
Vol.:(0123456789)

Machine Learning (2023) 112:3851–3879
https://doi.org/10.1007/s10994-022-06203-x

1 3

LADDER: Latent boundary‑guided adversarial training

Xiaowei Zhou1,2  · Ivor W. Tsang1,3 · Jie Yin4

Received: 21 September 2020 / Revised: 13 May 2022 / Accepted: 26 May 2022 /
Published online: 9 September 2022
© The Author(s) 2022

Abstract
Deep Neural Networks (DNNs) have recently achieved great success in many classifica-
tion tasks. Unfortunately, they are vulnerable to adversarial attacks that generate adver-
sarial examples with a small perturbation to fool DNN models, especially in model shar-
ing scenarios. Adversarial training is proved to be the most effective strategy that injects
adversarial examples into model training to improve the robustness of DNN models against
adversarial attacks. However, adversarial training based on the existing adversarial exam-
ples fails to generalize well to standard, unperturbed test data. To achieve a better trade-
off between standard accuracy and adversarial robustness, we propose a novel adversarial
training framework called LAtent bounDary-guided aDvErsarial tRaining (LADDER)
that adversarially trains DNN models on latent boundary-guided adversarial examples. As
opposed to most of the existing methods that generate adversarial examples in the input
space, LADDER generates a myriad of high-quality adversarial examples through adding
perturbations to latent features. The perturbations are made along the normal of the deci-
sion boundary constructed by an SVM with an attention mechanism. We analyze the merits
of our generated boundary-guided adversarial examples from a boundary field perspective
and visualization view. Extensive experiments and detailed analysis on MNIST, SVHN,
CelebA, and CIFAR-10 validate the effectiveness of LADDER in achieving a better trade-
off between standard accuracy and adversarial robustness as compared with vanilla DNNs
and competitive baselines.

Editors: Daniel Fremont, Mykel Kochenderfer, Alessio Lomuscio, Dragos Margineantu, Cheng Soon-
Ong.

 *	 Xiaowei Zhou
	 Xiaowei.Zhou@student.uts.edu.au

	 Ivor W. Tsang
	 ivor.tsang@uts.edu.au

	 Jie Yin
	 jie.yin@sydney.edu.au

1	 Australian Artificial Intelligence Institute (AAII), School of Computer Science, FEIT, University
of Technology Sydney, Sydney, NSW 2007, Australia

2	 Data61, CSIRO, Sydney, NSW 2015, Australia
3	 Center for Frontier AI Research, Agency for Science, Technology and Research (A*STAR),

Singapore, Singapore
4	 Discipline of Business Analytics, The University of Sydney, Sydney, NSW 2006, Australia

http://orcid.org/0000-0001-5871-2762
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06203-x&domain=pdf

3852	 Machine Learning (2023) 112:3851–3879

1 3

Keywords  Adversarial training · Adversarial robustness · Boundary-guided generation

1  Introduction

In recent years, deep neural networks (DNNs) have been successfully applied to empower
many advanced applications, such as image processing (Huang et al., 2017; Shi et al.,
2021), speech generation (Seide et al., 2011; Amodei et al., 2016) and natural language pro-
cessing (Fedus et al., 2018; Alikaniotis et al., 2016). Nevertheless, training a DNN model
often requires large amounts of labeled data and significant efforts of parameter tuning. As
such, this catalyzes new ways of developing DNN models as a service that can be shared
by a third party. This development leads to many offline and online Machine Learning as
a Service (MLaaS) platforms that provide shared services for various tasks based on DNN
models, such as image and video analysis from the AWS pre-trained AI Services (Amazon,
2019), and powerful image analysis from Google Cloud Vision (Google, 2019).

In such model sharing scenarios, the increasing use of DNN models, however, has
raised serious security and reliability concerns. As illustrated in Fig. 1, the service provider
trains a DNN model using the training data that they have collected, expecting it to achieve
high classification accuracy on test samples with similar distributions. End-users then pro-
vide their own test samples, mostly unknown to the service provider in advance, into the
shared model to obtain prediction results. However, very often, test samples are likely to be
mixed with unknown adversarial examples (Szegedy et al., 2013; Yuan et al., 2019), which
are generated by attackers by adding small and hardly visible perturbations to standard test
samples. What makes it even worse is that adversarial examples can be generated by vari-
ous types of unknown attacks, resulting in a dramatic drop in classification accuracy. This
is due to the fact that the shared DNN models are not robustly trained to defend against
unknown adversarial attacks before they are released as a service. Thus, research works
have been proposed to improve the robustness of DNN models against adversarial attacks.

Adversarial training (Goodfellow et al., 2015; Shaham et al., 2018; Shrivastava et al.,
2017) is one of the most successful techniques for improving the robustness of DNN mod-
els against adversarial attacks. Its key idea is to augment the training data with adversar-
ial examples to retrain DNN models. However, as studied in (Tsipras et al., 2019), there
exists a trade-off between standard accuracy on clean data and adversarial robustness. Bet-
ter robustness often leads to worse classification accuracy on clean data. To address this,

End User

Unknown
test data

Unknown
adv. examples

Dropped
accuracy

Mix
Shared model

Attacker

Attack methods

Fig. 1   Attacks in model sharing scenarios. The end user performs classification tasks through the shared
model without the knowledge on adversarial examples generated by attackers to attack the shared model

3853Machine Learning (2023) 112:3851–3879	

1 3

several recent studies (Zhang et al., 2019b; Ding et al., 2020; Wang et al., 2020) have been
proposed to add additional regularization terms into the loss function of adversarial train-
ing. These methods employ the modified adversarial training loss function with regulariza-
tion to achieve better generalization and adversarial robustness. This has raised a research
question: Could adversarial examples generated by the existing methods account for the
trade-off between standard accuracy and adversarial robustness? This motivates us to
explore the curses and blessings of adversarial examples for achieving a better trade-off
between standard accuracy and robustness against adversarial attacks.

The adversarial examples generated by the existing methods suffer from two major
curses. First, most of these methods (Goodfellow et al., 2015; Madry et al., 2018; Papernot
et al., 2016b; Carlini & Wagner, 2017) generate adversarial examples through adding a
small perturbation to legitimate samples in the input space, which often only craft adver-
sarial examples of repeating patterns. The DNN models adversarially trained with these
examples would be effective only in defending very specific types of adversarial attacks,
but still vulnerable to other adversarial attacks. Thus, this presses a need for increasing
the diversity of generated adversarial examples so that DNN models can fully explore the
unknown data space to improve the robustness against adversarial attacks.

Second, the generated adversarial samples might hurt the standard accuracy of DNN
models on clean (legitimate) samples. As shown in Fig. 2a, the adversarial examples gen-
erated by most existing methods are within a ball in the input space. When adversarially
trained with these samples, the decision boundary of the DNN classifier would dramati-
cally change as compared with the original one. This leads legitimate samples (sample A)

Vanilla Classifier Adv. Trained Classifier

Latent Space

Normal of Boundary

Input Space Input Space

Boundary Field

(a)

(b)

(c)

A

B

C

A

Fig. 2   a: Adversarial examples generated by the existing methods are often within a ball in the input
space, which leads the decision boundary of the adversarially trained classifier (dotted line) to dramatically
change. The legitimate sample, sample A, would be misclassified. c: Our LADDER method perturbs latent
features of samples within the boundary field in the latent space. The generated adversarial examples would
reside in a more restricted area. Sample A would thus be classified correctly. b: The adversarially trained
classifier by existing adversarial examples (red dotted line) would misclassify legitimate samples (sample
B and C), which would hurt the standard accuracy. The adversarially trained classifier using our method
(purple dashed line) would change less remarkably than the existing one (red dotted line), which would cor-
rectly classify the samples (Color figure online)

3854	 Machine Learning (2023) 112:3851–3879

1 3

to be misclassified. Moreover, as perturbations are added in the input space, the generated
adversarial examples would contain lots of noise. This can be seen from adversarial exam-
ples (in Fig. 6) generated by FGSM (Goodfellow et al., 2015) or JSMA (Papernot et al.,
2016b). Consequently, it would hurt the standard accuracy of adversarially trained models.
This inspires us to generate adversarial examples of better quality through the latent space.

Furthermore, existing methods treat all examples equally while generating adversarial
examples, but neglect the decision boundary information. Our work stems from the obser-
vation that incorporating information about the decision boundary in the latent space into
the generation of adversarial examples would be a blessing to achieve better generaliza-
tion on standard clean data. As shown in Fig. 2c, latent features of samples are perturbed
along the normal of decision boundary to move within the boundary field, i.e., the nearby
area of the decision boundary. The generated adversarial examples would thus reside in a
restricted area and prevent the adversarially trained classifier from misclassifying legiti-
mate samples (sample B and C), which, however, could be misclassified by existing meth-
ods. Motivated by this observation, we focus on how to leverage the decision boundary to
guide the generation of adversarial examples, aiming to achieve a better trade-off between
standard accuracy and adversarial robustness.

In this paper, we propose a novel adversarial training framework called Latent Bound-
ary-guided Adversarial Training (LADDER), which adversarially trains DNN models with
myriad adversarial examples generated based on the decision boundary in a latent space.
Unlike some of the existing methods that operate in the input space and generate noisy
adversarial examples of repeated patterns, LADDER generates high-quality and diverse
adversarial examples by adding perturbations to latent features. The generation of adver-
sarial examples is guided by the normal of decision boundary in the latent space, which is
learned via a linear support vector machine (SVM) (Boser et al., 1992) with an attention
mechanism. After adversarial training on generated adversarial examples, the adversarially
trained DNN model is effective in achieving a trade-off between standard accuracy and
robustness against adversarial attacks. Comprehensive experiments and analyses are con-
ducted on MNIST, SVHN, CelebA, and CIFAR-10 to verify the effectiveness of the pro-
posed method.

