreover, our setting specifies which vari-
ables can be magic variables, and MagicPopper searches for a subset of these variables. 
Conversely, modes specify which variables must be constant symbols. In this sense, this 
setting for MagicPopper considers a larger hypothesis space than Aleph. In Sect. 6.7, we 
evaluate and compare the effect on learning performance of these different settings for 
specifying magic variables.

6.2 � Q1: comparison with other systems

6.2.1 � Experimental domains

We compare MagicPopper against state-of-the-art ILP systems. This experiment aims to 
answer Q1. We consider several domains. Full descriptions of these domains are in the 
appendix. We use a timeout of 600s for each task.

IGGP
In inductive general game playing (IGGP) (Cropper et al., 2020), agents are given game 

traces from the general game playing competition (Genesereth & Björnsson, 2013). The 
task is to induce a set of game rules that could have produced these traces. We use four 
IGGP games which contain constant symbols: md (minimal decay), buttons, coins, and gt-
centipede. We learn the next relation in each game, the goal relation for buttons, coins, gt-
centipede and the legal relation for gt-centipede. These tasks involve the identification of 
respectively 5, 31, 3, 14, 6, 4, 29 and 8 magic values. Figures 8 and 9 represent examples 
of some target hypotheses. We measure balanced accuracies and learning times.

KRK
The task is to learn a chess pattern in the king-rook-king (krk) endgame, which is the 

chess ending with white having a king and a rook and black having a king. We learn the 
concept of rook protection by its king (Hocquette & Muggleton, 2020). An example target 
solution is presented in Fig. 10. This task involves identifying 4 magic values.

Program synthesis: list, powerof2 and append
For list, we learn a hypothesis describing the existence of the magic number ‘7’ in a list. 

Figure 2 in the introduction shows an example solution. For powerof2, we learn a hypoth-
esis which describes whether a number is of the form 2k , with k integer. These two prob-
lems involve learning a recursive hypothesis. For append, we learn that lists must have a 
particular suffix of size 2. For list, there are 4000 constants in the background knowledge. 
Examples are lists of size 500. For powerof2, examples are numbers between 2 and 1000, 
there are 1000 constants in the background knowledge. For append, examples are lists of 
size 10, there are 1000 constants in the background knowledge.

Fig. 8   Example solution for the IGGP md next task. This hypothesis states that the value becomes 5 when 
the player presses the button, and is the true value minus 1 if the player does not act. Magic values are rep-
resented in bold
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6.2.2 � Results

Table 1 shows the learning times. It shows MagicPopper can solve each of the tasks in at 
most 100s, often a few seconds. To put these results into perspective, an approach that 
precomputes the hypothesis space (Corapi et al., 2011) would need to precompute at least 
(#preds#constants)#literals rules. For instance, for buttons-next, this approach would need to 
precompute at least (5 ∗ 16)10 = O(1019) rules, which is infeasible. Conversely, MagicPop-
per solves this task in 3 seconds.

Popper is based on enumeration of possible constant symbols: it uses unary predicate 
symbols, one for each possible constant symbol. Compared to Popper, MagicPopper has 
shorter learning times on seven tasks (md, buttons-goal, coins-goal, gt-centipede-goal, 
gt-centipede-legal, gt-centipede-next, krk, list, powerof2 and append) and longer learning 
times on two tasks (buttons-next and coins-next). A paired t-test confirms the significance 
of the difference for these ten tasks at the p < 0.01 level. For instance, MagicPopper can 
solve the krk problem in 6s while Popper requires almost 35s.

There are three main reasons for this improvement. First, MagicPopper reasons about 
magic hypotheses while Popper cannot. Each magic hypothesis represents the set of its pos-
sible instantiations, which alleviates the need to enumerate all possible constant symbols. 
The constraints MagicPopper formulates eliminate magic hypotheses, which prunes more 
instantiated programs. Second, compared to Popper, MagicPopper does not need additional 
unary predicates to represent constant symbols. This feature allows MagicPopper to learn 
shorter hypotheses with constant symbols as arguments instead. For instance, in the krk 
experiment, MagicPopper typically learns a hypothesis with 3 body literals while Popper 
typically needs 6 body literals, including 3 body literals to represent constant symbols. Pop-
per thus needs to search up to a larger depth compared to MagicPopper. As demonstrated 
by Proposition 4, these two reasons lead to a smaller hypothesis space. Finally, MagicPop-
per tests hypotheses against the positive examples and only considers instantiations which, 
together with the background knowledge, entail at least one positive example. In this sense, 
MagicPopper never considers irrelevant constant symbols. For these three reasons, Magic-
Popper considers fewer hypotheses which explains the shorter learning times.

Fig. 9   Example solution for the 
IGGP buttons-next task. The 
first clause states that the next 
value becomes q if the current 
value is q and the agent presses 
the button a. Magic values are 
represented in bold

Fig. 10   Example solution for the krk task. This hypothesis describes the concept of rook protected in the 
chess krk endgame. This hypothesis states that the white king protects the white rook when the white king 
and the white rook are at distance 1 of each other. Magic values are represented in bold
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However, given a search bound, MagicPopper searches a larger space than Popper since 
it does not count the magic literals in the program size. MagicPopper considers the same 
programs as Popper, but also programs with magic values whose size would exceed the 
search bound if representing magic values with unary predicate symbols. Therefore, Mag-
icPopper can require longer running time than Popper, which is the case for two tasks (but-
tons-next and coins-next).

Aleph restricts the possible constants to constants appearing in the bottom clause, which 
is the logically most-specific clause that explains an example. Aleph also can identify con-
stant symbols through a lazy evaluation procedure (Srinivasan & Camacho, 1999), which 
has inspired our magic evaluation procedure. Therefore, Aleph does not consider irrelevant 
constant symbols but only symbols that can be obtained from the examples. Compared to 
Aleph, MagicPopper has shorter learning times on four tasks (buttons-next, coins-next, list, 
append). A paired t-test confirms the significance of the difference in learning times for 
these tasks at the p < 0.01 level. However, in contrast to Aleph, MagicPopper searches for 
optimal solutions. Moreover, MagicPopper is given a weaker bias about which variables 
can be magic variables.

