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Abstract
In this paper, we define a novel inverse reinforcement learning (IRL) problem where the 
demonstrations are multi-intention, i.e., collected from multi-intention experts, unlabeled, 
i.e., without intention labels, and partially overlapping, i.e., shared between multiple 
intentions. In the presence of overlapping demonstrations, current IRL methods, devel-
oped to handle multi-intention and unlabeled demonstrations, cannot successfully learn 
the underlying reward functions. To solve this limitation, we propose a novel clustering-
based approach to disentangle the observed demonstrations and experimentally validate 
its advantages. Traditional clustering-based approaches to multi-intention IRL, which are 
developed on the basis of model-based Reinforcement Learning (RL), formulate the prob-
lem using parametric density estimation. However, in high-dimensional environments and 
unknown system dynamics, i.e., model-free RL, the solution of parametric density estima-
tion is only tractable up to the density normalization constant. To solve this, we formulate 
the problem as a mixture of logistic regressions to directly handle the unnormalized den-
sity. To research the challenges faced by overlapping demonstrations, we introduce the con-
cepts of shared pair, which is a state-action pair that is shared in more than one intention, 
and separability, which resembles how well the multiple intentions can be separated in the 
joint state-action space. We provide theoretical analyses under the global optimality condi-
tion and the existence of shared pairs. Furthermore, we conduct extensive experiments on 
four simulated robotics tasks, extended to accept different intentions with specific levels of 
separability, and a synthetic driver task developed to directly control the separability. We 
evaluate the existing baselines on our defined problem and demonstrate, theoretically and 
experimentally, the advantages of our clustering-based solution, especially when the sepa-
rability of the demonstrations decreases.
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1  Introduction

In the last few decades, there has been a surge of interest in the task of learning from dem-
onstrations (LfD) in various domains (Belogolovsky et al., 2021; Chen et al., 2020; Kan-
gasrääsiö & Kaski, 2018; Neu & Szepesvári, 2009). In an LfD task, the agent learns a 
mapping, called policy, from the world states to actions, solely by observing the experts’ 
demonstrations, which are various sequences of state-action pairs. Even though the policy 
can be directly learned from demonstrations in a supervised learning fashion, the recovery 
of the reward function via Inverse Reinforcement Learning (IRL) has shown to provide a 
much more compact and generalizable description of behaviors (Ng et al., 2000).

In many IRL tasks, it can be the case that the demonstrations are collected from experts 
with multiple and inherently different intentions. In this situation, a single reward function 
is inadequate to cover all the demonstrations, and multiple reward functions are required 
to clearly express the differences between the multiple experts’ intentions. To be able to 
recover multiple rewards functions from the experts’ demonstrations, each demonstration 
should be accompanied by an extra piece of information that indicates to which intention it 
belongs. However, such information may not always be available in many real-world sce-
narios or is too expensive to be manually added. This leads to the relatively new problem 
of multi-intention and unlabeled demonstrations, i.e., the demonstrations are without inten-
tion labels. Even though the IRL problem with Multi-intention and Unlabeled Demonstra-
tions, referred to as IRL-MUD, is potentially relevant to many real-world applications of 
IRL, a search of the literature reveals that this domain has received relatively little attention 
from the community.

It is commonplace to distinguish the IRL-MUD studies based on the dimensionality 
of the joint state-action space and the knowledge about the system dynamics. The stud-
ies either address the problems with low-dimensional spaces and known dynamics mod-
els, referred to as model-based IRL-MUD, e.g., Babes et  al. (2011); Bighashdel et  al. 
(2021), or they consider high dimensionality in the joint state-action space with unknown 
dynamics model, referred to as model-free IRL-MUD, e.g., Li et al. (2017); Hsiao et al. 
(2019). Model-based approaches normally solve the IRL-MUD problem using methods 
from parameter density estimation, which involves selecting a family of distributions and 
employing a clustering algorithm, e.g., Expectation Maximization (EM), to estimate both 
the reward parameters and the intention labels of the demonstrations (Babes et al., 2011; 
Rajasekaran et  al., 2017). Despite the straightforwardness in model-based approaches, 
this clustering-based technique is more difficult to apply in a model-free setting, i.e., high-
dimensional spaces and unknown dynamics models, which is the focus of this work, due to 
the two following challenges:

Estimation of the partition function. Model-based approaches assume that the experts 
sample the demonstrations according to a Boltzmann distribution, parameterized up to the 
normalization factor, i.e., partition function. Given the knowledge of system dynamics and 
an efficient Reinforcement Learning (RL) solver like dynamic programming, the partition 
function can be analytically computed in the inner loop of the reward learning algorithm 
(Ng et al., 2000; Ziebart et al., 2008). In model-free settings, the partition function cannot 
be expressed analytically, and it is computationally expensive to completely solve the RL 
via approximate methods in each iteration during reward learning. A practical approach, 
however, is to interleave the reward learning with a policy optimization procedure and 
adapt the sampling distribution in the policy optimization to estimate the partition function 
with importance weights (Finn et al., 2016). Unfortunately, this approach is shown to have 
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high variance in the cases where the sampling distribution fails to cover the trajectories 
with high rewards. When the demonstrations have only one intention, this coverage prob-
lem can be addressed by mixing the generated samples with some samples from demon-
strations with an estimated distribution, e.g., a Gaussian distribution (Finn et  al., 2016). 
However, when it comes to model-free IRL-MUD, the distribution of multi-intention dem-
onstrations is multi-modal and, therefore, more challenging to be estimated. We later show 
(in Table 3) that using a fixed family of distributions like the Gaussian Mixtures Model 
(GMM) shows poor performance in estimating the distribution of the demonstrations.

Estimation of the posterior distribution. Since in our IRL-MUD problem the demonstra-
tions are without intention labels, the posterior probabilities of the latent intentions, given 
the model parameters, need to be estimated. This estimation is normally done via Bayes’ 
rule. In model-free IRL-MUD, the true likelihood function is not known and, at best, can 
be estimated with the sampling distribution of the policy optimizer. However, even with 
a known likelihood function, the high dimensionality of the state-action space makes the 
Bayes’ rule impracticable to analytically compute the posterior probabilities for all dem-
onstrations and intentions. Therefore, alternative approximate methods are required to effi-
ciently estimate the posterior distribution of the latent intentions.

Given the two key challenges discussed above, applying a standard clustering-based 
technique like EM to model-free IRL-MUD remains an unsolved problem, which we aim 
to tackle in this work. Due to the challenges, a greater focus in the literature has been 
placed upon non-clustering approaches to solve the problem of model-free IRL-MUD 
by directly inferring the structures of the latent intention. Two non-clustering methods, 
namely InfoGAIL (Li et al., 2017), and IntentionGAIL (Hausman et al., 2017), have shown 
relative success in various illustrated experiments compared to the methods with single-
intention assumptions. However, one critical question remains about their performances. 
Although both models propose a model-free IRL-MUD solution, it is not clear to what 
extent the multi-intention demonstrations need to be separable in the state-action space for 
these methods to work successfully. Therefore, in this work, we focus on the setting when 
the multi-intention and unlabeled demonstrations can be partially overlapping. We refer 
to this setting as the problem of model-free IRL-MUD with Overlapping demonstrations 
(IRL-MUD-O).

For the sake of clarity, we discuss the following scenario that is depicted in Fig. 1. Here, 
the demonstrations, the sequences of state-action pairs, are the paths derived by an expert 

Fig. 1   An example of partially overlapping demonstrations. The three demonstrations, i.e., sequences of 
state-action pairs, are the paths derived by an expert driver to one of the three colored destinations: blue, 
green, and brown, each of which is considered as one intention (Color figure online)
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driver to one of the three colored destinations: blue, green, and brown, each of which is 
considered as one intention. What can be clearly seen in this figure is that regardless of dif-
ferent intentions, the demonstrations partially overlap as the paths to different destinations 
go over the same road. From the state-action point of view, all the state-action pairs from 
the start point to the first exit are shared between the three destinations. Although the meth-
ods like InfoGAIL allocate an intention-specific policy for each intention, we later show 
in Sect. 4.2 that due to their specific reward structures in the policy optimization phase, a 
shared, perfectly imitated state-action pair receives a lower reward. This is while reward 
must be proportional to imitation quality rather than the degree to which the demonstra-
tions overlap with the imitated behavior.

Previous studies have failed to demonstrate (any) convincing evidence that the non-clus-
tering solutions, e.g., InfoGAIL and IntentionGAIL, for the problem of model-free IRL-
MUD are also valid when the demonstrations overlap. We claim and experimentally vali-
date that a suitable clustering-based approach performs better in these situations.

In summary, the primary goal of this work is twofold:

•	 We propose a practical clustering-based approach via EM to the problem of model-free 
IRL where the demonstrations are multi-intention, unlabeled, and partially overlapping;

•	 We demonstrate, theoretically and proposed experimentally, the benefits of our cluster-
ing-based approach to non-clustering ones, e.g., InfoGAIL and IntentionGAIL.