The novelty and contribution of this paper are three-fold:

•	 We analyze the curses and blessings of adversarial examples for adversarial training
and explain the advantages of latent boundary-guided solution.

•	 We propose a new method called LADDER that generates high-quality and diverse
adversarial examples by adding boundary-guided perturbations in a latent feature
space.

•	 After adversarial training on the generated adversarial examples, LADDER achieves a
better trade-off between standard accuracy and adversarial robustness as compared with
vanilla DNNs and competitive baselines.

2 � Related work

This section reviews two branches of related literature: adversarial attack methods and
adversarial defence methods.

3855Machine Learning (2023) 112:3851–3879	

1 3

2.1 � Adversarial attack

From the methodology point of view, most of the existing adversarial attack methods can
be grouped into two categories: gradient-based attacks (Goodfellow et al., 2015; Madry
et al., 2018; Papernot et al., 2016b) and decision-based attacks (Carlini & Wagner, 2017;
Song et al., 2018; Moosavi-Dezfooli et al., 2016; Su et al., 2019).

Gradient-based attacks: Gradient-based attacks mainly add perturbations in the direc-
tion of the gradient of loss function with respect to the input sample. (Goodfellow et al.,
2015) proposed the fast gradient sign method (FGSM) that uses the sign of gradient
( ∇�

J(�, �, y) ) of loss function with respect to input examples as perturbation. Built upon
FGSM, the one-step attack method, (Madry et al., 2018) proposed a multi-step attack
method called PGD. PGD iteratively uses the gradient information and generates adver-
sarial examples on the results of the last step. Similarly, DI2-FGSM (Xie et al., 2019) gen-
erates adversarial examples on the results of last step, but it uses the gradients of stochastic
transformed inputs rather than the original ones. (Papernot et al., 2016b) introduced sali-
ency map based on Jacobian matrix into the generation of adversarial examples. The sali-
ency values computed by forward derivative of a target model are used as an indicator to
determine the locations in the input examples to add perturbations. This method is called
Jacobian saliency map attack (JSMA).

Decision-based attacks: Decision-based attacks manipulate the labels of training data
to make the learned DNN model beneficial to their specific purposes. This line of methods
uses Eq. (1) as a measure, i.e., changing the original label to target label, to generate adver-
sarial examples. For a given classifier f, the predicted label of an input sample � is defined
as f (�) , and f (��) is the label of adversarial example �′:

where � is a small perturbation added to an input sample � . �′ is the generated adversarial
example. Carlini and (Carlini & Wagner, 2017) proposed an approach, CW, to generate
adversarial examples by adding small changes to the original images in the input space.
CW tries to minimize the distance between benign examples and adversarial ones, while
enforcing the labels of adversarial examples as the targeted ones. A deep learning based
attack method was developed by Song et al. (2018). This method explored the AC-
GAN (Odena et al., 2017) latent space to generate adversarial images, which could most
likely mislead the targeted classifier. GeoDA (Rahmati et al., 2020) estimates the deci-
sion boundary for each data point in the input space to generate adversarial examples. In
contrast, our LADDER trains an SVM to obtain the decision boundary between any two
classes in the latent space.

Other adversarial attacks: Recently, distribution-based methods have also been pro-
posed for adversarial attack. DAA (Zheng et al., 2019), HMCAM (Wang et al., 2020) and
N attack (Li et al., 2019) generate diverse adversarial examples through modeling their
probability distribution in the input space. The goal of DAA (Zheng et al., 2019) is to gen-
erate globally optimal adversarial examples and N attack (Li et al., 2019) aims to develop
a powerful black-box adversarial attack method. HMCAM (Wang et al., 2020) generates a
sequence of adversarial examples to improve adversarial robustness. In contrast, our LAD-
DER, as one adversarial training based defence method, generates adversarial examples
individually for each input to achieve a better trade-off between standard accuracy and
adversarial robustness.

(1)�
� = � + �, s.t. f (��) ≠ f (�),

3856	 Machine Learning (2023) 112:3851–3879

1 3

Apart from distribution-based methods, (Croce & Hein, 2020b) proposed an ensemble
attack method called AutoAttack. This method firstly extends the PGD attack method into
APGDCE by automatically choosing step sizes and APGDDLS by using a difference of logits
ratio (DLR) loss. Then, four attack methods, including APGDCE , APGDDLS , FAB (Croce &
Hein, 202a) and square attack (Andriushchenko et al., 2020) are combined as AutoAttack.

From the knowledge accessibility point of view, the adversarial attacks can be divided
into white-box attacks and black-box attacks. Under white-box attack settings, the attack-
ers have access to full knowledge about the target model, i.e., model structure and model
parameters. On the contrary, the attackers have no knowledge about the target model under
black-box attack settings. In this work, we are mainly concerned with model sharing sce-
narios, where model structure and model parameters are unknown to attackers. Thus, we
focus on defending black-box attacks.

2.2 � Adversarial defence

For various types of adversarial attacks, a key research question is, how can we improve
the adversarial robustness of a DNN model before it is deployed as a service? In response,
adversarial defence strategies have been proposed to mitigate the effect of adversarial
attacks (Papernot et al., 2016c; Papernot & McDaniel, 2017; Samangouei et al., 2018;
Meng & Chen, 2017; Guo et al., 2018; Kannan et al., 2018; Mustafa et al., 2019; Xiao
et al., 2020).

Gradient masking methods: Gradient masking methods (Papernot et al. 2017) construct
a model which does not provide useful gradients to be attacked. For example, Defensive
distillation (Papernot et al., 2016c; Papernot & McDaniel, 2017) learns a smooth targeted
defence model with d training times, where the predicted labels from (d − 1)-th model are
used as ground truth to train the d-th model except for the first time.

Clean sample reconstruction: Defense-GAN (Samangouei et al., 2018), DIPDefend (Dai
et al., 2020) and MagNet (Meng & Chen, 2017) are three typical methods that remove the
perturbation added on adversarial examples to reconstruct a clean sample similar to the
legitimate one. The reconstructed examples can be easily recognised by the model, com-
pared with adversarial examples.

Adversarial training: Among others, adversarial training (Goodfellow et al., 2015; Sha-
ham et al., 2018; Shrivastava et al., 2017; Kurakin et al., 2016) is proved as one of the most
effective defence methods, which augments the training data with adversarial examples
when training the targeted model. It can be achieved either by training the targeted model
with original samples augmented with adversarial examples (Kurakin et al., 2016) or with
a modified loss function (Goodfellow et al., 2015). Our LADDER falls into the realm of
adversarial training based defence methods.

Recently, Tsipras et al. (2019) found the adversarial robustness is at odds with the
standard accuracy on clean samples. Several recent methods were proposed to trade the
adversarial robustness off the standard accuracy. Most of these methods considered add-
ing different regularization terms to the adversarial training loss to achieve a better trade-
off (Zhang et al., 2019b; Ding et al., 2020; Wang et al., 2020; Zhang et al., 2021). TRADES
(Zhang et al. 2019b) is a regularization-based method that minimizes the loss between the
predicted labels and ground truth of legitimate samples as well as the ’difference’ between
the predictions of legitimate samples and the corresponding adversarial examples. The ’dif-
ference’ term was regarded as the regularization. GAIRAT (Zhang et al., 2021) uses the
distance to the decision boundary to assign a weight for each adversarial example in the

3857Machine Learning (2023) 112:3851–3879	

1 3

adversarial training loss. The weight is estimated based on the difficulty of attacking the
input by PGD rather than the actual distance to the decision boundary. On the contrary,
our LADDER derives an explicit decision boundary to generate adversarial examples for
adversarial training. It is worth noting that, the existing regularization based methods and
our LADDER method provide two different views to achieve a better trade-off between the
standard accuracy and adversarial robustness. Our LADDER method can be used in com-
bination with these regularization based methods to further boost their performance (See
our empirical results in Sect. 4.5).

Different from the existing methods that use a regularized loss to improve the trade-
off, AVmixup (Lee et al., 2020) is a data augmentation method that uses linear interpola-
tion to acquire the augmented examples in the input space based on adversarial examples
generated by PGD attack. However, as proved in Manifold Mixup (Verma et al., 2019a),
AVmixup may produce less semantically meaningful examples as a result of linear interpo-
lation in the input space. In contrast, our LADDER method alleviates this issue by adding
perturbations along the normal of the decision boundary in the latent space.

3 � Latent boundary‑guided adversarial training

To achieve a better trade-off between standard accuracy and adversarial robustness,
LADDER aims to generate better adversarial examples based on the decision bound-
ary constructed in a latent space. Perturbations are added to latent features along the
normal of decision boundary and inverted to the input space by the trained genera-
tor. Through adversarial training with the generated adversarial examples, LADDER
achieves a better trade-off between standard accuracy and adversarial robustness.

For clarity, we first define key notations and symbols. Define � = {�
�
, ..., �n} as the

set of samples, where n is the number of samples. For each sample �i , �i is the latent
feature vector extracted from a trained DNN model. � is the normal of the decision
boundary. � is the perturbation added to the latent feature vector �i . �̂i is the generated
sample from the latent feature �i.

3.1 � Latent boundary‑guided generation

The adversarial examples are generated through perturbating the latent space, guided by
the decision boundary, which is obtained from an attention SVM learned on latent features.

3.1.1 � Boundary‑guided attention

To approximate local decision boundaries in the latent space, we train a linear SVM with
an attention mechanism (Zhang et al., 2019a) with latent features of a DNN model. This
idea is grounded on the theoretical proof by Li et al. (2018) that, the last layer of neu-
ral networks trained by cross-entropy loss converges to a linear SVM. For any neural net-
work used for binary or multi-class classification, when the cross-entropy loss gradually
approaches to 0, the last layer weights of neural networks would converge to the solution
of an SVM. Specifically, we use the latent feature � , the input to the last layer of the DNN
model to train a linear SVM with an attention mechanism. The trained linear SVM pro-
vides an explicit margin as compared to other linear models such as a linear mixture model.

