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Abstract
In this paper, we study bottleneck identification in networks via extracting minimax paths. 
Many real-world networks have stochastic weights for which full knowledge is not avail-
able in advance. Therefore, we model this task as a combinatorial semi-bandit problem to 
which we apply a combinatorial version of Thompson Sampling and establish an upper 
bound on the corresponding Bayesian regret. Due to the computational intractability of the 
problem, we then devise an alternative problem formulation which approximates the origi-
nal objective. Finally, we experimentally evaluate the performance of Thompson Sampling 
with the approximate formulation on real-world directed and undirected networks.

Keywords Online Learning · Combinatorial Semi-bandit · Thompson Sampling · 
Bottleneck Identification

1 Introduction

Bottleneck identification constitutes an important task in network analysis, with applica-
tions including transportation planning and management (Berman & Handler, 1987), rout-
ing in computer networks (Shacham, 1992) and various bicriterion path problems (Hansen, 
1980). The path-specific bottleneck, on a path between a source and a target node in a 
network, is defined as the edge with a maximal cost or weight according to some criterion 
such as transfer time, load, commute time, distance, etc. The goal of bottleneck identifi-
cation and avoidance is then to find a path whose bottleneck is minimal. Thus, one may 
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model bottleneck identification as the problem of computing the minimax edge over the 
given network/graph, to obtain an edge with a minimal largest gap between the source and 
target nodes. Equivalently, it can be formulated as a widest path problem or maximum 
capacity path problem (Pollack, 1960) where the edge weights have been negated.

In transportation, identifying bottlenecks is important for city governments and traf-
fic managers to monitor and improve overall performance. For example, when driving 
between two locations, identifying a bottleneck means finding the section of road that 
slows down the traffic between two locations. Consider a social network where there is an 
information flow between two nodes (source and destination). Then we can define the bot-
tleneck as a link in all the paths between these two nodes that has the weakest connection 
and causes the information flow to fail. So, bottlenecks here are related to the possibility of 
information loss.

The aforementioned formulations assume that the network or the graph is fully speci-
fied, i.e., that all the edge weights are fully known. However, in practice, the edge weights 
might not be known in advance or they might include some inherent uncertainty. In this 
paper, we tackle such situations by developing an online learning framework to learn the 
edge weight distributions of the underlying network, while solving the bottleneck identifi-
cation problem for different problem instances.

For example, in the transportation scenario, city governments often have access to fleets 
of vehicles utilized for various municipal services. These may be used to sequentially and 
continuously to gain knowledge about traffic flow from the environment, while it is still 
desirable to avoid causing unnecessary inconvenience and stress (Hennessy & Wiesenthal, 
1999) to the employees operating the vehicles by excessively exploring congested paths. 
If care is taken to spread the costs over time, exploration may be performed continuously 
without having a specific end time known in advance (i.e., the time horizon of the sequen-
tial decision making problem).

For this purpose, we view this as a multi-armed bandit (MAB) problem and focus on 
Thompson Sampling (TS) (Thompson, 1933), a method that suits probabilistic online 
learning well. Thompson Sampling is an early Bayesian method for addressing the trade-
off between exploration and exploitation in sequential decision making problems. It bal-
ances these by randomly sampling available actions according to their posterior probability 
of being optimal, given prior beliefs and observations from previously selected actions. An 
action is more likely to be sampled if the posterior distribution over the expected reward of 
that action has high uncertainty (exploration) or high mean (exploitation).

The method has only recently been thoroughly evaluated through experimental stud-
ies (Chapelle & Li, 2011; Graepel et al., 2010) and theoretical analyses (Kaufmann et al., 
2012; Agrawal et  al., 2012; Russo & Van Roy, 2014), where it has been shown to be 
asymptotically optimal in the sense that it matches well-known lower bounds of these types 
of problems (Lai & Robbins, 1985). Furthermore, the algorithm does not assume knowl-
edge of the time horizon, i.e., it is an anytime algorithm.

Among many other problem settings, Thompson Sampling has been adapted to online 
versions of combinatorial optimization problems with retained theoretical guarantees 
(Wang & Chen, 2018), where one application is to find shortest paths in graphs (Liu & 
Zhao, 2012; Gai et al., 2012; Zou et al., 2014; Åkerblom et al., 2020).

Another commonly used method for these problems is Upper Confidence Bound (UCB) 
(Auer, 2003), which utilizes optimism to balance exploration and exploitation. UCB has 
been adapted to combinatorial settings (Chen et al., 2013), and also exists in Bayesian vari-
ants (Kaufmann et al., 2012). Recently, a variant of UCB has been studied for bottleneck 
avoidance problems in a combinatorial pure exploration setting (Du et  al., 2021). They 



133Machine Learning (2023) 112:131–150 

1 3

consider a different problem setting and method than those we present in this paper, though 
their bottleneck reward function is similar to the one we use in our approximation method. 
The main difference between their setting and the standard combinatorial semi-bandit 
setting in how agents interact with the environment, is that instead of being restricted to 
selecting sets of actions respecting combinatorial constraints, they allow agents to sequen-
tially try individual arms to identify the best feasible solution to the combinatorial prob-
lem. This is not applicable to our setting, since we may not observe the feedback of indi-
vidual edges without also traversing a path containing those edges, potentially incurring 
cost from some other edge on that path.