To accomplish our goals, we first provide suitable definitions for the problems of model-
free IRL-MUD and model-free IRL-MUD-O. The latter is done by introducing the concept 
of the shared pair (Sect. 3). Then, we propose a solution for the problem of model-free 
IRL-MUD in Sect. 4.1 by addressing the aforementioned challenges. To address the chal-
lenge regarding the estimation of the partition function, we propose a mixture of logistic 
regressions, where the partition function is considered as a model parameter. As to the 
impracticality of estimating the posterior distributions, we propose a network, called poste-
rior network, which directly outputs an estimate of the posterior probabilities.

In Sect. 4.2 we use our proposed clustering-based solution for the problem of model-
free IRL-MUD-O and provide theoretical analysis to prove the correctness of our solution. 
Furthermore, we give experimental comparisons with non-clustering solutions to further 
demonstrate the advantages of our proposed solution (Sect. 5). This is done by (1) intro-
ducing the metric of separability to measure the level of overlap in the demonstrations, (2) 
extending well-known simulated robotics environments to cover multiple intentions with 
different separability levels, and (3) developing a synthetic driver environment where the 
separability can be directly controlled. The experimental results show that our clustering-
based approach outperforms the state-of-the-art methods.

2 � Related works

The research in IRL can be categorized into three frameworks: (1) Single-intention IRL, 
(2) Multi-intention IRL, and (3) Meta-IRL. Figure 2 illustrates an overview of each frame-
work. Although all of these research directions target the LfD task, they fundamentally 
differ in their problem definition. In the following subsections, we clearly define the objec-
tives of the three aforementioned IRL frameworks and provide an overview of the pro-
posed methods in each research direction.
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2.1 � Single‑intention IRL

Given the expert’s demonstration set D and intention set I  , the single-intention IRL meth-
ods assumes that the expert has only one intention, i.e., |I| = 1 (see Fig. 2). The objective 
of the single-intention IRL methods is to perfectly imitate the expert’s demonstration set 
D . If the imitated behavior set can be shown by D̃ , the single-intention IRL methods try 
to minimize the distance function d(D, D̃) , which is normally done through recovering the 
reward function that justifies the expert’s behaviors.

A great deal of previous research into IRL task has focused on single-intention IRL. 
This line of research has addressed various aspects including, reward ambiguity and the 
problem of degeneracy (Ratliff et  al., 2006; Ng et  al., 2000), constraints on the demon-
strations distribution (Ziebart et al., 2008), nonlinearity of the reward function (Wulfmeier 
et al., 2015), high dimensionality of state-action spaces (Finn et al., 2016; Fu et al., 2018; 
Ho & Ermon, 2016), outperforming the demonstrators (Yu et  al., 2020), imperfect and 
noisy demonstrations (Tangkaratt et al., 2020, 2021; Wu et al., 2019), etc. Various survey 
articles have also extensively reviewed the challenges and future research trends in this 
domain (Fang et al., 2019; Hussein et al., 2017; Zheng et al., 2021).

2.2 � Multi‑intention IRL

In the multi-intention IRL approach, which is the focus of this work, it is assumed that 
the expert has multiple intentions, i.e., |I| > 1 and the expert’s demonstration set D typi-
cally doesn’t include the intention labels, i.e., Inverse Reinforcement Learning with Multi-
intention and Unlabeled Demonstrations (IRL-MUD). As in the case of single-intention 
IRL, the objective of multi-intention IRL methods is the perfect imitation of the expert’s 

Fig. 2   The schematics of problem definition in three research directions: single-intention IRL, multi-inten-
tion IRL, and meta-IRL. Given the expert’s demonstration set D and intention set I  , the single-intention 
IRL methods assume |I| = 1 and try to minimize the distance function d(D, D̃) , where D̃ is the imitated 
behaviors. While minimizing the same distance function, the multi-intention IRL methods assume that the 
expert has multiple intentions, |I| > 1 , and the expert’s demonstration set D typically doesn’t include the 
intention labels. The meta-IRL methods address rapid adaptation to unknown environments that have, so 
far, unseen sets of target behavior D

t
 and intention I

t
 . The meta-IRL methods minimize d(D

t
, D̃

t
) , where 

D
t
 , |D

t
| << |D| , is the new target demonstration set with the new target intention set I

t
 , i ≠ i

t
 for all i ∈ I  

and i
t
∈ I

t
 , and D̃

t
 is the imitated target behaviors (Color figure online)
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demonstration set D (see Fig. 2). As the demonstrations are unlabeled, the multi-intention 
IRL methods try to infer the intention labels and the corresponding rewards functions in D 
in order to minimize the distance function d(D, D̃) where D̃ is the imitated behaviors.

Although it is natural in this research direction to assume that the demonstrations are 
unlabeled, several studies have simplified the problem by considering the intention label 
as an available piece of information (Chen et al., 2020; Likmeta et al., 2021; Lin & Zhang, 
2018; Nikolaidis et  al., 2015; Ramponi et  al., 2020). However, providing the intention 
labels can be too expensive or practically impossible in many real-world applications, and 
researchers try to address the problem of unlabeled demonstrations, i.e., IRL-MUD. In an 
early work, Babes et  al. (2011) turned the problem into a parametric density estimation 
of the experts’ demonstrations. Using EM, they tried to iteratively cluster the observed 
demonstrations and estimate the parameters of the rewards functions per cluster. The idea 
of density estimation has been applied by several authors to the problem of IRL-MUD 
(Almingol et al., 2013; Bighashdel et al., 2021; Choi & Kim, 2012; Michini et al., 2015; 
Michini & How, 2012; Rajasekaran et al., 2017; Ranchod et al., 2015). Despite the prom-
ising results, these methods are developed to handle low-dimensional problems with the 
knowledge of system dynamics, i.e., model-based setting.

There are a number of works that address the problem of model-free IRL-MUD 
(Hsiao et al., 2019; Hausman et al., 2017; Lin & Zhang, 2018; Li et al., 2017; Morton & 
Kochenderfer, 2017; Wang et al., 2017). Except ACGAIL (Lin & Zhang, 2018) and Goal-
GAIL (Ding et al., 2019), where the demonstrations are labeled, all of the proposed meth-
ods have focused on a direct inference of the latent intentions in an unsupervised man-
ner by employing generative models, namely variational auto-encoders (Hsiao et al., 2019; 
Morton & Kochenderfer, 2017; Wang et al., 2017) and Generative Adversarial Networks 
(GAN) (Hausman et al., 2017; Li et al., 2017). Hausman et al. (2017) and Li et al. (2017) 
in parallel studies, proposed two equivalent models, referred to as IntentionGAIL and Info-
GAIL, respectively, as the extensions of Generative Adversarial Imitation Learning (GAIL) 
(Ho & Ermon, 2016) for the problem of model-free multi-intention IRL. Inspired by Chen 
et al. (2016), they tried to infer the latent structures by optimizing the mutual information 
between the intentions and the demonstrations in the GAN training. In comparison, we 
propose a clustering-based approach and demonstrate the benefits of our method in imitat-
ing the experts’ behaviors when the multi-intention demonstrations are overlapping (see 
Sect. 5).

2.3 � Meta‑IRL

Another line of research in IRL is associated with the problem of generalization in the 
LfD task. When applied to unseen environments, satisfactory performance of the above-
discussed IRL methods requires training from scratch. To avoid this, researchers have 
developed IRL methods in the framework of meta-learning, where the main goal is a 
cross-domain generalization. The meta-IRL methods seek to exploit the structural similar-
ity among a distribution of environments and optimize for rapid adaptation to unknown 
environments with a limited amount of data. Given the expert’s demonstration set D and 
intention set I  , the meta-IRL methods try to perfectly imitate the so far unseen target dem-
onstration set Dt with the target intention set It , where |Dt| << |D| and i ≠ it for all i ∈ I  
and it ∈ It (see Fig. 2). Therefore, the objective of the meta-IRL methods is to minimize 
the distance function d(Dt, D̃t) , where D̃t is the imitated target behaviors. A meta-IRL 
method considers the available demonstrations D as a prior for Dt that can then be used 
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to efficiently learn the structure of new demonstrations with new intentions. As the reward 
function is able to succinctly capture the structure of demonstrations, Meta-IRL methods 
aim at fast inferring the new reward functions governing the new demonstrations Dt . The 
goal, therefore, is not to acquire good reward functions that explain the expert’s demonstra-
tion set D , but rather to learn reward functions that can be quickly and efficiently adapted 
to the new target demonstration set Dt.