3858	 Machine Learning (2023) 112:3851–3879

1 3

By employing an attention mechanism when training the linear SVM, our aim is to cap-
ture a better representation with different weights assigned to different elements of latent
features. To this end, an attention layer is added to process latent features, before passing
them to the SVM. The attention layer is defined as follows:

where �i is a latent feature vector, the input to the last layer of the DNN model; conv is the
convolutional operation; tanh is the activation function; � i is the attention weight vector
that can be learned; �att

i
 is the output after applying attention weights on latent feature vec-

tor �i.

3.1.2 � Latent feature perturbation

After training an SVM with attention, the latent features of each sample are perturbed
along the normal of the decision boundary of the SVM. The normal � provides a direction
to guide the generation, where the attention weight � captures the importance of different
components of latent features to move across the boundary. Different perturbations � can be
added to the same latent features �i to obtain the perturbed latent features �j

i
 by:

where vector � is the normal of the decision boundary of the linear SVM; � i is the attention
weight vector obtained by the SVM for each sample; 𝜖j > 0 represents the perturbation; j is
the index of different perturbation.

When the perturbation is big enough, the class label of the perturbed latent features
would change from positive to negative, or vice versa. That means it would cross the deci-
sion boundary of the DNN model. As shown in Fig. 3, perturbed latent features �1

i
 move

from the left side of the decision boundary to the right side. As the perturbation continues
to increase, perturbed latent features �2

i
 would move far away from the decision boundary.

The effect of perturbation will later be empirically investigated in Sect. 4.4.

3.1.3 � Boundary‑guided generation

To enable humans to understand what changes happen in the input space, caused by the
perturbations to latent features, we train a generator to invert the perturbed latent features
to the input space.

For a specific DNN model (i.e., LeNet), we learn a generator Ĝ on the training set
�train = {�1, ..., �n} to map latent features to the input space. As shown in Fig. 3, each sam-
ple in the training set is fed into the DNN model, to extract the corresponding latent fea-
tures. The output of the last fully connected layer of a DNN model can be used to construct
the set of latent features ℤtrain = {�1, ..., �n} . Sample �i and its corresponding latent features
�i are fed to the designed generator. The objective function of G over the neural network
class G is defined as follows:

(2)�i = tanh
�
conv(�i)

�
, �

j

i
=

exp(�
j

i
)

∑N

j=1
exp(�

j

i
)
, and �

att
i
=� i��,

(3)�
j

i
= �i + �

j� i�,

3859Machine Learning (2023) 112:3851–3879	

1 3

where ‖ ⋅ ‖p denotes Lp norm, p = 1 or p = 2 in this paper; �i = Φ(�i) , where Φ is a feature
extractor in a DNN model. A mapping between the latent space and the input space is
learned by optimizing Eq. (4).

The reconstructed sample �̂i can be obtained by passing �i to the trained generator Ĝ ,
that is, �̂i = Ĝ

(
�i + 𝜖��

)
 . For example, in Fig. 3, different latent features ( �i , �1i and �2

i
 ) are

fed into the trained generator Ĝ to obtain the corresponding samples �̂j
i
(j = 0, 1, 2) in the

input space.
When the generated samples are fed into the targeted DNN model, the predicted labels should

be the same as the ground-truth label ŷ . That is, the following equation should be satisfied:

As shown in Fig. 3, samples �̂0
i
 and �̂2

i
 are generated from �i and �2

i
 , with 0 and �2 perturba-

tion added, respectively. Among them, �i does not cross the boundary and the predicted
label of �̂0

i
 is still the ground-truth label, y0

i
= 3 . For �2

i
 that has crossed the boundary, the

predicted label of its corresponding sample �̂2
i
 has changed to 5, y2

i
= 5 . This satisfies the

rules specified by Eq. (5).
However, Eq. (5) does not always hold for some perturbed latent features. Figure 3 pro-

vides such an illustration. The perturbed �1
i
 has crossed the boundary and the predicted

label y1
i
 of its generated sample �̂1

i
 has also changed to 5. However, the ground-truth label

(4)Ĝ = argmin
G∈G

n−1
n∑

i=1

‖‖�i − G(�i)
‖‖
p

p
,

(5)f
(
Ĝ(�

j

i
)

)
=

{
ŷi, if �

j

i
not cross the boundary

ŷother, if �
j

i
cross the boundary

Attention
Trained

Generator

Classifier

Normal of boundary

Attention SVM

Dataset

Latent Space

DNN Model

Generated
data

Generator

Fig. 3   Overview of Latent Boundary-guided Adversarial Training. LADDER generates adversarial exam-
ples by perturbing latent features alongside the normal of decision boundary obtained from an SVM with
an attention mechanism. These generated adversarial examples are inverted to the input space via a trained
generator to adversarially train the DNN model. �i is the latent feature of one original sample �i ; � is atten-
tion weight; � is the normal of the decision boundary; �1

i
 and �2

i
 are the perturbed latent features for gen-

eration; �̂j
i
(j = 0, 1, 2) are the generated images after perturbing the latent features; yj

i
(j = 0, 1, 2) are the

predicted labels of the generated images.

3860	 Machine Learning (2023) 112:3851–3879

1 3

of �̂1
i
 is still 3. Such samples, whose predicted labels of the reconstructed samples and

ground-truth labels are inconsistent, are adversarial examples that are effective to attack the
targeted DNN model.

3.2 � Latent boundary‑guided adversarial training

To improve the adversarial robustness of the DNN models, we adopt the adversarial train-
ing method (Goodfellow et al., 2015; Shaham et al., 2018) that uses the generated adver-
sarial examples to augment the training data for retraining. Specifically, we get the per-
turbed latent features �j

i
 through Eq. (3) and pass �j

i
 to the trained generator Ĝ to generate

adversarial examples. Then, we adversarially train the DNN model through the following
adversarial loss function:

where J(�) is the original loss function of the DNN model and � is the parameter of the
targeted DNN model. The first and second term is the loss for the original training sam-
ples � and the generated adversarial examples Ĝ(� + 𝜖��) , respectively. � is the weighting
factor that trades off the two terms, which is usually set as 0.5. Through adversarial train-
ing on the generated boundary-guided adversarial examples, the adversarially trained DNN
model can achieve a better trade-off between standard accuracy and adversarial robustness.
Without loss of generality, other consistency losses (Zhang et al., 2018; Liu & Tan, 2021;
Verma et al., 2019b) in semi-supervised learning can also be used here, but they require
additional modifications to be adapted for our adversarial training purposes.

Complexity analysis: Compared with the adversarial training based defence methods
that generate adversarial examples in the input space, the extra overhead of LADDER
mainly lies in the construction of a linear SVM and the training of our generator. The com-
plexity of training a linear SVM is O(n2) , where n = 400 is the number of samples used
to train the SVM in our method. The complexity of training our generator is related to the
number of layers and number of weights in the generator. After our generator is trained, the
generation of adversarial examples is just one forward propagation of the trained generator.
For the adversarial training part, our method has the same computational complexity as we
use the original adversarial training loss function to adversarially train the model.

4 � Experimental evaluation

In this section, we present experimental results to show the effectiveness of our method
in achieving a better trade-off between standard accuracy and adversarial robustness. We
conduct extensive experiments on MNIST (LeCun & Cortes, 1998), SVHN (Netzer et al.,
2011), CelebA (Liu et al., 2015), and CIFAR-10 (Krizhevsky & Hinton, 2009) from four
perspectives. The source code of our implementations is provided1.

(6)J̃ = 𝛼J(�;�, y) + (1 − 𝛼)J
(
�;Ĝ(� + 𝜖��), y

)
,

1  https://​github.​com/​zhoux​iaowe​i1120/​LADDER

https://github.com/zhouxiaowei1120/LADDER

3861Machine Learning (2023) 112:3851–3879	

1 3

P1: Blessings of Adversarial Examples To show the merits of our latent boundary-
guided adversarial examples, we visualize and analyse the generated adversarial exam-
ples. (Sect. 4.2).
P2: Standard Accuracy and Adversarial Robustness We evaluate the standard accuracy
and adversarial robustness of different adversarially trained models and demonstrate
the competitiveness of our LADDER method (Sect. 4.3). In model sharing scenarios,
we focus on adversarial robustness against black-box attacks. Detailed experiments on
adversarial robustness against white-box attacks can be found in Appendix 2).
P3: Effect of Perturbation We investigate how perturbation impacts the performance of
our LADDER method. (Sect. 4.4)
P4: Complement to Regularization-based Adversarial Training Methods We verify the
complement effect of LADDER to the existing regularization-based adversarial training
methods to achieve a better trade-off between standard accuracy and adversarial robust-
ness. (Sect. 4.5)

4.1 � Experiments settings

4.1.1 � Datasets and shared DNN models

We conduct our experiments on four datasets: MNIST (one grey digits dataset), SVHN
(one colorful digits dataset), CelebA (one human face image dataset), and CIFAR-10 (one
natual image dataset). On the four datasets, we use DNN models with different architec-
tures and depths, LeNet (LeCun et al., 1995), SVHNNet (shallow VGG model), CelebANet
[deep VGG model (Simonyan & Zisserman, 2014)], and CifarNet (ResNet18) as the tar-
geted classifiers for defence in model sharing scenarios, respectively. Note that, on Cel-
ebA, because the size of original images is 178 × 218, we first pre-process the images to
128 × 128 using DLIB (Dlib, 2019). We detect faces in images and crop them into square
sizes. Our task is the classification of smile or non-smile for an input image.