Moreover, the objective in a pure exploration problem is to find the best action as 
quickly as possible, with either a fixed time budget or confidence level, using agents dedi-
cated for this task. While identifying the best path is desirable in our problem setting as 
well, we are specifically interested in the case where existing agents are utilized and where 
using them exclusively for exploration is too costly. For that reason, we focus on anytime 
methods capable of distributing exploratory actions over time.

In this paper, we model the online bottleneck identification task as a stochastic combi-
natorial semi-bandit problem, for which we develop a combinatorial variant of Thompson 
Sampling. We then derive an upper bound on the corresponding Bayesian regret that is 
tight up to a polylogarithmic factor, which is consistent with the existing lower bounds 
for combinatorial semi-bandit problems. We face the issue of computational intractabil-
ity with the exact problem formulation. We thus propose an approximation scheme, along 
with a theoretical analysis of its properties. Finally, we experimentally investigate the per-
formance of the proposed method on directed and undirected real-world networks from 
transport and collaboration domains.

2  Bottleneck identification model

In this section, we first introduce the bottleneck identification problem over a fixed network 
and then describe a probabilistic model to be used in stochastic and uncertain situations.

2.1  Bottleneck identification over a network

We model a network by a graph G(V, E, w), where V denotes the set of vertices (nodes) and 
each e = (u, v) ∈ E indicates an edge between vertices u and v where u, v ∈ V  and u ≠ v . 
Moreover, w ∶ E → ℝ is a weight function defined for each edge of the graph, where for 
convenience, we use we to denote the weight of edge e. If G is directed, the pair (u, v) is 
ordered, otherwise, it is not (i.e., (u, v) ≡ (v, u) for undirected graphs). A path p from vertex 
u (source) to vertex v (target) over G is a sequence of vertices < v1, v2,… , vk−1, vk > where 
v1 = u , vk = v and (vi, vi+1) ∈ E,∀i ∈ [1, k − 1] . It can also be seen as a sequence of edges 
< (v1, v2), (v2, v3),… , (vk−1, vk) >.

As previously mentioned, a bottleneck on a path p can be described as an edge with a 
maximal weight on that path. To find the smallest feasible bottleneck edge between the 
source node u and the target node v, we consider all the paths between them. For each path, 
we pick an edge with a maximal weight, to obtain all path-specific bottleneck edges. We 
then identify the smallest path-specific bottleneck edge in order to find the best feasible 
bottleneck edge, i.e., such that bottleneck edges with higher weights are avoided.
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Therefore, given graph G, the bottleneck edge between u ∈ V  and v ∈ V  can be iden-
tified via extracting the minimax edge between them. With Pu,v denoting the set of all 
possible paths from u to v over G, the bottleneck weight (incurred by the bottleneck 
edge) can be computed by

The quantity in Eq. 1 satisfies the (ultra) metric properties under some basic assumptions 
on the edge weights such as symmetry and nonnegativity. Hence, it is sometimes used as 
a proper distance measure to extract manifolds and elongated clusters in a non-parametric 
way (Haghir Chehreghani, 2020; Kim & Choi, 2007).

However, in our setting, such conditions do not need to be fulfilled by the edge 
weights. In general, we tolerate positive as well as negative edge weights, and we 
assume the graph might be directed, i.e., the edge weights are not necessarily symmet-
ric. Therefore, despite the absence of (ultra) metric properties, the concept of minimax 
edges is still relevant for bottleneck identification.

To compute the minimax edge, one does not need to investigate all possible paths 
between the source and target nodes, which might be computationally infeasible. As 
studied by Hu (1961), minimax edges and paths over an arbitrary undirected graph are 
equal to the minimax edges over any minimum spanning tree (MST) computed over that 
graph. This equivalence simplifies the calculation of minimax edges, as there is only 
one path between every two vertices over an MST, whose maximal edge weight yields 
the minimax edge, i.e., the desired bottleneck.

For directed graphs, an MST might not represent the minimax edges in a straightfor-
ward manner. Hence, we instead rely on a modification (Berman & Handler, 1987) of 
Dijkstra’s algorithm (Dijkstra, 1959) to extract minimax paths rather than the shortest 
paths.

2.2  Probabilistic model for bottleneck identification

In this paper, we study bottleneck identification in uncertain and stochastic settings. There-
fore, instead of considering the weights we for e ∈ E to be fixed, we view them as stochas-
tic with fixed, albeit unknown, distribution parameters. Additionally, we assume that the 
weight of each edge follows a Gaussian distribution with known and finite variance. The 
Gaussian edge weight assumption is common for many important problem settings, like 
minimization of travel time (Seshadri & Srinivasan, 2010) or energy consumption (Åkerb-
lom et al., 2020) in road networks. Furthermore, we assume that all edge weights are mutu-
ally independent. Hence,

where �∗
e
 denotes the unknown mean of edge e, and �2

e
 is the known variance. To reduce 

cumbersome notation in the proofs, since the variance is assumed to be finite, we let �2
e
≤ 1 

(by scaling the edge weight distributions). However, we emphasize that we do not assume 
that we and �∗

e
 are bounded or non-negative.