In the LfD literature, the Meta-learning methods are commonly developed by extend-
ing the single-intention and multi-intention approaches into the meta-learning frameworks. 
Table 1 shows an overview of various Meta-learning methods and demonstrates their rela-
tions with their single-intention and multi-intention counterparts. In contrast to the multi-
intention IRL approaches, the meta-IRL methods normally assume that the demonstra-
tion sets are labeled (Gleave & Habryka, 2018; Seyed Ghasemipour et al., 2019; Xu et al., 
2019; Wang et al., 2021). Nevertheless, in the case of unlabeled demonstrations, the ideas 
from multi-intention IRL are employed as done by Yu et al. (2019). The authors have pro-
posed a meta-IRL method by extending the Adversarial IRL (Fu et al., 2018) model to a 
meta-learning framework with unlabeled demonstrations. Similar to InfoGAIL (Li et al., 
2017; Yu et al., 2019) infer the intentions by optimizing the mutual information between 
the latent intention variable and the induced demonstrations. They further employ inten-
tion-specific regularization terms in the reward functions for more efficient reward adapta-
tion in the case of new intentions. The authors compare their proposed meta-IRL method 
with a meta-learning variant of InfoGAIL (Li et  al., 2017), called Meta-InfoGAIL, and 
demonstrate superior performance in various meta-learning tasks (Yu et al., 2019).

As one can see, this line of research is parallel to the research direction of multi-inten-
tion IRL, and any direct comparison between the methods of these two research directions 
requires modification on the problem formulation level. In this paper, we consider the set-
ting of model-free IRL with multi-intention and unlabeled demonstrations, model-free 
IRL-MUD, and consequently, we only compare our method with the methods of this line 
of research. In the following sections, we define our problems in more detail and propose 
our novel approach.

3 � Problem definition

In this section, we provide the exact definitions of the IRL problems discussed in Sect. 1, 
namely (1) model-free IRL-MUD and (2) model-free IRL-MUD-O. To accomplish this, 
we first define the task of RL with Multiple Reward Functions (RL-MRF), i.e., multiple 
intentions where each intention corresponds to one reward function.

A Markov Decision Process (MDP) in RL-MRF is a tuple (S,A,T , �, d0, I,R) where S is 
the state space, A is the action space, T ∶ S × A × S → [0, 1] is the dynamics model, � is the 
discount factor, d0 ∶ S → [0, 1] is the initial state distribution, I  is the set of intentions with 
prior probability p(i), and R is the set of intention specific reward functions R = {ri|∀i ∈ I} 
where ri ∶ S × A → ℝ . We further define a policy as � ∶ S × A → [0, 1] . In model-free RL-
MRF, the dynamics model and the reward functions are not available in explicit forms. 
Therefore, model-free RL approaches are employed to approximate the optimal policy:

Definition 1  The task of model-free RL-MRF is defined as approximating the optimal 
policy �∗(a|s) = �i∼p(i)�

∗(a|s, i) that maximizes the expected discounted reward over the 
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induced state-action pairs: �i∼p(i)�d0�
iT [

∑
t �

tri(st, at)] , where d0�iT  stands for (s0 ∼ d0 , 
at ∼ �(.|st, i) , st+1 ∼ T(.|st, at)).

For the optimal policy �∗(a|s) , its occupancy measure can be defined as Ho and 
Ermon (2016):

The occupancy measure is interpreted as the distribution of state-action pairs that an agent 
with optimal policy (referred to as an expert) encounters in navigating the environment. 
Therefore, we are allowed to write (Ho & Ermon, 2016):

In IRL-MUD, the reward functions R = {ri|∀i ∈ I} are unknown, and instead a set of 
experts’ unlabeled demonstrations D , i.e., without the intention label, are given. An 
expert’s demonstration is defined as a sequence of state-action pairs, (s0, a0), (s1, a1), ... , 
induced by an optimal policy which is assumed to be the solution of RL-MRF (Defini-
tion 1). Given the definition of the occupancy measure, the experts’ demonstrations can be 
perceived as a set of state-action pairs D = {s, a ∼ p(s, a)} where p(s, a) corresponds to the 
optimal policy �∗(a|s) through Eq. (1).

Problem 1  The problem of model-free IRL-MUD is defined as finding the pseudo-reward 
function R(s, a) = �i∼p(i)

[
Ri(s, a;�)

]
 from a set of experts’ unlabeled demonstrations D 

such that the background distribution q(s, a) = �i∼p(i)q(s, a|i) , induced by the approximated 
optimal policy under the the pseudo-reward function �∗

R
(a|s) = �i∼p(i)�

∗
R
(a|s, i) , matches 

p(s, a).

Similar to Eq. (1), the background distribution relates to the policy �∗
R
(a|s) as:

As discussed in 2.2, a number of studies have proposed solutions for the problem of model-
free IRL-MUD via non-clustering approaches. These studies lack any evidence to support 
the validity of their proposed solutions in the environments where the demonstrations over-
lap. The overlapping demonstrations can be characterized by the existence of shared pairs:

Definition 2  Given a set of demonstrated state-action pairs D = {Di|∀i ∈ I} where 
Di = {s, a ∼ p(s, a|i)} , an imitated state-action pair ŝ, â ∼ q(ŝ, â|k) where k ∈ Î ⊆ I  , and 
|Î| > 1 , is called a shared pair when:

(1)p(s, a) ∝ �i∼p(i)

[
�∗(a|s, i)∑

t

� tT(s|st, at)
]
.

(2)�i∼p(i)�d0�
i∗T

[∑
t

� t ri(st, at)

]
= �i∼p(i),s,a∼p(s,a|i)

[
ri(s, a)

]
.

(3)q(s, a) ∝ �i∼p(i)

[
�∗
R
(a|s, i)∑

t

� tT(s|st, at)
]
.

(4)∀i ∈ Î, ∃s, a ∈ Di ∣ s, a = ŝ, â.
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In other words, an imitated state-action pair is a shared pair when it is shared between 
more than one intention. Using the definition above, we can define the problem that is the 
focus of this work:

Problem 2  The problem of model-free IRL-MUD-O is defined as a model-free IRL-MUD 
problem with the presence of shared pairs.

To solve this problem of model-free IRL-MUD-O, we propose and research a cluster-
ing-based approach that is detailed in the next section.

4 � Approach

In this section, we first introduce our clustering-based solution for Problem 1: model-free 
IRL-MUD, see Sect. 4.1. Then in Sect. 4.2, we verify the validity of our solution for Prob-
lem 2: model-free IRL-MUD with overlapping demonstrations. This done by providing the 
theoretical analysis as shortly shown in Theorem 2 and Corollary 2.

4.1 � Model‑free IRL‑MUD

To provide a clustering-based solution for the problem of model-free IRL-MUD, we first 
use parametric estimation of the occupancy measure p(s, a). Then, we indicate the intrac-
tability of the solution by addressing the aforementioned challenges (see Sect. 1) and pro-
pose a new tractable approach using a mixture of logistic regressions.

Due to the multi-intention nature of the demonstrations, we model the occupancy meas-
ure p(s, a) as a mixture of Boltzmann distributions, p(s, a;�) , parameterized by � , where 
the energy is given by the parameterized, intention-specific reward functions ri(s, a;�):

where Zi(�) are the intention-specific partition functions.

Definition 3  The Parametric Density Estimation (PDE) approach for the problem of 
model-free IRL-MUD is defined as minimizing the following loss function:

The partition functions can not be obtained analytically for high dimensional domains 
without knowing the system dynamics, i.e., model-free IRL-MUD. Therefore, a sampling-
based approach is employed where the partition functions are estimated from a background 
distribution q(s, a) = �i∼p(i)[q(s, a|i)] . The background distribution is adaptively refined 
using the current reward functions in a policy optimization procedure. However, especially 
in the early stages, where the reward estimates experience high errors, the background dis-
tribution may fail to generate high-reward state-action pairs, which can lead the non-con-
vergent behavior. As proposed by Finn et al. (2016a, b this problem is addressed by mixing 
the background distribution with an estimated distribution of the occupancy measure that 
has naturally high rewards:

(5)p(s, a;�) = �i∼p(i)

[
exp(ri(s, a;�))

Zi(�)

]
,

(6)LPDE(�) = −�s,a∼p(s,a)[log�i∼p(i)

[
exp(ri(s, a;�))

Zi(�)

]
.
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Definition 4  The mixed sampling estimation of the partition function is defined as

where 𝜌(s, a|i) = 1

2
p̃(s, a|i) + 1

2
q(s, a|i) is the mixed sampler, and p̃(s, a|i) is an estimate of 

the occupancy measure p(s, a|i).

The mixed sampling estimation can help us to reach a solution via the EM algorithm:

Proposition 1  Given the mixed sampling estimation, the PDE solution for the problem of 
model-free IRL-MUD constitutes the following iterative steps:

•	 E-step:

•	 M-step:

Proof  See Appendix A.1. 	�  ◻

The PDE solution is merely conceptual, and in order to come to practical implementa-
tion, we first need to address the following two key challenges: (1) estimation of the parti-
tion function (Sect. 4.1.1), and (2) estimation of the posterior distribution (Sect. 4.1.2).

