
Vol.:(0123456789)

Machine Learning (2022) 111:4719–4764
https://doi.org/10.1007/s10994-022-06229-1

1 3

Optimistic optimisation of composite objective
with exponentiated update

Weijia Shao1 · Fikret Sivrikaya2 · Sahin Albayrak1,2

Received: 3 February 2022 / Revised: 31 May 2022 / Accepted: 22 July 2022 /
Published online: 22 August 2022
© The Author(s) 2022, corrected publication 2022

Abstract
This paper proposes a new family of algorithms for the online optimisation of composite
objectives. The algorithms can be interpreted as the combination of the exponentiated gra-
dient and p-norm algorithm. Combined with algorithmic ideas of adaptivity and optimism,
the proposed algorithms achieve a sequence-dependent regret upper bound, matching the
best-known bounds for sparse target decision variables. Furthermore, the algorithms have
efficient implementations for popular composite objectives and constraints and can be con-
verted to stochastic optimisation algorithms with the optimal accelerated rate for smooth
objectives.

Keywords  Exponetiated gradient · Composite objective · Online convex optimisation ·
Sparsity

1  Introduction

Many machine learning problems involve minimising high dimensional composite objec-
tives (Dhurandhar et al., 2018; Lu et al., 2014; Ribeiro et al., 2016; Xie et al., 2018). For
example, in the task of explaining predictions of an image classifier (Dhurandhar et al.,
2018; Ribeiro et al., 2016), we need to find a sufficiently small set of features explaining
the prediction by solving the following constrained optimisation problem

Editors: Krzysztof Dembczynski and Emilie Devijver.

 *	 Weijia Shao
	 weijia.shao@campus.tu-berlin.de

	 Fikret Sivrikaya
	 fikret.sivrikaya@gt-arc.com

	 Sahin Albayrak
	 sahin.albayrak@dai-labor.de

1	 Faculty of Electrical Engineering and Computer Science, Technische Universität Berlin,
Ernst‑Reuter‑Platz 7, 10587 Berlin, Germany

2	 GT-ARC Gemeinnützige GmbH, Ernst‑Reuter‑Platz 7, 10587 Berlin, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06229-1&domain=pdf

4720	 Machine Learning (2022) 111:4719–4764

1 3

where l is a function relating to the classifier, �1 controls the sparsity of the feature set, �2
controls the complexity of the feature set, and c1,… , cd are the ranges of the features. For l
with a complicated structure and large d, it is practical to solve the problem by optimising
the first-order approximation of the objective function (Lan, 2020). However, the first-order
methods can not attain optimal performance due to the non-smooth component �1‖ ⋅ ‖1 .
Furthermore, the purpose of introducing the �1 regularisation is to ensure the sparsity of
the decision variable. Applying the first-order algorithms directly on the subgradient of
�1‖ ⋅ ‖1 does not lead to sparse updates (Duchi et al., 2010). We refer to the objective func-
tion consisting of a loss with a complicated structure and a simple (possibly non-smooth)
convex regularisation term as a composite objective.

This paper focuses on the more general online convex optimisation (OCO), which can
be considered as an iterative game between a player and an adversary. In each round t of
the game, the player makes a decision xt ∈ K . Next, the adversary selects and reveals a
convex loss lt to the player, who then suffers the composite loss ft(x) = lt(x) + rt(x) , where
lt ∶ K → ℝ is a convex function revealed at each iteration and rt ∶ 𝕏 → ℝ≥0 is a known
closed convex function. The target is to develop algorithms minimising the regret of not
choosing the best decision x ∈ K

An online optimisation algorithm can be converted into a stochastic optimisation algorithm
using the online-to-batch conversion technique (Cesa-Bianchi et al., 2004), which is our
primary motivation. In addition to that, online optimisation also has many direct applica-
tions, such as recommender systems (Song et al., 2014) and time series prediction (Anava
et al., 2013).

Given a sequence of subgradients {gt} of {lt} , we are interested in the so-called adaptive

algorithms ensuring regret bounds of the form O(

�∑T

t=1
‖gt‖2∗) . The adaptive algorithms

are worst-case optimal in the online setting (McMahan & Streeter, 2010) and can be con-
verted into stochastic optimisation algorithms with optimal convergence rates (Cutkosky,
2019; Joulani et al., 2020; Kavis et al., 2019; Levy et al., 2018). The adaptive subgradient
methods (AdaGrad) (Duchi et al., 2011) and their variants (Alacaoglu et al., 2020; Duchi
et al., 2011; Orabona & Pál, 2018; Orabona et al., 2015) have become the most popular
adaptive algorithms in recent years. They are often applied to estimating deep learning
models and outperform standard optimisation algorithms when the gradient vectors are
sparse. However, such property can not be expected in every problem. If the decision vari-
ables are in an �1 ball and gradient vectors are dense, the Adagrad-style algorithms do not
have an optimal theoretical guarantee due to the sub-linear regret dependence on the
dimensionality.

The exponentiated gradient (EG) methods (Arora et al., 2012; Kivinen & Warmuth,
1997), which are designed for estimating weights in the positive orthant, enjoy the regret
bound growing logarithmically with the dimensionality. The EG± algorithm generalises
this idea to negative weights (Kivinen & Warmuth, 1997; Warmuth, 2007). Given d dimen-
sional problems with the maximum norm of the gradient bounded by G, the regret of EG±

min
x∈ℝd

l(x) + �1‖x‖1 +
�2

2
‖x‖2

2

s.t. �xi� ≤ ci for all i = 1,… , d,

R1∶T =

T∑
t=1

ft(xt) −min
x∈K

T∑
t=1

ft(x).

4721Machine Learning (2022) 111:4719–4764	

1 3

is upper bounded by O(G
√
T ln d) . As the performance of the EG± algorithm depends

strongly on the choice of hyperparameters, the p-norm algorithm (Gentile, 2003), which is
less sensitive to the tuning of hyperparameters, is introduced to approach the logarithmic
behaviour of EG± . Kakade et al. (2012) further extends the p-norm algorithm to learning
with matrices. An adaptive version of the p-norm algorithm is analysed in Orabona et al.
(2015), which has a regret upper bound proportional to ‖x‖2

p,∗

�∑T

t=1
‖gt‖2p for a given

sequence of gradients {gt} . By choosing p = 2 ln d , a regret upper bound

O(‖x‖2
1

�
ln d

∑T

t=1
‖gt‖2∞) can be achieved. However, tuning hyperparameters is still

required to attain the optimal regret O(‖x‖1
�

ln d
∑T

t=1
‖gt‖2∞).

Recently, Ghai et al. (2020) has introduced a hyperbolic regulariser for online mirror
descent update (HU), which can be viewed as an interpolation between gradient descent
and EG. It has a logarithmic behaviour as in EG and a stepsize that can be flexibly sched-
uled as gradient descent. However, many optimisation problems with sparse targets have
an �1 or nuclear regulariser in the objective function. Otherwise, the optimisation algo-
rithm has to pick a decision variable from a compact decision set. Due to the hyperbolic
regulariser, it is difficult to derive a closed-form solution for either case. Ghai et al. (2020)
has proposed a workaround by tuning a temperature-like hyperparameter to normalise the
decision variable at each iteration, which is equivalent to the EG± algorithm and leads to a
performance dependence on the tuning.

This paper proposes a family of algorithms for the online optimisation of composite
objectives. The algorithms employ an entropy-like regulariser combined with algorithmic
ideas of adaptivity and optimism. Equipped with the regulariser, the online mirror descent
(OMD) and the follow-the-regulariser-leader (FTRL) algorithms update the absolute value
of the scalar components of the decision variable in the same way as EG in the positive
orthant. The directions of the decision variables are set in the same way as the p-norm
algorithm. To derive the regret upper bound, we first show that the regulariser is strongly
convex with respect to the �1-norm over the �1 ball. Then we analyse the algorithms in the
comprehensive framework for optimistic algorithms with adaptive regularisers (Joulani
et al., 2017). Given the radius of decision set D, sequences of gradients {gt} and hints {ht} ,
the proposed algorithms achieve a regret upper bound in the form of
O(D

�
ln d

∑T

t=1
‖gt − ht‖2∞) . With the techniques introduced in Ghai et al. (2020), a spec-

tral analogue of the entropy-like regulariser can be found and proved to be strongly convex
with respect to the nuclear norm over the nuclear ball, from which the best-known regret
upper bound depending on

√
ln(min{m, n}) for problems in ℝm,n follows.

Furthermore, the algorithms have closed-form solutions for the �1 and nuclear regular-
ised objective functions. For the �2 and Frobenius regularised objectives, the update rules
involve values of the principal branch of the Lambert function, which can be well approxi-
mated. We propose a sorting based procedure projecting the solution to the decision set for
the �1 or nuclear ball constrained problems. Finally, the proposed online algorithms can be
converted into algorithms for stochastic optimisation with the technique introduced in Jou-
lani et al. (2020). We show that the converted algorithms guarantee an optimal accelerated
convergence rate for smooth objective functions. The convergence rate depends logarithmi-
cally on the dimensionality of the problem, which suggests its advantage compared to the
accelerated AdaGrad-Style algorithms (Cutkosky, 2019; Joulani et al., 2020; Levy et al.,
2018).

The rest of the paper is organised as follows. Section 2 reviews the existing work. Sec-
tion 3 introduces the notation and preliminary concepts. Next, we present and analyse our

4722	 Machine Learning (2022) 111:4719–4764

1 3

algorithms in Sect. 4. In Sect. 5, we derive efficient implementations for some popular
choices of composite objectives, constraints and stochastic optimisation. Section 6 dem-
onstrates the empirical evaluations using both synthetic and real-world data. Finally, we
conclude our work in Sect. 7.

2 � Related work

Our primary motivation is to solve the optimisation problems with an elastic net regu-
lariser in their objective function, which are highly involved in attacking (Cancela et al.,
2021; Carlini & Wagner, 2017; Chen et al., 2018) and explaining (Dhurandhar et al., 2018;
Ribeiro et al., 2016) deep neural networks. The proximal gradient method (PGD) (Nes-
terov, 2003) and its accelerated variants (Beck & Teboulle, 2009) are usually applied to
solving the problem. However, these algorithms are not practical since they require prior
knowledge about the smoothness of the objective function to ensure their convergence.

The AdaGrad-style algorithms (Alacaoglu et al., 2020; Duchi et al., 2011; Orabona &
Pál, 2018; Orabona et al., 2015) have become popular in the machine learning community
in recent years. Given the gradient vectors g1,… , gt received at iteration t, the core idea of
these algorithms is to set the stepsizes proportional to 1√∑t−1

s=1
‖gs‖2∗

 to ensure a regret upper

bounded by O(

�∑T

t=1
‖gt‖2∗) after T iterations. Online learning algorithms with this adap-

tive regret can be directly applied to the stochastic optimisation problems (Alacaoglu et al.,
2020; Li & Orabona, 2019) or can be converted into a stochastic algorithm (Cesa-Bianchi
& Gentile, 2008) with a convergence rate O(

1√
T
) . This rate can be further improved to

O(
1

T2
) for unconstrained problems with smooth loss functions by applying the acceleration

techniques (Cutkosky, 2019; Kavis et al., 2019; Levy et al., 2018). These acceleration tech-
niques do not require prior knowledge about the smoothness of the loss function and a
guarantee convergence rate of O(

1√
T
) for non-smooth functions. Joulani et al. (2020) has

proposed a simple approach to accelerate optimistic online optimisation algorithms with
adaptive regret bound.

Given a d-dimensional problem, the algorithms mentioned above have a regret upper
bound depending (sub-) linearly on d. We are interested in a logarithmic regret dependence
on the dimensionality, which can be attained by the EG family algorithms (Arora et al.,
2012; Kivinen & Warmuth, 1997; Warmuth, 2007) and their adaptive optimistic extension
(Steinhardt & Liang, 2014). However, these algorithms work only for decision sets in the
form of cross-polytopes and require prior knowledge about the radius of the decision set
for general convex optimisation problems. The p-norm algorithm (Gentile, 2003; Kakade
et al., 2012) does not have the limitation mentioned above; however, it still requires prior
knowledge about the problem to attain optimal performance (Orabona et al., 2015). The
HU algorithm (Ghai et al., 2020), which interpolates gradient descent and EG, can theoret-
ically be applied to loss functions with elastic net regularisers and decision sets other than
cross-polytopes. However, it is not practical due to the complex projection step.

Following the idea of HU, we propose more practical algorithms interpolating EG and the
p-norm algorithm. The core of our algorithm is a symmetric logarithmic function. Orabona
(2013) first introduced the idea of composing the single-dimensional symmetric logarithmic
function and a norm to generalise EG to the infinite-dimensional space. It has become popular
for parameter-free optimisation (Cutkosky & Boahen, 2016, 2017a, b; Kempka et al., 2019)

4723Machine Learning (2022) 111:4719–4764	

1 3

since one can easily construct an adaptive regulariser with this composition (Cutkosky &
Boahen, 2017a). In this paper, instead of using the composition, we apply the symmetric loga-
rithmic function directly to each entry of a vector to construct a symmetric entropy-like func-
tion that is strongly convex with respect to the �1 norm. We analyse MD and FTRL with the
entropy-like function in the framework developed in Joulani et al. (2017). The analysis of the
spectral analogue of the entropy-like function follows the idea proposed in Ghai et al. (2020).