It is convenient to be able to make use of prior knowledge in online learning problems 
where the action space is large, which motivates a Bayesian approach where we assume 
that the unknown mean �∗

e
 is sampled from a known prior distribution:

(1)b(u, v;G) = min
p∈Pu,v

max
e∈p

we.

we ∼ N(�∗
e
, �2

e
),
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We use a Gaussian prior for �∗
e
 since it is conjugate to the Gaussian likelihood and allows 

for efficient recursive updates of posterior parameters upon a new weight observation we,t 
at time t:

Since our long-term objective is to find a path which minimizes the expected maximum 
edge weight along that path, we need a framework to sequentially select paths to update 
these parameters and learn enough information about the edge weight distributions.

The assumptions in this section might seem restrictive, and indeed, when the edge 
weights represent e.g., traffic congestion in a road network, it is reasonable to believe 
that edges are not independent, especially for neighboring road segments. There are 
ways of extending this setting to capture such dependencies, while retaining similar 
regret guarantees for the studied methods. Such extensions include the contextual set-
ting, where expected edge weights are assumed to follow parameterized functions of 
contextual features (e.g., time-of-day, local ambient temperature, precipitation) revealed 
to the agent in each time step, before each action is taken. We leave such extensions to 
future work, though we note that the proofs in this work may be extended in a straight-
forward manner, analogous to the analysis of linear contextual Thompson Sampling by 
Russo and Van Roy (2014). Similarly, Thompson Sampling may be extended to the case 
where both the mean and variance are unknown, by assignment of a joint prior distribu-
tion over the parameters (Riquelme et al., 2018).

3  Online bottleneck learning framework

Consider a stochastic combinatorial semi-bandit problem (Cesa-Bianchi & Lugosi, 
2012) with time horizon T, formulated as a problem of cost minimization rather than 
reward maximization. There is a set of base arms A (where we let d ∶= |A| ) from which 
we may, at each time step t ∈ [T] , select a subset (or super arm) at ⊆ A . The selection is 
further restricted such that at ∈ I ⊆ 2A , where I  is called the set of feasible super arms.

Upon selection of at , the environment reveals a feedback Xi,t drawn from some fixed 
and unknown distribution for each base arm i ∈ at (i.e., semi-bandit feedback). Further-
more, we then receive a super arm cost from the environment, c(at) ∶= maxi∈at Xi,t , i.e., 
the maximum of all base arm feedback for the selected super arm and the current time 
step. The objective is to select super arms at to minimize �

�∑T

t=1
c(at)

�
 . This objective is 

typically reformulated as an equivalent regret minimization problem, where the 
(expected) regret is defined as

�∗
e
∼ N(�e,0, �

2
e,0
).

(2)�2
e,t+1

←

(
1

�2e,t

+
1

�2
e

)−1

,

(3)�e,t+1 ← �2
e,t+1

(
�e,t

�2e,t

+
we,t

�2
e

)
.
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To connect this to the probabilistic bottleneck identification model introduced in the pre-
vious section, we let each edge e ∈ E in the graph G correspond to exactly one base arm 
i ∈ A . For the online minimax path problem, the feasible set of super arms is then the set 
of all admissible paths in the graph, where the paths are directed or undirected depending 
on the type of graph. The feedback of each base arm i is simply the Gaussian weight of the 
matching edge e, with known variance �2

i
 and unknown mean �∗

i
.

We denote the expected cost of a super arm f�(a) , where � is a mean vector and 
f�(a) ∶= �

[
maxi∈a Ci

]
 such that Ci ∼ N(�i, �

2
i
) . For Bayesian bandit settings and algorithms, 

it is common to consider the notion of Bayesian regret, with an additional expectation over 
problem instances drawn from the prior distribution (where we denote the prior distribution � , 
over mean vectors �∗):

3.1  Thompson sampling with exact objective

It is not sufficient to find the super arm a which minimizes f�t
(a) in each time step t, since 

a strategy which is greedy with respect to possibly imperfect current cost estimates may 
converge to a sub-optimal super arm. Thompson Sampling is one of several methods devel-
oped to address the trade-off between exploration and exploitation in stochastic online 
learning problems. It has been shown to exhibit good performance in many formulations, 
e.g., linear contextual bandits and combinatorial semi-bandits.

The steps performed in each time step t by Thompson Sampling, adapted to our setting, 
are described in Algorithm 1 . First, a mean vector �̃ is sampled from the current posterior 
distribution (or from the prior in the first time step). Then, an arm at is selected which mini-
mizes the expected cost f�̃(at) with respect to the sampled mean vector. These first two steps 
are equivalent to selecting the arm according to the posterior probability of it being optimal. 

(4)Regret(T) ∶=

(∑
t∈[T]

�
[
c(at)

])
− T ⋅min

a∈I
�[c(a)].