4.1.1 � Estimation of the partition function

The mixed sampling estimation for approximating the partition function requires an estima-
tion of the true distribution of the experts’ state-action pairs. Due to the multi-modality of 
the experts’ multi-intention behavior, this estimation can be quite challenging. Inspired by 
Gutmann and Hyvärinen (2010), we take a different approach and consider the intention-
specific partition functions as a set of additional parameters of the model � = {�i|∀i ∈ I} 
to avoid the explicit estimation:

where � = {� ,�}.
By defining the partition functions as the model parameters, we can learn the par-

tition functions rather than explicit estimation, e.g., via mixed sampling (Definition 
4). However, this approach is no longer consistent with the loss function of the PED 
approach (Eq. 6), as the maximum likelihood can lead to arbitrarily large numbers by 

(7)Zi(�) = �s,a∼�(s,a|i)
[
exp(ri(s, a;�))

�(s, a|i)
]
,

(8)�(i|s, a) = p(s, a|i;�)p(i)

p(s, a;�)
.

(9)

��LPDE(�) = − �s,a∼p(s,a),i∼�(i�s,a)[��ri(s, a;�)]

+ �s,a∼�(s,a),i∼�(i�s,a)
⎡⎢⎢⎣

exp(ri(s,a;�))

Zi(�)
��ri(s, a;�)

�(s, a�i)
⎤⎥⎥⎦
.

(10)p(s, a;�) = �i∼p(i)

[
exp(r(s, a, i;�))

�i

]
,
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making the partition parameters, �i , reach zero. To address this, we first define a substi-
tute loss function for the problem of model-free IRL-MUD (Problem 1) using a Mixture 
of Logistic Regressions (MLR) (Definition 5) and obtain the solution via EM (Proposi-
tion 2). Then, we prove that the MLR approach results in the same solution as the PDE 
approach (Theorem 2) and, therefore, is a valid substitute for the PDE approach.

Definition 5  The Mixture of Logistic Regressions (MLR) approach for the problem of 
model-free IRL-MUD is defined as minimizing the following loss function:

where c ∈ {real, fake} is the class label, D̃(c|s, a) is the true class label distribution, and 
D(c|s, a;�) = �i∼p(i)[D(c|s, a, i;�)] is the parameterized class label distribution, with

The idea of the MLR approach is to estimate the parameters � by learning to dis-
criminate between the real state-action pairs, which are sampled from intention-specific 
occupancy measures p(s, a|i;�) , and the fakes ones, sampled from the intention-specific 
background distributions q(s, a|i) . Once again, we can obtain a solution by employing 
the EM algorithm:

Proposition 2  The MLR solution for the problem of model-free IRL-MUD is the E-step, 
defined in Eq. (8), and the following M-step:

where

Proof  See Appendix A.2. 	�  ◻

To show the resemblances between the PDE (Proposition  1) and MLR solutions 
(Proposition 2) for the problem of model-free IRL-MUD (Problem 1), we first address 
the relationship between the partition functions and the optimal partition parameters 
�∗
i
= argmax�i

LMLR(�):

Lemma 1  �∗
i
= �s,a∼�(s,a|i)

[
exp(r(s,a,i;�))

�(s,a|i)
]
.

Proof  See Appendix A.3. 	�  ◻

In other words, the parameter set w reaches the mixed sampling estimation of the 
partition functions. Now, we are ready to conclude that:

(11)LMLR(𝜃) = −�s,a∼𝜌(s,a)

[
�c∼D̃(c|s,a)

[
logD(c|s, a;𝜃)]],

(12)D(c = real|s, a, i;�) = 1

1 + exp(−f (s, a, i;�))

(13)f (s, a, i;�) = ri(s, a;�) − log�i − log q(s, a|i).

(14)
��LMLR(�) = − �s,a∼p(s,a),i∼�(i|s,a)

[
�� logD(s, a, i;�)

]

− �s,a∼q(s,a),i∼q(i|s,a)
[
�� log(1 − D(s, a, i;�))

]
,

(15)D(s, a, i;�) ≡ D(c = real|s, a, i;�).
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Theorem 1  The PDE solution is equal to the MLR solution for the problem of model-free 
IRL-MUD, when � → �∗.

Proof  See Appendix A.4. 	�  ◻

Applying Theorem 1, we can avoid the explicit, mixed sampling estimation of the partition 
functions by employing the MLR solution and assuming � ≈ �∗ at each iteration.

4.1.2 � Estimation of the posterior distribution

The goal of the E-step is to estimate the posterior probabilities of the a priori unknown 
intention labels, given the model parameters. This estimation is typically done via the 
Bayes’ rule as shown in Eq. (8). However, according to the Bayes’ rule, the intention-spe-
cific likelihood functions p(s, a|i;�) are required, which further depend on the availabil-
ity of the intention-specif partition functions Zi(�) . Even if the partition functions can be 
estimated via the partition parameters in the MLR approach, the problem’s dimensional-
ity makes it impractical to compute the posterior probabilities for all demonstrations in 
all intentions. To address this, we propose a posterior network P, parameterized by � , to 
obtain an estimate of the posterior probabilities. The posterior network can be trained in a 
supervised fashion by maximizing the likelihood of the state-action pairs sampled from the 
background distribution. Since intention-specific policies generate them, they have known 
intention labels.

Definition 6  The Posterior Probability Estimation (PPE) is defined as minimizing the fol-
lowing loss function:

In each E-step, we first update the parameters � and then we set �(i|s, a) ≈ P(i|s, a;�).

4.1.3 � A practical clustering‑based solution

Although the defined MLR approach for the problem of model-free IRL-MUD eliminates 
the need for the mixed sampling estimation of the partition functions, it still requires an 
specific parameterization of the nonlinear functions f (s, a, i;�) , as the inputs to the logis-
tic functions D(s, a, i;�) (Eqs.  11 and 12). In order to avoid this, the logistic functions 
D(s, a, i;�) can be directly parameterized in a more general manner, e.g. a neural network 
with a logistic function as the final layer, to output the classification probabilities. Given 
the E-step, our proposed solution, referred to as EM-GAIL, can be seen as a GAN where 
in the M-step, the discriminator D(s, a;�) = �i∼p(i)[D(s, a, i;�)] is trained to minimize 
Eq.  (11), and in the subsequent B-step (Background-step), the background distribution 
q(s, a) = �i∼p(i)

[
q(s, a|i)] is trained to maximize Eq. (11). Given the definition of the back-

ground distribution in Eq. (3), maximizing Eq. (11) is equal to training a policy under the 
pseudo-reward function R(s, a):

where Ri(s, a;�) are the intention-specific pseudo-reward functions.

(16)LPPE(�) = −�s,a∼q(s,a),i∼q(i|s,a)
[
logP(i|s, a;�)].

(17)
R(s, a) = −�i∼p(i)

[
log(1 − D(s, a, i;�))

]

= �i∼p(i)

[
Ri(s, a;�)

]
,
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By direct parameterization of the logistic functions D(s, a, i;�) in Eq.  (11), a practical 
solution to the problem of model-free IRL-MUD is obtained:

Solution 1  The EM-GAIL solution for problem of model-free IRL-MUD (Problem 1) is 
the following iterative steps:

•	 E-step:

•	 M-step:

•	 B-step with the pseudo-reward function:

The following corollary shows the resemblance of our clustering-based solution to the 
GAIL solution (Ho & Ermon, 2016), which is proposed for model-free IRL with single-
intention demonstrations:

Corollary 1  The EM-GAIL solution reduces to GAIL solution when |I| = 1 , i.e., the number 
of intentions is one.

In the following, first, we define the IntentionGAIL and InfoGAIL solutions as the non-
clustering alternative for the problem of IRL-MUD in Sect. 4.1.4. Then, we theoretically 
analyze our clustering-based solution, along with the non-clustering alternatives, in the 
presence of overlapping demonstrations (see Sect. 4.2).

4.1.4 � Non‑clustering alternatives

InfoGAIL (Li et al., 2017) and IntentionGAIL (Hausman et al., 2017) are non-clustering 
approaches for the problem of model-free IRL-MUD, proposed as the extensions of GAIL 
Ho and Ermon (2016). Inspired by Chen et al. (2016), both methods infer the latent inten-
tions by optimizing the mutual information between the intentions and the demonstrations 
in the GAN training. Despite the alternative derivations, the objective functions are identi-
cal (see Section A.5).

Solution 2  The Info/IntentionGAIL solution for the problem of model-free IRL-MUD 
(Problem 1) is the following iterative steps (Li et al., 2017; Hausman et al., 2017):

•	 Posterior-step:

(18)
��LPPE(�) = −�s,a∼q(s,a),i∼q(i|s,a)

[
�� logP(i|s, a;�)

]
,

�(i|s, a) = P(i|s, a;�).

(19)
��LMLR(�) = − �s,a∼p(s,a),i∼�(i|s,a)

[
�� logD(s, a, i;�)

]

− �s,a∼q(s,a),i∼q(i|s,a)
[
�� log(1 − D(s, a, i;�))

]
.