3 � Preliminary

The focus of this paper is OCO with the decision variable taken from a compact convex subset
K ⊆ � of finite dimensional vector space equipped with a norm ‖ ⋅ ‖ . Given a sequence of
vectors {vt} , we use the compressed-sum notation v1∶t =

∑t

s=1
vs for simplicity. We denote by

�∗ the dual space with the dual norm ‖ ⋅ ‖∗ . The bi-linear map combining vectors in �∗ and �
is denoted by

For 𝕏 = ℝ
d , we denote by ‖ ⋅ ‖1 the �1 norm, the dual norm of which is the maximum norm

denoted by ‖ ⋅ ‖∞ . It is well known that the �2 norm denoted by ‖ ⋅ ‖2 is self-dual. In case
� is the space of the matrices, for simplicity, we also use ‖ ⋅ ‖1 , ‖ ⋅ ‖2 and ‖ ⋅ ‖∞ for the
nuclear, Frobenius and spectral norm, respectively.

Let � ∶ ℝ
m,n

→ ℝ
min{m,n} be the function mapping a matrix to its singular values. Define

with

Clearly, the singular value decomposition (SVD) of a matrix X can be expressed as

Similarly, we write the eigendecomposition of a symmetric matrix X as

where we denote by � ∶ 𝕊
d
↦ ℝ

d the function mapping a symmetric matrix to its spectrum.
Given a convex set K ⊆ � and a convex function f ∶ K → ℝ defined on K , we denote by

�f (y) = {g ∈ �∗�∀y ∈ K.f (x) − f (y) ≥ ⟨g, x − y⟩} the subgradient of f at y. We refer to ▿f (y)
any element in �f (y) . A function is �-strongly convex with respect to ‖ ⋅ ‖ over K if

holds for all x, y ∈ K and ▿f (y) ∈ �f (y).

⟨⋅, ⋅⟩ ∶ 𝕏∗ ×𝕏 → ℝ, (�, x) ↦ �x.

diag ∶ ℝ
min{m,n}

→ ℝ
m,n, x ↦ X

Xij =

{
xi, if i = j

0, otherwise.

X = Udiag(𝜎(X))V⊤.

X = Udiag(𝜆(X))U⊤,

f (x) − f (y) ≥ ⟨▿f (y), x − y⟩ + �

2
‖x − y‖2

4724	 Machine Learning (2022) 111:4719–4764

1 3

4 � Algorithms and analysis

In this section, we present and analyse our algorithms, which begins with a short review on
EG and the p-norm algorithm for the case ft = lt . The EG algorithm can be considered as
an instance of OMD, the update rules of which is given by

where gt ∈ �ft(xt) is the subgradient, and 𝜂 > 0 is the stepsize. Although the algorithm has
the expected logarithmic dependence on the dimensionality, its update rule is applicable
only to the decision variables on the standard simplex. For the problem with decision vari-
ables taken from an �1 ball {x�‖x‖1 ≤ D} , one can apply the EG± trick, i.e. use the vec-
tor [D

2
g⊤
t
,−

D

2
g⊤
t
]⊤ to update [x⊤

t+1,+
, x⊤

t+1,−
]⊤ at iteration t and choose the decision variable

xt+1,+ − xt+1,− . However, if the decision set is implicitly given by a regularisation term, the
parameter D has to be tuned. Since applying an overestimated D increases regret, while
using an underestimated D decreases the freedom of the model, the algorithm is sensitive
to tuning. For composite objectives, EG is not practical due to its update rule.

Compared to EG, the p-norm algorithm, the update rule of which is given by

is better applicable for unknown D. To combine the ideas of EG and the p-norm algorithm,
we consider the following generalised entropy function

In the next lemma, we show the twice differentiability and strict convexity of � , based
on which a strongly convex potential function for OMD in a compact decision set can be
constructed.

Lemma 1  � is twice continuous differentiable and strictly convex with

1.	 ��(x) = � ln
(|x|

�
+ 1

)
sgn(x)

2.	 ���(x) =
�

|x|+�.

Furthermore, the convex conjugate given by �∗ ∶ ℝ → ℝ, � ↦ �� exp
|�|
�
− �|�| − �� is

also twice continuous differentiable with

1.	 �∗�(�) =

(
� exp

|�|
�
− �

)
sgn(�)

2.	 �∗��(�) =
�

�
exp

|�|
�
.

Since we can expand the natural logarithm as ln(|x|
�
+ 1) =

|x|
�
−

|x|2
2�2

+
|x|3
3�3

−⋯ , �(x)
can be intuitively considered as an interpolation between the absolute value and square. As

xt+1,i ∝ exp

(
ln(xt,i) −

1

�
gt,i

)
,

yt+1,i = sgn(xt,i)�xt,i�p−1‖xt‖
2

p−1

p −
1

�
gt,i

xt+1,i = sgn(yt+1,i)�yt+1,i�q−1‖yt+1‖
2

q−1

q ,

(1)� ∶ ℝ → ℝ, x ↦ �(|x| + �) ln

(|x|
�

+ 1

)
− �|x|.

4725Machine Learning (2022) 111:4719–4764	

1 3

observed in Fig. 1a, it is closer to the absolute value compared to the hyperbolic entropy
introduced in Ghai et al. (2020). Moreover, running OMD with regulariser x ↦

∑d

i=1
�(xi)

yields an update rule

which sets the signs of coordinates like the p-norm algorithm and updates the scale simi-
larly to EG. As illustrated in Fig. 1b, the mirror map ▿�∗ is close to the mirror map of EG,
while the behavior of HU is more similar to the gradient descent update.

4.1 � Algorithms in the Euclidean space

To obtain an adaptive and optimistic algorithm, we define the following time varying
function

and apply it to the adaptive optimistic OMD (AO-OMD) given by

for the sequence of subgradients {gt} and hints {ht} . In a bounded domain, �t is strongly
convex with respect to ‖ ⋅ ‖1 , which is shown in the next lemma.

Lemma 2  Let K ⊆ ℝ
d be convex and bounded such that ‖x‖1 ≤ D for all x ∈ K . Then we

have for all x, y ∈ K

yt+1,i = sgn(xt,i) ln

(|xt,i|
�

+ 1

)
−

1

�
gt,i

xt+1,i = sgn(yt+1,i)(� exp(|yt+1,i|) − �),

(2)�t ∶ ℝ
d
→ ℝ, x ↦ �t

d∑
i=1

(
(|xi| + �) ln

(|xi|
�

+ 1

)
− |xi|

)
,

(3)xt+1 = arg min
x∈K

⟨gt − ht + ht+1, x⟩ + rt+1(x) + B�t+1
(x, xt)

𝜙t(x) − 𝜙t(y) ≥ ▿𝜙t(y)
⊤(x − y) +

𝛼t

D + d𝛽
‖x − y‖2

1
.

Fig. 1   Comparison of convex regularisers

4726	 Machine Learning (2022) 111:4719–4764

1 3

With the property of the strong convexity, the regret of AO-OMD with regulariser (2)
can be analysed in the framework of optimistic algorithm (Joulani et al., 2017) and is upper
bounded by the following theorem.

Theorem 1  Let K ⊆ ℝ
d be a compact convex set. Assume that there is some D > 0 such

that ‖x‖1 ≤ D holds for all x ∈ K . Let {xt} be the sequence generated by update rule (3)
with regulariser (2). Setting � =

1

d
 , � =

√
1

ln(D+1)+ln d
 , and �t = �

�∑t−1

s=1
‖gs − hs‖2∞ , we

obtain

for some c(d,D) ∈ O(D
√
ln(D + 1) + ln d).

EG can also be considered as an instance of FTRL with a constant stepsize. The
update rule of the adaptive optimistic FTRL (AO-FTRL) is given by

The regret of AO-FTRL is upper bounded by the following theorem.

Theorem 2  Let K ⊆ ℝ
d be a compact convex set with d > e . Assume that there is some

D ≥ 1 such that ‖x‖1 ≤ D holds for all x ∈ K ⊆ ℝ
d . Let {xt} be the sequence generated by

updating rule (4) with regulariser (2) at iteration t. Setting � =
1

d
 , � =

√
1

ln(D+1)+ln d
 and

�t = �

�∑t−1

s=1
‖gs − hs‖2∞ , we obtain

for some c(d,D) ∈ O(D
√
ln(D + 1) + ln d).

4.2 � Spectral algorithms

We now consider the setting in which the decision variables are matrices taken from
a compact convex set K ⊆ ℝ

m,n . A direct attempt to solve this problem is to apply the
updating rule (3) or (4) to the vectorised matrices. A regret bound of O(D

√
T ln(mn))

can be guaranteed if the �1 norm of the vectorised matrices from K are bounded by D,
which is not optimal. In many applications, elements in K are assumed to have bounded
nuclear norm, for which the regulariser

can be applied. The next theorem gives the strong convexity of Φt with respect to ‖ ⋅ ‖1 over
K , which allows us to use {Φt} as the potential functions in OMD and FTRL.

R1∶T ≤r1(x1) + c(d,D)

���� T�
t=1

‖gt − ht‖2∞

(4)xt+1 = arg min
x∈K

⟨g1∶t + ht+1, x⟩ + r1∶t+1(x) + B�t+1
(x, x1).

R1∶T ≤ c(d,D)

���� T�
t=1

‖gt − ht‖2∞

(5)Φt = �t◦�

4727Machine Learning (2022) 111:4719–4764	

1 3

Theorem 3  Let � ∶ ℝ
m,n

→ ℝ
d be the function mapping a matrix to its singular values.

Then the function Φt = �t◦� is �t

2(D+min{m,n}�)
-strongly convex with respect to the nuclear

norm over the nuclear ball with radius D.

The proof of Theorem 3 follows the idea introduced in Ghai et al. (2020). Define the
operator

The set X = {S(X)| ∈ ℝ
m,n} is a finite dimensional linear subspace of the space of sym-

metric matrices �m+n . Its dual space X∗ determined by the Frobenius inner product can
be represented by X itself. For any S(X) ∈ X  , the set of eigenvalues of S(X) consists
of the singular values and the negative singular values of X. Since � is even, we have ∑d

i=1
�(�i(X)) =

∑d

i=1
�(�i(X)) for symmetric X. The next lemma shows that both Φt|X and

Φ∗
t
|X are twice differentiable.

Lemma 3  Let f ∶ ℝ → ℝ be twice continuously differentiable. Then the function given by

is twice differentiable. Furthermore, let X ∈ �
d be a symmetric matrix with eigenvalue

decomposition

Define the matrix of the divided difference Γ(f ,X) = [�(f ,X)ij] with

Then for any G,H ∈ �
d , we have

where g̃ij and h̃ij are the elements of the i-th row and j-th column of the matrix U⊤GU and
U⊤HU , respectively.

Lemma 3 implies the unsurprising positive semidefiniteness of D2F(X) for convex f.
Furthermore, the exact expression of the second differential allows us to show the local
smoothness of Φ∗

t
 using the local smoothness of �∗ . Together with Lemma 4, the locally

strong convexity of Φt|X can be proved.

Lemma 4  Let Φ ∶ 𝕏 → ℝ be a closed convex function such that Φ∗ is twice differenti-
able at some � ∈ �∗ with positive definite D2Φ∗(�) ∈ L(𝕏∗,L(𝕏∗,ℝ)) . Suppose that
D2Φ∗(�)(v, v) ≤ ‖v‖2

∗
 holds for all v ∈ �∗ . Then we have D2Φ(DΦ∗(�))(x, x) ≥ ‖x‖2 for all

x ∈ �.

S ∶ ℝ
m,n

→ 𝕊
m+n,X ↦

[
0 X

X⊤ 0

]

F ∶ 𝕊
d
→ ℝ,X ↦

d∑
i=1

f (�i(X))

X = Udiag(𝜆1(X),… , 𝜆d(X))U
⊤.

�(f ,X)ij =

{
f (�i(X))−f (�j(X))

�i(X)−�j(X)
, if �i(X) ≠ �j(X)

f �(�i(X)), otherwise

D2F(X)(G,H) =
∑
i.j

𝛾(f �,X)ijg̃ijh̃ij,

4728	 Machine Learning (2022) 111:4719–4764

1 3

Lemma 4 can be considered as a generalised version of the local duality of smoothness and
convexity proved in Ghai et al. (2020). The required positive definiteness of D2Φ∗

t
(�) is guar-

anteed by the exact expression of the second differential described in Lemma 3 and the fact
𝜙∗��(𝜃) > 0 for all � ∈ ℝ . Finally, using the construction of X  , the locally strong convexity of
Φt|X can be extended to Φt . The complete proofs of Theorem 3 and the technical lemmata can
be found in “Appendix 2.1”.

With the property of the strong convexity, the regret of applying (5) to AO-OMD and
AO-FTRL can be upper bounded by the following theorems.

Theorem 4  Let K ⊆ ℝ
m,n be a compact convex set. Assume that there is some D > 0 such

that ‖x‖1 ≤ D holds for all x ∈ K . Let {xt} be the sequence generated by update rule (3)
with regulariser (5) at iteration t. Setting � =

1

min{m,n}
 , � =

√
1

ln(D+1)+lnmin{m,n}
 , and

�t = �

�∑t−1

s=1
‖gs − hs‖2∞ , we obtain

with c(m, n,D) ∈ O(D
√
ln(D + 1) + lnmin{m, n}).