(5)BayesRegret(T) ∶= ��∗∼�

[
�

[(∑
t∈[T]

f�∗ (at)

)
− T ⋅min

a∈I
f�∗ (a)

||||�
∗

]]
.
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In combinatorial semi-bandit problems, the method of finding the best super arm according to 
the sampled parameters is often called an oracle.

When the super arm at is played, the environment reveals the feedback Xi,t if and only if 
i ∈ at , which is a property called semi-bandit feedback. Finally, these observations are used 
to update the posterior distribution parameters. 

3.2  Regret analysis of Thompson sampling for minimax paths

We use the technique to analyze the Bayesian regret of Thompson Sampling for gen-
eral bandit problems introduced by Russo and Van Roy (2014) and further elaborated 
by Slivkins (2019), carefully adapting it to our problem setting. This technique was 
originally devised to enable convenient conversion of existing UCB regret analyses to 
Thompson Sampling, but can also be applied to new TS applications. Here, we do a 
novel extension to combinatorial bandits with minimax super-arm cost functions, which 
includes establishing concentration properties for the mean estimates of the non-linear 
super-arm costs. In the rest of this section, we outline the most important steps of the 
proof of Theorem  1, leaving technical details to the supplementary material (Online 
Resource 1). In the analysis, for convenience, we assume that T ≥ d.

Theorem 1 The Bayesian regret of Algorithm 1 is O(d
√
T log T).

We initially define a sequence of upper and lower confidence bounds, for each time 
step t:

Ut(a) ∶= f�̂t−1
(a) +max

i∈a

√
32 logT

Nt−1(i)

Lt(a) ∶= f�̂t−1
(a) −max

i∈a

√
32 log T

Nt−1(i)
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where �̂�i,t is the average feedback of base arm i ∈ A until time t, �̂t is the average feedback 
vector for all arms in A , and Nt(i) is the number of times base arm i ∈ A has been played 
as part of a super arm until time t.

Lemma 2 For Algorithm 1, we have that:

This Bayesian regret decomposition is a direct application of Proposition 1 of 
Russo and Van Roy (2014). It utilizes the fact that given the history of selected arms and 
received feedback until time t, the played super arm at and the best possible super arm 
a
∗ ∶= argmin

a∈I f�∗ (a) are identically distributed under Thompson Sampling. Furthermore, 
also given the history, Ut(a) and Lt(a) are deterministic functions of the super arm a . This ena-
bles the decomposition of the regret into terms of the expected confidence width, the expected 
overestimation of the super arm with least mean cost, and the expected underestimation of 
the selected super arm. By showing that f�∗ (a) ∈ [Lt(a),Ut(a)] with high probability, we can 
bound the last two of these terms.

Lemma 3 For any t ∈ [T] , we have that �
[
f�∗ (at) − Ut(at)

]
≤

4d

T
 and �

[
Lt(a

∗) − f�∗ (a
∗)
]
≤

4d

T
.

Both terms are bounded in the same way, for which we need a few intermediary results. 
Focusing on the underestimation of the played super arm, we can see that:

First, in Lemma 4, the difference between the true mean cost f�∗ (a) of a super arm a and 
the corresponding estimated mean f�̂(a) is bounded. The resulting upper bound is the max-
imum of the differences of the true and estimated means of each individual base arm feed-
back, such that:

Lemma 4 For any super arm a ∈ I  and time step t ∈ [T] , we have that 
|f�∗ (a) − f�̂t−1

(a)| ≤ 2maxi∈a |𝜃∗i − �̂�i,t−1|.

This is achieved by decomposing the absolute value into a sum of the positive and nega-
tive portions of the difference, then bounding each individually. Focusing on the positive 
portion by assuming that f�∗ (a) ≥ f�̂t−1

(a) , and letting Zi ∼ N(�̂�i,t−1, 𝜎
2
i
) , Yi ∼ N(�∗

i
, �2

i
) , 

𝛿i,t−1 ∶= 𝜃∗
i
− �̂�i,t−1 and Qi ∶= Yi − �i,t−1 , for i ∈ a , we can see that:

BayesRegret(T) =∑
t∈[T]

�
[
Ut(at) − Lt(at)

]
+

∑
t∈[T]

�
[
f�∗ (at) − Ut(at)

]
+

∑
t∈[T]

�
[
Lt(a

∗) − f�∗ (a
∗)
]
.

�
[
f�∗ (at) − Ut(at)

]

= �

[
f�∗ (at) − f�̂t−1

(at) −max
i∈at

√
32 logT

Nt−1(i)

]
.
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The negative portion is bounded in the same way, directly leading to the result of Lemma 
4. With this result, we can proceed with Lemma 3, where we let [x]+ ∶= max(0, x):

The probability in Eq. 6 is of the event that the difference between the estimated and true 
means of an arm i exceeds the confidence radius 

√
8 logT∕Nt−1(i) , while Eq.  7 is the 

expected difference conditional on that event. We bound Eq. 6 with Lemma 5 and Eq. 7 
with Lemma 6.

Lemma 5 Pr
{
∀t ∈ [T] ∀i ∈ A, |�i,t−1| ≤

√
8 logT

Nt−1(i)

}
≥ 1 −

2

T
.