4.1.2 � Baseline methods

The competing methods used for comparison are summarized as follows. FGSM (Goodfel-
low et al., 2015), JSMA (Papernot et al., 2016b), PGD (Madry et al., 2018), CW (Carlini
& Wagner, 2017) and AutoAttack (Croce & Hein, 2020b) are five baselines that generate
adversarial examples by adding perturbations in the input space. (Song et al., 2018) is one
baseline method that generates adversarial examples in the latent space. TRADES (Zhang
et al., 2019b) is one representative method that adds regularisation into the adversarial
training loss to improve the trade-off between standard accuracy and adversarial robust-
ness. It uses adversarial examples generated by FGSM for adversarial training. We also
compare with another baseline called TRADES+LADDER that combines TRADES with
LADDER. This baseline is used to assess whether methods that regularize the adversar-
ial training loss can be complemented when using adversarial examples generated by our
LADDER method.

For ablation study, we compare with two variants of our LADDER method: LAD-
DER_cavRandom and LADDER_Random, which use different strategies for generating
adversarial examples �̂i . LADDER_cavRandom adds some random noise � on the normal
of decision boundary obtained from the SVM: �̂i = Ĝ

(
�i + 𝜖�(� + �)

)
 . LADDER_Ran-

dom uses a random noise � to replace the normal of decision boundary for generation:

3862	 Machine Learning (2023) 112:3851–3879

1 3

�̂i = Ĝ
(
�i + 𝜖��

)
 . The two baselines are used to show LADDER’s effectiveness in using

the normal of decision boundary to guide the generation of adversarial examples.
For FGSM, PGD, JSMA and CW, we generate adversarial examples using the open-

source attack library cleverhans (Papernot et al., 2016a). For the method of (Song et al.,
2018), AutoAttack (Croce & Hein, 2020b) and TRADES (Zhang et al., 2019b), we use
the source code released by the authors. The number of generated adversarial examples for
adversarial training on each dataset is: 4,500 on MNIST; 4,500 on SVHN; 2,000 on Cel-
ebA; and 50,000 on CIFAR-10. The hyper-parameters used for all methods in adversarial
training are summarized in Table 6 in Appendix 1.

4.2 � Blessings of adversarial examples

4.2.1 � Fidelity of generator

We first validate the performance of our trained generator in terms of the quality of the gen-
erated samples. Here, MNIST is used as a case study to visualize and analyze the results.
We train a generator on MNIST using latent features with a dimension of 500, the input to
the last layer of LeNet. All components of the generator architecture except for activation
functions are provided in Table 10 in Appendix 4. After the last convolutional layer, a sig-
moid activation function is added and the loss function used is mean squared error (MSE):
�(�, �̂) =

1

n

∑n

i=1

�
�i − �̂i

�2.
We evaluate our generator through both quantitative and qualitative results. The train-

ing loss on the training dataset after 1000 epoches and the test loss over test dataset are
0.00757 and 0.00765, respectively. Figure 4 shows examples of reconstructed images using
our generator trained on MNIST, where (a) and (c) are the original training and test images,
while (b) and (d) are the generated training and test images. The generated images are very
similar to the original ones. This indicates that the trained generator is able to capture the
mapping between the latent space and the input space.

To demonstrate the quality of adversarial examples generated by LADDER on natural
images, we show adversarial examples of selected classes on SVHN, CIFAR-10 and Cel-
ebA in Fig. 5. These examples are generated by perturbing the latent features with different
perturbations � . As we can see, these generated images are of high quality without any pep-
per noise.

Fig. 4   Reconstructed images of our generator trained on MNIST. a and c indicate the original training and
test images, whereas b and d show the generated training and test images

3863Machine Learning (2023) 112:3851–3879	

1 3

4.2.2 � Diversity of generated adversarial examples

We compare adversarial examples generated by our LADDER method and other meth-
ods (FGSM, JSMA, PGD and (Song et al., 2018)) on MNIST. For LADDER, we used
the trained generator to generate adversarial examples against the vanilla LeNet. The
latent features that input to the last fully connected layer in LeNet are used to train a linear
SVM which yields the normal of boundary for generation. Each extracted latent feature is
changed by adding perturbations. Finally, perturbed latent features are fed into the trained
generator to generate adversarial examples.

Figure 6 shows example images generated by FGSM, JSMA, PGD, (Song et al., 2018)
and our LADDER method. Clearly, LADDER generates a more diverse set of distinct
examples, whereas FGSM, JSMA and PGD tend to generate noisy images of repeating
patterns. This is because LADDER generates the examples by modifying latent features
rather than slightly altering the original images in the input space. As compared with

Fig. 5   Adversarial examples generated by our LADDER method on SVHN, CIFAR-10 and CelebA, where
the texts on the left indicate the actual class labels

FGSM

LADDER

JSMA

1 2 3 4 5 6 7 8 9

PGD

Song et al.

Fig. 6   Adversarial examples generated by FGSM, JSMA, PGD, (Song et al., 2018) and our LADDER
method, where the topmost number indicates the predicted class label

3864	 Machine Learning (2023) 112:3851–3879

1 3

(Song et al., 2018), adversarial examples generated by LADDER are in general more visu-
ally diverse. This diversity property enables LADDER to be more effective for defending
against adversarial attacks.

4.2.3 � High‑quality adversarial examples near boundary

Figure 7 shows adversarial examples generated by our LADDER method in relation to the
decision boundary. Compared with adversarial examples generated by FGSM and JSMA
(see Fig. 6), LADDER is able to generate non-blurry images of adversarial examples that
contain no noise in the background. Such high-quality adversarial examples would not hurt
the standard accuracy.

From classification perspectives, samples close to the decision boundary are more likely
to be misclassified by a classifier. These samples should be more useful for constructing the
classifier to obtain good standard accuracy. LADDER uses the normal of decision bound-
ary as a guide to generate adversarial examples near the boundary. As shown in Fig. 7a,
the original sample is apparently a digit 2. When we increase the perturbation ( � ) added to
its corresponding latent features along the normal of the decision boundary, the predicted
label of the generated samples changes from 2 to 3. The two examples near the decision
boundary, generated with � = 7 and � = 9 , are inherently ambiguous, even making humans
difficult to make a judgement. If we add these ambiguous adversarial examples with labels
to the training set, it would enrich the data space near the decision boundary, thereby
improving the generalization of the trained classifier. This is the same case for Fig. 7b.
The DNN classifier predicts the two examples, generated with � = 9 and � = 10 , as class 1
and class 7, while they look very similar. Such similar adversarial examples would be ben-
eficial to improve the standard accuracy. We provide more illustrative examples in Fig. 10
in Appendix 3 to demonstrate the ability of our generator to generate sensible adversarial
examples and the effectiveness of perturbing latent features along the normal of the deci-
sion boundary.

4.3 � Standard accuracy and adversarial robustness

To validate the efficacy of our LADDER method on standard accuracy, i.e., the accu-
racy on clean test datasets, as well as adversarial robustness, we conduct experiments on
MNIST, SVHN, CelebA and CIFAR-10.

The results are reported in Tables 1, 2, 3 and 4, where row 1 indicates the vanilla
model, and other rows indicate adversarially trained models; column 2 represents the
clean test dataset, and columns 3–8 represent different attack methods that are used to
generate adversarial examples for attacking the targeted model. Under our setting, we
focus on defence methods based on adversarial training, and each adversarially trained
model is trained on adversarial examples generated by different methods under white-
box setting. For FGSM and PGD, we set perturbation as 0.3; for CW, we choose l2 norm
distance. For CW and JSMA, the generation of adversarial examples is under targeted
attack condition. For other methods, the generation is under untargeted attack condi-
tion. For LADDER, the architectures of the generators on four datasets are provided in
Appendix 4. To improve the generation performance on natural images, i.e., CelebA and
CIFAR-10, we generalize LADDER by replacing the Lp norm loss with an adversarial

3865Machine Learning (2023) 112:3851–3879	

1 3

loss used in generative adversarial network (GAN) (Goodfellow et al., 2014) to train a
stronger generator. This leads to a variant of our method called LADDER-GAN.

In model sharing scenarios, after one trained model is released, it could be targeted
by different attacks, which are unknown to the trained models. Thus, we focus on black-
box attacks as indicated in columns 3–8, where adversarial examples are generated with
no access to the trained models. In particular, we assess the ability of each adversari-
ally trained model to defend other types of attacks. Thus, the robustness results of each
adversarially trained model are not reported against the same attack used to generate
adversarial examples.

We focus on assessing the performance of different models in terms of both standard
accuracy on clean test dataset and adversarial robustness. We thus calculate the average
rank for each adversarially trained model to show its trade-off between standard accu-
racy and adversarial robustness against several other adversarial attacks. The average
rank is calculated over the ranks of each adversarially trained model on clean test data-
set and defending all other attacks, which is reported as the last column in the tables.