Metagol identifies relevant constant symbols by constructing a proof for the positive 
examples. Therefore, it also considers only relevant constant symbols that can be obtained 
from the examples. Compared to MagicPopper, Metagol has longer learning times on 6 
tasks, similar learning times on 3 tasks, and better learning time on three tasks.

Table 2 shows the predictive accuracies. MagicPopper achieves higher or equal accu-
racies than Metagol, Aleph, and Popper, apart on gt-centipede-goal. This improvement 
can be explained by the fact that MagicPopper can learn in domains other systems can-
not handle. For instance, MagicPopper supports learning with predicate symbols of arity 
more than two, which is necessary for the IGGP games and the krk domain. By contrast, 

Table 1   Learning times. We 
round times to the nearest 
second. The error is standard 
deviation

Tasks marked with the symbol * have infinite constant domains while 
other tasks have finite domains

Task Aleph Metagol Popper MagicPopper

md 0 ± 0 timeout 1 ± 0 0 ± 0
buttons-next 32 ± 1 timeout 3 ± 0 4 ± 0
coins-next timeout 0 ± 0 53 ± 0 99 ± 1
buttons-goal 0 ± 0 0 ± 0 1 ± 0 0 ± 0
coins-goal 0 ± 0 0 ± 0 0 ± 0 0 ± 0
gt-centipede-goal 0 ± 0 0 ± 0 23 ± 0 6 ± 0
gt-centipede-legal 0 ± 0 0 ± 0 4 ± 0 1 ± 0
gt-centipede-next 0 ± 0 timeout 10 ± 0 0 ± 0
krk 0 ± 0 541 ± 60 35 ± 6 6 ± 0
list 66 ± 1 36 ± 8 timeout 2 ± 0
powerof2 0 ± 0 463 ± 78 18 ± 0 0 ± 0
append 1 ± 0 0 ± 0 298 ± 49 0 ± 0
pi* 4 ± 1 0 ± 0 timeout 1 ± 0
equilibrium* 0 ± 0 0 ± 0 209 ± 7 72 ± 17
drug design* 5 ± 1 timeout 1 ± 0 6 ± 3
next* 0 ± 0 timeout 1 ± 0 25 ± 0
sumk* 0 ± 0 timeout 0 ± 0 99 ± 1



1574	 Machine Learning (2023) 112:1551–1595

1 3

Metagol cannot learn hypotheses with arity greater than 2 given the set of metarules pro-
vided. Compared to MagicPopper, Aleph struggles to learn recursive hypotheses. However, 
Aleph performs well on the tasks which do not require recursion, reaching similar or better 
accuracy than MagicPopper on seven tasks (md, buttons-goal, gt-centipede-goal, gt-centi-
pede-legal, gt-centipede-next krk, and append). Finally, compared to Popper, MagicPop-
per can achieve higher accuracies. For instance, on the list problem, MagicPopper reaches 
100% accuracy while Popper achieves the default accuracy. Since it does not enumerate 
constant symbols, MagicPopper can search a smaller space than Popper, and thus its learn-
ing time can be shorter. Therefore, it is more likely to find a solution before timeout. Also, 
according to the Blumer bound (Blumer et al., 1989), given two hypotheses spaces of dif-
ferent sizes, searching the smaller space can result in higher predictive accuracy compared 
to searching the larger one if a target hypothesis is in both.

Given these results, we can positively answer Q1 and confirm that MagicPopper can 
outperform existing approaches in terms of learning times and predictive accuracies when 
learning programs with magic values.

6.3 � Q2: learning in infinite domains

We evaluate the performance of MagicPopper in infinite domains and compare it against 
the performance of Popper, Aleph, and Metagol. This experiment aims to answer Q1 and 

Table 2   Predictive accuracies. 
We round to the closest integer. 
The error is standard deviation

Tasks marked with the symbol * have infinite constant domains while 
other tasks have finite domains

Task Aleph Metagol Popper MagicPopper

md 100 ± 0 50 ± 0 100 ± 0 100 ± 0
buttons-next 81 ± 0 50 ± 0 100 ± 0 100 ± 0
coins-next 50 ± 0 50 ± 0 100 ± 0 100 ± 0
buttons-goal 100 ± 0 50 ± 0 98 ± 1 100 ± 0
coins-goal 50 ± 0 50 ± 0 100 ± 0 100 ± 0
gt-centipede-goal 99 ± 0 50 ± 0 75 ± 0 75 ± 0
gt-centipede-legal 100 ± 0 50 ± 0 100 ± 0 100 ± 0
gt-centipede-next 100 ± 0 50 ± 0 100 ± 0 100 ± 0
krk 100 ± 0 54 ± 4 96 ± 1 99 ± 0
list 50 ± 0 100 ± 0 49 ± 0 100 ± 0
powerof2 86 ± 1 58 ± 5 84 ± 1 100 ± 0
append 95 ± 1 99 ± 0 96 ± 1 96 ± 1
pi* 100 ± 0 50 ± 0 50 ± 0 99 ± 0
equilibrium* 100 ± 0 50 ± 0 62 ± 1 86 ± 7
drug design* 63 ± 7 50 ± 0 50 ± 0 98 ± 0
next* 50 ± 0 50 ± 0 49 ± 0 100 ± 0
sumk* 50 ± 0 50 ± 0 50 ± 0 100 ± 0
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Q2. We consider five tasks. Full descriptions are in the appendix. We use a timeout of 600s 
for each of these tasks.

6.3.1 � Experimental domains

Learning Pi
The goal of this task is to learn a mathematical equation over real numbers express-

ing the relation between the radius of a disk and its area.
This task involves identifying the magic value pi up to floating-point precision. We 

allow a precision error of 10−3 . Figure 11 shows an example solution.

Equilibrium
The task is to identify a relation describing mechanical equilibrium for an object 

subject to its weight and other forces whose values are known. This task involves iden-
tifying the gravitational constant g up to floating-point precision. We allow a precision 
error of 10−3 . Figure 12 shows an example of the target hypothesis.