It is now sufficient to show that the difference �i,t−1 is small for all base arms i ∈ A with 
high probability, which we accomplish using a standard concentration analysis through appli-
cation of Hoeffding’s inequality and union bounds.

Lemma 6 For any t ∈ [T] and i ∈ A , we have

Though the rewards are unbounded, this expectation can be bounded by utilizing the 
fact that the mean of a truncated Gaussian distribution is increasing in the mean of the dis-
tribution before truncation, by Theorem 2 of Horrace (2015). We can see that:

f�∗ (a) − f�̂t−1
(a)

= �

[
max
i∈a

Yi

]
− �

[
max
i∈a

Zi

]

= �

[
max
i∈a

(Qi + 𝛿i,t−1)
]
− �

[
max
i∈a

Zi

]

≤ �

[
max
i∈a

Qi

]
+max

i∈a
𝛿i,t−1 − �

[
max
i∈a

Zi

]

= max
i∈a

𝛿i,t−1 .

(6)

�

�
2max

i∈at
�𝛿i,t−1� −max

i∈at

�
32 logT

Nt−1(i)

�

≤ �

⎡⎢⎢⎣
2max

i∈at

�
�𝛿i,t−1� −

�
8 logT

Nt−1(i)

�+⎤⎥⎥⎦

≤ 2
�
i∈A

�

⎡⎢⎢⎣

�
�𝛿i,t−1� −

�
8 log T

Nt−1(i)

�+⎤⎥⎥⎦

= 2
�
i∈A

�
Pr

�
�𝛿i,t−1� >

�
8 log T

Nt−1(i)

�
⋅

(7)�

[
|𝛿i,t−1| −

√
8 log T

Nt−1(i)

|||| |𝛿i,t−1| >
√

8 log T

Nt−1(i)

])

�

[
|𝛿i,t−1| −

√
8 log T

Nt−1(i)

|||| |𝛿i,t−1| >
√

8 logT

Nt−1(i)

]
≤ 1.
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We know that �i,t−1 is zero-mean Gaussian with variance at most one, hence 

�

[
𝛿i,t−1

|||| 𝛿i,t−1 > 0

]
≤ 1.

With the result from Lemma 3, the last two terms of the regret decomposition in Lemma 
2 are bounded by constants in T. Focusing on the remaining term, we just need to show that ∑

t∈[T] �
�
Ut(at) − Lt(at)

�
≤ O(d

√
T log T) to prove Theorem 1:

We note that the final upper bound is tight up to a polylogarithmic factor, according to 
existing lower bounds for combinatorial semi-bandit problems (Kveton et al., 2015).

3.3  Thompson sampling with approximate objective

Unfortunately, exact expressions for computing the expected maximum of Gaussian ran-
dom variables only exist when the variables are few. In other words, we cannot compute 
f�(a) exactly for a super arm a containing many base arms, necessitating some form of 
approximation approach. While it is possible to approximate f�(a) through e.g., Monte 

�

[
|𝛿i,t−1| −

√
8 logT

Nt−1(i)

|||| |𝛿i,t−1| >
√

8 log T

Nt−1(i)

]

= �

[
𝛿i,t−1 −

√
8 logT

Nt−1(i)

|||| 𝛿i,t−1 −

√
8 log T

Nt−1(i)
> 0

]

≤ �

[
𝛿i,t−1

|||| 𝛿i,t−1 > 0

]
.

�
t∈[T]

�
�
Ut(at) − Lt(at)

�

=
√
128 log T

�
t∈[T]

�

�
max
i∈at

1√
Nt−1(i)

�

≤
√
128 log T

�
t∈[T]

�

��
i∈at

1√
Nt−1(i)

�

=
√
128 log T

�
i∈A

�

��
t∶i∈at

1√
Nt−1(i)

�

≤
√
128 log T

�
i∈A

�

�
2
√
NT (i)

�

≤
√
128 log T ⋅ �

�
2

�
d
�
i∈A

NT (i)

�

≤
√
128 log T ⋅ �

�
2
√
d2T

�

= 2d
√
128T log T

= O(d
√
T log T).
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Carlo simulations, we want to be able to perform the cost minimization step using a com-
putationally efficient oracle.

We note that, even with the capability to exactly compute f�(a) , it would not be feasible 
to solve the minimization problem in line 6 of Algorithm 1. The expected cost f�(a) of 
a super arm a (i.e., the expected maximum base arm feedback) depends not only on the 
individual expected values of the base arm feedback distributions, but also on the shape 
of the joint distribution of all base arms in a . Due to this fact, the stochastic version of the 
minimization problem lacks the property of optimal substructure (i.e., an optimal path does 
not necessarily consist of optimal sub-paths). For the deterministic version of the problem, 
as defined in Eq.  1, the presence of this property enables the usage of computationally 
efficient dynamic programming strategies, like Dijkstra’s algorithm, which is consequently 
infeasible with the objective in Algorithm 1.