(20)R(s, a) = −�i∼p(i)

[
log(1 − D(s, a, i;�))

]
.
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•	 Discriminator-step:

•	 Generator-step with the pseudo-reward function:

4.2 � Model‑free IRL‑MUD‑O

In this section, we apply our clustering-based solution (Solution 1) to the problem of 
model-free IRL-MUD-O (Problem 2). Then, we provide theoretical comparisons with the 
Info/IntentionGAIL solution (Solution 2).

Given Definition 2, a shared pair is an imitated state-action pair that is shared between 
more than one intention. Since a shared pair mimics a demonstrated state-action pair, it 
should receive a high reward, regardless of the number of intentions in which it is shared. 
In other words, the reward of an imitated state-action pair should not be decreased by 
increasing the number of intentions in which the imitated state-action pair is shared. To 
research this behavior, we define multi-intention reward error to analyze the reward assign-
ment sensitivity in various solutions for the problem of model-free IRL-MUD-O.

Definition 7  The multi-intention reward error for state-action pair s, a is defined as:

where R|I|=1 is the pseudo-reward function when |I| = 1.

The multi-intention reward error can be used as an indication of solution validity for 
the problem of model-free IRL-MUD-O. When the multi-intention reward error of a state-
action pair is zero, it means that the reward assignment for the state-action pair is not sensi-
tive to the number of intentions, whether the state-action pair in question is a shared pair 
or not. In other words, the reward assignment only depends on the imitation quality of the 
state-action pairs and not on the number of intentions in which they are shared. There-
fore, a solution is considered to be valid for the problem of model-free IRL-MUD-O if the 
multi-intention reward errors of the state-action pairs are zero.

Theorem  2  In global optimality condition, for each shared pair ŝ, â we have 
EREM-GAIL(ŝ, â) = 0 and ERInfo/IntentionGAIL(ŝ, â) ∝ log|Î|.

To prove Theorem 2, we first need to identify the condition for achieving a global opti-
mality solution. The global optimality condition is defined when the discriminator cannot 
differentiate between a demonstrated and a generated state-action pair, and the intention 
predictions match the true intentions. Therefore:

(21)��LPDE(�) = −�s,a∼q(s,a),i∼q(i|s,a)
[
�� logP(i|s, a;�)

]
.

(22)
��LD(�) = − �s,a∼p(s,a)

[
�� logD(s, a;�)

]

− �s,a∼q(s,a)

[
�� log(1 − D(s, a;�))

]
.

(23)R(s, a) = − log(1 − D(s, a;�)) + ��i∼q(i|s,a)
[
logP(i|s, a;�)].

(24)ER(s, a) = R|I|=1(s, a) −R(s, a),
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Lemma 2  (Theorem 1 in Goodfellow et al. (2014)) The global optimality of EM-GAIL is 
achieved if and only if the D(s, a, i;�) and P(i|s, a;�) are optimal and p(s, a|i) = q(s, a|i) , 
∀i ∈ I  . The global optimality of Info/IntentionGAIL is achieved if and only if D(s, a;�) and 
P(i|s, a;�) are optimal and p(s, a) = q(s, a).

Proof  See Appendix A.6. 	�  ◻

Now we are ready to give a direct proof of Theorem 2. A shared pair ŝ, â is similar to one 
state-action pair ∀i ∈ Î  . Therefore, the optimal posterior function outputs similar probabilities 
for all intentions in Î  including intention k, i.e P(k|ŝ, â) = 1∕ ̂|I| . In global optimality condition, 
we have D(ŝ, â) = D(ŝ, â, k) = 1∕2 (see Lemma 2). Therefore, the multi-intention reward error 
in EM-GAIL for the shared pair ŝ, â is:

In other words, the reward assignment for a state-action pair in EM-GAIL is not sensitive 
to the number of intentions. As long as an intention-specific state-action pair is similar 
to a demonstrated one with the same intention, it receives a high reward in EM-GAIL. 
Therefore:

Corollary 2  EM-GAIL is a solution for the problem of model-free IRL-MUD-O (Problem 2).

In the case of Info/IntentionGAIL, the multi-intention reward error of the shared pair ŝ, â is:

Since |Î| ≥ 1 , the error is always greater than zero, with equality when |Î| = 1 . This means 
that the pseudo-reward of a perfectly imitated state-action pair for a specific intention is 
reduced by increasing the number of intentions where the pair is shared.

The intuition behind these behaviors can be seen in the role of the discriminators. The 
goal of the policy optimizer in Info/IntentionGAIL is to fool the discriminator by making 
q(s, a) → p(s, a) , and consequently, �∗

R
(a|s) → �∗(a|s) , which is the direct result of the policy 

and occupancy measure uniqueness property (Syed et al., 2008). This is while no constraints 
are put upon the intention-specific background distributions q(s, a|i) and the corresponding 
intention-specific policies �∗

R
(a|s, i) . The lack of sufficient constraints on the policy may lead 

to possible errors in the policy optimization procedure in multi-intention tasks. In EM-GAIL, 
on the other hand, the more stricter goal is to trick the intention-specific discriminators by 
making q(s, a|i) → p(s, a|i) , i.e., �∗

R
(a|s, i) → �∗(a|s, i) . In other words, the discriminator is 

viewing each individual intention-specific policy instead of the combined policy as in Info/
IntentionGAIL. This way, not only the Info/IntentionGAIL goal is satisfied, but also more con-
straints are set for the policy, leading to more stable behaviors in multi-intention environments.

5 � Experimental analyses

In this section, we compare the experimental results of our proposed EM-GAIL with two 
well-known baselines: (1) GAIL, proposed by Ho and Ermon (2016), which was originally 
developed for single-intention imitation learning, and (2) Info/IntentionGAIL, proposed by 

(25)EREM-GAIL(ŝ, â) = − log
1

2
+ log

1

2
= 0.

(26)ERInfo/IntentionGAIL(ŝ, â) = − log
1

2
+ log

1

2
− 𝜆 log

1

|Î| = 𝜆 log |Î|.
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Li et al. (2017) and Hausman et al. (2017) for multi-intention imitation learning. The main 
goal of this section is twofold: (1) to emphasize the limitation of the algorithms with the 
single-intention assumption, and (2) to experimentally validate our theoretical outcomes. 
The former is accomplished by evaluating the GAIL algorithm in various environments 
with a different number of intentions. For the second part, we introduce the metric of sepa-
rability, which indicates the level of overlap in the demonstrations (the lower the separa-
bility, the higher the number of shared pairs), and we compare the algorithms in several 
environments with various levels of separability.

5.1 � Environments

The experiments are conducted in four robotics environments, implemented in OpenAI 
Gym (Brockman et al., 2016) with the MuJoCo (Todorov et al., 2012) physics engine. For 
the purpose of this work, they are extended to cover multiple intentions by defining addi-
tional movements (see Figs. 3a–d). Note that, as in their standard single-intention versions, 
the horizontal location of the robot is excluded from the state space in all multi-intention 
environments. As a result, it is not possible for the algorithms to separate the demonstra-
tions by simply observing the moving direction of the robot.

Swimmer is a 2-intention environment with an 8D state space and 2D action space. 
We have defined the intentions as moving forward and backward. For each intention, a 

Fig. 3   Environments. a Swimmer, which is a 2-intention environment. b Hopper, which is a 3-intention 
environment. c Half Cheetah, which is a 3-intention environment. d Reacher, which is a 4-intention envi-
ronment. e Synthetic driver, which is a 2-intention environment (Color figure online).
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linear reward is assigned for moving progress. We set the maximum time-step of each 
episode to 500.

Hopper is a 3-intention environment with an 11D state space and 3D action space. 
We have defined the intentions as moving forward, backward, and standing. A positive 
linear reward is assigned for moving progress for intended moving, and a negative mov-
ing reward for intended standing. The maximum time-step of each episode is set to 500.

Half cheetah is a 3-intention environment, with a 17D state space, 6D action space. 
We have defined the intentions as moving forward, backward, and flipping. A positive 
linear reward is assigned for moving progress for intended moving, and a negative mov-
ing reward for intended flipping, along with a positive linear reward for increasing the 
body angle. The maximum time-step is 500.

Reacher is a 4-intention environment, with a 26D state space and 2D action space. 
We have defined the intentions as reaching to separate colored balls. The balls are ran-
domly located at separate quarters and the reward is defined as the distance to each 
intended ball. The maximum time-steps is 50.

We additionally introduce a synthetic driver task (see Fig. 3e) in which the separabil-
ity between multiple intentions can be controlled directly.

Synthetic driver is a 2-intention environment in which the agent can move freely from 
the origin at a constant speed in a 2D environment by controlling the steering angle �t 
at discrete time t. For the agent, the state at time t is the 2D positions from t − 4 to t. As 
shown in Fig. 3e, the intentions are defined as two destinations where each destination 
has a curvature path with a specific radius. While the first destination is always fixed, 
the second destination and its corresponding path radius vary in different experiments. 
As will be shown later (Fig. 4b), each radius of the second destination results in an spe-
cific level of overlap in the demonstrations.