Theorem 5  Let K ⊆ ℝ
min{m,n} be a compact convex set with min{m, n} > e . Assume that

there is some D ≥ 1 such that ‖x‖1 ≤ D holds for all x ∈ K . Let {xt} be the sequence gener-
ated by updating rule (4) with time varying regulariser (5). Setting � =

1

min{m,n}
 ,

� =
√

1

ln(D+1)+lnmin{m,n}
 and �t = �

�∑t−1

s=1
‖gs − hs‖2∞ , we obtain

with c(m, n,D) ∈ O(D
√
ln(D + 1) + lnmin{m, n}).

With regulariser (5), both AO-OMD and AO-FTRL guarantee a regret upper bound
proportional to

√
lnmin{m, n} , which is the best known dependence on the size of the

matrices.

5 � Derived algorithms

Given zt+1 ∈ �∗ and a time varying closed convex function Rt+1 ∶ K → ℝ , we consider the
following updating rule

It is easy to verify that (6) is equivalent to

R1∶T ≤r1(x1) + c(m, n,D)

���� T�
t=1

‖gt − ht‖2∞

R1∶T ≤ c(m, n,D)

���� T�
t=1

‖gt − ht‖2∞,

(6)
yt+1 = ▿�∗

t+1
(zt+1)

xt+1 = arg min
x∈K

Rt+1(x) + B�t+1
(x, yt+1).

4729Machine Learning (2022) 111:4719–4764	

1 3

Setting zt+1 = ▿�t+1(xt) − gt + ht − ht+1 and Rt+1 = rt+1 , we obtain the AO-OMD update

Setting zt+1 = −▿�t+1(x1) + g1∶t + ht+1 and Rt+1 = r1∶t+1 , we obtain the AO-FTRL update

The rest of this section focuses on solving the second line of (6) for some popular choices
of r and K.

5.1 � Elastic net regularisation

We first consider the setting of K = ℝ
d and Rt+1(x) = �1‖x‖1 + �2

2
‖x‖2

2
 , which has count-

less applications in machine learning. It is easy to verify that the Bregman divergence
associated with �t+1 is given by

The minimiser of

in ℝd can be simply obtained by setting the subgradient to 0. For ln(|yi,t+1|
�

+ 1) ≤
�1

�t+1
 , we

set xi,t+1 = 0 . Otherwise, the 0 subgradient implies sgn(xi,t+1) = sgn(yi,t+1) and |xi,t+1| given
by the root of

for i = 1,… , d . For simplicity, we set a = � , b =
�2

�t+1
 and c = �1

�t+1
− ln(

|yi,t+1|
�

+ 1) . It can be
verified that |xi,t+1| is given by

xt+1 = arg min
x∈K

Rt+1(x) + B�t+1
(x, yt+1)

= arg min
x∈K

Rt+1(x) + �t+1(x) − ⟨▿�t+1(yt+1), x⟩
= arg min

x∈K

Rt+1(x) + �t+1(x) − ⟨zt+1, x⟩

xt+1 = arg min
x∈K

⟨gt − ht + ht+1, x⟩ − ⟨▿�t+1(xt), x⟩ + �t+1(x) + rt+1(x)

= arg min
x∈K

⟨gt − ht + ht+1, x⟩ + rt+1(x) + B�t+1
(x, xt).

xt+1 = arg min
x∈K

⟨g1∶t − �1 + ht+1, x⟩ + �t+1(x) + r1∶t+1(x).

B�t+1
(x, y) = �t+1

d∑
i=1

(
(|xi| + �) ln

(|xi|
�

+ 1

)
− |xi|

− (sgn(yi)xi + �) ln

(|yi|
�

+ 1

)
+ |yi|

)
.

Rt+1(x) + B�t+1
(x, yt+1)

ln

(|yi,t+1|
�

+ 1

)
= ln

(|xi,t+1|
�

+ 1

)
+

�1

�t+1
+

�2

�t+1
|xi,t+1|

(7)|xi,t+1| = 1

b
W0(ab exp(ab − c)) − a,

4730	 Machine Learning (2022) 111:4719–4764

1 3

where W0 is the principal branch of the Lambert function and can be well approximated.
For �2 = 0 , i.e. the �1 regularised problem, |xi,t+1| has the closed form solution

The implementation is described in Algorithm 1.

5.2 � Nuclear and Frobenius regularisation

Similarly, we consider K = ℝ
m,n with a regulariser Rt+1(x) = �1‖x‖1 + �2

2
‖x‖2

2
 mixed with

the nuclear and Frobenius norm. The second line of update rule (6) can be implemented as
follows

Let yt+1 and ỹt+1 be as defined in (9). It is easy to verify

From the characterisation of subgradient, it follows

and

(8)|xi,t+1| = � exp

(
ln

(|yi,t+1|
�

+ 1

)
−

�1

�t+1

)
− �.

(9)

Compute SVD: yt+1 =Ut+1diag(ỹt+1)V
⊤

t+1

Apply Algorithm 1: x̃t+1 = arg min
x∈ℝd

Rt+1(x) + B𝜙t+1
(x, ỹt+1)

Construct: xt+1 =Ut+1diag(x̃t+1)V
⊤

t+1
.

(10)
arg min
x∈ℝm,n

Rt+1(x) + BΦt+1
(x, yt+1)

= arg min
x∈ℝm,n

Rt+1(x) + Φt+1(x) − ⟨Ut+1diag(▿𝜙t+1(ỹt+1))V
⊤

t+1
, x⟩F .

▿Rt+1(x) = Udiag(𝛾1sgn(𝜎(x)) + 𝛾2𝜎(x))V
⊤,

▿Φt(x) = Udiag(▿𝜙t(𝜎(x)))V
⊤,

4731Machine Learning (2022) 111:4719–4764	

1 3

where x = Udiag(𝜎(x))V⊤ is SVD of x. Similar to the case in ℝd , x̃t+1 is the root of

The subgradient of the objective (10) at xt+1 = Ut+1diag(x̃t+1)V
⊤
t+1

 is clearly 0.

5.3 � Projection onto the cross‑polytope

Next, we consider the setting where rt is the zero function and K is the �1 ball with
radius D. Clearly, we simply set xt+1 = yt+1 for ‖yt+1‖1 ≤ D . Otherwise, Algorithm 2
describes a sorting based procedure projecting yt+1 onto the �1 ball with time complexity
O(d log d) . The correctness of the algorithm is shown in the next lemma.

Lemma 5  Let y ∈ ℝ
d with ‖y‖1 > D and x∗ as returned by Algorithm 2, then we have

For the case that K ⊆ ℝ
m,n is the nuclear ball with radius D and ‖yt+1‖1 > D , we need

to solve the problem

where the constant part of the Bregman divergence is removed. From the von Neumann’s
trace inequality, the Frobenius inner product is upper bounded by

The equality holds when x and Ut+1▿𝜙t+1(ỹt+1)V
⊤
t+1

 share a simultaneous SVD, i.e. the min-
imiser has an SVD of the form

Thus the problem is reduced to

𝛾1sgn(𝜎(x)) + 𝛾2𝜎(x) + ▿𝜙t(𝜎(x)) = ▿𝜙t(ỹt+1).

x∗ ∈ arg min
x∈K

B�t+1
(x, y).

min
x∈K

Φt+1(x) − ⟨Ut+1diag(▿𝜙t+1(ỹt+1))V
⊤

t+1
, x⟩F ,

⟨Ut+1▿𝜙t+1(ỹt+1)V
⊤

t+1
, x⟩F ≤ 𝜎(x)⊤▿𝜙t+1(ỹt+1).

x = Ut+1diag(▿𝜎(x))V
⊤

t+1
.

4732	 Machine Learning (2022) 111:4719–4764

1 3

which can be solved by Algorithm 2. Thus, the projection of update rule (6) can be imple-
mented as follows

5.4 � Stochastic acceleration

Finally, we consider the stochastic optimisation problem of the form

where l ∶ 𝕏 → ℝ and r ∶ K → ℝ≥0 are closed convex functions. In the stochastic setting,
instead of having a direct access to ▿l , we query a stochastic gradient gt of l at zt in each
iteration t with �[gt|zt] ∈ �l(zt) . Algorithms with a regret bound of the form

O(

�∑T

t=1
‖gt − ht‖2∗) can be easily converted into a stochastic optimisation algorithm by

applying the update rule to the scaled stochastic gradient atgt and hint at+1gt , which is
described in Algorithm 3. Joulani et al. (2020) has shown the convergence of accelerating
Adagrad for the problem in ℝd . We extend the result to any finite dimensional normed vec-
tor space in the following corollary.

Corollary 1  Let (�, ‖ ⋅ ‖) be a finite dimensional normed vector space and K ⊆ � a com-
pact convex set. Denote by A be some optimistic algorithm generating xt ∈ K at iteration
t. Denote by

min
x∈ℝmin{m,n}

𝜙t+1(x) − ▿𝜙t+1(ỹt+1)
⊤x

s.t.

min{m,n}∑
i=1

xi ≤ D

xi ≥ 0 for all i = 1,… , min{m, n},

(11)

Compute SVD: yt+1 =Ut+1diag(ỹt+1)V
⊤

t+1

Apply Algorithm 2: x̃t+1 = project(ỹt+1,D, 𝛽)

Construct: xt+1 =Ut+1diag(x̃t+1)V
⊤

t+1
.

min
x∈K

l(x) + r(x),

4733Machine Learning (2022) 111:4719–4764	

1 3

the variance. If A has a regret upper bound in the form of

then there is some L > 0 such that the error incurred by Algorithm 3 is upper bounded by

Furthermore, if l is M-smooth, then we have

Setting �t = t , we obtain a convergence of O(
c2√
T
) in general case, and O(

c2

T2
+

c2 maxt �t√
T

)
for smooth loss function. Applying update rule (3) or (4) with regulariser (2) or (5) to
Algorithm 3, the constant c2 is proportional to

√
ln d and

√
ln(min{m, n}) for 𝕏 = ℝ

d and
𝕏 = ℝ

m,n respectively, while the accelerated AdaGrad has a linear dependence on the
dimensionality (Joulani et al., 2020).

6 � Experiments

This section shows the empirical evaluation of the developed algorithms. We carry out
experiments on both synthetic and real-world data and demonstrate the performances of
the OMD (Exp-MD) and FTRL (Exp-FTRL) based on the exponentiated update.

6.1 � Online logistic regression

For a sanity check, we simulate an d-dimensional online logistic regression problem, in
which the model parameter w∗ has a 99% sparsity and the non-zero values are randomly
drawn from the uniform distribution over [−1, 1] . At each iteration t, we sample a random
feature vector xt from a uniform distribution over [−1, 1]d and generate a label yt ∈ {−1, 1}
using a logit model, i.e. Pr[yt = 1] = (1 + exp(−w⊤xt))

−1 . The goal is to minimise the
cumulative regret

with lt(w) = ln(1 + exp(−ytw
⊤xt)) . We choose d = 10,000 and compare our algorithms

with AdaGrad, AdaFTRL (Duchi et al., 2011) and HU (Ghai et al., 2020). For both AdaG-
rad and AdaFTRL, we set the i-th entry of the proximal matrix Ht to hii = 10−6 +

∑t−1

s=1
g2
s,i

�2
t
= �[‖gt − ▿lt(zt)‖2∗�zt]

c1 + c2

���� T�
t=1

‖at(gt − gt−1)‖2∗

�[f (zT) − f (x)] ≤
c1 + c2

�
8
∑T

t=1
a2t (�

2
t + L2)

a1∶T
.

�[f (zT) − f (x)] ≤
c1 + c2

�
8
∑T

t=1
a2t �

2
t +

√
2c2L + 2Mc2

2

a1∶T
.

R1∶T =

T∑
t=1

lt(wt) −

T∑
t=1

lt(w
∗)

4734	 Machine Learning (2022) 111:4719–4764

1 3

as their theory suggested (Duchi et al., 2011). The stepsize of HU is set to
�

1∑t−1

s=1
‖gs‖2∞

leading to an adaptive regret upper bound. All algorithms take decision variables from an
�1 ball {w ∈ ℝ

d�‖w‖1 ≤ D} , which is the ideal case for HU. We examine the performances
of the algorithms with known, underestimated and overestimated ‖w∗‖1 by setting
D = ‖w∗‖1 , D =

1

2
‖w∗‖1 and D = 2‖w∗‖1 , respectively. For each choice of D, we simulate

the online process of each algorithm for 10,000 iterations and repeat the experiments for 20
trials.

Figure 2 plots the curves of the average cumulative regret with the ranges of standard
deviation as shaded regions. As can be observed, our algorithms have a clear and stable
advantage over the AdaGrad-style algorithms and slightly outperform HU in the experi-
ments with known ‖w∗‖1 . As the combination of the entropy-like regulariser and FTRL can
also be used for parameter-free optimisation (Cutkosky & Boahen, 2017a), overestimating
‖w∗‖1 does not have a tangible impact on the performance of Exp-FTRL, which leads to its
clear advantage over the rest.