Therefore, we propose the approximation method outlined in Algorithm 2, where the 
minimization step of line 6 has been modified from Algorithm 1 with an alternative super 
arm cost function f̃�̃(a) ∶= maxi∈a 𝜃i . Switching objectives, from finding the super arm 
which minimizes the expected maximum base arm feedback, to instead minimize the maxi-
mum expected feedback, has the benefit of allowing us to utilize the efficient determinis-
tic minimax path algorithms introduced earlier for both directed and undirected graphs. 
For directed graphs, the modified version of Dijkstra’s algorithm by Berman and Handler 
(1987) has a worst-case running time of O(|E| + |V| log |V|) with an efficient implementa-
tion using Fibonacci heaps (Fredman & Tarjan, 1987). Similarly, for undirected graphs, 
finding an MST (and subsequently a minimax path) can be achieved using Prim’s algo-
rithm (Prim, 1957), with the same running time of O(|E| + |V| log |V|) if Fibonacci heaps 
are used. The other operations performed for each t ∈ [T] in Algorithm 2 (i.e., the posterior 
samples and updates) have a combined running time of, at worst, O(|E|) . The same oracles 
are also used for the baseline algorithms evaluated in Sections 4.1 and 4.2, with compara-
ble running times.

It is possible to use alternative notions of regret to evaluate combinatorial bandit algo-
rithms with approximate oracles (Chen et al., 2013, 2016). For our experimental evaluation 
of Algorithm 2, we introduce the following definition of approximate regret:

An alternative Bayesian bandit algorithm which can be used with the alternative objective 
is BayesUCB (Kaufmann et  al., 2012), which we use as a baseline for our experiments. 
Like Thompson Sampling, BayesUCB has been adapted to combinatorial semi-bandit set-
tings (Nuara et al., 2018; Åkerblom et al., 2020). Whereas Thompson Sampling in Algo-
rithm 2 encourages exploration by applying the oracle to parameters sampled from the pos-
terior distribution, with BayesUCB, the oracle is instead applied to optimistic estimates 
based on the posterior distribution. In practice, this is accomplished for our cost minimiza-
tion problem by using lower quantiles of the posterior distribution of each base arm. This 
principle of selecting plausibly optimal arms is called optimism in the face of uncertainty 
and is the underlying idea of all bandit algorithms based on UCB.

We note that while in BayesUCB, as outlined in Algorithm 1 of Kaufmann et al. (2012), 
the horizon is used to calculate UCB values, the authors of that work also explain that 
upper quantiles of order 1 − 1∕t (calculated without the horizon) achieve good results in 

ApproxRegret(T) ∶=

(∑
t∈[T]

f̃�∗ (at)

)
− T ⋅min

a∈I
f̃�∗ (a).
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practice. For that reason, we use lower quantiles of order 1/t in the version of BayesUCB 
studied in this work, making it an anytime algorithm, like Thompson Sampling. 

To connect the different objectives in Algorithm 1 and Algorithm 2, we note that by Jens-
en’s inequality, f̃�̃(a) ≤ f�̃(a) and that the approximation objective consequently will under-
estimate super arm costs. However, we establish an upper bound on this difference through 
Theorem 7.

Theorem 7 Given the optimal super arm a∗ for Algorithm 1 and the optimal super arm ã∗ 
for Algorithm 2, we have that f�∗ (ã∗) − f�∗ (a

∗) ≤
√
2 log d.

For any super arm a ∈ I  , let Yi for i ∈ a be Gaussian random variables with Yi ∼ N(�∗
i
, �2

i
) . 

Furthermore, let Wi ∶= Yi − �∗
i
 , such that Wi ∼ N(0, �2

i
) . Then, the following holds:

where the last inequality is due to Lemma 9 of Orabona et al. (2015) and since �2
i
≤ 1 for 

all i ∈ a . We also note that, by Jensen’s inequality, we have maxi∈a �
[
Yi
]
≤ �

[
maxi∈a Yi

]
 . 

Moreover, by definition we know that a
∗ = argmin

a∈I �
[
maxi∈a Yi

]
 and 

ã
∗ = argmin

a∈I maxi∈a �
[
Yi
]
 . Consequently, we have,

Hence, we can conclude that

�

�
max
i∈a

Yi

�

= �

�
max
i∈a

(Wi + �∗
i
)
�

≤ �

�
max
i∈a

Wi

�
+max

i∈a
�
�
Yi
�

≤
√
2 log d +max

i∈a
�
�
Yi
�
,

max
i∈ã∗

�
�
Yi
�
≤ max

i∈a∗
�
�
Yi
�
≤ �

�
max
i∈a∗

Yi

�
≤ �

�
max
i∈ã∗

Yi

�
≤
√
2 log d +max

i∈ã∗
�
�
Yi
�
.

f�∗ (ã
∗) − f�∗ (a

∗) = �

�
max
i∈ã∗

Yi

�
− �

�
max
i∈a∗

Yi

�
≤
√
2 log d .
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In other words, Theorem 7 holds and the optimal solutions of the exact Algorithm 1 and 
the approximate Algorithm  2 differ by at most 

√
2 log d . This bound is independent of 

the mean vector �∗ , depending only on the number of base arms and that the variance is 
bounded.