Drug design
The goal of this task is to identify molecule properties representing suitable medici-

nal activity. An example is a molecule which is represented by the atoms it contains 
and the pairwise distance between these atoms. Atoms have varying types. Figure 13 
shows an example solution. This task involves identifying two magic values represent-
ing the particular atom types “o” and “h” and one magic value representing a specific 
distance between two atoms.

Program Synthesis: next and sumk
For next, we learn a hypothesis for identifying the element following a magic value 

in a list. For example, given the magic value 4.543, we may have the positive example 
next([1.246, 4.543, 2.156],2.156). Figure 14 shows an example solution. Examples are 

Fig. 11   Example solution for the pi task. The magic constant pi is represented in bold

Fig. 12   Example solution for the equilibrium task. The gravitational constant g is represented in bold

Fig. 13   Example solution for the drug design task. Magic values for atom types and an example of magic 
value for the distance are represented in bold
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lists of size 500 of float numbers. For sumk, we learn a relation describing that two ele-
ments of a list have a sum equal to k, where k is an integer magic value. Examples are 
lists of size 50 of integer numbers. Figure 15 shows an example of target hypothesis.

6.3.2 � Results

Tables  1 and 2 show the results. They show that, compared to Popper, MagicPopper 
achieves higher accuracy.5 Popper cannot identify hypotheses with magic values in infi-
nite domains because it cannot represent an infinite number of constant symbols. Thus, it 
achieves the default accuracy. Metagol cannot learn hypotheses with arity greater than 2 
given the metarules provided and therefore struggles on these tasks. It also struggles when 
the proof length is large, such as when examples are lists of large size. Aleph, through the 
use of lazy evaluation, performs well on the tasks which do not require recursion, espe-
cially pi and equilibrium. However, it struggles on next and sumk which both require recur-
sion. The learning time of MagicPopper is better than that’s of Aleph on one of the two 
tasks Aleph can solve, but worse on the other. However, in contrast to Aleph, MagicPopper 
searches for optimal hypotheses. Moreover, MagicPopper searches a larger search space 
since it is given as bias the types of variables which can be magic variables while Aleph is 
given the arguments of some predicate symbols through the mode declarations.

These results demonstrate that MagicPopper can identify magic values in infinite 
domains. These results confirm our answer to Q1. Also, we positively answer Q2.

6.4 � Q3: scalability with respect to the number of constant symbols

We now evaluate how well our approach scales. First, we evaluate how well our approach 
scales with the number of constant symbols. To do so, we need domains in which we can 
control the number of constant symbols. We consider two domains: list and md. In the list 
experiment, described in Sect. 6.2.1, we use an increasingly larger set of constant symbols 
disjoint from {7} in the background knowledge. In the md experiment, also described in 
Sect. 6.2.1, we vary the number of next values available. We use a timeout of 60s for each 
task. Full details are in the appendix.

6.4.1 � Results

Figures 16 and 17 show the learning times of Popper, MagicPopper, Aleph, and Metagol 
versus the number of constant symbols. These results show that MagicPopper has a sig-
nificantly shorter learning time than Popper. Popper needs a unary predicate symbol in the 

Fig. 14   Example solution for the next task. An example of magic constant is represented in bold

Fig. 15   Example solution for the sumk task. An example of magic constant is represented in bold

5  MagicPopper does not always achieve maximal accuracy due to floating-point precision errors.
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background knowledge for each constant symbol, thus the search space grows with the 
number of constant symbols. Moreover, Popper considers individually and exhaustively 
each of the candidate constant symbols. Therefore, Popper cannot scale to large back-
ground knowledge including a large number of constant symbols. It is overwhelmed by 
800 constant symbols in the list domain and 200 constant symbols in the md domain, and 
it systematically reaches timeout after. By contrast, MagicPopper does not consider every 
constant symbol but only relevant ones which can be identified from executing the hypoth-
eses on the examples. Thus, it can scale better and can learn from domains with more than 
3 million constant symbols. This result supports Proposition 4, which demonstrated that 
allowing magic variables can reduce the size of the hypothesis space compared to adding 
unary predicate symbols and that the difference in the size of the search spaces increases 
with the number of constant symbols available in the background knowledge.

Figures  18 and 19 show the predictive accuracy of Popper, MagicPopper, Aleph, 
and Metagol versus the number of constant symbols. Popper rapidly converges to the 
default accuracy (50%) since it reaches timeout. Conversely, MagicPopper constantly 
achieves maximal accuracy and outperforms all other systems. In the md domain, nega-
tive examples must be sampled from a large number of constant symbols, which also 
can explain the drops in accuracy. Aleph struggles to learn recursive programs which 

Fig. 16   List: learning time versus 
the number of constant symbols. 
Axes are log scaled

Fig. 17   Md: learning time versus 
the number of constant symbols. 
Axes are log scaled
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explains its low predictive accuracy in the list domain. Moreover, Aleph is based on 
the construction of a bottom clause. The bottom clause can grow very large in both 
domains when the number of constant symbols augments, which can overwhelm the 
search. Metagol can learn programs with constant symbols using the curry metarules. 
It performs well and scales to a large number of constant symbols in the list experiment. 
However, the metarules provided are not expressive enough to support learning with 
higher-arity predicates, which in particular prevents Metagol from learning a solution 
for md for any of the numbers of constants tested.

These results confirm our answer to Q1. They also show that the answer to Q3 is 
that MagicPopper can scale well with the number of constant symbols, up to millions of 
constant symbols.

6.5 � Q3: scalability with respect to the number of magic values

To evaluate scalability with respect to the number of magic values, we vary the number 
of magic values within the target hypothesis. We vary the number of magic values along 

Fig. 18   List: accuracy versus the 
number of constant symbols. The 
horizontal axis is log scaled

Fig. 19   Md: accuracy versus the 
number of constant symbols. The 
horizontal axis is log scaled
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two dimensions (1) the number of magic values within one clause, and (2) the number 
of magic values in different independent clauses.

6.5.1 � Magic values in one clause

We first evaluate scalability with respect to the number of magic values in the same clause. 
We learn hypotheses of the form presented in Fig. 20, where the number of body literals 
varies. There are 100 constants in the background knowledge. Lists have size 100. We use 
a timeout of 60s for each task. Full experimental details are in the appendix.