6.2 � Online multitask learning

Next, we examine the performance of the developed spectral algorithms using a simu-
lated online multi-task learning problem (Kakade et al., 2012), in which we need to solve
k highly correlated d-dimensional online prediction problems simultaneously. The data are

Fig. 2   Online logistic regression

4735Machine Learning (2022) 111:4719–4764	

1 3

generated as follows. We first randomly draw two orthogonal matrices U ∈ GL(d,ℝ) and
V ∈ GL(k,ℝ) . Then we generate a k-dimensional vector � with r non-zero values randomly
drawn from a uniform distribution over [0, 10] and construct a low rank parameter matrix
W∗ = Udiag(�)V  . At each iteration t, k feature and label pairs (xt,1, yt,1),… , (xt,k, yt,k) are
generated using k logit models with the i-th parameters taken from the i-th rows of W. The
loss function is given by lt(W) =

∑k

i=1
ln(1 + exp(−yt,iw

⊤
i
xt,i)) . We set d = 100 , k = 25 and

r = 5 , take the nuclear ball {W ∈ ℝ
d,k�‖W‖1 ≤ D} as the decision set and run the experi-

ment as in Sect. 6.1. The average and standard deviation of the results over 20 trials are
shown in Fig. 3.

Similar to the online logistic regression, our algorithms have a clear advantage over
AdaGrad and AdaFTRL and slightly outperform HU in all settings. While the regret of
the AdaGrad-style algorithms spread over a wider range, our algorithms yield relatively
stabler results. The superiority of Exp-FTRL for the overestimated ‖W∗‖1 can also be
observed from Fig. 3c.

6.3 � Optimisation for contrastive explanations

Generating the contrastive explanation of a machine learning model (Dhurandhar et al.,
2018) is the most motivating application of this paper. Given a sample x0 ∈ X and
machine learning model f ∶ X → ℝ

K , the contrastive explanation consists of a set of

Fig. 3   Online multitask learning

4736	 Machine Learning (2022) 111:4719–4764

1 3

pertinent positive (PP) features and a set of pertinent negative (PN) features, which can
be found by solving the following optimisation problem (Dhurandhar et al., 2018)

Let � ≥ 0 be a constant and define k0 = argmaxi f (x0)i . The loss function for finding PP is
given by

which imposes a penalty on the features that do not justify the prediction. PN is the set of
features altering the final classification and is modelled by the following loss function

In the experiment, we first train a ResNet20 model (He et al., 2016) on the CIFAR-10
dataset (Krizhevsky, 2009), which attains a test accuracy of 91.49% . For each class of the
images, we randomly pick 100 correctly classified images from the test dataset and gener-
ate PP and PN for them. For PP, we take the set of all feasible images as the decision set,
while for PN, we take the set of tensors x, such that x0 + x is a feasible image.

We first consider the white-box setting, in which we have the access to ▿lx0 . Our goal is to
demonstrate the performance of the accelerated AO-OMD and AO-FTRL based on the expo-
nentiated update (AccAOExpMD and AccAOExpFTRL). In Dhurandhar et al. (2018), the fast
iterative shrinkage-thresholding algorithm (FISTA) (Beck & Teboulle, 2009) is applied to
finding the PP and PN. Therefore, we take FISTA as our baseline. In addition, our algorithms
are also compared with the accelerated AO-OMD and AO-FTRL with AdaGrad-style stepsizes
(AccAOMD and AccAOFTRL) (Joulani et al., 2020).

We pick �1 = �2 =
1

2
 , which is the largest value from the set {2−i|i ∈ ℕ} allowing FISTA

to attain a negative loss lx0 for 10 randomly selected images. All algorithms start from x1 = 0 .
Figure 4 plots the convergence behaviour of the five algorithms, averaged over the 1000
images. In the experiment for PP, our algorithms are obviously better than the AdaGrad-
style algorithms. Although FISTA converges faster at the first 100 iterations, it does not make
further progress afterwards due to the tiny stepsize found by the backtracking rule. In the

min
x∈W

lx0 (x) + �1‖x‖1 +
�2

2
‖x‖2

2
.

lx0 (x) = max

{
max
i≠k0

f (x)i − f (x)k0 ,−�

}
,

lx0 (x) = max

{
f (x0 + x)k0 −max

i≠k0

f (x0 + x)i,−�

}
.

Fig. 4   White box contrastive explanations on CIFAR-10

4737Machine Learning (2022) 111:4719–4764	

1 3

experiment for PN, all algorithms behave similarly. It is worth pointing out that the backtrack-
ing rule of FISTA requires multiple function evaluations, which are expensive for explaining
deep neural networks.

Next, we consider the black-box setting, in which the gradient is estimated through the two-
points estimation

where � , � are constants and vi is a random vector. Following Chen et al. (2019), we set
� = d and sample vi independently from the uniform distribution over the unit sphere for
AdaGrad-style algorithms. Since the convergence of our algorithms depends on the vari-
ance of the gradient estimation in (ℝd, ‖ ⋅ ‖∞) , we set � = 1 and sample �i,1,… , �i,d inde-
pendently from Rademacher distribution according to Corollary 3 in Duchi et al. (2015).
To ensure a small bias of the gradient estimation, we set � =

1√
dT

 , which is the recom-
mended value for non-convex and constrained optimisation in Chen et al. (2019). The per-
formances of the algorithms are examined in the high and low variance settings with b = 1

1

b

b∑
i=1

�

�
(f (x + �vi) − f (x))vi,

Fig. 5   Black box contrastive explanations: high variance setting

Fig. 6   Black box contrastive explanations: low variance setting

4738	 Machine Learning (2022) 111:4719–4764

1 3

and b =
√
T  , respectively. Since the problem is stochastic, FISTA, which searches for the

stepsize at each iteration, is not practical. Thus, we remove it from the comparison.
Figure 5 plots the convergence behaviour of the algorithms in the high variance setting.

Our algorithms outperform the AdaGrad-style algorithms for generating both PP and PN.
Furthermore, the FTRL based algorithms have higher convergence rates than the MD based
ones at the first few iterations, leading to overall better performance. The experimental results
of the low variance setting are plotted in Fig. 6. Though AccAOExpFTRL yields the smallest
objective value at the beginning of the experiments, it gets stuck in the local minimum around
0 and is outperformed by AccAOExpMD and AccAOFTRL at the later iterations. Overall, the
algorithms based on the exponentiated update have an advantage over the AdaGrad-style algo-
rithms for both high and low variance settings.

7 � Conclusion

This paper proposes and analyses a family of online optimisation algorithms based on an
entropy-like regulariser combined with the ideas of optimism and adaptivity. The proposed
algorithms have adaptive regret bounds depending logarithmically on the dimensionality
of the problem, can handle popular composite objectives and can be easily converted into
stochastic optimisation algorithms with optimal accelerated convergence rates for smooth
function. As a future research direction, we plan to analyse the convergence of the pro-
posed algorithms together with variance reduction techniques for non-convex stochastic
optimisation and analyse their empirical performance for training deep neural networks.

Appendix 1: Missing proofs of section 3.1

Appendix 1.1: Proof of Lemma 1

Proof  It is straightforward that � is differentiable at x ≠ 0 with

For any h ∈ ℝ , we have

where the first inequality uses the fact ln x ≤ x − 1 . Further more, we have

��(x) = � ln

(|x|
�

+ 1

)
sgn(x).

�(0 + h) − �(0) = �(|h| + �) ln

(|h|
�

+ 1

)
− �|h|

≤ �(|h| + �)
|h|
�

− �|h|
=
�

�
h2,

4739Machine Learning (2022) 111:4719–4764	

1 3

where the first inequality uses the fact ln x ≥ 1 −
1

x
 . Thus, we have

for h > 0 and

for h < 0 , from which it follows limh→0
�(0+h)−�(0)

h
= 0 . Similarly, we have for x ≠ 0

Let h ≠ 0 . Then we have

From the inequalities of the logarithm, it follows

Thus, we obtain ���(0) =
�

�
 . By the definition of the convex conjugate we have

which is differentiable. The maximiser y satisfies

Since ln
(|y|

�
+ 1

)
≥ 0 holds, we have sgn(y) = sgn(�) and

Thus, we obtain the maximiser y = �∗�(�) by setting

Combining (12) and (13), we obtain

�(0 + h) − �(0) = �(|h| + �) ln

(|h|
�

+ 1

)
− �|h|

≥ �(|h| + �)

(|h|
|h| + �

)
− �|h|

≥ 0,

0 ≤
�(0 + h) − �(0)

h
≤

�

�
h

�

�
h ≤

�(0 + h) − �(0)

h
≤ 0.

���(x) =
�

|x| + �
.

��(0 + h) − ��(0)

h
=

� ln
(|h|

�
+ 1

)
sgn(h)

h
=

� ln
(|h|

�
+ 1

)

|h| .

�

|h| + �
≤

��(0 + h) − ��(0)

h
≤

�

�
.

(12)�∗(�) = max
x∈ℝ

�x − �(x),

ln(
|y|
�

+ 1)sgn(y) = �.

|y| = �exp

(|�|
�

)
− �.

(13)y = sgn(�)

(
�exp

(|�|
�

)
− �

)
.

4740	 Machine Learning (2022) 111:4719–4764

1 3

To prove that �∗ is twice differentiable, it suffices to show that �∗� is differentiable at 0. For
any h ≠ 0 , we have

Applying the inequalities of the logarithm, we obtain

from which it follows �∗ is twice differentiable at 0 and

	� ◻

Appendix 1.2: Proof of Lemma 2

Proof  Let x ∈ K be arbitrary. We have

for all v ∈ ℝ
d , where the first inequality follows from the Cauchy-Schwarz inequality. This

leads clearly to the strong convexity for a twice differentiable function. 	� ◻

�∗(�) = �� exp
|�|
�

− �|�| − ��.

�∗�(0 + h) − �∗�(0)

h
=

sgn(h)
(
� exp

(|h|
�

)
− �

)

h
.

�

�
≤

sgn(h)
(
� exp

(|h|
�

)
− �

)

h
≤

�

�
exp

(|h|
�

)
,

�∗��(0) =
�

�
.

v⊤▿2𝜙t(x)v = 𝛼t

d�
i=1

v2
i

�xi� + 𝛽

= 𝛼t

d�
i=1

v2
i

�xi� + 𝛽

d�
i=1

(�xi� + 𝛽)
1∑d

i=1
(�xi� + 𝛽)

≥
𝛼t∑d

i=1
(�xi� + 𝛽)

�
d�
i=1

�vi�
�2

≥
𝛼t

D + d𝛽

�
d�
i=1

�vi�
�2

=
𝛼t

D + d𝛽
‖v‖2

1

4741Machine Learning (2022) 111:4719–4764	

1 3

Appendix 1.3: Proof of Theorem 1

Proposition 1  Let K ⊆ � be a convex set. Assume that rt ∶ K → ℝ≥0 is closed convex
function defined on K and �t ∶ K ↦ ℝ is �t-strongly convex w.r.t. ‖ ⋅ ‖ over K . Then the
sequence {xt} generated by (3) with regulariser {�t} guarantees

Proof  From the optimality condition, it follows that for all x ∈ K

Then, we have

Adding up from 1 to T , we obtain

h1 , hT+1 and xT+1 , which are artifacts of the analysis, can be set to 0. Then, we simply obtain

R1∶T ≤ r1(x1) + B�1
(x, x1) +

T�
t=1

(B�t+1
(x, xt) − B�t

(x, xt)) +

T�
t=1

‖gt − ht‖2∗
2�t+1

.

⟨gt − ht + ht+1 + ▿rt+1(xt+1), xt+1 − x⟩
≤ ⟨▿�t+1(xt) − ▿�t+1(xt+1), x − xt+1⟩
=B�t+1

(x, xt) − B�t+1
(x, xt+1) − B�t+1

(xt+1, xt).

⟨gt, xt − x⟩ + rt+1(xt+1) − rt+1(x)

≤ ⟨gt, xt − xt+1⟩ + ⟨gt − ht + ht+1 + ▿rt+1(xt+1), xt+1 − x⟩
+ ⟨ht − ht+1, xt+1 − x⟩

≤ ⟨gt − ht, xt − xt+1⟩ + ⟨ht, xt − x⟩ − ⟨ht+1, xt+1 − x⟩
+ B�t+1

(x, xt) − B�t+1
(x, xt+1) − B�t+1

(xt+1, xt)

T�
t=1

(⟨gt, xt − x⟩ + rt+1(xt+1) − rt+1(x))

≤

T�
t=1

⟨gt − ht, xt − xt+1⟩ +
T�
t=1

(⟨ht, xt − x⟩ − ⟨ht+1, xt+1 − x⟩)

+

T�
t=1

(B�t+1
(x, xt) − B�t+1

(x, xt+1) − B�t+1
(xt+1, xt))

≤

T�
t=1

(⟨gt − ht, xt − xt+1⟩ − B�t+1
(xt+1, xt))

+ ⟨h1, x1 − x⟩ − ⟨hT+1, xT+1 − x⟩

+ B�1
(x, x1) +

T�
t=1

(B�t+1
(x, xt) − B�t

(x, xt))

4742	 Machine Learning (2022) 111:4719–4764

1 3

Since rT+1 is not involved in the regret, we assume without loss of generality r1 = rT+1 .
From the �t-strong convexity of �t we have

where the second inequality uses the definition of dual norm, the third inequality follows
from the fact ab ≤

a2

2
+

b2

2
 . The claimed the result follows. 	� ◻

Proof of Theorem 1  Proposition 1 can be directly applied, and we obtain

Using Lemma 8, we bound the first term of (14)

T�
t=1

(⟨gt, xt − x⟩ + rt(xt) − rt(x))

=

T�
t=1

(⟨gt, xt − x⟩ + rt+1(xt+1) − rt+1(x))

+ r1(x1) − r1(x) − rT+1(xT+1) + rT+1(x)

≤

T�
t=1

(⟨gt, xt − x⟩ + rt+1(xt+1) − rt+1(x)) + r1(x1) − r1(x) + rT+1(x)

≤ r1(x1) − r1(x) + rT+1(x) +

T�
t=1

(⟨gt − ht, xt − xt+1⟩ − B�t+1
(xt+1, xt))

+ B�1
(x, x1) +

T�
t=1

(B�t+1
(x, xt) − B�t

(x, xt))

⟨gt − ht, xt − xt+1⟩ − B�t+1
(xt+1, xt)

≤ ⟨gt − ht, xt − xt+1⟩ −
�t+1

2
‖xt − xt+1‖2

≤ ‖gt − ht‖∗‖xt − xt+1‖ −
�t+1

2
‖xt − xt+1‖2

≤
‖gt − ht‖2∗

2�t+1
+

�t+1

2
‖xt − xt+1‖2 −

�t+1

2
‖xt − xt+1‖2

=
‖gt − ht‖2∗

2�t+1
,

(14)
R1∶T ≤

T�
t=1

(B�t+1
(x, xt) − B�t

(x, xt)) +

T�
t=1

D + d�

2�t
‖gt − ht‖2∞

+ B�1
(x, x1) + r(x1).