Fig. 7   Generated adversarial examples by our LADDER method are high quality and they are generated
near the decision boundary. The number on top of an image is the perturbation ( �)

3866	 Machine Learning (2023) 112:3851–3879

1 3

4.3.1 � Results on SVHN

Table 1 reports the standard accuracy on clean SVHN test dataset and adversarial robust-
ness of different models against other adversarial attacks. We can see that, among all
the adversarially trained models, LADDER achieves the second best standard accuracy

Table 1   SVHN: Classification accuracy of vanilla and adversarially trained models on clean test dataset and
adversarial examples

Smaller means better for the average rank (Avg. Rank). The best method is highlighted in bold and the sec-
ond best is italic

Defence method Clean (%) FGSM (%) JSMA (%) PGD (%) CW (%) Song
et al. (%)

Auto
attack (%)

Avg.
rank

Vanilla model 93.85 25 34.04 17.16 86.78 99.42 54.62 4.00

FGSM adv. 88.66 – 37.49 20.62 83.07 97.51 66.36 4.83
JSMA adv. 91.04 28.4 – 19.6 86.22 98.69 61.8 3.83
PGD adv. 87.75 34.2 42.18 – 85.96 96.69 73.18 4.17
CW adv. 91.11 23.6 37.64 18.11 – 98.16 63.42 4.33
Song et al. adv. 93.53 28 33.91 17.18 87.29 – 56.27 4.00

LADDER_
cavRandom

91.55 24.8 36.96 14.78 84.93 98.72 50.78 5.86

LADDER_Ran-
dom

90.12 21 35.69 16.42 83.96 98.33 53.87 6.86

LADDER 91.71 26.8 37.29 16.82 86.42 98.96 62 3.71

Table 2   MNIST: Classification accuracy of vanilla and adversarially trained LeNet on clean and adversarial
examples

Smaller means better for the average rank (Avg. Rank). The best method is highlighted in bold and the sec-
ond best is italic

Defence method Clean (%) FGSM (%) JSMA (%) PGD (%) CW (%) Song
et al. (%)

Auto
attack (%)

Avg.
rank

Vanilla model 99.13 46.6 93.91 29.93 99.09 99.82 99.56 3.57

FGSM adv. 92.31 – 83.67 80.91 90.58 95.53 92.22 6.50
JSMA adv. 98.56 57.8 – 51.04 98.56 99.87 98.69 4.17
PGD adv. 90.79 76.2 83.31 – 90.67 94.44 90.36 7.00
CW adv. 98.87 59.2 94.67 44.62 – 99.91 99.36 3.17
Song et al. adv. 97.23 55.6 89.16 49.91 96.87 – 96.69 6.00

LADDER_
cavRandom

99.01 54.8 92.76 48.2 98.56 99.78 98.89 5.00

LADDER_Ran-
dom

98.99 64.4 92.93 56.87 98.33 99.89 99.04 3.29

LADDER 99.12 55.8 93.13 49.2 98.9 99.82 99.36 3.29

3867Machine Learning (2023) 112:3851–3879	

1 3

(91.71%) on clean test dataset, which lags behind the Song et al. Adv. model only. Com-
pared with other models, LADDER achieves an improvement of 3.96% and 3.05% over
PGD and FGSM, respectively. As compared with the other two variants, LADDER_
cavRandom and LADDER_Random, LADDER performs better on clean test dataset.

We also find that, LADDER achieves the best performance in terms of defending the
(Song et al., 2018) attack, compared with all other adversarially trained models. As for

Table 3   CelebA: Classification accuracy of vanilla and adversarially trained CelebANet on clean examples
and adversarial examples

Smaller means better for average rank (Avg. Rank). The best method is highlighted in bold and the second
best is italic

Defence method Clean (%) FGSM (%) JSMA (%) PGD (%) CW (%) Song
et al. (%)

Auto
attack (%)

Avg.
rank

Vanilla model 91.4 52.65 83.05 13.9 62.1 92.05 49.30 5.43

FGSM adv. 89.4 – 67.15 18.55 62.95 54.95 53.95 7.67
JSMA adv. 90.45 53.1 – 14.95 65.9 93.5 40.35 5.50
PGD adv. 89.55 51.75 63.65 – 67.05 59.55 55.95 6.00
CW adv. 89.5 50.1 77.1 43.25 – 77.8 68.35 5.67
Song et al. adv. 91.15 53.2 83.9 20 66.15 – 49.95 3.50

LADDER_
cavRandom

91.1 52.8 81.9 24.9 64.95 86.8 42.55 5.43

LADDER_Ran-
dom

91.05 55.1 80.15 24.65 64.45 87 55.1 4.71

LADDER-GAN 91.45 52.75 80.9 25.25 64.7 88 46.7 4.71
LADDER 91.95 53.25 82.4 27.6 65.1 87.1 48.95 3.29

Table 4   CIFAR-10: Classification accuracy of vanilla and adversarially trained models on clean and adver-
sarial examples

Smaller means better for the average rank (Avg. Rank). The best method is highlighted in bold and the sec-
ond best is italic

Defence method Clean (%) FGSM (%) JSMA (%) PGD (%) CW (%) Song
et al. (%)

Auto
attack (%)

Avg.
rank

Vanilla model 88.99 58.02 80.81 56.87 59.99 28.01 42.31 4.57

FGSM adv. 67.21 – 63.4 63.85 68.56 24.1 63.08 4.83
JSMA adv. 87.87 70.72 – 73.54 78.76 29.61 67.63 2.17
PGD adv. 79.12 70.71 75.7 – 72.15 23.92 69.37 4.17
CW adv. 84.53 76.9 81.3 79.46 – 28.15 77.55 2.17
Song et al. adv. 48.66 9.99 45.7 11.01 8.87 – 10.75 7.33

LADDER-GAN 85.04 59.71 75.84 58.83 60.39 31.27 45.68 3.86
LADDER 85.92 58.26 75.84 60.18 53.92 29.85 47.75 4.00

3868	 Machine Learning (2023) 112:3851–3879

1 3

the overall performance on defending all attacks and on clean test dataset, LADDER
achieves an average rank of 3.71, outperforming all other methods. This shows that LAD-
DER achieves a better trade-off between standard accuracy and adversarial robustness.
Compared with two variants LADDER_cavRandom and LADDER_Random, LADDER
improves the average rank by 2.15 and 3.15, respectively. This validates the necessity of
using the normal of decision boundary as guidance to generate adversarial examples.

4.3.2 � Results on MNIST

Table 2 reports the classification results of the vanilla and adversarially trained LeNet mod-
els on the clean MNIST test dataset and adversarial robustness against other attacks. In
terms of standard accuracy on clean test dataset, LADDER performs the best and LAD-
DER_cavRandom achieves the second best among all the adversarially trained models. The
performance of LADDER ( 99.12% ) is very close to that of the vanilla model ( 99.13% ),
with only 0.01% difference. Moreover, LADDER outperforms the baseline PGD Adv. by a
large margin of 8.33% . LADDER is also observed to perform better than its two counter-
parts, LADDER_cavRandom and LADDER_Random, while LADDER_cavRandom per-
forms better than LADDER_Random.

In terms of adversarial robustness, it is clear to observe that LADDER improves the
vanilla model in defending FGSM attack and PGD attack by 9.2% and 19.27%, respec-
tively. When defending the JSMA attack, LADDER performs similarly to the vanilla
model. Among all attacks, LADDER achieves the best performance of defending the CW
attack and AutoAttack, compared with other adversarially trained models. Overall, LAD-
DER and LADDER_Random achieve an average rank of 3.29, which is the highest among
all adversarially trained models except for CW Adv. model. Yet, LADDER achieves better
performance than CW Adv. on clean test dataset and against PGD attack, and achieves the
same performance against AutoAttack. LADDER_cavRandom also outperforms FGSM,
PGD and Song et al. Adv. model. This confirms the usefulness of leveraging the latent
features to generate adversarial examples.

4.3.3 � Results on CelebA

Table 3 reports standard accuracy and adversarial robustness of the vanilla model and dif-
ferent adversarially trained models on CelebA. In terms of standard accuracy on clean test
dataset, LADDER yields the highest accuracy, while LADDER-GAN achieves the second
best performance. For the two variants of LADDER, LADDER_cavRandom performs bet-
ter than LADDER_Random, while both variants outperform the FGSM, PGD, JSMA and
CW Adv. models. This shows that performing feature perturbations in the latent space is
beneficial to achieve better standard accuracy.

As for the adversarial robustness performance against adversarial attacks, LADDER
achieves better performance of defending FGSM, JSMA, PGD and (Song et al., 2018)
attacks, compared with most of the baseline models. In particular, for the PGD attack,

3869Machine Learning (2023) 112:3851–3879	

1 3

LADDER improves the accuracy from 13.90% to 27.60% . As a whole, LADDER achieves
an average rank of 3.29, which is the best among all methods. The smaller the average
rank, the better the overall performance of defending adversarial attacks and achieving
standard accuracy simultaneously. LADDER-GAN and LADDER_Random both achieve
an average rank of 4.71, which stands behind only Song et al. Adv. and LADDER. This
proves the overall effectiveness of LADDER and its variants.

4.3.4 � Results on CIFAR‑10

We also compare standard accuracy and adversarial robustness of LADDER with other
baseline methods on CIFAR-10 – a more challenging dataset for the generation task.
Table 4 shows the classification results of the vanilla model and different adversarially
trained models. We can see that, LADDER is the second best performer among all adver-
sarially trained models, achieving an accuracy of 85.92%. Only the JSMA Adv. model per-
forms slightly better than LADDER with a small gap of 1.95%. Compared to Song et al.,
FGSM and PGD Adv., LADDER achieves significant improvements by 37.26%, 18.71%,
and 6.8%, respectively. The performance of LADDER-GAN slightly lags behind LAD-
DER. This signifies the competitive performance of LADDER in achieving good standard
accuracy on CIFAR-10.

For the adversarial robustness, LADDER achieves the best performance when defend-
ing the (Song et al., 2018) attack. In general, LADDER achieves a better average rank than
FGSM, PGD and Song et al. based adversarially trained models. As the generation task
on CIFAR-10 is more challenging, we also compare with LADDER-GAN. As can be seen,
LADDER-GAN improves the average rank of LADDER from 4.0 to 3.86. Yet, we find that
LADDER and LADDER-GAN perform worse than CW and JSMA adversarially trained
models. This indicates that generator-based defence methods have difficulties in achieving
the most appealing results on challenging datasets like CIFAR-10. Our findings reaffirm
the results of (Song et al., 2018) and those reported in (Jang et al., 2019) where a recursive
and stochastic generator is used to generate adversarial examples for adversarial training.
We leave further investigation of this problem to future work.

Fig. 8   Classification accuracy
of different defence methods on
adversarial examples generated
by (Song et al., 2018) and on
CelebA clean test dataset. Each
model is adversarially trained on
varying numbers of adversarial
examples, with 7 points for each
method compared in the figure
(Color figure online)

 81

 83

 85

 87

 89

 91

 93

 45 50 55 60 65 70 75 80 85 90 95

S
ta

nd
ar

d
ac

cu
ra

cy
 o

n
C

el
eb

A
 te

st
 d

at
as

et
 (

%
)

Accuracy (defence) on CelebA adversarial examples generated by Song et. al (%)

FGSM Adv.
JSMA Adv.
PGD Adv.
CW Adv.