Results
Figures 21 and 22 show the learning times and predictive accuracies. These results show 

that, for a small number of magic values, MagicPopper achieves shorter learning times than 
Popper. This results in higher predictive accuracies since Popper might not find a solution 
before timeout. From 3 magic values, both systems reach timeout and their performance is 

Fig. 20   Example solution. Examples of magic values are represented in bold

Fig. 21   Same clause: learning 
time versus the number of magic 
values

Fig. 22   Same clause: accuracy 
versus the number of magic 
values
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similar. When increasing the number of magic values, the number of body literals increases 
and more search is needed. In particular, Popper requires twice as many body literals com-
pared to MagicPopper, as it needs unary predicates to represent constant symbols. Magic-
Popper evaluates magic values within the same clause jointly. For each positive example, 
it considers the cartesian product of their possible values. The complexity is of the order 
O(nk) , where n is the size of lists and k is the number of magic values. The complexity is 
exponential in the number of magic values, which limits scalability when increasing the 
number of magic values. These results show that MagicPopper can scale as well as Popper 
with respect to the number of magic values in the same clause, thus answering Q3. How-
ever, scalability is limited for both systems. More generally, scalability with respect to the 
number of magic values is limited for large inseparable programs, such as programs with 
several magic values in the same clause or in recursive clauses with the same head predi-
cate symbol.

6.5.2 � Magic values in multiple clauses

We now evaluate scalability with respect to the number of magic values in different inde-
pendent clauses. We learn hypotheses of the form presented in Fig. 23, where the number 
of clauses varies. There are 500 constants in the background knowledge. Lists have size 
500. Each clause is independent. We use a timeout of 60s for each task. Full experimental 
details are in the appendix.

Results
Figure 24 shows the learning times. The accuracy is maximal for both systems for any 

of the numbers of magic values tested. This result shows that MagicPopper and Popper 

Fig. 23   Example solution. Magic 
values are represented in bold

Fig. 24   Multiple clauses: learn-
ing time versus the number of 
magic values
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both can handle a large number of magic values in different clauses, up to at least 70. 
Moreover, MagicPopper significantly outperforms Popper in terms of learning times. For 
instance, MagicPopper can learn a hypothesis with 50 magic values in 50 different clauses 
in about 2s, while Popper requires 14s. This result shows that MagicPopper can scale well, 
in particular better than Popper, with respect to the number of magic values in different 
clauses, thus answering Q3.

As the number of magic values increases, the target hypothesis has more clauses. Both 
systems must consider an increasingly larger number of programs to test. However, Mag-
icPopper considers magic programs and only considers instantiations which cover at least 
one example, which is more efficient than enumerating all possible instantiations.

We use a version of Popper (Cropper, 2022) which learns non-separable programs inde-
pendently and then combines them. This strategy is efficient to learn disjunctions of inde-
pendent clauses, which explains the difference in scale from the previous experiment. For 
non-separable hypotheses, MagicPopper must evaluate magic variables jointly as described 
in the previous experiment.

6.6 � Q3: scalability with respect to the number of examples

This experiment aims to evaluate how well MagicPopper scales with the number of exam-
ples. We learn the same hypothesis as in Sect. 6.4. This task involves learning a recursive 
hypothesis to identify a magic value in a list. We compare Popper and MagicPopper. We 
use the same material and methods as in Sect. 6.4. We vary the number of examples: for n 
between 1 and 3000, we sample n positive examples and n negative ones. Lists have size at 
most 50, and there are 200 constant symbols in the background knowledge. We use a time-
out of 60s for each task.

6.6.1 � Results

Figures 25 and 26 show the results. They show both MagicPopper and Popper can learn 
with up to thousands of examples. However, MagicPopper reaches timeout from 4000 
examples while Popper reaches timeout from 9000 examples. Their accuracy conse-
quently drops to the default accuracy from these points respectively. This result shows that 

Fig. 25   Learning time versus the 
number of examples
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MagicPopper has worse scalability than Popper with respect to the number of examples, 
thus answering Q3. For both Popper and MagicPopper, we observe a linear increase in 
the learning time with the number of examples. When increasing the number of exam-
ples, executing the candidate hypotheses over the examples takes more time. In particular, 
MagicPopper searches for substitutions for the magic variables which cover at least one 
positive example. Therefore potentially more bindings for magic variables can be identi-
fied. Then, more bindings are tried out over the remaining examples as the number of 
examples increases. MagicPopper eventually needs to consider every constant symbol as 
a candidate constant. Moreover, since MagicPopper does not take in account the magic 
literals into the program size, it can consider a larger number of programs with constant 
symbols than Popper for any given program size bound, which also explains how its learn-
ing time increases faster than the learning time of Popper. This result highlights one limi-
tation of MagicPopper.

6.7 � Q4: effect of the bias about magic variables

In contrast to mode-directed approaches (Muggleton, 1995; Srinivasan & Camacho, 1999; 
Corapi et al., 2011), MagicPopper does not need to be provided as input which variables 
should be magic variables but instead can automatically identify them. It can, however, use 
this additional information if given as input. We investigate the impact of this additional 
bias on learning performance and thus aim to answer Q4.

6.7.1 � Material and methods

We consider the domains presented in Sect.  6.2.1. We compare three variants of 
MagicPopper: 

All	� we allow any variable to potentially be a magic variable.

Fig. 26   Accuracy versus the 
number of examples



1583Machine Learning (2023) 112:1551–1595	

1 3

Types	� we allow any variable of types manually chosen to potentially be a magic 
variable. For instance, for md, we allow any variable of type agent, action 
and int to potentially be a magic variable.

Arguments	� we manually specify a list of arguments of some predicates symbols that 
can potentially be magic variables. For instance, for md, we flag the second 
argument of next and the second and third arguments of does.

 Arguments is most closely related to mode declarations approaches, which expect a speci-
fication for each argument of each predicate. However, the specifications of Arguments are 
more flexible since MagicPopper considers the flagged variables as potential magic vari-
ables and searches for a subset of these variables to bind to constant symbols. By contrast, 
mode declarations are stricter and specify exactly which arguments must be constants. 
Types is comparable to Popper, which is provided with types for the unary predicates in our 
experiments. Types, Arguments and mode declarations require a user to specify some infor-
mation about which variables can be bound to constant symbols.