4743Machine Learning (2022) 111:4719–4764	

1 3

Using Lemma 6, the second term of (14) can be bounded as

The third term of (14) is simply 0 since we set �1 = 0 . Setting � =
√

1

ln(D+1)+ln d
 and com-

bining the inequalities above, we obtain the claimed result. 	� ◻

Appendix 1.4: Proof of Theorem 2

Proposition 2  Let K ⊆ � be a compact convex set such that ‖x‖ ≤ D holds for all x ∈ K ,
rt ∶ K → ℝ≥0 and �t ∶ K ↦ ℝ closed convex function defined on K . Assume �t is �t
-strongly convex w.r.t. ‖ ⋅ ‖ over K and �t ≤ �t+1 for all t = 1,… , T  . Then the sequence {xt}
generated by (4) with guarantees

Proof of Proposition 2  First, define �t = r1∶t + �t . Then, we have

Setting the artifacts hT+1 to 0, rearranging and adding
∑T

t=1
⟨gt,wt⟩ to both sides, we obtain

T�
t=1

(B�t+1
(x, xt) − B�t

(x, xt))

≤ 4D(ln(D + 1) + ln d)

T�
t=2

(�t+1 − �t)

≤ 4D(ln(D + 1) + ln d)�T+1

≤ 4D(ln(D + 1) + ln d)�

���� T�
t=1

‖gt − ht‖2∞.

T�
t=1

(D + 1)‖gt − ht‖2∞
4�t

≤
D + 1

2�

���� T�
t=1

‖gt − ht‖2∞

(15)R1∶T ≤ �T+1(x) +

T�
t=1

2D‖gt − ht‖2∗�
16D2�2t + ‖gt − ht‖2∗

.

T�
t=1

�∗
t+1

(�t+1 − ht+1) − �∗
t
(�t − ht)

=�∗
T+1

(�T+1 − hT+1) − �∗
1
(�1 − h1)

≥ ⟨�T+1 − hT+1, x⟩ − �T+1(x) − �∗
1
(�1 − h1)

≥

�
−

T�
t=1

gt − hT+1x

�
− �T+1(x) − �∗

1
(�1 − h1)

4744	 Machine Learning (2022) 111:4719–4764

1 3

From the definition of �t , it follows

where we assumed rT+1 ≡ 0 , since it is not involved in the regret. Furthermore, we have for
t ≥ 1

where the first inequality uses the definition of convex conjugate and the second inequality
follows from the fact �t+1 ≤ �t . Adding up from 1 to T, we obtain

T�
t=1

⟨gt, xt − x⟩

≤�T+1(x) + �∗
1
(�1 − h1) +

T�
t=1

(�∗
t+1

(�t+1 − ht+1) − �∗
t
(�t − ht) + ⟨gt, xt⟩)

=�T+1(x) − ⟨h1, x1⟩ − r1(x1)

+

T�
t=1

(�∗
t+1

(�t+1 − ht+1) − �∗
t
(�t+1))

+

T�
t=1

(�∗
t
(�t+1) − �∗

t
(�t − ht) + ⟨�t − �t+1,▿�

∗
t
(�t − ht)⟩)

≤�T+1(x) − ⟨h1, x1⟩ − r1(x1)

+

T�
t=1

(�∗
t+1

(�t+1 − ht+1) − �∗
t
(�t+1))

+

T�
t=1

(�∗
t
(�t+1) − �∗

t
(�t − ht) + ⟨�t − �t+1,▿�

∗
t
(�t − ht)⟩),

�T+1(x) = �T+1(x) + r1∶T+1(x) = �T+1(x) + r1∶T (x),

�∗
t+1

(�t+1 − ht+1) − �∗
t
(�t+1)

≤ ⟨�t+1 − ht+1, xt+1⟩ − �t+1(xt+1) − ⟨�t+1, xt+1⟩ + �t(xt+1)

= − ⟨ht+1, xt+1⟩ − �t+1(xt+1) + �t(xt+1)

= − ⟨ht+1, xt+1⟩ − r1∶t+1(xt+1) + r1∶t(xt+1) − �t+1(xt+1) + �t(xt+1)

≤ − ⟨ht+1, xt+1⟩ − rt+1(xt+1),

T�
t=1

(�∗
t+1

(�t+1 − ht+1) − �∗
t
(�t+1))

≤ −

T�
t=1

rt+1(xt+1) −

T�
t=1

⟨ht+1, xt+1⟩

= r1(x1) + ⟨h1, x1⟩ − rT+1(xt+1) − ⟨hT+1, xT+1⟩ −
T�
t=1

rt(xt) −

T�
t=1

⟨ht, xt⟩

= r1(x1) + ⟨h1, x1⟩ −
T�
t=1

rt(xt) −

T�
t=1

⟨ht, xt⟩,

4745Machine Learning (2022) 111:4719–4764	

1 3

where we use rT+1 ≡ 0 and hT+1 = 0 . Combining the inequality above and rearranging, we
have

Next, by the definition of the Bregman divergence, we have

Since �t is �t strongly convex, we have

We also have

Putting (17) and (18) together, we have

Combining the inequalities above, we obtain

(16)

T�
t=1

(⟨gt, xt − x⟩ + rt(xt) − rt(x))

≤�T+1(x) +

T�
t=1

(�∗
t
(�t+1) − �∗

t
(�t − ht) + ⟨�t − ht − �t+1,▿�

∗
t
(�t − ht)⟩)

≤�T+1(x) +

T�
t=1

B�∗
t
(�t+1, �t − ht).

B�∗
t
(�t+1, �t − ht)

≤ ⟨�t+1,▿�∗
t
(�t+1)⟩ − �t(▿�

∗
t
(�t+1)) − ⟨�t − ht, xt⟩ + �t(xt) + ⟨gt − ht, xt⟩

= ⟨�t − ht,▿�
∗
t
(�t+1) − xt⟩ − �t(▿�

∗
t
(�t+1)) + �t(xt) + ⟨gt − ht, xt − ▿�∗

t
(�t+1)⟩

= ⟨gt − ht, xt − ▿�∗
t
(�t+1)⟩ − B�t

(▿�∗
t
(�t+1), xt).

(17)

⟨gt − ht, xt − ▿�∗
t
(�t+1)⟩ − B�t

(▿�∗
t
(�t+1), xt)

≤
1

2�t
‖gt − ht‖2∗ +

�t

2
‖xt − ▿�∗

t
(�t+1)‖2 − B�t

(▿�∗
t
(�t+1), xt)

≤
1

2�t
‖gt − ht‖2∗

(18)

⟨gt − ht, xt − ▿�∗
t
(�t+1)⟩ − B�t

(▿�∗
t
(�t+1), xt)

≤ ⟨gt − ht, xt − ▿�∗
t
(�t+1)⟩

≤ 2D‖gt − ht‖∗.

⟨gt − ht, xt − ▿�∗
t
(�t+1)⟩ − B�t

(▿�∗
t
(�t+1), xt)

≤ min

�
1

2�t
‖gt − ht‖2∗, 2D‖gt − ht‖∗

�

≤
1

2�t

‖gt−ht‖2∗
+

1

2D‖gt−ht‖∗

≤
2D‖gt − ht‖2∗

4D�t + ‖gt − ht‖∗
≤

2D‖gt − ht‖2∗�
16D2�2t + ‖gt − ht‖2∗

4746	 Machine Learning (2022) 111:4719–4764

1 3

	� ◻

Proof of Theorem 2  We take the Bregman divergence B�t
(x, x1) as the regulariser at itera-

tion t. Since B�t
(x, x1) is non-negative, increasing with t and 2�t

D+�d
 strongly-convex w.r.t.

‖ ⋅ ‖1 , Proposition 2 can be directly applied, and we get

Setting � =
1

d
 and � =

1√
ln(D+1)+ln d

 , we have

where the inequality uses the assumptions D ≥ 1 and d > e . Adding up from 1 to T, we
obtain

The first term can be bounded by Lemma 8

R1∶T ≤ �T+1(x) +

T�
t=1

2D‖gt − ht‖2∗�
16D2�2t + ‖gt − ht‖2∗

R1∶T ≤B�T+1
(x, x1) +

T�
t=1

2D‖gt − ht‖2∞�
64D2�2t

(D+�d)2
+ ‖gt − ht‖2∞

=B�T+1
(x, x1) +

2D

�

T�
t=1

‖gt − ht‖2∞�
64D2

(D+�d)2

∑t−1

s=1
‖gs − ht‖2∞ +

1

�2
‖gt − ht‖2∞

‖gt − ht‖2∞�
64D2

(D+�d)2

∑t−1

s=1
‖gs − ht‖2∞ +

1

�2
‖gt − ht‖2∞

=
‖gt − ht‖2∞�

64D2

(D+1)2

∑t−1

s=1
‖gs − ht‖2∞ + (ln(D + 1) + ln d)‖gt − ht‖2∞

≤
‖gt − ht‖2∞�∑t−1

s=1
‖gs − ht‖2∞ + ‖gt − ht‖2∞

=
‖gt − ht‖2∞�∑t

s=1
‖gs − ht‖2∞

,

R1∶T ≤B�T+1
(x, x1) + 2D

√
ln(D + 1) + ln d

T�
t=1

‖gt − ht‖2∞�∑t

s=1
‖gs − ht‖2∞

≤B�T+1
(x, x1) + 4D

√
ln(D + 1) + ln d

���� T�
t=1

‖gt − ht‖2∞

B�T+1
(x, x1) ≤ 4D

√
ln(D + 1) + ln d

���� T�
t=1

‖gt − ht‖2∞

4747Machine Learning (2022) 111:4719–4764	

1 3

Combining the inequality above, we obtain

with c(D, d) ∈ O(D
√
ln(D + 1) + ln d) , which is the claimed result. 	� ◻

Appendix 2: Missing Proofs of section 3.2

Appendix 2.1: Proof of Theorem 3

The Proof of Theorem 3 is based on the idea of Ghai et al. (2020). We first revise some
technical lemmata.

Proof of Lemma 3  Define F̃ ∶ �
d
→ �

d,X ↦ Udiag(f (𝜆1(X)),… , f (𝜆d(X)))U
⊤ . Appar-

ently, we have F(X) = TrF̃(X) . From the Theorem V.3.3 in Bhatia (2013), it follows that F̃
is differentiable and

Using the linearity of the trace and the chain rule, F is differentiable and the directional
derivative at X in H is given by

where h̃ii is the i-th element in the diagonal of the matrix U⊤HU . Next, define

And we have

Applying Theorem V.3.3 in Bhatia (2013) again, we obtain the differentiability of F̄ and

Note that X ↦ Tr(X(⋅)) is a linear map between finite dimensional spaces. Thus F is twice
differentiable. From the linearity of the trace operator and matrix multiplication, it follows
that DHF(X) is differentiable. Applying the chain rule, we obtain

R1∶T ≤ c(D, d)

���� T�
t=1

‖gt − ht‖2∞,

DF̃(X)(H) = U(Γ(f ,X)⊙ U⊤HU)U⊤.

DHF(X) =DTr(F̃(X))◦DF̃(X)(H)

=Tr(DF̃(X)(H))

=Tr(U(Γ̃(f ,X)⊙ U⊤HU)U⊤)

=Tr(Γ̃(f ,X)⊙ U⊤HU)

=

d∑
i=1

f �(𝜆i(X))h̃ii

=Tr(Udiag(f �(𝜆1(X)),… , f �(𝜆d(X)))U
⊤H)

F̄ ∶ �
d
→ �

d,X ↦ Udiag(f �(𝜆1(X)),… , f �(𝜆d(X)))U
⊤.

DF(X) = H ↦ Tr(F̄(X)H)

DF̄(X)(G) = U(Γ(f �,X)⊙ U⊤GU)U⊤.