Fig. 4   Separability in the expert’s state-action space for (a) robotics environments with respect to the num-
ber of intentions, and (b) Synthetic driver with respect to the path radius of the second destination (Color 
figure online)
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5.2 � Metrics

The performances of IRL algorithms are evaluated by the following metrics:
Expected Reward Difference (ERD), which is inspired by Choi and Kim (2012), 

Bighashdel et  al. (2021), is a measure of how accurate the optimal policy, trained on 
the learned pseudo-reward function, performs under the ground truth reward function. 
We train an agent on the learned pseudo-reward function and evaluate its behavior on 
the ground truth reward function by computing the cumulative ground truth reward. The 
expected difference between the agent’s cumulative ground truth reward and the expert’s 
cumulative ground truth reward is referred to as ERD. The ERD avoids having to define 
task-specific metrics for each unique robotics environment (e.g., a swimming metric for 
the Swimmer environment or a hopping metric for the Hopper environment), thereby 
allowing a uniform approach to compare methods concerning different robotics tasks. 
The ERD is defined as:

where ri is the ground truth intention-specific reward function. Given Eq. (2), ERD can be 
further written as:

where d0�i∗T  stands for (s0 ∼ d0 , at ∼ �∗(.|st, i) , st+1 ∼ T(.|st, at)) , and d0�i∗

R
T  stands for 

(s0 ∼ d0 , at ∼ �∗
R
(.|st, i) , st+1 ∼ T(.|st, at)) . The only unknowns in Eq.  (28) are the inten-

tion-specific policies �∗
R
(a|s, i) . When the IRL training is completed and the intention-

specific, pseudo-reward functions Ri(s, a;�) are learned, the intention-specific policies are 
obtained by training an agent on the learned pseudo-reward functions using RL. We nor-
malize the ERD values between 0 and 1, where 1 corresponds to random policy and 0 rep-
resents the experts’ policy �∗.

Unsupervised clustering accuracy is evaluated in experts’ state-action space and is 
defined as Yang et al. (2010):

where k̄m and km are the ground truth and predicted intention label of the expert’s state-
action pair m, respectively, M is the total number of experts’ state-action pairs, and G is 
the set of all possible one-to-one mappings between ground truth and predicted intention 
labels. Unsupervised clustering accuracy can evaluate the performance of the posterior 
networks.

We further introduce a metric to measure the level of overlap in the demonstrations of 
each environment:

Separability is obtained by first fitting a Gaussian Mixture Model (GMM) on the 
expert’s state-action space and then predicting the unsupervised clustering accuracy. Then, 
the separability is computed by normalizing the accuracy between 1 and 1∕|I| . The separa-
bility is a measure of how well the intention-specific state-action pairs are represented by 
separate distributions. Low separability indicates a high level of overlap in the demonstra-
tions and consequently increases the probability of generating the shared pairs.

(27)ERD =|�i∼p(i),s,a∼p(s,a|i)
[
ri(s, a)

]
− �i∼p(i),s,a∼q(s,a|i)

[
ri(s, a)

]|,

(28)ERD = �i∼p(i)

||||||
�d0�

i∗T

[∑
t

� tri(st, at)

]
− �d0�

i∗

R
T

[∑
t

� tri(st, at)

]||||||
,

(29)Accuracy = max
g∈G

∑M

m=1
1
�
k̄m = g(km)

�
M

,



2282	 Machine Learning (2023) 112:2263–2296

1 3

The separability of the experts’ demonstrations in simulated robotics and the synthetic 
driver environments are depicted in Fig. 4a, b, respectively. As can be seen in Fig. 4a, the 
separability differs in various robotics environments with the same number of intentions, 
and in all cases, the separability is reduced by increasing the number of intentions. Fig-
ure 4b also shows that the separability in the synthetic driver environment gets lower by 
reducing the distance between the two destinations, which is the result of decreasing the 
radius of path 2.

5.3 � Implementation details

We used one implementation for InfoGAIL (Li et  al., 2017) and IntentionGAIL (Haus-
man et al., 2017), referred to as Info/IntentionGAIL, as both approaches follow exactly the 
same procedure (See Sect. 4.1.4 and A.5), although they were presented in parallel studies. 
We used policies and discriminators with the same neural network architecture in all IRL 
algorithms (GAIL by Ho and Ermon (2016), Info/IntentionGAIL by Li et al. (2017), Haus-
man et al. (2017) and our EM-GAIL) for all experiments. We employed two hidden layers 
of dimension 64 for policies, discriminators, and posterior networks, with Tanh nonlinear 
functions in between. The policies of both Info/IntentionGAIL and EM-GAIL, as well as 
the discriminator of EM-GAIL, accept an additional, one-hot, intention assignment vector.

The number of learnable parameters of GAIL, Info/IntentionGAIL, and EM-GAIL, 
as well as their averaged training time for one iteration, is depicted in Table 2 for the 
evaluated robotics environments. As can be seen, both Info/IntentionGAIL and EM-
GAIL have approximately the same number of learnable parameters, leading to similar 
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training times for both methods. Due to additional posterior networks, both Info/Inten-
tionGAIL and EM-GAIL have higher numbers of learnable parameters and training 
times compared to GAIL.

For each experiment, we first obtain the expert’s policy by running Trust Region 
Policy Optimization (TRPO) algorithm (Schulman et al., 2015) on the true reward func-
tions to generate the expert’s demonstrations, i.e., solving the task of model-free RL-
MRF (Definition 1). The number of expert’s state-action pairs per intention is fixed to 
2500 for swimmer, hopper, and half cheetah environments, 1500 for reacher, and 500 
for the synthetic driver. Then, the IRL algorithms are trained for 400 iterations on the 
expert’s demonstrations by running Adam optimizer (Kingma & Ba, 2015) with a fixed 
learning rate of 0.001 (after testing for the range of 0.1 to 0.0001) for the discrimina-
tors and posterior networks, and TRPO with the reported hyperparameters in Schulman 
et al. (2015) for the policies. The optimization outline is depicted in Algorithm 1. All 
the experiments are run on a GPU-enabled computer (NVIDIA GeForce RTX 2080 Ti).

5.4 � Results

Each experiment is repeated four times, and the results are shown in the form of means 
(lines) and standard deviations (shadings). The results are normalized between 0, corre-
sponding to the expert’s behavior, and 1, corresponding to the random behavior.

5.4.1 � Synthetic driver task

Figure 5a shows the ERD for various levels of separability in the synthetic driver task. 
The results in this Figure show that the GAIL algorithm, which is developed with the 
single-intention assumption, is not able to imitate the expert’s behaviors in any of the 
experiments. What can be further seen in Fig.  5a is the insensitivity of our purposed 
EM-GAIL to the separability of the demonstrations. The Info/IntentionGAIL shows 
insensitive behavior as long as the separability, i.e., the distance between the two des-
tinations, is more than a certain limit ( ≈ 0.2 ). When the separability of the demonstra-
tions gets lower than 0.2, which according to Fig. 4b corresponds to the second desti-
nation path radius of lower than ≈ 2 , the number of shared pairs grows exponentially, 
leading to higher multi-intention reward errors in Info/IntentionGAIL. This will conse-
quently result in a performance drop in Info/IntentionGAIL for the separability of lower 
than 0.2.

Table 2   Number of Learnable 
Parameters (LP) and an average 
training times in various robotic 
environments

Env. GAIL Info/Intention-
GAIL

EM-GAIL

#LP Time (s) #LP Time (s) #LP Time (s)

Swimmer 14.6K 8.5 19.9K 10.2 20.0K 10.3
Hopper 15.3K 12.4 21.1K 15.3 21.2K 15.6
Half cheetah 16.9K 13.3 23.2K 16.1 23.4K 16.5
Reacher 18.1K 5.5 24.9K 8.4 25.1K 8.7
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5.4.2 � Simulated robotics tasks

Figure 6 shows the sensitivity of ERD to the number of intentions in four robotics environ-
ments. The results once again show the incapability of GAIL in environments with more 
than one intention. What stands out in Fig. 6 is that when the number of intentions gets 
higher, which according to Fig. 4a leads to a lower separability and consequently a growth 
in the number of shared pairs, the performance of Info/IntentionGAIL drops significantly. 
This is while EM-GAIL has shown more stable behavior regardless of the number of inten-
tions. To make the conclusion more clear, we further demonstrate the performances of the 
algorithms directly with respect to the separability in Fig. 5b. As shown, Info/Intention-
GAIL shows insensitive behavior as long as the separability is more than a certain limit. 
These results are also consistent with the sub-optimal behavior of Info/IntentionGAIL in 
the synthetic driver task in Fig. 5a. This is while it is apparent from Fig. 5b that the perfor-
mance of EM-GAIL is less sensitive to the separability of the demonstrations.