The variables which may be a magic variable in Arguments are a subset of those of 
Types, which themselves are a subset of those of All. In this sense, the search space is 
increasingly larger. We compare learning times and predictive accuracies for each of these 
systems. We provide learning times of Popper as a baseline. We use a timeout of 600s per 
task.

6.7.2 � Results

Table 3 shows the learning times. These results show that in general, All requires learn-
ing times longer than or equal to Types, which in turn requires learning times longer than 
or equal to Arguments. For instance, All reaches timeout on the task list, while Types and 
Arguments require respectively 2s and 1s. In some experiments such as krk, Types and 
Arguments have equivalent bias, because the arguments specified are the only arguments of 
the types specified. Popper is provided with types for the unary predicates in these domains 
and thus rather is comparable with Types. Yet, Types outperforms Popper in terms of learn-
ing times. This result can be explained by the fact that Types is a variant of MagicPop-
per. As such, it considers magic hypotheses which represent the set of their instantiations. 

Table 3   Learning times. We 
round times to the nearest 
second. The error is standard 
deviation

Task All Types Arguments Popper

md 0 ± 0 0 ± 0 0 ± 0 1 ± 0
buttons-next 6 ± 0 4 ± 0 2 ± 0 3 ± 0
coins-next timeout 139 ± 11 97 ± 5 80 ± 12
buttons-goal 0 ± 0 0 ± 0 0 ± 0 1 ± 0
coins-goal 0 ± 0 0 ± 0 0 ± 0 0 ± 0
gt-centipede-goal 8 ± 0 6 ± 0 3 ± 0 23 ± 0
gt-centipede-legal 2 ± 0 1 ± 0 0 ± 0 4 ± 0
gt-centipede-next 0 ± 0 0 ± 0 0 ± 0 10 ± 0
krk 30 ± 2 8 ± 1 7 ± 0 40 ± 6
list timeout 2 ± 0 1 ± 0 timeout
powerof2 0 ± 0 0 ± 0 0 ± 0 18 ± 0
append 0 ± 0 0 ± 0 0 ± 0 262 ± 43
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Therefore, in contrast to Popper, Types does not enumerate all possible candidate constants. 
Moreover, Types only considers instantiations which, together with the background knowl-
edge, entail at least one positive example, while Popper considers every possible constant 
in the search space equally. Also, because Types does not require additional unary predi-
cates, it can express hypotheses more compactly and can search up to a smaller depth. Pop-
per can also achieve longer learning times than All whereas All searches a larger space. For 
instance, Popper requires 18s to solve the task powerof2 while All solves it in less than 1s.

Table 4 shows the predictive accuracies. These results show All can achieve lower pre-
dictive accuracies than Types and Arguments. For instance, All reaches 92% accuracy on 
coins-next while Types and Arguments reach 100% accuracy. There are two main reasons 
explaining this difference. First, All has a more expressive language, and in particular can 
express more specific hypotheses through the use of more constant symbols. It is thus more 
prone to overfitting. Second, All searches a larger search space. It consequently might not 
find an optimal solution before timeout. Moreover, according to the Blumer bound (Blumer 
et al., 1989), searching a larger search space can result in lower predictive accuracies.

We can conclude that MagicPopper can benefit from additional bias about which vari-
ables should be magic variables, and in particular it can achieve better learning perfor-
mance. We thus can positively answer Q4. This experiment illustrates the impact of more 
bias. More bias can help reduce the search space and thus improve learning performance. 
However, this bias must be user provided.

More generally, choosing an appropriate bias is a key challenge in ILP (Cropper & 
Dumancic, 2022).

6.8 � Q5: effect on learning performance for problems which do not require magic 
values

Our approach can improve learning performance for problems which require magic values. 
However, magic values are not always required and it is not always known whether a good 
solution requires magic values. We investigate in this experiment the impact on learning 
performance of unnecessarily allowing magic values and thus aim to answer Q5.

Table 4   Predictive accuracy. We 
round to the closest integer. The 
error is standard deviation

Task All Types Arguments Popper

md 100 ± 0 100 ± 0 100 ± 0 100 ± 0
buttons-next 98 ± 0 100 ± 0 100 ± 0 100 ± 0
coins-next 92 ± 1 100 ± 0 100 ± 0 100 ± 0
buttons-goal 100 ± 0 100 ± 0 100 ± 0 96 ± 1
coins-goal 96 ± 0 100 ± 0 100 ± 0 100 ± 0
gt-centipede-goal 82 ± 0 75 ± 0 75 ± 0 75 ± 0
gt-centipede-legal 100 ± 0 100 ± 0 100 ± 0 100 ± 0
gt-centipede-next 100 ± 0 100 ± 0 100 ± 0 100 ± 0
krk 98 ± 0 98 ± 0 98 ± 0 98 ± 0
list 50 ± 0 100 ± 0 100 ± 0 50 ± 0
powerof2 100 ± 0 100 ± 0 100 ± 0 84 ± 1
append 95 ± 1 95 ± 1 96 ± 1 96 ± 1
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6.8.1 � Material and methods

To answer Q5, we compare systems which allow constant symbols with systems which dis-
allow constant symbols. Since it is unknown which variables should be constant symbols, 
we allow any variable to be a constant symbol. Therefore, we use the All setting for Mag-
icPopper. We call Alephc the version of Aleph for which any argument is allowed to be a 
constant symbol, and Aleph̸c the version of Aleph which disallows constant symbols. At 
the end, we compare MagicPopper with Popper and Alephc with Aleph̸c . We use a timeout 
of 600s per task. We consider two different domains.

Michalski trains
The goal of these tasks is to find a hypothesis that distinguishes eastbound and west-

bound trains (Larson & Michalski, 1977). We use four increasingly complex tasks. There 
are 1000 examples but the distribution of positive and negative examples is different for 
each task. We randomly sample the examples and split them into 80/20 train/test partitions.

Program synthesis: evens, last, member, sorted
We use the same material and methods as Cropper and Morel (2021). These problems 

all involve learning recursive hypotheses.