4  Experimental results

In this section, we conduct bottleneck identification experiments using Algorithm  2 for 
two real-world applications, i) road (transport) networks, and ii) collaboration (social) net-
works. These experiments are performed with an extended version of the simulation frame-
work by Russo et al. (2018) and evaluated using our approximate definition of regret. In 
addition, we compare Algorithm 1 to Algorithm 2 through a toy example.

4.1  Road networks

A bottleneck in a network is a segment of a path in the network that obstructs or stops flow. 
Identification of bottlenecks in a road network is a vital tool for traffic planners to analyze 
the network and prevent congestion. In this application, our goal is to find the bottleneck 
between a source and a target, i.e., a road segment which is necessary to pass and also 
has minimal traffic flow. In the road network model, we let the nodes represent intersec-
tions and the directed edges represent road segments, with travel time divided by distance 
(seconds per meter) as edge weights. The bottleneck between a pair of intersections is the 
minimum bottleneck over all paths connecting them, where the bottleneck for each of these 
paths is the largest weight over all road segments along it. Note that in order for the bot-
tleneck between a pair of intersections to have a meaning, there needs to exist at least one 
path connecting them.

Table 1  A description of the 
road networks.

Road network

Eindhoven Manhattan Oslo Salzburg

#Node 7501 4593 8153 2921
#Edge 10776 8130 11192 3848
Avg. Degree 2.873 3.540 2.745 2.634

Table 2  Average cumulative regret and corresponding standard error (SE) over five runs, at the horizon 
T = 6000 , for Thompson Sampling (TS), BayesUCB (B-UCB), �

t
-greedy agents (e-GR-N and e-GR-E), and 

Greedy (GR) agent.

Road network

Eindhoven Manhattan Oslo Salzburg

TS 271.8 ± 46.3 449.0 ± 53.0 226.7 ± 69.1 131.7 ± 13.4
B-UCB 483.8 ± 112.9 670.5 ± 68.9 339.7 ± 88.3 259.2 ± 41.4
e-GR-N 838.8 ± 191.2 1232.9 ± 72.1 379.3 ± 115.9 653.8 ± 175.7
e-GR-E 928.7 ± 191.7 1120.0 ± 113.8 405.7 ± 113.1 609.4 ± 87.0
GR 936.9 ± 223.2 1116.7 ± 142.9 511.2 ± 140.1 1159.0 ± 155.2
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We collect road networks of four cities, shown in Table 1, from OpenStreetMap con-
tributors (2017), where the average travel time as well as the distance is provided for each 
(directed) edge. We simulate an environment with the stochastic edge weights sampled 
from we ∼ N(�∗

e
, �2

e
) , where the observation noise is �e = 0.4 . For the experiments, the 

environment samples the true unknown mean �∗
e
 from the known prior �∗

e
∼ N(�e,0, �e,0

2) , 
where �e,0 = 0.4s/m , and �e,0 is the average travel time divided by distance provided by 
OpenStreetMap (OSM).

We consider one greedy agent (GR) and two �t-greedy agents (e-GR) as baselines. The 
greedy agent (GR) always chooses the path with the lowest current estimate of expected 
cost. In each time step, each e-GR agent, with probability �t decreasing with t (specifi-
cally, we let �t = min(1, 1∕

√
t) ), chooses a random path, and acts like the greedy agent 

otherwise. In our experiments, we implement the two e-GR agents based on the combi-
natorial version of �t-greedy introduced in Algorithm 1 in the Supplementary Material of 
Chen et al. (2013). The first e-GR agent chooses a path between the source and the target 
containing a uniformly chosen random node (e-GR-N), and the second e-GR agent chooses 
a path with a uniformly selected random edge (e-GR-E). We evaluate how the performance 
of the Thompson Sampling agent (TS) and the BayesUCB agent (B-UCB) compare to the 
baselines. We run the simulations with all five agents for each road network and report the 
cumulative regret at a given horizon T, averaged over five repetitions. The horizon is cho-
sen such that the instant regret is almost stabilized for the agents.

Table  2 shows the average cumulative regrets and their corresponding standard error 
over five runs at the horizon T. For all four road networks, the TS agent incurs the lowest 
average cumulative regret and standard error over five runs. Then, B-UCB follows TS and 
yields a better result than the baselines (GR and both e-GR variants).

Figure 1 illustrates the average cumulative regret with standard error (SE) bars on the 
road networks of the four aforementioned cities. For Eindhoven, Figure 1a shows the aver-
age cumulative regret, where at horizon T = 6000 the TS agent yields the lowest cumula-
tive regret. Then, B-UCB follows TS and achieves a better result compared to the other 
baselines. As time progresses, we can see that first TS and then B-UCB start saturating 
by performing sufficient exploration. With respect to the SE bars, there are differences 
between the five agents. The TS agent has the smallest SE bars. Figure 1b visualizes the 
Eindhoven road network, where the paths explored by the TS agent are shown in red. The 
road segments explored (tried) more often by the TS agent are displayed more opaque. Fig-
ure 1c, e, and g show the average cumulative regret with SE bars for Manhattan, Oslo, and 
Salzburg, respectively. The results show that TS incurs the lowest cumulative regret and 
smallest SE bars. Then, B-UCB follows TS in both aspects and obtains a better result than 
the other baselines.