Further experiments are conducted to evaluate the unsupervised clustering performance 
of the multi-intention IRL solutions. Since GAIL is not built for multi-intention IRL, it 
has been excluded from these experiments. To evaluate the clustering performance of Info/
IntentionGAIL, the intention labels of the expert’s state-action pairs are obtained using the 
posterior network. Table 3 indicates the average unsupervised clustering accuracy of the 
methods for the varying number of intentions. What is interesting in Table 3 is that even 
though both Info/IntentionGAIL and EM-GAIL are trained with the same loss function 
(Eq.  16), EM-GAIL outperforms Info/IntentionGAIL in unsupervised clustering, espe-
cially in environments with a higher number of intentions. The reason lies in the fact that 
the prediction performance of the posterior network highly depends on the quality of the 
generated samples, which are considered the training dataset for the posterior function. 
According to Theorem 2, the higher number of intentions results in higher multi-intention 

Fig. 5   ERD with respect to the separability of the demonstrations, where a lower ERD is better and an ERD 
of 1 is equal to random behavior. a Synthetic driver, where each separability point corresponds to a specific 
path 2 radii (see Fig. 4a). b Robotics environments, where each separability point corresponds to a specific 
robotic environment with a specific number of intentions (see Fig. 4a) (Color figure online)
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reward errors in Info/IntentionGAIL. As a direct consequence, the policy of Info/Intention-
GAIL is less able to generate perfectly imitated state-action pairs. Once again, these results 
emphasize the strength of EM-GAIL in imitation from overlapping demonstrations.

6 � Conclusions

We proposed a model-free IRL framework to imitate the multi-intention behaviors of the 
experts, from unlabeled (without intention label) and partially overlapping (shared between 
multiple intentions) demonstrations. This is realized by a novel clustering-based approach, 
EM-GAIL, using a mixture of logistic regressions and a posterior network. The mixture of 
logistic regression avoids the direct estimation of the partition function, and the posterior 
network approximates the posterior distributions that are impractical to be expressed and 

Fig. 6   ERD with respect to the number of intentions. A lower ERD is better and an ERD of 1 is equal to 
random behavior (Color figure online)
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estimated analytically. We addressed the problem of overlapping demonstrations by defining 
the concept of shared pair and analytically proved that, under the global optimality condition, 
EM-GAIL is a solution. We further compared EM-GAIL with well-known baselines on a set 
of simulated tasks. We conclude that first, the algorithms with single-intention assumption 
are incapable of imitating the experts’ multi-intention demonstrations, and second, the per-
formance of the non-clustering approaches, which focus on the direct inferring of the latent 
intention, significantly depends on the separability of the intentions. This is while our pro-
posed clustering-based approach shows stable behavior, regardless of the separability and the 
number of intentions.

Having shown the benefits of our approach with textita priori known number of experts’ 
intentions, we aim to extend the same approach to also be able to infer the intentions when the 
number of intentions is a priori not known.

Appendix A

This section provides the proofs for all the statements in the main paper.

A.1 Proof of Proposition 1

Minimizing the negative log likelihood leads to the following loss function:

Taking the derivatives results in:

(A1)LPDE(�) = −�s,a∼p(s,a)[log�i∼p(i)[p(s, a|i;�)].

(A2)
��LPDE(�) = −�s,a∼p(s,a)

[
���i∼p(i)[p(s, a|i;�)]

�i∼p(i)[p(s, a|i;�)]

]

= −�s,a∼p(s,a)

[
�i∼p(i)

[
��p(s, a|i;�)

p(s, a;�)

]]
.

Table 3   Accuracy in unsupervised clustering of the expert’s state-action pairs

The highest accuracy in each environment is indicated in bold

Models Hopper Half Cheetah

2 int. (%) 3 int. (%) 2 int. (%) 3 int. (%)

GMM 95.8 81.6 97.8 68.3
Info/IntentionGAIL 99.3 96.3 99.9 79.5
EM-GAIL (ours) 99.2 98.1 99.8 96.5

Models Swimmer Reacher

2 int. (%) 2 int. (%) 3 int. (%) 4 int. (%)

GMM 82.5 88.9 62.8 52.6
Info/IntentionGAIL 89.1 98.3 72.0 52.4
EM-GAIL (ours) 97.3 99.2 97.1 96.8
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We can use the definition of the intention posterior probability which is computed in the 
E-step:

Multiplying the nominator and the denominator in the derivatives by p(s, a|i;�)p(i) yields:

Using the definition of Boltzmann distribution results in:

In the E-step of the EM algorithm, we set �(i|s, a) ≈ p(i|s, a) where � is the current set of 
parameters. Assuming a constant p(i) and given that p(s, a) =

p(s,a|i)p(i)
p(i|s,a)  and 

�s,a∼p(s,a|i)[1] = 1 , we have:

Using the definition of mixed sampling estimation, Zi(�) = �s,a∼�(s,a|i)[
exp(ri(s,a;�))

�(s,a|i) ] , we 
have:

(A3)�(i|s, a) = p(i|s, a;�) =
p(s, a|i;�)p(i)

p(s, a;�)
.

(A4)
��LPDE(�) = −�s,a∼p(s,a)

[
�i∼p(i)

[
p(s, a|i;�)p(i)

p(s, a;�)

��p(s, a|i;�)

p(s, a|i;�)p(i)

]]

= −�s,a∼p(s,a)�i∼p(i)

[
�(i|s, a)
p(i)

�� log p� (s, a|i;�)

]
.

(A5)

��LPDE(�) = −�i∼p(i)�s,a∼p(s,a)

[
�(i|s, a)
p(i)

�� log
1

Zi(�)
exp(ri(s, a;�))

]

= −�i∼p(i)�s,a∼p(s,a)

[
�(i|s, a)
p(i)

��ri(s, a;�)

−
�(i|s, a)
p(i)

�� log Zi(�)

]

= −�i∼p(i)

[
�s,a∼p(s,a)

[
�(i|s, a)
p(i)

��ri(s, a;�)

]

−�s,a∼p(s,a)

[
�(i|s, a)
p(i)

�� log Zi(�)

]]

= −�i∼p(i)

[
�s,a∼p(s,a)

[
�(i|s, a)
p(i)

��ri(s, a;�)

]

−�� log Zi(�)�s,a∼p(s,a)

[
�(i|s, a)
p(i)

]]
.

(A6)��LPDE(�) = −�i∼p(i)

[
�s,a∼p(s,a)

[
�(i|s, a)
p(i)

��ri(s, a;�)

]
− �� log Zi(�)

]
.
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We can use the definition of the expectation as follows:

where g is a function. This property of the expectation has been frequently used throughout 
the paper. Now, we can reach the final equation for the M-step:

A.2 Proof of Proposition 2

The mixture of logistic regressions is defined as:

where D̃(c|s, a) is the true class label of the state-action pair s, a, and

where we have defined a constant prior D(i) = p(i) . Taking the derivatives with respect to 
� yields:

(A7)

��LPDE(�) = −�i∼p(i)

[
�s,a∼p(s,a)

[
�(i|s, a)
p(i)

��ri(s, a;�)

]

− �� log(�s,a∼�(s,a|i)
[
exp(ri(s, a;�))

�(s, a|i) ])

]

= −�i∼p(i)[�s,a∼p(s,a)[
�(i|s, a)
p(i)

��ri(s, a;�)]

−
�s,a∼�(s,a|i)[

exp(ri(s,a;�))�� ri(s,a;�)

�(s,a|i) ]

�s,a∼�(s,a|i)[
exp(ri(s,a;�))

�(s,a|i) ]
]

= −�i∼p(i)[�s,a∼p(s,a)[
�(i|s, a)
p(i)

��ri(s, a;�)]

− �s,a∼�(s,a|i)[
1

Zi(�)
exp(ri(s, a;�))��ri(s, a;�)

�(s, a|i) ]].

(A8)

�i∼p(i)[�s,a∼�(s,a|i)[g(s, a, i)]] = ∫
p(i)

∫
�(s, a|i)g(s, a, i)dids,a

=
∫ ∫

p(i)�(s, a|i)g(s, a, i)dids,a

=
∫ ∫

�(s, a)�(i|s, a)g(s, a, i)dids,a

=
∫

�(s, a)
∫

�(i|s, a)g(s, a, i)dids,a
= �s,a∼�(s,a)[�i∼�(i|s,a)[g(s, a, i)]].

(A9)

��LPDE(�) = − �s,a∼p(s,a),i∼�(i�s,a)[��ri(s, a;�)]

+ �s,a∼�(s,a),i∼�(i�s,a)
⎡
⎢⎢⎣

1

Zi(�)
exp(ri(s, a;�))��ri(s, a;�)

�(s, a�i)
⎤⎥⎥⎦
.