Table 5   Learning times. We 
round times to the nearest 
second. The error is standard 
deviation

Task Aleph
c

Aleph ̸c MagicPopper Popper

trains1 timeout 1 ± 0 7 ± 0 3 ± 0
trains2 timeout 1 ± 0 4 ± 0 3 ± 0
trains3 timeout 2 ± 0 31 ± 0 24 ± 0
trains4 timeout 5± 0 25 ± 0 21 ± 0
evens 14 ± 1 0 ± 0 5 ± 1 1 ± 0
last 16 ± 1 0 ± 0 180 ± 91 1 ± 0
member 15 ± 1 0 ± 0 0 ± 0 0 ± 0
sorted 5 ± 1 0 ± 0 86 ± 24 70 ± 58

Table 6   Predictive accuracy. We 
round to the closest integer. The 
error is standard deviation

Task Aleph
c

Aleph ̸c MagicPopper Popper

trains1 50 ± 0 100 ± 0 100 ± 0 100 ± 0
trains2 50 ± 0 98 ± 2 99 ± 0 99 ± 0
trains3 50 ± 0 100 ± 0 100 ± 0 100 ± 0
trains4 50 ± 0 100 ± 0 100 ± 0 100 ± 0
evens 51 ± 0 54 ± 4 100 ± 0 100 ± 0
last 50 ± 0 50 ± 0 85 ± 7 100 ± 0
member 53 ± 1 50 ± 0 100 ± 0 100 ± 0
sorted 75 ± 2 72 ± 3 90 ± 5 97 ± 2
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6.8.2 � Results

Tables 5 and 6 show the results. They show Popper always outperforms MagicPopper and 
Aleph̸c always outperforms Alephc in terms of learning times. For instance, MagicPopper 
takes 7s when solving the trains1 task while Popper solves it in 3s. Alephc reaches time-
out on all trains tasks while Aleph̸c solves them in a few seconds. Because it searches a 
larger space, MagicPopper and Alephc require longer learning times compared to Popper 
and Aleph̸c  respectively.

This increase in learning time can reduce predictive accuracies since MagicPopper 
or Alephc consequently might not find a solution before timeout. For instance, Alephc 
reaches timeout and thus achieves the default accuracy on the trains tasks while Aleph 
achieves maximal accuracy. Moreover, MagicPopper and Alephc are more prone to over-
fitting. For instance, MagicPopper learns overly specific hypotheses for last. Finally, 
according to the Blumer bound (Blumer et al., 1989), searching a larger space can result 
in lower predictive accuracies. However, allowing constant symbols in programs provides 
better expressivity, since more hypotheses can be formulated compared to disallowing 
constant symbols. In particular, it might allow the learner to formulate more accurate 
hypotheses. For instance, Alephc achieves better accuracies than Aleph̸c  on member and 
sorted.

To conclude, these results show that allowing magic values when unnecessary can 
impair learning performance, in particular learning times and predictive accuracies, which 
answers Q5. Future work is needed to automatically identify when magic values are neces-
sary and which variables could be magic values. More generally, identifying a suitable bias 
is a major challenge in ILP (Cropper & Dumancic, 2022).

7 � Conclusion and limitations

Learning programs with magic values is fundamental to many AI applications. However, 
current program synthesis approaches rely on enumerating candidate constant symbols, 
which inhibits scalability and prohibits learning them from continuous domains. To over-
come this limitation, we have introduced an ILP approach to efficiently learn programs 
with magic values from potentially large or infinite domains. Inspired by Aleph’s lazy 
evaluation procedure (Srinivasan & Camacho, 1999), our approach builds partial hypoth-
eses with variables in place of constant symbols. Therefore, our approach does not enu-
merate all candidate constants when constructing hypotheses. The particular constant 
symbols are identified by executing the hypothesis on the examples. Thus, our approach 
only considers relevant constant symbols which can be obtained from the examples. Our 
approach extends the LFF framework with constraints to prune partial hypotheses, which 
each represent a set of instantiated hypotheses. For these reasons, our approach can effi-
ciently learn in large, potentially infinite, domains. Our experiments on several domains 
show that our approach can (1) outperform state-of-the-art approaches and (2) scale to 
domains with millions of constant symbols and even infinite ones, including continuous 
domains.
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7.1 � Limitations and future work

Noise
In contrast to other ILP systems (Karalič & Bratko, 1997; Blockeel & De Raedt, 1998; 

Srinivasan, 2001), MagicPopper cannot identify magic values from noisy examples. Previ-
ous work (Wahlig, 2022) has extended LFF to support learning from noisy examples by 
relaxing the completeness and consistency conditions as well as hypotheses constraints 
applications. This extension should be directly applicable to MagicPopper, which we will 
address as future work.

Scalability
To find magic values in a same clause, our approach must search through the cartesian 

product of each potential magic value. Therefore, its scalability is limited when increasing 
the number of magic values in the same clause, as shown in the experiment presented in 
Sect. 6.5.1. Also, MagicPopper finds candidate constant symbols from executing hypoth-
eses on the training examples. As shown in Sect. 6.6, its scalability is limited when increas-
ing the number of examples.

Bias
MagicPopper can be provided as bias which variables can be bound to constant sym-

bols, if this bias is known, or can automatically identify these variables at the expense of 
more search. Our experiments presented in Sects. 6.7 and 6.8 have shown that without this 
additional bias, learning performance can be degraded, in particular learning times and 
predictive accuracies. Choosing an appropriate bias more generally is a major issue with 
ILP systems (Cropper & Dumancic, 2022). As far as we are aware, no system can auto-
matically identify suitable bias which future work should address.

Numerical values
Our magic value evaluation procedure identifies bindings by executing the hypothesis 

over each example independently. Therefore, it can only find magic values which value 
arises from single positive examples. In particular, it cannot identify magic values for 
which multiple examples are required for their evaluation. For example, it cannot identify 
parameters of linear or polynomial equations in contrast to other ILP systems (Karalič & 
Bratko, 1997; Srinivasan & Camacho, 1999). Likewise, it cannot identify values requir-
ing numerical reasoning, such as identifying an optimal threshold (Blockeel & De Raedt, 
1997; Srinivasan & Camacho, 1999). For the same reason, our method cannot create new 
constant symbols which are not part of the domain. To overcome this limitation, we plan to 
use SMT solvers to identify magic values from reasoning from multiple examples, positive 
and negative.