4748	 Machine Learning (2022) 111:4719–4764

1 3

which is the claimed result. 	� ◻

Proof of Lemma 4  Since D2Φ∗(�) ∈ L(𝕏∗,L(𝕏∗,ℝ)) is positive definite and � is finite
dimensional, the map

is invertible. Furthermore, defining �� ∶ 𝕏∗ → ℝ, v ↦
1

2
D2Φ∗(�)(v, v) , we have

Thus, we obtain the convex conjugate �∗
�

by setting x = D��(v) . Denote by I ∶ � → �, x ↦ x the identity function. From
DΦ∗ = DΦ−1 , it follows

for � = DΦ(v) and all x ∈ � . Thus, we have f −1
�

= D2Φ(DΦ∗(�)) and

D2F(X)(G,H) =DG(DHF)(X)

=D(DHF)(X)(G)

=Tr((DF̄(X)(G))H)

=Tr(U(Γ(f �,X)⊙ U⊤GU)U⊤H)

=Tr((Γ(f �,X)⊙ U⊤GU)U⊤HU)

=
∑
i.j

𝛾(f �,X)ijg̃ijh̃ij,

f� ∶ �∗ → �, v ↦ D2Φ∗(�)(v, ⋅)

D��(v) =
1

2
D2Φ∗(�)(v, ⋅) +

1

2
D2Φ∗(�)(⋅, v)

= f�(v).

�∗
�
(x) = sup

v∈�∗

⟨v, x⟩ − ��(v)

= ⟨f −1
�

(x), x⟩ − ��(f
−1
�

(x))

= ⟨f −1
�

(x), x⟩ − 1

2
⟨f −1
�

(x),D2Φ∗(�)(f −1
�

(x), ⋅)⟩
= ⟨f −1

�
(x), x⟩ − 1

2
⟨f −1
�

(x), f�(f
−1
�

(x))⟩
=
1

2
⟨f −1
�

(x), x⟩

I(x) =DI(v)(x)

=D(DΦ∗
◦DΦ)(v)(x)

=D2Φ∗(DΦ(v))◦D2Φ(v)(x),

=D2Φ∗(�)◦D2Φ(DΦ∗(�))(x)

�∗
�
(x) =

1

2
⟨f −1
�

(x), x⟩
=
1

2
D2Φ(DΦ∗(�))(x, x).

4749Machine Learning (2022) 111:4719–4764	

1 3

Finally, since ��(v) ≤
1

2
‖v‖2

∗
 holds for all v ∈ �∗ , we can reverse the order by applying

Proposition 2.19 in Barbu and Precupanu (2012) and obtain for all x ∈ �

which is the claimed result. 	� ◻

Finally, we can prove Theorem 3.

Proof of Theorem 3  We start the proof by introducing the required definitions. Define the
operator

The set X = {S(X)|X ∈ ℝ
m,n} is a finite dimensional linear subspace of the space of sym-

metric matrices �m+n , and thus (X, ‖ ⋅ ‖1) is a finite dimensional Banach space. Its dual
space X∗ determined by the Frobenius inner product can be represented by X itself.
Denote by 𝔹(D) = {X ∈ ℝ

m,n�‖X‖1 ≤ D} the nuclear ball with radius D. Then the set
K = {S(X)|X ∈ �(D)} is a nuclear ball in X with radius 2D, since ‖S(X)‖1 = 2‖X‖1 for all
X ∈ ℝ

m,n.
Let S(X) ∈ K be arbitrary. Denote by Ft = Φt|X the restriction of Φt to X  . Next, we

show the strong convexity of Ft over K . From the conjugacy formula of Theorem 2.4 in
Lewis (1995) and Lemma 1, it follows

where the second equality follows from the fact that Φ∗
t
 is absolutely symmetric. By Lem-

mas 1 and 3, F∗
t
 is twice differentiable. Let X ∈ K be arbitrary and Θ = DFt(X) ∈ X∗ . For

simplicity, we define

Then, for all H ∈ X ,

where Γ(f �
t
,Θ) = [�(f �

t
,Θ)ij] is the matrix of the second divided difference with

D2F∗
t
(Θ) is clearly positive definite over �m+n , since 𝛾(f �

t
,Θ)ij > 0 for all i and j. Further-

more, from the mean value theorem and the convexity of f ′′
t

 , there is a cij ∈ (0, 1) such that

1

2
D2Φ(DΦ∗(�))(x, x) = �∗

�
(x) ≥

1

2
‖x‖2,

S ∶ ℝ
m,n

→ 𝕊
m+n,X ↦

[
0 X

X⊤ 0

]

F∗
t
(S(X)) =�∗

t
◦�(S(X)) = �∗

t
◦�(S(X)),

ft ∶ ℝ → ℝ, x ↦ �t� exp
|x|
�t

− �|x| − �t�.

D2F∗
t
(Θ)(H,H) =

∑
ij

𝛾(f �
t
,Θ)ijh̃

2
ij
,

�(f �
t
,Θ)ij =

{
f �
t
(�i(Θ))−f

�
t
(�j(Θ))

�i(Θ)−�j(Θ)
, if �i(Θ) ≠ �j(Θ)

f ��
t
(�i(Θ)), otherwise.

4750	 Machine Learning (2022) 111:4719–4764

1 3

holds for all �i(Θ) ≠ �j(Θ) . Thus, we obtain

where the last line uses von Neumann’s trace inequality and the fact that the rank of H ∈ X
and Θ is at most 2min{m, n} . Since H2 is positive semi-definite, �i(H2) = �i(H)2 holds for
all i. Furthermore, f ��

t
(x) ≥ 0 holds for all x ∈ ℝ . Thus, the last line of (19) can be rewritten

into

Recall Θ = DFt(S(X)) for S(X) ∈ K . Together with Lemma 1, we obtain

By the construction of K , it is clear that
∑2min{m,n}

i=1
��i(S(X))� ≤ 2D . Thus, (20) can be sim-

ply further upper bounded by

f �
t
(�i(Θ)) − f �

t
(�j(Θ))

�i(Θ) − �j(Θ)
≤ f ��

t
(cij�i(Θ) + (1 − cij)�j(Θ))

≤ cijf
��
t
(�i(Θ)) + (1 − cij)f

��
t
(�j(Θ))

≤ f ��
t
(�i(Θ)) + f ��

t
(�j(Θ))

(19)

D2F∗
t
(Θ)(H,H) =

∑
ij

𝛾(ft,Θ)ijh̃
2
ij

≤
∑
ij

(f ��
t
(𝜆i(Θ)) + f ��

t
(𝜆j(Θ)))h̃

2
ij

= 2

m+n∑
i=1

f ��
t
(𝜆i(Θ))

m+m∑
j=1

h̃2
ij

= 2Tr(UHU⊤diag(f ��
t
(𝜆1(Θ)),… , f ��

t
(𝜆m+n(Θ))UHU

⊤)

= 2Tr(H2diag(f ��
t
(𝜆1(Θ)),… , f ��

t
(𝜆m+n(Θ)))

≤ 2

2min{m,n}∑
i=1

𝜎i(H
2)𝜎i(diag(f

��
t
(𝜆1(Θ)),… , f ��

t
(𝜆m+n(Θ)))

(20)

D2F∗
t
(Θ)(H,H) ≤ 2

2min{m,n}�
i=1

�i(H)2�i(diag(f
��
t
(�1(Θ)),… , f ��

t
(�m+n(Θ)))

≤ 2‖H‖2
∞

2min{m,n}�
i=1

�i(diag(f
��
t
(�1(Θ)),… , f ��

t
(�m+n(Θ)))

≤ 2‖H‖2
∞

2min{m,n}�
i=1

f ��
t
(�i(Θ)).

f ��
t
(�i(Θ)) =

�

�t
exp

|�i(Θ)|
�t

=
�

�t
exp

|�t ln
(|�i(S(X)

)
|

�
+ 1)|

�t

=
|�i(S(X))| + �

�t
.

4751Machine Learning (2022) 111:4719–4764	

1 3

Finally, applying Lemma 4, we obtain

which implies the �t

4(D+min{m,n}�)
-strong convexity of Ft over K.

Finally, we prove the strongly convexity of Φt over B(D) ∈ ℝ
m+n . Let X, Y ∈ B(D) be

arbitrary matrices in the nuclear ball. The following inequality can be obtained

which implies the �t

2(D+min{m,n}�)
-strong convexity of Φt as desired. 	� ◻

Appendix 2.2: Proof of Theorem 4

Proof  The proof is almost identical to the proof of Theorem 1. From the strong convexity
of Φt shown in Theorem 3 and the general upper bound in Proposition 1, we obtain

Using Lemma 8, we have

Furthermore, from Lemma 6, it follows

D2F∗
t
(Θ)(H,H) ≤ 2‖H‖2

∞

2min{m,n}�
i=1

��i(S(X))� + �

�t

≤ 2‖H‖2
∞

2D + 2min{m, n}�

�t

D2Ft(S(X))(Y , Y) ≥
�t

4(D +min{m, n}�)
‖Y‖2

1
,

2Φt(X) − 2Φt(Y)

=Φt(S(X)) − Φt(S(Y))

≥ ⟨DΦt(S(Y)), S(X) − S(Y)⟩F +
�t

8(D +min{m, n}�)
‖S(X) − S(Y)‖2

1

= 2⟨DΦt(Y),X − Y⟩F +
�t

2(D +min{m, n}�)
‖X − Y‖2

1
,

(21)R1∶T ≤ r1(x1) + B�1
(x, x1) +

T�
t=1

(B�t+1
(x, xt) − B�t

(x, xt)) +

T�
t=1

‖gt − ht‖2∗
2�t+1

.

T�
t=1

(BΦt+1
(x, xt) − BΦt

(x, xt))

≤ 4D(ln(D + 1) + lnmin{m, n})

T�
t=2

(�t+1 − �t)

≤ 4D(ln(D + 1) + lnmin{m, n})�T+1

= 4D(ln(D + 1) + lnmin{m, n})�

���� T�
t=1

‖gt − ht‖2∞

= 4D
√
ln(D + 1) + lnmin{m, n}

���� T�
t=1

‖gt − ht‖2∞

4752	 Machine Learning (2022) 111:4719–4764

1 3

The claimed result is obtained by combining the inequalities above. 	� ◻

Appendix 2.3: Proof of Theorem 5

Proof  Since BΦt
(x, x1) is non-negative, increasing and 2�t

D+�d
 strongly-convex w.r.t. ‖ ⋅ ‖1 ,

Proposition 2 can be directly applied, and we get

Setting � =
1

min{m,n}
 and � =

1√
ln(D+1)+lnmin{m,n}

 , we have

where the inequality uses the assumptions D ≥ 1 and min{m, n} > e . Adding up from 1 to
T, we obtain

The first term can be bounded by Lemma 8

T�
t=1

(D + 1)‖gt − ht‖2∞
4�t

≤
D + 1

2

√
ln(D + 1) + lnmin{m, n}

���� T�
t=1

‖gt − ht‖2∞

R1∶T ≤BΦt
(x, x1) +

T�
t=1

2D‖gt − ht‖2∞�
64D2�2t

(D+�d)2
+ ‖gt − ht‖2∞

=BΦt
(x, x1) +

2D

�

T�
t=1

‖gt − ht‖2∞�
64D2

(D+�d)2

∑t−1

s=1
‖gs − ht‖2∞ +

1

�2
‖gt − ht‖2∞

‖gt − ht‖2∞�
64D2

(D+�d)2

∑t−1

s=1
‖gs − ht‖2∞ +

1

�2
‖gt − ht‖2∞

=
‖gt − ht‖2∞�

64D2

(D+1)2

∑t−1

s=1
‖gs − ht‖2∞ + (ln(D + 1) + ln d)‖gt − ht‖2∞

≤
‖gt − ht‖2∞�∑t−1

s=1
‖gs − ht‖2∞ + ‖gt − ht‖2∞

=
‖gt − ht‖2∞�∑t

s=1
‖gs − ht‖2∞

,

R1∶T ≤BΦt
(x, x1) + 2D

√
ln(D + 1) + lnmin{m, n}

T�
t=1

‖gt − ht‖2∞�∑t

s=1
‖gs − ht‖2∞

≤BΦt
(x, x1) + 4D

√
ln(D + 1) + lnmin{m, n}

���� T�
t=1

‖gt − ht‖2∞

4753Machine Learning (2022) 111:4719–4764	

1 3

Combining the inequalities above, we obtain

with c(D,m, n) ∈ O(D
√
ln(D + 1) + lnmin{m, n}) , which is the claimed result. 	� ◻

Appendix 3: Missing Proofs of section 3.4

Appendix 3.1: Proof of Lemma 5

Proof of Lemma 5  Let x∗ be the minimiser of B�t+1
(x, yt+1) in K . Using the the fact

ln a ≥ 1 −
1

a
 , we obtain

and

Thus, yi = 0 implies x∗
i
= 0 . Furthermore sgn(x∗

i
) = sgn(yi) must hold for all i with yi ≠ 0 ,

since otherwise we can always flip the sign of x∗
i
 to obtain smaller objective value. So we

assume without loss of generality that yi ≥ 0 . We claim that
∑d

i=1
x∗
i
= D holds for the min-

imiser x∗ . If it is not the case, there must be some i with x∗
i
< yi , and increasing x∗

i
 by a

small enough amount can decrease the objective function. Thus minimising the Bregman
divergence can be rewritten into

Using Lagrange multipliers for x ∈ ℝ
d , � ∈ ℝ and � ∈ ℝ

d
+

BΦT+1
(x, x1) ≤ 4D(ln(D + 1) + lnmin{m, n})

���� T�
t=1

‖gt − ht‖2∞

R1∶T ≤ c(D,m, n)

���� T�
t=1

‖gt − ht‖2∞,

ln

(|x∗
i
|

�
+ 1

)
≥

|x∗
i
|

|x∗
i
+ �|

((|x∗
i
| + �) ln

(|x∗
i
|

�
+ 1

)
− |x∗

i
| ≥ 0.