4.2  Collaboration network

We consider a collaboration network from computational geometry (Geom) (Jones, 2002) 
as an application of our approach to social networks. More specifically, we use the version 

Fig. 1  Cumulative regret averaged over 5 runs with shaded standard error bars, for Thompson Sam-
pling (TS), Bayes UCB (B-UCB), �

t
-greedy agents (e-GR-N and e-GR-E), and greedy (GR) with horizon 

T = 6000 , on Eindhoven (a), Manhattan (c), Oslo (e) and Salzburg (g) road networks. Visualizations of the 
paths explored by the TS agent are shown in red, for Eindhoven (b), Manhattan (d), Oslo (f) and Salzburg 
(h) road networks. Opacity illustrates the exploration of each of the road segments.

▸
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provided by Handcock et  al. (2003) and distributed among the Pajek datasets (Batagelj 
et al., 2006) where certain author duplicates, occurring in minor or major name variations, 
have been merged. The Handcock et al. (2003) version is based on the BibTeX bibliogra-
phy (Beebe, 2002), to which the database from Jones (2002) has been exported. The net-
work has 9072 vertices representing the authors and 22577 edges with the edge weights 
representing the number of mutual works between a pair of authors.

We simulate an environment where each edge weight is sampled as we ∼ N(�∗
e
, �2

e
) , 

within which �∗
e
 is regarded as the true (negative) mean number of shared publications 

between a pair of authors linked by the edge e, and the observation noise is �e = 5 . Fur-
thermore, in this experiment, while the true negative mean number of mutual publications 
are assumed (by the agent) to be distributed according to the prior �∗

e
∼ N(�e,0, �

2
e,0
) with 

�e,0 = 10 , we instead generate the mean from a wider prior �∗
e
∼ N(�e,0, 20

2) , simulating 
a scenario where the prior belief of the agent is too high. The assumed mean �e,0 of the 
prior is however consistent with the distribution from which �∗

e
 is sampled, and is directly 

determined by the pairwise negative number of mutual collaborations from the dataset by 
Handcock et al. (2003).

Figure 2 shows the cumulative regret, averaged over five runs for the different agents 
with horizon T = 2000 , again chosen such that the regret is stabilized for all agents. One 
can see that the TS agent reaches the lowest cumulative regret, similar to the experimental 
studies on road networks.

Fig. 2  Cumulative regret 
averaged over 5 runs with 
shaded standard error bars, 
for Thompson Sampling (TS), 
Bayes UCB (B-UCB), �

t
-greedy 

agnets (e-GR-N and e-GR-E), 
and greedy (GR) with horizon 
T = 2000 for the collaboration 
network.

Fig. 3  Experimental results with 
average cumulative regret on the 
toy example, with T = 10000 , on 
exact TS, approximate TS and 
exact greedy.
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4.3  Exact objective toy example

While it is not feasible to evaluate Algorithm 1 on graphs representing real-life transporta-
tion or social networks, it is possible for small synthetic graphs. We construct a graph con-
sisting of 6 nodes and 10 edges, with the source and target nodes connected by four paths 
of length 2 and four paths of length 3. For each edge e, we use the sample the mean from a 
standard Gaussian prior, such that �∗

e
∼ N(0, 1) . The stochastic weights are then generated 

in each time step t such that we,t ∼ N(�∗
e
, 1).

In order to calculate the expected cost of each path, we use existing exact expressions 
for the expected maximum of two (Clark, 1961) and three (Lo, 2020; DasGupta, 2021) 
independent Gaussian random variables. Instead of using an oracle, we simply enumerate 
the paths to find the one with minimum expected cost.

In Figure 3, we compare Algorithm 1 (TS with exact objective) and Algorithm 2 (TS 
with approximate objective) using the exact notion of (cumulative) regret as defined in 
Eq. 4. Furthermore, we include a greedy baseline which also uses the exact objective. We 
use a horizon of T = 10000 and average the results over 20 experiments, wherein each 
algorithm is applied to a problem instance sampled from the prior.

We can see that the regret of exact TS quickly saturates, while approximate TS and the 
greedy method tend to end up in sub-optimal solutions. For approximate TS, this is to be 
expected since optimal arms for the exact and approximate problems may be different. It is 
worth noting, however, that approximate TS performs better than the exact greedy method 
on average.

5  Conclusion

We developed an online learning framework for bottleneck identification in networks 
via minimax paths. In particular, we modeled this task as a combinatorial semi-ban-
dit problem for which we proposed a combinatorial version of Thompson Sampling. 
We then established an upper bound on the Bayesian regret of the Thompson Sampling 
method. To deal with the computational intractability of the problem, we devised an 
alternative problem formulation which approximates the original objective. Finally, we 
investigated the framework on several directed and undirected real-world networks from 
transport and collaboration domains. Our experimental results demonstrate its effective-
ness compared to alternatives such as greedy and B-UCB methods.
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