8 � Declarations

For Open Access, the author has applied a CC BY public copyright licence to any Author 
Accepted Manuscript version arising from this submission. All data supporting this study 
is provided as supplementary information accompanying this paper.
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Appendix A Proofs

A.1 Extended constraints

We first state three lemmas. These lemmas justify why we can restrict the search for instan-
tiations to instantiations which cover at least one positive example.

Lemma 1  Let (E+,E−,B,H,C) be an LFF input and H a magic hypothesis, if all the 
instantiations I of H such that ∃e ∈ E+,B ∪ I ⊧ e are incomplete, then all instantiations of 
H are incomplete.

Proof 1  Instantiations I such that ∄e ∈ E+,B ∪ I ⊧ e are incomplete. 	�  ◻

Lemma 2  Let (E+,E−,B,H,C) be an LFF input and H a magic hypothesis, if all the 
instantiations I of H such that ∃e ∈ E+,B ∪ I ⊧ e are inconsistent, then all instantiations of 
H are totally incomplete or inconsistent.

Proof 2  Instantiations I such that ∄e ∈ E+,B ∪ I ⊧ e are totally incomplete. 	� ◻

Lemma 3  Let (E+,E−,B,H,C) be an LFF input and H a magic hypothesis, if H has 
no instantiation I such that ∃e ∈ E+,B ∪ I ⊧ e , then all instantiations of H are totally 
incomplete.

Proof 3  Instantiations I such that ∄e ∈ E+,B ∪ I ⊧ e are totally incomplete. 	� ◻

We now introduce extensions of specialisation, generalisation, and redundancy con-
straints which prune magic hypotheses. We use the three lemmas above to prove these con-
straints are optimally sound.

Proposition 1  Let (E+,E−,B,H,C) be an LFF input, H1 ∈ HC , and H2 ∈ HC 
be two magic hypotheses such that H1 ⪯ H2 . If all instantiation I1 of H1 such that 
∃e ∈ E+,B ∪ I1 ⊧ e are incomplete, then all instantiation of H2 also are incomplete.

Proof 4  All instantiations I1 of H1 such that ∃e ∈ E+,B ∪ I1 ⊧ e are incomplete. Therefore, 
according to Lemma 1, all instantiations of H1 are incomplete. Let H2 be a specialisation 
of H1 . Let I2 be an instantiation of H2 . I2 is a specialisation of an instantiation I1 of H1 . I1 is 
incomplete. Since subsumption implies entailment, then I2 also is incomplete. 	�  ◻

Proposition 2  Let (E+,E−,B,H,C) be an LFF input, H1 ∈ HC and H2 ∈ HC be two 
magic hypotheses such that H2 is non-recursive and H2 ⪯ H1 . If all instantiation I1 of H1 
such that ∃e ∈ E+,B ∪ I1 ⊧ e are inconsistent, then all instantiations of H2 are inconsistent 
or non-optimal.

Proof 5  Let H2 be a non-recursive generalisation of H1 . Let I2 be an instantiation of H2 . 
I2 is a generalisation of an instantiation I1 of H1 . By assumption, all instantiations I1 of H1 
such that ∃e ∈ E+,B ∪ I1 ⊧ e are inconsistent. Therefore, according to Lemma 2, all instan-
tiations of H1 are (1) inconsistent or (2) totally incomplete. For (1), if I1 is inconsistent, then 
I2 also is inconsistent. For (2), assume I1 is totally incomplete. Since I2 is a generalisation of 
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I1 and is non-recursive, then I1 is an independent subset of I2 of totally incomplete clauses. 
Therefore, I1 is a subset of clauses which is redundant in I2 and thus I2 is non-optimal. 	
� ◻

Proposition 3  Let (E+,E−,B,H,C) be an LFF input, H1 ∈ HC be a magic hypothesis. 
If H1 has no instantiation I1 such that ∃e ∈ E+,B ∪ I1 ⊧ e , then all non-recursive magic 
hypotheses H2 which contain a specialisation of H1 as a subset are non-optimal.

Proof 6  Let H2 be a non-recursive hypothesis which contains a specialisation of H1 as a 
subset. Let I2 be an instantiation of H2 . Then I2 contains as a subset a specialisation of 
an instantiation I1 of H1 . H1 has no instantiation I1 such that ∃e ∈ E+,B ∪ I1 ⊧ e , there-
fore, according to Lemma 3, all instantiations of H1 are totally incomplete. Therefore, I1 is 
totally incomplete. Moreover, I2 is non-recursive by assumption. Then I1 is an independent 
subset of redundant clauses in I2 and thus I2 is non-optimal. 	�  ◻

A.2 Theoretical analysis

The following proposition evaluates the reduction over the hypothesis space of using magic 
values instead of enumerating all candidate constant symbols as unary predicates.

Proposition 4  Let Db be the number of body predicates available in the search space, m 
be the maximum number of body literals allowed in a clause, c the number of constant 
symbols available, and n the maximum number of clauses allowed in a hypothesis. Then 
the maximum number of hypotheses in the hypothesis space can be multiplied by a factor 
of (Db+c

Db

)mn if representing constants with unary predicate symbols, one per allowed con-
stant symbol, compared to using magic variables.

Proof 7  Let Let Dh be the number of head predicates in the search space, a be the maxi-
mum arity of predicates and v be the maximum number of unique variables allowed in 
a clause. From Cropper and Morel (2021), the maximum number of hypotheses in the 
hypothesis space is:

Given that 0 ≤ i <∣ Db ∣ v
a , we have:

Therefore:

And similarly, we have:

n�
j=1

⎛
⎜⎜⎝
∣ Dh ∣ v

a
∑m

i=1

�
∣ Db ∣ v

a

i

�

j

⎞⎟⎟⎠

(
∣ Db ∣ v

a

i

)
≤

(∣ Db ∣ v
a)i
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a
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If adding one unary predicate symbol per constant symbol, then there are Db + c body 
predicates available. Then, the maximum number of hypotheses in the hypothesis space 
above becomes:

Therefore, representing constants with magic variables can reduce the maximum size of 
the hypothesis space by a factor of:

	�  ◻

Appendix B Experiments

B.1 Domains

We describe the domains used in our experiments.