(22)

min
x∈ℝd

d∑
i=1

(
(xi + �) ln

xi + �

yi + �
− xi

)

s.t.

d∑
i=1

xi = D

xi ≥ 0 for all i = 1,… , d.

L(x, 𝜆, 𝜈) =

d∑
i=1

(
(xi + 𝛽) ln

xi + 𝛽

yi + 𝛽
− xi

)
− 𝜈⊤x − 𝜆

(
D −

d∑
i=1

xi

)
.

4754	 Machine Learning (2022) 111:4719–4764

1 3

Setting �L
�xi

= 0 , we obtain

From the complementary slackness, we have �i = 0 for xi ≠ 0 , which implies

where z = exp(�) . Let x∗ be the minimiser and I = {i ∶ x∗
i
> 0} the support of x∗ . Then we

have

Let p be a permutation of {1,… , d} such that yp(i) ≤ yp(i+1) . Define

It follows from

that �(j) is increasing in j. Let 𝜌 = min{i|𝜃(i) > 0} . For all j < 𝜌 , p(j) is not in the support
I  , since otherwise it would imply x∗

p(j)
≤ 0 . Thus the minimisation problem (22) is equiva-

lent to

Define function R ∶ ℝ>0 → ℝ, x ↦ x ln x . It can be verified that R is convex. The objective
function in (23) can be further rewritten into

ln
xi + �

yi + �
= �i − �.

xi + � =
1

z
(yi + �),

D + |I|� =
1

z

(∑
i∈I

yi + |I|�
)
.

�(j) = yp(j)(D + (d − j + 1)�) + �D − �
∑
i≥j

yp(i).

�(j + 1) − �(j) = (yp(j+1) − yp(j))(D + (d − j + 1)�) ≥ 0

(23)

min
x∈ℝd

d∑
i=𝜌

(xp(i) + 𝛽) ln
xp(i) + 𝛽

yp(i) + 𝛽

s.t.

d∑
i=𝜌

xp(i) = D

xp(i) > 0 for all i = 𝜌,… , d.

4755Machine Learning (2022) 111:4719–4764	

1 3

where the inequality follows from the Jensen’s inequality. The minimum is attained if and
only if xp(i)+�

yp(i)+�
 are equal for all i. This is only possible when �(i) is in the support I for all

i ≥ � . Thus we can set z =
∑d

i=�
(�yp(i)�+�)

D+(d−�+1)�
 and obtain x∗

i
= max{

(|yi|+�)−�
z

, 0}sgn(yi) for
i = 1… d , which is the claimed result. 	� ◻

Appendix 3.2: Proof of Corollary 1

Proposition 3  Let {xt} be any sequences and {yt} be the sequence produced by
yt+1 =

at

a1∶t
xt + (1 −

at

a1∶t
)yt . Choosing at > 0 , we have, for all x ∈ W

with R1∶T =
∑T

t=1
at(⟨gt, xt − x⟩ + r(xt) − r(x)).

Proof  It is interesting to see that the average scheme can be considered as an instance of
the linear coupling introduced in Allen-Zhu and Orecchia (2017). For any sequence {xt} ,
{yt} and zt =

at

a1∶t
xt + (1 −

at

a1∶t
)yt , we start the proof by bounding at(f (yt+1) − f (x)) as

follows

Denote by �t =
at

a1∶t
 the weight. The first term of the the inequality above can be further

bounded by

d�
i=�

(xp(i) + �) ln
xp(i) + �

yp(i) + �

=

d�
i=�

(yp(i) + �)R

�
xp(i) + �

yp(i) + �

�

≥
1∑d

i=�
(yp(i) + �)

R

�∑d

i=�
(xp(i) + �)

∑d

i=�
(yp(i) + �)

�

=
1∑d

i=�
(yp(i) + �)

R

�
D + (d − � + 1)�∑d

i=�
(yp(i) + �)

�
,

a1∶T�[f (yT+1) − f (x)] ≤�[R1∶T] −

T∑
t=1

(a1∶t−1Bl(yt, yt+1)),

(24)

at(l(yt+1) − l(x))

= at(l(yt+1) − l(zt) + l(zt) − l(x))

= at(l(yt+1) − l(zt) + ⟨▿l(zt), zt − x⟩ − Bl(zt, x))

= at(l(yt+1) − l(zt) + ⟨▿l(zt), zt − xt⟩ + ⟨▿l(zt), xt − x⟩ − Bl(zt, x))

4756	 Machine Learning (2022) 111:4719–4764

1 3

Next, we have

Combining (24), (25) and (26), we have

Simply setting yt+1 ∶= zt makes the first term above 0 and implies zt =
∑t

s=1
asxs

a1∶t
 . Further-

more it follows from the convexity of r

Combining the inequalities above and rearranging, we obtain

(25)

at(l(yt+1) − l(zt) + ⟨▿l(zt), zt − xt⟩)
= at(l(yt+1) − l(zt) +

1 − �t

�t
⟨▿l(zt), yt − zt⟩)

= at(l(yt+1) − l(zt) +

�
1

�t
− 1

�
(l(yt) − l(zt)) −

�
1

�t
− 1

�
Bl(yt, zt))

= at

�
1

�t
− 1

�
(l(yt) − l(yt+1)) +

at

�t
(l(yt+1) − l(zt)) − a1∶t−1Bl(yt, zt).

(26)

T∑
t=1

at

(
1

�t
− 1

)
(f (yt) − f (yt+1))

=

T∑
t=2

a1∶t−1(f (yt) − f (yt+1))

=

T−1∑
t=1

atf (yt+1) − a1∶T−1f (yT+1)

=

T∑
t=1

atf (yt+1) − a1∶T f (yT+1)

=

T∑
t=1

at(f (yt+1) − f (yT+1))

a1∶T (f (yT+1) − f (x)) =

T�
t=1

at

�t
(l(yt+1) − l(zt))

+

T�
t=1

⟨▿l(zt), xt − x⟩

−

T�
t=1

(a1∶t−1Bl(yt, zt) − atBl(zt, x)),

r(yT+1) = r

�∑T

s=1
asxs

a1∶T

�
≤

T�
t=1

atr(xt)

a1∶T
.

4757Machine Learning (2022) 111:4719–4764	

1 3

Furthermore, we have

Finally, we we obtain

which is the claimed result. 	� ◻

Proof of Corollary 1  First of all, we have

a1∶T (f (yT+1) − f (x)) ≤

T�
t=1

at(⟨▿l(zt), xt − x⟩ + r(xt) − r(x))

−

T�
t=1

(a1∶t−1Bl(zt−1, zt) + atBl(zt, x))

≤

T�
t=1

at(⟨▿l(zt), xt − x⟩ + r(xt) − r(x))

−

T�
t=1

(a1∶t−1Bl(zt−1, zt))

�

�
T�
t=1

⟨at▿l(zt), xt − x⟩
�

=�

�
T�
t=1

⟨atgt, xt − x⟩
�
+ �

�
T�
t=1

⟨at(▿lt − gt), xt − x⟩
�

=�

�
T�
t=1

⟨atgt, xt − x⟩
�
+

T�
t=1

�
�⟨at(▿lt − gt), xt − x⟩�

=�

�
T�
t=1

⟨atgt, xt − x⟩
�
+

T�
t=1

�
�
�
�⟨at(▿lt − gt), xt − x⟩�zt

��

=�

�
T�
t=1

⟨atgt, xt − x⟩
�
.

a1∶T�[f (yT+1) − f (x)] ≤�

�
T�
t=1

at(⟨gt, xt − x⟩ + r(xt) − r(x))

�

−

T�
t=1

(a1∶t−1Bl(yt, yt+1)),

4758	 Machine Learning (2022) 111:4719–4764

1 3

For all t, we have

Since zt−1 is fixed when zt is given, the first term above can be bounded by

Since K is compact, there is some L > 0 such that ‖▿l(z)‖∗ ≤ L for all z ∈ � . Thus the sec-
ond term of (28) can be bounded by

Combining (27), (28) and (29), we have

and combining with Proposition 3, we obtain

If l is M-smooth, then for t ≥ 2 , we have

Using fact 2ab − a2 ≤ b2 , we have

(27)

�[R1∶T] ≤ c1 + c2�

⎡
⎢⎢⎣

���� T�
t=1

‖at(gt − gt−1)‖2∗
⎤
⎥⎥⎦

≤ c1 + c2

���� T�
t=1

�[‖at(gt − gt−1)‖2∗]

≤ c1 + c2

���� T�
t=1

�[‖at(gt − gt−1)‖2∗�zt].

(28)
�[‖at(gt − gt−1)‖2∗�zt] ≤ 2a2

t
(�[‖gt − ▿l(zt) − gt−1 + ▿l(zt−1)‖2∗�zt])

+ 2a2
t
(‖▿l(zt) − ▿l(zt−1)‖2∗).

2a2
t
(�[‖gt − ▿l(zt) − gt−1 + ▿l(zt−1)‖2∗�zt])

≤ 4a2
t
(�[‖gt − ▿l(zt)‖2∗�zt] + �[‖gt−1 − ▿l(zt−1)‖2∗�zt])

≤ 4a2
t
(�[‖gt − ▿l(zt)‖2∗�zt] + �[‖gt−1 − ▿l(zt−1)‖2∗�zt−1])

≤ 4a2
t

�
�2
t
+ �2

t−1

�
.

(29)2a2
t
‖▿l(zt) − ▿l(zt−1)‖2∗ ≤ 8a2

t
L2

�[R1∶T] ≤ c1 + c2

√√√√
8

T∑
t=1

a2t
(
�2t + L2

)
,

�[f (zT) − f (x)] ≤
c1 + c2

�
8
∑T

t=1
a2t
�
�2t + L2

�

a1∶T
.

(30)
2a2

t
‖▿l(zt) − ▿l(zt−1)‖2∗ ≤

4Ma2
t

a1∶t−1
a1∶t−1Bl(zt−1, zt).

8Ma1∶t−1Bl(zt−1, zt).

4759Machine Learning (2022) 111:4719–4764	

1 3

Combining (27), (28) and (31), we have

which implies

	� ◻

Appendix 4: Technical lemmata

Lemma 6  For positive values a1,… , an the following holds:

1.	

(31)
2c2

√√√√
2M

T∑
t=2

a1∶t−1Bl(zt−1, zt) −

T∑
t=2

a1∶t−1Bl(zt−1, zt)

≤ 2Mc2
2
.

�[R1∶T] −

T�
t=1

a1∶t−1Bl(zt−1, zt)

≤ c1 + c2

���� T�
t=1

�[‖at(gt − gt−1)‖2∗�zt] −
T�
t=1

a1∶t−1Bl(zt−1, zt)

≤ c11 + c2

����
8

T�
t=1

a2t (�
2
t)

+ c2

���� T�
t=1

2a2t ‖▿l(zt) − ▿l(zt−1)‖2∗ −
T�
t=1

a1∶t−1Bl(zt−1, zt)

≤ c11 + c2

����
8

T�
t=1

a2t (�
2
t) + c2

√
2‖▿l(z1)‖∗

+ c2

���� T�
t=2

2a2t ‖▿l(zt) − ▿l(zt−1)‖2∗ −
T�
t=2

a1∶t−1Bl(zt−1, zt)

≤ c1 + c2

����
8

T�
t=1

a2t (�
2
t) +

√
2c2L + 2Mc2

2
,

�[f (zT) − f (x)] ≤
c1 + c2

�
8
∑T

t=1
a2t �

2
t +

√
2c2L + 2Mc2

2

a1∶T
.

n�
i=1

ai∑i

k=1
ak + 1

≤ log

�
n�
i=1

ai + 1

�

4760	 Machine Learning (2022) 111:4719–4764

1 3

2.	

Proof  The proof of (1) can be found in Lemma A.2 in Levy et al. (2018) For (2), we define
A0 = 1 and Ai =

∑i

k=1
ai + 1 for i > 0 . Then we have

where the inequality follows from the concavity of log . 	� ◻

Lemma 7  Let l be convex and M-smooth over � , i.e.

Then

holds for all x, y ∈ �.

Proof  Let x, y ∈ � be arbitrary. Define h ∶ 𝕏 → ℝ, z ↦ l(z) − ⟨▿l(y), z⟩ . Clearly, h is
M-smooth and minimised at y. Thus we have

where the first inequality uses the M-smoothness of h, and the second uses
⟨▿h(x), z − x⟩ ≥ −‖▿h(x)‖∗‖z − x‖ , for which we choose z such that the equality holds.
This implies

���� n�
i=1

ai ≤

n�
i=1

ai�∑i

j=1
a2
j

≤ 2

���� n�
i=1

ai.

n�
i=1

ai∑i

k=1
ak + 1

=

n�
i=1

Ai − Ai−1

Ai

=

n�
i=1

�
1 −

Ai−1

Ai

�

≤

n�
i=1

ln
Ai

Ai−1

= lnAn − lnA0

= ln

n�
i=1

(ai + 1),

l(x) ≤ l(y) + ⟨▿l(y), x − y⟩ + M

2
‖x − y‖2.