LADDER_cavRandom
LADDER_Random

LADDER-GAN
LADDER

3870	 Machine Learning (2023) 112:3851–3879

1 3

4.3.5 � Analyse of the trade‑off between standard accuracy and robustness

To visually demonstrate the advantages of our LADDER method in achieving a better
trade-off between standard accuracy and adversarial robustness, we explicitly compare the
trade-off performance of different defence methods with respect to different numbers of
adversarial examples on CelebA as a case study. Specifically, we vary the number of exam-
ples used to adversarially train the models from 100 to 2,000. The classification results are
plotted in Fig. 8, where there are 7 points for each adversarially trained model. In the fig-
ure, the x-axis indicates the accuracy of adversarially trained models on adversarial exam-
ples generated by (Song et al., 2018), and the y-axis indicates the standard accuracy of
adversarially trained models on clean CelebA test dataset. If the trade-off achieved by one
method is better, the method is expected to locate in the top right corner. It can be seen
clearly that, our LADDER method and its variants (marked in circles) are located in the
top right corner. Markedly, our LADDER method outperforms FGSM Adv., PGD Adv.,
and CW Adv. by a large margin. Again, this confirms that our LADDER method is able to
achieve a better trade-off between standard accuracy and adversarial robustness.

4.4 � Effect of perturbation

Next, we empirically evaluate the effect of perturbation � on the performance of our LAD-
DER method. First, we study the impact of � on standard accuracy. To adversarially train
the LeNet, we randomly select 450 images per class from MNIST dataset to generate 4,500
adversarial examples for each perturbation [0.1, 2.0, 5.0, 7.0, 10.0, 15.0, 20.0]. These
adversarial examples with different perturbations are separately used to adversarially train
the LeNet. We undertake classification on clean MNIST test dataset using these adversari-
ally trained LeNet models. The results are reported in Fig. 9, colored in blue. It is clear to
observe that: (1). As � increases, the classification accuracy of the adversarially trained
models decreases firstly and then slightly increases at a later stage. (2). With different � val-
ues, the changes in classification accuracy are within an interval of 1.56% only. (3). When
� is not too large, i.e. < 7 , the performance of the adversarially trained models and the
vanilla LeNet is very close.

Fig. 9   Classification accuracy of
vanilla LeNet and adversarially
trained LeNet on MNIST test
dataset and adversarial examples
with different perturbations �
(Color figure online)

3871Machine Learning (2023) 112:3851–3879	

1 3

Second, we study the impact of � on adversarial robustness. We still use the adver-
sarially trained LeNet models in the previous step for conducting experiments. These
models are used to defend adversarial examples generated using the (Song et al., 2018)
attack method. From the red part in Fig. 9, we can see that, as � increases, the performance
of the adversarially trained model drops slightly. Overall, with different � values, our LAD-
DER method is able to achieve stable performance within a reasonably small range.

4.5 � Complement to regularization‑based adversarial training methods

Experiments are further performed to testify whether LADDER can complement the
existing regularization-based adversarial training methods that regularize the adversarial
loss to achieve a better trade-off between standard accuracy and adversarial robustness.
TRADES (Zhang et al., 2019b) is a strong competing method in this category. To achieve
the same objective, our LADDER method takes a complementary approach to generate
better adversarial examples but to use the original adversarial training loss. We expect that
the performance of TRADES could be improved in combination with LADDER.

We perform experiments on MNIST, SVHN, CelebA and CIFAR-10 to compare LAD-
DER, TRADES and the combined TRADES+LADDER. The results are shown in Table 5.
As we can see, LADDER achieves better defence performance than TRADES in 18 out
of 28 cases on the four datasets. Especially on SVHN, LADDER outperforms TRADES
against all attacks and on clean test dataset. As expected, TRADES+LADDER is found to
outperform TRADES in most cases (23 out of 28) on the four datasets. This proves that,
by generating high-quality and diverse adversarial examples, LADDER can complement
regularization-based methods that modify the adversarial training loss function to further
improve the performance.

Table 5   Classification accuracy of vanilla and adversarially trained models on clean test dataset and adver-
sarial examples generated by different attack methods

Higher means better for classification accuracy. The best results are highlighted in bold

Dataset Defence method Clean (%) FGSM (%) JSMA (%) PGD (%) CW (%) Song
et al. (%)

Auto
attack (%)

MNIST TRADES 98.44 60.8 92.6 52.31 98.4 99.8 98.71
LADDER 99.12 55.8 93.13 49.2 98.9 99.82 99.36
TRADES+LADDER 98.94 54.8 93.36 52.04 98.78 99.82 99.78

SVHN TRADES 85.88 13 27.24 10.38 73.93 92.31 44.36
LADDER 91.71 26.8 37.29 16.82 86.42 98.96 62
TRADES+LADDER 91.01 26.2 38.02 20.11 84.89 98.36 64.16

CelebA TRADES 91.95 52.85 83.1 12.85 63.45 89.2 53.7
LADDER 91.95 53.25 82.4 27.6 65.1 87.1 48.95
TRADES+LADDER 91.7 52.75 83.3 18.05 64.55 93.25 50

CIFAR-
10

TRADES 74.32 73.49 72.39 73.89 73.01 17.2 73.79
LADDER 85.92 58.26 75.84 60.18 53.92 29.85 47.75
TRADES+LADDER 80.7 75.83 76.58 77.04 76.20 28.18 76.78

3872	 Machine Learning (2023) 112:3851–3879

1 3

5 � Conclusion and future work

We proposed a novel adversarial training framework called Latent Boundary-guided
Adversarial Training (LADDER), which adversarially trains DNN models through
adversarial examples generated based on decision boundary in the latent space. We
analyzed that, LADDER can generate high-quality and diverse adversarial examples.
After adversarial training on the generated adversarial examples, LADDER achieves
a better trade-off between standard accuracy and adversarial robustness. The effective-
ness of our LADDER method was validated through extensive experiments on MNIST,
SVHN, CelebA, and CIFAR-10. From the new angle of improving the generation of
adversarial examples, we showed that our method is also able to complement the exist-
ing regularization-based adversarial training methods.

In the future, we will extend our work from the following aspects. Firstly, our method
generates adversarial examples by perturbing along the normal of decision boundary to
reduce the level of minimal perturbations in the latent space. For inverting to the input
space, we will try to derive theoretical bounds about when the perturbations of our gener-
ated examples are narrower than the Lp norm perturbations in the input space. Secondly,
for complex datasets like CIFAR-10 and ImageNet, where the generation task is more chal-
lenging, we have made attempts to use an adversarial loss rather than the Lp norm loss for
training a strong generator. We will investigate how to generate better adversarial examples
to boost the adversarial robustness on complex datasets. Finally, we would like to reduce
the computational complexity of our proposed method by removing the generator and
directly using the adversarial features vectors in the latent space for adversarial training.

Appendix

Hyper‑parameters in experiments

The hyper-parameters used for adversarial training in our experimental part are summa-
rized in the Table 6.

Table 6   Hyper-parameters
of adversarial training for all
methods

Dataset Learning rate Epochs Batch
Size

Optimizer (momen-
tum; weight decay)

MNIST 0.01 100 64 SGD (0.5; 0)
SVHN 0.001 100 128 SGD (0.9; 5e-4)
CelebA 0.01 100 64 SGD (0.5; 5e-4)
CIFAR-10 0.001 100 128 SGD (0.9; 5e-4)

3873Machine Learning (2023) 112:3851–3879	

1 3

Robustness under white‑box attacks

Robustness on defending white‑box attacks

To verify the robustness of our method in defending white-box attacks, we have conducted
experiments under white-box settings, where attack methods generate adversarial examples
with gradients available from the network. The comparison of our method and other base-
line methods on MNIST are shown in Table 7. As can be seen, our methods (LADDER and
LADDER_Random) are the best two performers for defending different types of attacks
simultaneously. Especially, our LADDER method achieves the best defence performance,
when defending CW attacks. Compared with the vanilla model, LADDER improves the
performance against all attacks except for CW and (Song et al., 2018). Overall, our pro-
posed method exhibits competitive performance in defending white-box attacks.
LADDER’s robustness against LADDER attacks

We have also conducted experiments to compare the defence performance of the vanilla
model and our trained model against white-box adversarial examples generated using
LADDER. The results are reported in Table 8. As can be clearly seen, our trained model
(LADDER) significantly improves the defence performance of the vanilla model on the
three datasets by 28.54%, 31.56, and 5.95%, respectively. This proves the efficacy of our

Table 7   Defending white-box attacks targeted on LeNet: classification accuracy of the vanilla LeNet and
adversarially trained LeNet models on white-box adversarial examples generated by different attack meth-
ods

Smaller means better for the average rank (Avg. Rank). The best method is in bold and the second best is
italic

Defence method FGSM (%) JSMA (%) PGD (%) CW (%) Song et al. (%) Avg rank

Vanilla model 1.80 90.72 0.69 96.88 98.28 –
FGSM adv. – 82.04 76.28 86.88 90.76 5
JSMA adv. 11.24 – 2.08 95.54 98.65 4.25
PGD adv. 81.00 80.39 – 86.71 92.40 5.25
CW adv. 6.29 92.17 1.41 – 99.38 4
Song et al. adv. 28.74 85.63 17.13 93.83 – 3.25
LADDER_cavRandom 15.31 90.31 4.60 93.47 94.19 4.8
LADDER_Random 25.80 91.54 8.52 95.86 98.51 3
LADDER 19.6 92.07 9.02 96.70 98.23 2.8

Table 8   Classification accuracy
on white-box adversarial
examples generated by LADDER

Higher means better for classification accuracy. The best results are
highlighted in bold

Dataset Vanilla model (%) LADDER (%)

MNIST 69.78 98.23
SVHN 42.48 74.04
CelebA 83.85 89.8

3874	 Machine Learning (2023) 112:3851–3879

1 3

trained models against the adversarial examples generated under white-box settings using
the same latent based attack method.