IGGP
Figures 27, 28, 29, 30, 31 and 32 represent some example solutions for these tasks.

n�
j=1

⎛⎜⎜⎝
∣ Dh ∣ v

a
∑m

i=1

�
∣ Db ∣ v

a

i

�

j

⎞⎟⎟⎠
≤ n(∣ Dh ∣ v

am(∣ Db ∣ v
a)m)n

n�
j=1

⎛⎜⎜⎝
∣ Dh ∣ v

a
∑m

i=1

�
∣ (Db + c) ∣ va

i

�

j

⎞⎟⎟⎠
≤ n(∣ Dh ∣ v

am(∣ (Db + c) ∣ va)m)n

(
Db + c

Db

)mn

Fig. 27   Example solution for the IGGP coins-next task. Magic values are represented in bold

Fig. 28   Example solution for the IGGP coins-goal task. Magic values are represented in bold

Fig. 29   Example solution for the buttons-goal task. Magic values are represented in bold
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KRK
We provide each system with the quadratic predicate cell and the triadic predicate dis-

tance. For MagicPopper, any variable of type type, color or int is allowed to be a magic 
value. Training sets contain 10 positive examples and 10 negative ones.

Program synthesis: list
Positive examples are generated by randomly choosing a position for the element 7 

and sampling the remaining elements from the constants available in the background 
knowledge. Negative examples are generated by randomly sampling elements from the 
constants in the background knowledge. Lists have size 500. We generate 10 positive 
and 10 negative training examples. Therefore, the default accuracy is 50%. We provide 
each learning system with the dyadic predicates head, tail, length, last, geq, and the 
monadic predicate empty. For MagicPopper, any variable of type element is allowed to 
be a magic value.

Program synthesis: powerof2
Figure 33 represents an example of target hypothesis. Positive examples are powers 

of 2 between 2 and 210 . Negative examples are numbers between 2 and 210 which are not 

Fig. 30   Example solution for the gt-centipede-goal task. Magic values are represented in bold

Fig. 31   Example solution for the 
gt-centipede-legal task. Magic 
values are represented in bold

Fig. 32   Example solution for the gt-centipede-next task. Magic values are represented in bold

Fig. 33   Example solution for the powerof2 task. Magic values are represented in bold
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a power of 2. We sample 10 positive and 10 negative examples. We provide each system 
with the triadic predicate div. For MagicPopper, any variable is of type number and thus 
can be a magic variable.

Program synthesis: append
Examples are lists of size 10 of elements from the set of available constants. A magic 

suffix of size 2 is randomly sampled from the set of constants. Positive examples are 
lists ending with the magic suffix. Negative examples are lists that do not end with the 
magic suffix. We sample 10 positive and 10 negative examples. We provide each system 
with the triadic predicate append, the dyadic predicates head and tail. For MagicPopper, 
any variable is of type list and thus can be a magic variable.

Learning Pi
An example is a pair radius / area. Radius are real numbers sampled between 0 and 10. 

We sample 20 training examples, half positive and half negative. We provide each system 
with the triadic predicates add, subtract, multiply, divide and the dyadic predicate square.

Equilibrium
An example is an object, its mass and the forces it is subject to are real numbers sam-

pled between 0 and 10. There are 7 forces applied to an object. We sample 10 training 
examples, half positive and half negative. We provide each system with the triadic predi-
cates add, subtract, multiply, divide and the dyadic predicates sum, square, mass and force. 
For MagicPopper, any variable of type number is allowed to be a magic value.

Drug design
Each molecule contains 10 atoms, pairwise distances are floats sampled between 0 

and 10. There are 10 different atom types in the domain. A positive example contains two 
atoms, one of type o and one of type h, separated by the target distance. Target distances 
are randomly generated for each run. We sample 20 training examples, half positive and 
half negative. We provide each system with the triadic predicate distance and the dyadic 
predicates atom and atom_type. For MagicPopper, any variable of type type or number is 
allowed to be a magic value.

Program synthesis: next
The target magic value and list elements are real numbers chosen at random. An exam-

ple is a pair list/value where the value is an element of the list. We provide each learning 
system with the dyadic background predicates head, tail, length, last, geq and the monadic 
predicate empty. For MagicPopper, any variable of type number is allowed to be a magic 
value. We sample 20 training examples, half positive and half negative.

Program synthesis: sumk
The target sum and list elements are integers chosen at random. We provide each learn-

ing system with the dyadic background predicates member and triadic predicate sum. For 
MagicPopper, any variable of type number is allowed to be a magic value. We sample 20 
training examples, half positive and half negative.
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Material and methods

We describe our experimental designs.

Minimal decay
We generate an ordered set of constant symbols S of varying size. An example is a state 

described by a true value from S, a next value from S and a player action from {press_but-
ton, noop} . True values and player actions are chosen at random. For each positive exam-
ple, a set of negative examples are generated by taking a subset of size at most 1000 of the 
available constants as next value for which the target theory does not hold. We generate 10 
positive training examples for each task.

Magic values in one clause
We generate 10 positive and 10 negative examples. For successive values of n, we sam-

ple a set of n magic values. To generate a positive example, we assign n different position 
in the list, one for each of the magic values. Other values in the list are chosen at random 
among the set of other available constant symbols. To generate a negative example, we 
choose n − 1 magic values, which we assign to n − 1 different position in the list. Other val-
ues are chosen at random among the set of other available constant symbols. We allow the 
dyadic body predicate member in the background knowledge.

Magic values in multiple clauses
We sample a set S of constant symbols, among which we sample a subset M of varying 

size representing target magic values. Examples are lists of elements from S. A positive 
example is an example which head element is in M. We generate 200 positive and 200 
negative training examples. We check that each training positive example set contains at 
least one example for each clause to ensure the target is identifiable.

Program synthesis
We give each system the following dyadic relations head, tail, decrement, geq and the 

monadic relations empty, zero, one, even, and odd.
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