‖▿l(x) − ▿l(y)‖2
∗
≤ 2MBl(x, y)

h(y) = min
z∈�

h(z)

≤ min
z∈�

h(x) + ⟨▿h(x), z − x⟩ + M

2
‖z − x‖2

≤ min
�≥0

h(x) − ‖▿h(x)‖∗� + M

2
�2

= h(x) −
1

2M
‖▿h(x)‖2

∗
,

4761Machine Learning (2022) 111:4719–4764	

1 3

and the desired result follows. 	� ◻

Lemma 8  Define � ∶ ℝ
d
→ ℝ, x ↦

∑d

i=1
�(xi) for � be as defined in (1). Assume

‖x‖1 ≤ D for all x ∈ K ⊆ ℝ
d . Setting � =

1

d
 , we obtain for all x, y ∈ K

Similarly, we define Ψ ∶ ℝ
m,n

→ ℝ, x ↦ �◦�(x) . Assume ‖x‖1 ≤ D for all x ∈ K ⊆ ℝ
m,n .

Setting � =
1

min{m,n}
 , we obtain for all x, y ∈ K

Proof  From the definition of the Bregman divergence it follows for all x, y ∈ K

Using the closed form of ‖▿�(x)‖∞ , we have for x ∈ K

Combining the inequalities above and choosing � =
1

d
 , we obtain

Using the same argument, we have for all x, y ∈ K ⊆ ℝ
m,n

From the characterisation of subgradient, it follows for x ∈ K

Combine the inequalities above and choose � =
1

min{m,n}
 , we obtain

	� ◻

1

2M
‖▿l(x) − ▿l(y)‖2

∗
≤ l(x) − l(y) − ⟨▿l(y), x − y⟩ = Bl(x, y),

B� (x, y) ≤ 4D(ln(D + 1) + ln d).

BΨ(x, y) ≤ 4D(ln(D + 1) + lnmin{m, n}).

B� (x, y) =�(x) − �(y) − ⟨▿�(y), x − y⟩
≤ ⟨▿�(x) − ▿�(y), x − y⟩
≤ ‖▿�(x) − ▿�(y)‖∞‖x − y‖1
≤ 2D(‖▿�(x)‖∞ + ‖▿�(y)‖∞).

‖▿�(x)‖∞ = max
i

� ln
��xi�

�
+ 1

�
�

≤ � ln(D + �)� + � ln
�
1

�

�
�

≤ ln(D + 1) + ln d.

B� (x, y) = 4D(ln(D + 1) + ln d).

BΨ(x, y) = 2D(‖▿Ψ(x)‖∞ + ‖▿Ψ(y)‖∞).

‖▿Ψ(x)‖∞ = ‖▿�(�(x))‖∞
≤ ln(D + 1) + ln

1

�
.

BΨ(x, y) ≤ 4D(ln(D + 1) + lnmin{m, n}).

4762	 Machine Learning (2022) 111:4719–4764

1 3

Author contributions  Conceptualization: WS; Methodology: WS; Formal analysis and investigation: WS;
Software: WS; Validation: WS, FS; Visualization: WS; Writing - original draft preparation: WS; Writing -
review and editing: WS, FS; Funding acquisition: SA; Resources: SA; Supervision: FS, SA.

Funding  Open Access funding enabled and organized by Projekt DEAL. The research leading to these
results received funding from the German Federal Ministry for Economic Affairs and Climate Action under
Grant Agreement No. 01MK20002C.

 Availability of data and materials  The source code generating synthetic data, creating neural networks and
model training are available on GitHub https://​github.​com/​mrdex​terit​as/​exp_​grad. The CIFAR-10 data are
collected from https://​www.​cs.​toron​to.​edu/​~kriz/​cifar.​html.

Code availability  The implementation of the experiments and all algorithms involved in the experiments are
available on GitHub https://​github.​com/​mrdex​terit​as/​exp_​grad.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest or competing interests.

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Alacaoglu, A., Malitsky, Y., Mertikopoulos, P., & Cevher, V. (2020). A new regret analysis for Adam-type
algorithms. In International conference on machine learning (pp. 202–210).

Allen-Zhu, Z., & Orecchia, L. (2017). Linear coupling: An ultimate unification of gradient and mirror
descent. In 8th Innovations in theoretical computer science conference (ITCS 2017).

Anava, O., Hazan, E., Mannor, S., & Shamir, O. (2013). Online learning for time series prediction. In Con-
ference on learning theory (pp. 172–184).

Arora, S., Hazan, E., & Kale, S. (2012). The multiplicative weights update method: A meta-algorithm and
applications. Theory of Computing, 8(1), 121–164.

Barbu, V., & Precupanu, T. (2012). Convexity and optimization in banach spaces. Berlin: Springer.
Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse prob-

lems. SIAM Journal on Imaging Sciences, 2(1), 183–202.
Bhatia, R. (2013). Matrix analysis (Vol. 169). Berlin: Springer.
Cancela, B., Bolón-Canedo, V., & Alonso-Betanzos, A. (2021). A delayed elastic-net approach for perform-

ing adversarial attacks. In 2020 25th International conference on pattern recognition (ICPR) (pp. 378–
384). https://​doi.​org/​10.​1109/​ICPR4​8806.​2021.​94131​70.

Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural networks. In 2017 IEEE sym-
posium on security and privacy (SP) (pp. 39–57).

Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2004). On the generalization ability of on-line learning algo-
rithms. IEEE Transactions on Information Theory, 50(9), 2050–2057.

https://github.com/mrdexteritas/exp_grad
https://www.cs.toronto.edu/%7ekriz/cifar.html
https://github.com/mrdexteritas/exp_grad
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICPR48806.2021.9413170

4763Machine Learning (2022) 111:4719–4764	

1 3

Cesa-Bianchi, N., & Gentile, C. (2008). Improved risk tail bounds for on-line algorithms. IEEE Transac-
tions on Information Theory, 54(1), 386–390.

Chen, P.-Y., Sharma, Y., Zhang, H., Yi, J., & Hsieh, C.-J. (2018). Ead: Elastic-net attacks to deep neural net-
works via adversarial examples. In Thirty-second AAAI conference on artificial intelligence.

Chen, X., Liu, S., Xu, K., Li, X., Lin, X., Hong, M., & Cox, D. (2019). Zo-adamm: Zeroth-order adap-
tive momentum method for black-box optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems (Vol.
32). Berlin: Curran Associates, Inc.

Cutkosky, A. (2019). Anytime online-to-batch, optimism and acceleration. In International conference on
machine learning (pp. 1446–1454).

Cutkosky, A., & Boahen, K. (2017a). Online learning without prior information. In Conference on learning
theory (pp. 643–677).

Cutkosky, A., & Boahen, K. A. (2016). Online convex optimization with unconstrained domains and losses.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, & R. Garnett (Eds.), Advances in neural information
processing systems (Vol. 29). Berlin: Curran Associates, Inc.

Cutkosky, A., & Boahen, K. A. (2017b). Stochastic and adversarial online learning without hyperparam-
eters. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett
(Eds.), Advances in neural information processing systems (Vol. 30). Berlin: Curran Associates, Inc.

Dhurandhar, A., Chen, P.-Y., Luss, R., Tu, C.-C., Ting, P., Shanmugam, K., & Das, P. (2018). Explanations
based on the missing: Towards contrastive explanations with pertinent negatives. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in neural informa-
tion processing systems. (Vol. 31). Berlin: Curran Associates Inc.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12, 2121–2159.

Duchi, J. C., Jordan, M. I., Wainwright, M. J., & Wibisono, A. (2015). Optimal rates for zero-order con-
vex optimization: The power of two function evaluations. IEEE Transactions on Information Theory,
61(5), 2788–2806.

Duchi, J. C., Shalev-Shwartz, S., Singer, Y., & Tewari, A. (2010). Composite objective mirror descent. In A.
T. Kalai & M. Mohri (Eds.), COLT 2010—The 23rd conference on learning theory, Haifa, Israel, June
27–29, 2010 (pp. 14–26). Omnipress.

Gentile, C. (2003). The robustness of the p-norm algorithms. Machine Learning, 53(3), 265–299.
Ghai, U., Hazan, E., & Singer, Y. (2020). Exponentiated gradient meets gradient descent. In Algorithmic

learning theory (pp. 386–407).
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE

conference on computer vision and pattern recognition (CVPR) (pp. 770-778). https://​doi.​org/​10.​1109/​
CVPR.​2016.​90.

Joulani, P., György, A., & Szepesvári, C. (2017). A modular analysis of adaptive (non-) convex optimiza-
tion: Optimism, composite objectives, and variational bounds. Journal of Machine Learning Research,
1, 40.

Joulani, P., Raj, A., Gyorgy, A., & Szepesvári, C. (2020). A simpler approach to accelerated optimization:
Iterative averaging meets optimism. In International conference on machine learning (pp. 4984–4993).

Kakade, S. M., Shalev-Shwartz, S., & Tewari, A. (2012). Regularization techniques for learning with matri-
ces. The Journal of Machine Learning Research, 13(1), 1865–1890.

Kavis, A., Levy, K. Y., Bach, F., & Cevher, V. (2019). Unixgrad: A universal, adaptive algorithm with opti-
mal guarantees for constrained optimization. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. Fox, & R. Garnett (Eds.), Advances in neural information processing systems (pp. 6260–6269).
Berlin: Curran Associates Inc.

Kempka, M., Kotlowski, W., & Warmuth, M. K. (2019). Adaptive scale-invariant online algorithms for
learning linear models. In International conference on machine learning (pp. 3321–3330).

Kivinen, J., & Warmuth, M. K. (1997). Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1), 1–63.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Master’s thesis, University of
Tront.

Lan, G. (2020). First-order and stochastic optimization methods for machine learning. Berlin: Springer.
Levy, Y. K., Yurtsever, A., & Cevher, V. (2018). Online adaptive methods, universality and acceleration. In

S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, & R. Garnett (Eds.), Advances in
neural information processing systems (pp. 6500–6509). Berlin: Curran Associates Inc.

Lewis, A. S. (1995). The convex analysis of unitarily invariant matrix functions. Journal of Convex Analy-
sis, 2(1), 173–183.

https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

4764	 Machine Learning (2022) 111:4719–4764

1 3

Li, X., & Orabona, F. (2019). On the convergence of stochastic gradient descent with adaptive stepsizes. In
The 22nd international conference on artificial intelligence and statistics (pp. 983–992).

Lu, C., Lin, Z., & Yan, S. (2014). Smoothed low rank and sparse matrix recovery by iteratively reweighted
least squares minimization. IEEE Transactions on Image Processing, 24(2), 646–654.

McMahan, H. B., & Streeter, M. J. (2010). Adaptive bound optimization for online convex optimization. In
A. T. Kalai & M. Mohri (Eds.), COLT 2010—The 23rd conference on learning theory, Haifa, Israel,
June 27–29, 2010 (pp. 244–256). Omnipress.

Nesterov, Y. (2003). Introductory lectures on convex optimization: A basic course (Vol. 87). Berlin:
Springer.

Orabona, F. (2013). Dimension-free exponentiated gradient. In NIPS (pp. 1806–1814).
Orabona, F., Crammer, K., & Cesa-Bianchi, N. (2015). A generalized online mirror descent with applica-

tions to classification and regression. Machine Learning, 99(3), 411–435.
Orabona, F., & Pál, D. (2018). Scale-free online learning. Theoretical Computer Science, 716, 50–69.
Ribeiro, M. T., Singh, S., Guestrin, C. (2016). “Why should I trust you?” Explaining the predictions of any

classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining (pp. 1135–1144).

Song, L., Tekin, C., & Van Der Schaar, M. (2014). Online learning in large-scale contextual recommender
systems. IEEE Transactions on Services Computing, 9(3), 433–445.

Steinhardt, J., & Liang, P. (2014). Adaptivity and optimism: An improved exponentiated gradient algorithm.
In International conference on machine learning (pp. 1593–1601).

Warmuth, M. K. (2007). Winnowing subspaces. In Proceedings of the 24th international conference on
machine learning (pp. 999–1006).

Xie, C., Bijral, A., & Ferres, J. L. (2018). Nonstop: A nonstationary online prediction method for time
series. IEEE Signal Processing Letters, 25(10), 1545–1549.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Optimistic optimisation of composite objective with exponentiated update
	Abstract
	1 Introduction
	2 Related work
	3 Preliminary
	4 Algorithms and analysis
	4.1 Algorithms in the Euclidean space
	4.2 Spectral algorithms

	5 Derived algorithms
	5.1 Elastic net regularisation
	5.2 Nuclear and Frobenius regularisation
	5.3 Projection onto the cross-polytope
	5.4 Stochastic acceleration

	6 Experiments
	6.1 Online logistic regression
	6.2 Online multitask learning
	6.3 Optimisation for contrastive explanations

	7 Conclusion
	References