Susceptibility of Baseline methods against LADDER attacks

In Table 9, rows 3–7 show the defence performance of five conventional adversarially
trained models against the adversarial examples generated by LADDER on three datasets.
As compared to the vanilla model, the best performer among the five conventional adver-
sarially trained models improves the defence performance by only 3.55% on MNIST. All
five conventional adversarially trained models exhibit worse defence performance than the
vanilla model on SVHN and CelebA. This confirms the susceptibility of the conventional
adversarially trained methods to the adversarial examples generated using LADDER. In
contrast, the adversarially trained LADDER model is very successful in defending against
adversarial samples generated using LADDER.

Table 9   Defence performance
of the conventional adversarially
trained models and our
LADDER method against
adversarial samples generated
using LADDER

Higher means better for classification accuracy. The best method is
highlighted in bold

Defence method MNIST (%) SVHN (%) CelebA (%)

Vanilla model 69.78 42.48 83.85
FGSM adv. 66.81 40.01 73.00
JSMA adv. 72.16 39.68 83.30
PGD adv. 67.65 39.12 75.35
CW adv. 73.33 42.23 80.95
Song et al. adv. 72.55 42.16 83.15
LADDER 98.23 74.04 89.8

Fig. 10   Illustrative examples generated using our LADDER method with an increasing perturbation ( �)

3875Machine Learning (2023) 112:3851–3879	

1 3

Illustrative examples generated by LADDER

We further provide more illustrative examples to demonstrate the ability of our generator
to generate sensible adversarial examples and the effectiveness of perturbing latent features
along the normal of the decision boundary.

As shown in Fig. 10, the first column is the original input image; the last column is the
randomly sampled target class; columns 2–16 are the generated examples, which are gener-
ated by adding different perturbations ( � ) to latent features of the original inputs. From col-
umn 2 to column 16, the perturbation increases gradually from 0.5 to 30.0 along the normal
of decision boundary between the class of original input and target class. We can see from
the figure, when we increase the perturbation, the generated examples gradually change
from the original class to the target class, and when the perturbation is too large (i.e., the
last 3 columns), the generated images are distorted. The images marked with red rectan-
gles are inherently ambiguous between the class of the original input and the target class,

Table 10   The architecture of
boundary-guided generator for
MNIST

Layers Layer parameters

Linear Input: 500, output: 50 × 4 × 4
Conv_Transpose kernel: 2 × 2, stride: 4 × 4
Conv kernel: 3 × 3, stride: 1 × 1
Conv_Transpose kernel: 2 × 2, stride: 3 × 3
Conv kernel: 4 × 4, stride: 1 × 1
Conv kernel: 5 × 5, stride: 1 × 1

Table 11   The architecture of
boundary-guided generator for
SVHN

Layers Layer parameters

Linear Input: 4096, output: 512 × 2 × 2
Conv & BN & ReLU kernels: 512, kernel: 3 × 3, stride: 1
Conv_Transpose & BN kernels: 512, kernel: 2 × 2, stride: 1
Conv & BN & ReLU kernels: 512, kernel: 3 × 3, stride: 1
Conv_Transpose & BN kernels: 512, kernel: 2 × 2, stride: 1
Conv & BN & ReLU kernels: 256, kernel: 3 × 3, stride: 1
Conv_Transpose & BN kernels: 256, kernel: 2 × 2, stride: 1
Conv & BN & ReLU kernels: 128, kernel: 3 × 3, stride: 1
Conv_Transpose & BN kernels: 128, kernel: 2 × 2, stride: 1
Conv & BN & ReLU kernels: 64, kernel: 3 × 3, stride: 1
Conv & Tanh kernels: 3, kernel: 1 × 1, stride: 1

3876	 Machine Learning (2023) 112:3851–3879

1 3

even making humans difficult to make a judgement. These images enrich the data space
near the decision boundary, thereby improving the generalization of the trained classifier.

Generator architectures

The neural network architectures of boundary-guided generator for MNIST, SVHN, Cel-
ebA and CIFAR-10 are detailed in this part. In each table, Linear indicates linear trans-
formation; Conv_Transpose denotes transposed convolution; Conv represents convolution;
BN represents batch normalization. kernels means number of kernels. kernel means the
dimension of kernel. stride means steps of convolutions. ReLU means the ReLU activation
function (Tables 10, 11, 12 and 13).

Author contributions  XZ carried out the experiments and wrote the manuscript. IWTand JY conceived of
the presented idea. JY wrote and proofread the manuscript. All authors discussed the experimental results
and commented on the manuscript.

Table 12   The architecture of
boundary-guided generator for
CelebA

Layers Layer parameters Repeat

Linear Input: 4096, output: 512 × 4 × 4 1
Conv_Transpose & BN kernels: 512, kernel: 2, stride: 1 1
Conv & BN & ReLU kernels: 512, kernel: 3, stride: 1 3
Conv_Transpose & BN kernels: 512, kernel: 2, stride: 1 1
Conv & BN & ReLU kernels: 512, kernel: 3, stride: 1 3
Conv_Transpose & BN kernels: 256, kernel: 2, stride: 1 1
Conv & BN & ReLU kernels: 256, kernel: 3, stride: 1 3
Conv_Transpose & BN kernels: 128, kernel: 2, stride: 1 1
Conv & BN & ReLU kernels: 128, kernel: 3, stride: 1 2
Conv_Transpose & BN kernels: 64, kernel: 2, stride: 1 1
Conv & BN & ReLU kernels: 64, kernel: 3, stride: 1 2
Conv & Tanh kernels: 3, kernel: 1, stride: 1 1

Table 13   The architecture of
boundary-guided generator for
CIFAR-10

Layers Layer parameters Repeat

Linear input: 512, output: 512 × 4 × 4 1
Conv & BN & ReLU kernels: 512, kernel: 3, stride: 1 1
Conv_Transpose & BN kernels: 512, kernel: 2, stride: 2 1
Conv & BN & ReLU kernels: 512, kernel: 3, stride: 1 4
Conv_Transpose & BN kernels: 512, kernel: 2, stride: 2 1
Conv & BN & ReLU kernels: 256, kernel: 3, stride: 1 4
Conv_Transpose & BN kernels: 256, kernel: 2, stride: 2 1
Conv & BN & ReLU kernels: 128, kernel: 3, stride: 1 4
Conv & BN & ReLU kernels: 64, kernel: 3, stride: 1 2
Conv & BN & ReLU kernels: 32, kernel: 3, stride: 1 2
Conv & BN & ReLU kernels: 8, kernel: 3, stride: 1 2
Conv & Sigmoid kernels: 3, kernel: 1, stride: 1 1

3877Machine Learning (2023) 112:3851–3879	

1 3

Funding  Open Access funding enabled and organized by CAUL and its Member Institutions. Xiaowei Zhou
is supported by a Data61 PhD Scholarship from CSIRO. Ivor Tsang is supported by the Center for Fron-
tier AI Research, A*STAR and ARC under grants DP200101328. This work is partially supported by the
USYD-Data61 Collaborative Research Project grant.

Availability of data and material  All datasets used in this work are publicly available.

Code availability  The source code of our work is available at: https://​github.​com/​zhoux​iaowe​i1120/​
LADDER.

Declarations 

Conflict of interest  The authors de clare that they have no conflict of intrest.

Ethics approval  Not applicable

Consent to participate  Not applicable

Consent for publication  Not applicable

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Alikaniotis, D., Yannakoudakis, H., & Rei, M. (2016). Automatic text scoring using neural networks. In
ACL (Vol. 1, pp. 715–725, Long Papers), Association for Computational Linguistics, https://​doi.​org/​
10.​18653/​v1/​P16-​1068

Amazon. (2019). Machine learning on aws. Retrieved Feb 22, 2019 from https://​aws.​amazon.​com/​machi​
ne-​learn​ing/.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Casper, J., Catanzaro,
B., Cheng, Q., Chen, G., & Chen, J. (2016). Deep speech 2: End-to-end speech recognition in eng-
lish and mandarin. In ICML (pp. 173–182).

Andriushchenko, M., Croce, F., Flammarion, N., & Hein, M. (2020). Square attack: A query-efficient
black-box adversarial attack via random search. In: ECCV (pp. 484–501). Springer.

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992) A training algorithm for optimal margin classifi-
ers. In: Proceedings of the fifth annual workshop on computational learning theory (pp. 144–152)
ACM.

Carlini, N., & Wagner, D (2017). Towards evaluating the robustness of neural networks. In: 2017 IEEE
symposium on security and privacy (SP) (pp. 39–57) IEEE.

Croce, F., & Hein, M. (2020a). Minimally distorted adversarial examples with a fast adaptive boundary
attack. In: ICML (pp. 2196–2205). PMLR.

Croce, F., & Hein, M. (2020b). Reliable evaluation of adversarial robustness with an ensemble of diverse
parameter-free attacks. In: ICML (pp. 2206–2216). PMLR.

Dai, T., Feng, Y., Wu, D., Chen, B., Lu, J., Jiang, Y., & Xia, S. T. (2020). Dipdefend: Deep image prior
driven defense against adversarial examples. In: ACM MM (pp. 1404–1412).

Ding, G., Sharma, Y., Lui K. Y. C., & Huang, R. (2020). Mma training: Direct input space margin maxi-
mization through adversarial training. In: ICLR.