(A10)LMLR(𝜃) = −�s,a∼𝜌(s,a)

[
�c∼D̃(c|s,a)

[
logD(c|s, a;𝜃)]],

(A11)D(c|s, a;�) = �i∼D(i)[D(c|s, a, i;�)],
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We can use the definition of the posterior probability which is computed in the E-step:

Multiplying the nominator and the denominator in the derivatives by D(c|s, a, i;�)D(i) 
yields:

Separating the real state-action pairs from the fake ones yields:

Given that:

and setting:

We reach the final equation for the M-step:

(A12)

𝜕𝜃LMLR(𝜃) = −�s,a∼𝜌(s,a)

[
�c∼D̃(c|s,a)

[
𝜕𝜃 logD(c|s, a;𝜃)

]]

= −�s,a∼𝜌(s,a)

[
�c∼D̃(c|s,a)

[
𝜕𝜃 log�i∼D(i)[D(c|s, a, i;𝜃)]

]]

= −�s,a∼𝜌(s,a)

[
�c∼D̃(c|s,a)

[
𝜕𝜃�i∼D(i)[D(c|s, a, i;𝜃)]
�i∼D(i)[D(c|s, a, i;𝜃)]

]]

= −�s,a∼𝜌(s,a)

[
�c∼D̃(c|s,a)

[
�i∼D(i)

[
𝜕𝜃D(c|s, a, i;𝜃)
D(c|s, a;𝜃)

]]]
.

(A13)D(i|c, s, a;�) = D(c|s, a, i;�)D(i)
D(c|s, a;�) .

(A14)

𝜕𝜃LMLR(𝜃) = −�s,a∼𝜌(s,a)

[
�c∼D̃(c|s,a)

[
�i∼D(i)

[
D(c|s, a, i;𝜃)D(i)

D(c|s, a;𝜃)
×

𝜕𝜃D(c|s, a, i;𝜃)
D(c|s, a, i;𝜃)D(i)

]]]

= −�s,a∼𝜌(s,a)

[
�c∼D̃(c|s,a)

[
�i∼D(i)

[
D(i|c, s, a;𝜃)

D(i)

×𝜕𝜃 logD(c|s, a, i;𝜃)
]]]

= −�s,a∼𝜌(s,a)

[
�c∼D̃(c|s,a)

[
�i∼D(i|c,s,a;𝜃)

[
𝜕𝜃 logD(c|s, a, i;𝜃)

]
.
]]

(A15)
��LMLR(�) = − �s,a∼p(s,a)

[
�i∼D(i|c=real,s,a;�)

[
�� logD(c = real|s, a, i;�)]]

− �s,a∼q(s,a)

[
�i∼D(i|c=fake,s,a;�)

[
�� logD(c = fake|s, a, i;�)]].

(A16)D(i|c = real, s, a;�) = p(i|s, a;�) = �(i|s, a)

(A17)D(i|c = fake, s, a;�) = q(i|s, a),

(A18)D(c = real|i, s, a;�) ≡ D(s, a, i;�)

(A19)D(c = fake|i, s, a;�) ≡ 1 − D(s, a, i;�),

(A20)
��LMLR(�) = − �s,a∼p(s,a)

[
�i∼�(i|s,a)

[
�� logD(s, a, i;�)

]]

− �s,a∼q(s,a)

[
�i∼q(i|s,a)

[
�� log(1 − D(s, a, i;�))

]]
.
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A.3 Proof of Lemma 1

The mixture of logistic regressions for the multi-intention IRL problem is defined as:

The nonlinear logistic function D(s, a, i;�) is further defined as:

Given that 𝜌(s, a|i) = 1

2
p̃(s, a|i) + 1

2
q(s, a|i) and by setting p(s, a|i;�) as an estimate of 

p(s, a|i) i.e. p̃(s, a|i) = p(s, a|i;𝜓) , we have:

Replacing Eq. (A23) in Eq. (A21) and separating the terms independent of �i yields:

where �−i is the set � excluding �i , and f and g are some functions. Taking the derivatives 
with respect to �i leads to:

The optimal value results by setting the derivative to zero:

(A21)
LMLR(�) = − �s,a∼p(s,a),i∼�(i|s,a)

[
logD(s, a, i;�)

]

− �s,a∼q(s,a),i∼q(i|s,a)
[
log(1 − D(s, a, i;�))

]
.

(A22)

D(s, a, i;�) =
1

1 + exp(−f (s, a, i;�))

=
1

1 + exp(−ri(s, a;�) + log�i + log q(s, a|i))
=

1

1 +
q(s,a|i)

1

�i
exp(ri(s,a;�))

=

1

�i

exp(ri(s, a;�))

1

�i

exp(ri(s, a;�)) + q(s, a|i) .

(A23)D(s, a, i;�) =

1

�i

exp(ri(s, a;�))

2�(s, a|i) .

(A24)

LMLR(�) = −�s,a∼p(s,a),i∼�(i�s,a)
⎡
⎢⎢⎣
log

1

�i

exp(ri(s, a;�))

2�(s, a�i)
⎤
⎥⎥⎦

− �s,a∼q(s,a),i∼q(i�s,a)
�
log

q(s, a�i)
2�(s, a�i)

�

= −�s,a∼p(s,a),i∼�(i�s,a)
�
ri(s, a;�) − log�i − log 2�(s, a�i)�

− �s,a∼q(s,a),i∼q(i�s,a)
�
log q(s, a�i) − log 2�(s, a�i)�

= �s,a∼p(s,a),i∼�(i�s,a)[log�i] + 2�s,a∼�(s,a),i∼�(i�s,a)[log 2�(s, a�i)]
+ g(�)

= log�i + 2�s,a∼�(s,a�i)[log 2�(s, a�i)] + f (� ,�−i),

(A25)��i
LMLR(�) = −

1

�i

+ 2�s,a∼�(s,a�i)
⎡⎢⎢⎣

exp(ri(s,a;�))

�2
i

2�(s, a�i)
⎤⎥⎥⎦
.
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A.4 Proof of Theorem 1

Replacing Eq. (A23) in Eq. (A21) and separating the terms independent of � yields:

Taking the derivative with respect to � leads to:

Now by setting � = �∗ , i.d �i = Zi(�) , we have:

A.5 Equivalency of InfoGAIL and IntentionGAIL objectives

The main objective function of the InfoGAIL is (equation 3 in Li et al. (2017) without the con-
stant coefficients and the entropy term):

where:

Please note that on page 4, paragraph 4 of the InfoGAIL paper (Li et al., 2017), the authors 
of InfoGAIL use a simplified posterior approximation Q(c|�) ≈ Q(c|s, a) , to avoid working 

(A26)�∗
i
= �s,a∼�(s,a|i)

[
exp(ri(s, a;�))

�(s, a|i)
]
.

(A27)
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⎡
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log

1

�i
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2�(s, a�i)
⎤
⎥⎥⎦
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log
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�
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�
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− �s,a∼q(s,a),i∼q(i�s,a)
�
log q(s, a�i) − log 2�(s, a�i)�

= −�s,a∼p(s,a),i∼�(i�s,a)[ri(s, a;�)]

+ 2�s,a∼�(s,a),i∼�(i�s,a)[log 2�(s, a�i)] + g(�).

(A28)
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(A30)max
�
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Q,D
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[
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with entire trajectories. Furthermore, in the InfoGAIL paper (Li et al., 2017), the authors 
have used the letters “c” and “Q” to address the intention and posterior function, respec-
tively. In order to have more consistent notations, the letters “c” and “Q” are replaced with 
the letters “i” and “p”, respectively. Given these, the final objective function will be:

On the other hand, the main objective function of IntentionGAIL is (equation 8 in Haus-
man et al. (2017) without the constant coefficients and the entropy term):

where the identical terms with respect to the Eq.  (A32) are labeled. As can be seen, the 
objective functions of both InfoGAIL and IntentionGAIL are identical.

A.6 Proof of Lemma 2

The Info/IntentionGAIL (Li et al., 2017; Hausman et al., 2017) corresponds to the following 
max-min game:

For a fixed q(s,  a) and P(i|s, a) , the optimal discriminator D∗(s, a) is Goodfellow et  al. 
(2014):

The max–min game can now be reformulated as:

For a fixed P(i|s, a) , the maximum with respect to q(s,  a) happens at p(s, a) = q∗(s, a) 
(Goodfellow et al., 2014). At this point, V(D∗, q∗,P) achieves:

(A32)

max
�

min
D

��[logD(s, a)]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

(1)

+��E
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Finally, the max-min game is reached to the global optimal, when the log likelihood of pos-
terior function is maximized, i.e. optimal posterior P∗(i|s, a):

For EM-MIRL with an optimal posterior P∗(i|s, a) , i.e. p(i|s, a) = P∗(i|s, a) we have the 
following max-min game:

For a fixed q(s, a|i) , the optimal discriminator D∗(s, a, i) is Goodfellow et al. (2014):

The max-min game can now be reformulated as:

The maximum of V(D∗, q∗,P∗) is achieved for p(s, a|i) = q∗(s, a|i) (Goodfellow et  al., 
2014) with the value of log 4:
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