Dlib. (2019). Dlib python library. Retrieved May 20, 2019 from http://​dlib.​net/.
Fedus, W., Goodfellow, I., & Dai, A. M. (2018) Maskgan: Better text generation via filling in the_. In: ICLR.

https://github.com/zhouxiaowei1120/LADDER
https://github.com/zhouxiaowei1120/LADDER
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.18653/v1/P16-1068
https://doi.org/10.18653/v1/P16-1068
https://aws.amazon.com/machine-learning/
https://aws.amazon.com/machine-learning/
http://dlib.net/

3878	 Machine Learning (2023) 112:3851–3879

1 3

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In:
ICLR.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2014). Genera-
tive adversarial nets. NIPS, 27, 2672–2680.

Google. (2019). Cloud vision. Retrieved Feb 22, 2019 from https://​cloud.​google.​com/​vision/.
Guo, C., Rana, M., Cisse, M., & van der Maaten, L. (2018). Countering adversarial images using input

transformations. In: ICLR.
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional

networks. In: CVPR (pp. 4700–4708).
Jang, Y., Zhao, T., Hong, S., & Lee, H. (2019). Adversarial defense via learning to generate diverse attacks.

In: ICCV (pp. 2740–2749).
Kannan, H., Kurakin, A., & Goodfellow, I. (2018). Adversarial logit pairing. arXiv preprint arXiv:​1803.​

06373
Krizhevsky, A., & Hinton. G, et al. (2009). Learning multiple layers of features from tiny images. Tech-

nical Report.
Kurakin, A., Goodfellow, I., & Bengio, S. (2016). Adversarial machine learning at scale. In: ICLR.
LeCun, Y., & Cortes, C. (1998). The mnist database of handwritten digits. http://​yann.​lecun.​com/​exdb/​

mnist/.
LeCun, Y., Jackel, L., Bottou, L., Cortes, C., Denker, J. S., Drucker, H., et al. (1995). Learning algo-

rithms for classification: A comparison on handwritten digit recognition. Neural Networks: The
Statistical Mechanics Perspective, 261, 276.

Lee, S., Lee, H., & Yoon, S. (2020). Adversarial vertex mixup: Toward better adversarially robust gener-
alization. In: CVPR (pp. 272–281).

Li, Y., Ding, L., & Gao, X. (2018). On the decision boundary of deep neural networks. arXiv preprint
arXiv:​1808.​05385

Li, Y., Li, L., Wang, L., Zhang, T., & Gong, B. (2019). Nattack: Learning the distributions of adversarial
examples for an improved black-box attack on deep neural networks. In: ICML (pp. 3866–3876).
PMLR.

Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep learning face attributes in the wild. In: ICCV.
Liu, L., & Tan, R. T. (2021). Certainty driven consistency loss on multi-teacher networks for semi-

supervised learning. Pattern Recognition, 120, 108140.
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2018). Towards deep learning models

resistant to adversarial attacks. In: ICLR.
Meng, D., Chen, H. (2017). Magnet: a two-pronged defense against adversarial examples. In: The 2017

ACM SIGSAC CCS (pp. 135–147). ACM.
Moosavi-Dezfooli, SM., Fawzi, A., & Frossard, P. (2016). Deepfool: A simple and accurate method to fool

deep neural networks. In: CVPR (pp. 2574–2582).
Mustafa, A., Khan, S., Hayat, M., Goecke, R., Shen, J., & Shao, L. (2019). Adversarial defense by restrict-

ing the hidden space of deep neural networks. In: ICCV (pp. 3385–3394).
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., & Ng, A. Y. (2011). Reading digits in natural images

with unsupervised feature learning. In: NIPS.
Odena, A., Olah, C., & Shlens, J. (2017). Conditional image synthesis with auxiliary classifier gans. In:

ICML (pp. 2642–2651). JMLR. org.
Papernot, N., Faghri, F., Carlini, N., Goodfellow, I., Feinman, R., Kurakin, A., Xie, C,. Sharma, Y., Brown,

T., & Roy, A., et al. (2016a). Technical report on the cleverhans v2. 1.0 adversarial examples library.
arXiv preprint arXiv:​1610.​00768

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., & Swami, A. (2017). Practical black-box
attacks against machine learning. In: ACM ASIACCS (pp. 506–519).

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, ZB., & Swami, A. (2016b). The limitations of
deep learning in adversarial settings. In: 2016 IEEE European symposium on security and privacy
(EuroS &P) (pp. 372–387). IEEE.

Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami A (2016c) Distillation as a defense to adversarial per-
turbations against deep neural networks. In 2016 IEEE symposium on security and privacy (SP), (pp.
582–597). IEEE.

Papernot, N., & McDaniel, P. (2017). Extending defensive distillation. arXiv preprint arXiv:​1705.​05264
Rahmati, A., Moosavi-Dezfooli, S. M., Frossard, P., & Dai, H. (2020). Geoda: a geometric framework for

black-box adversarial attacks. In: CVPR (pp. 8446–8455).
Samangouei, P., Kabkab, M., & Chellappa, R. (2018). Defense-gan: Protecting classifiers against adversarial

attacks using generative models. In ICLR.

https://cloud.google.com/vision/
http://arxiv.org/abs/1803.06373
http://arxiv.org/abs/1803.06373
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1808.05385
http://arxiv.org/abs/1610.00768
http://arxiv.org/abs/1705.05264

3879Machine Learning (2023) 112:3851–3879	

1 3

Seide, F., Li, G., & Yu, D. (2011). Conversational speech transcription using context-dependent deep neural
networks. In: Twelfth annual conference of the international speech communication association.

Shaham, U., Yamada, Y., & Negahban, S. (2018). Understanding adversarial training: Increasing local sta-
bility of supervised models through robust optimization. Neurocomputing, 307, 195–204.

Shi, Y., Zhou, X., Liu, P., & Tsang, I. (2021). Generative transition mechanism to image-to-image transla-
tion via encoded transformation. arXiv preprint arXiv:​2103.​05193

Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W., & Webb, R. (2017) Learning from simulated
and unsupervised images through adversarial training. In: CVPR (pp. 2107–2116).

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recogni-
tion. arXiv preprint arXiv:​1409.​1556

Song, Y., Shu, R., Kushman, N., & Ermon, S. (2018). Constructing unrestricted adversarial examples with
generative models. In NeurIPS (pp. 8312–8323).

Su, J., Vargas, D. V., & Sakurai, K. (2019). One pixel attack for fooling deep neural networks. IEEE Trans-
actions on Evolutionary Computation, 23(5), 828–841.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow. I., & Fergus, R. (2013) Intriguing
properties of neural networks. arXiv preprint arXiv:​1312.​6199

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., & Madry, A. (2019). Robustness may be at odds with
accuracy. In: ICLR.

Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I., Lopez-Paz, D., & Bengio, Y. (2019a). Mani-
fold mixup: Better representations by interpolating hidden states. In: ICML (pp. 6438–6447). PMLR.

Verma, V., Lamb, A., Kannala, J., Bengio, Y., & Lopez-Paz, D. (2019b). Interpolation consistency training
for semi-supervised learning. In: IJCAI (pp. 3635–3641).

Wang, H., Li, G., Liu, X., & Lin, L. (2020). A hamiltonian monte carlo method for probabilistic adversarial
attack and learning. IEEE Transactions on Pattern Analysis and Machine Intelligence.

Wang, Y., Zou, D., Yi, J., Bailey, J., Ma, X., & Gu, Q. (2020). Improving adversarial robustness requires
revisiting misclassified examples. In: ICLR.

Xiao, C., Zhong, P., & Zheng, C. (2020). Enhancing adversarial defense by k-winners-take-all. In: ICLR.
Xie, C., Zhang, Z., Zhou, Y., Bai, S., Wang, J., Ren, Z., & Yuille, A. L. (2019). Improving transferability of

adversarial examples with input diversity. In: CVPR (pp. 2730–2739).
Yuan, X., He, P., Zhu, Q., & Li, X. (2019). Adversarial examples: Attacks and defenses for deep learning.

IEEE transactions on neural networks and learning systems.
Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). Mixup: Beyond empirical risk minimiza-

tion. In: ICLR.
Zhang, H., Goodfellow, I., Metaxas, D., & Odena, A. (2019a). Self-attention generative adversarial net-

works. In: ICML, PMLR (pp. 7354–7363).
Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., & Jordan, M. (2019b). Theoretically principled trade-off

between robustness and accuracy. In: ICML (pp. 7472–7482).
Zhang, J., Zhu, J., Niu, G., Han, B., Sugiyama, M., & Kankanhalli M. S. (2021). Geometry-aware instance-

reweighted adversarial training. In: ICLR.
Zheng, T., Chen, C., & Ren, K. (2019). Distributionally adversarial attack. AAAI, 33, 2253–2260.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/2103.05193
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1312.6199

	LADDER: Latent boundary-guided adversarial training
	Abstract
	1 Introduction
	2 Related work
	2.1 Adversarial attack
	2.2 Adversarial defence

	3 Latent boundary-guided adversarial training
	3.1 Latent boundary-guided generation
	3.1.1 Boundary-guided attention
	3.1.2 Latent feature perturbation
	3.1.3 Boundary-guided generation

	3.2 Latent boundary-guided adversarial training

	4 Experimental evaluation
	4.1 Experiments settings
	4.1.1 Datasets and shared DNN models
	4.1.2 Baseline methods

	4.2 Blessings of adversarial examples
	4.2.1 Fidelity of generator
	4.2.2 Diversity of generated adversarial examples
	4.2.3 High-quality adversarial examples near boundary

	4.3 Standard accuracy and adversarial robustness
	4.3.1 Results on SVHN
	4.3.2 Results on MNIST
	4.3.3 Results on CelebA
	4.3.4 Results on CIFAR-10
	4.3.5 Analyse of the trade-off between standard accuracy and robustness

	4.4 Effect of perturbation
	4.5 Complement to regularization-based adversarial training methods

	5 Conclusion and future work
	Appendix
	Hyper-parameters in experiments
	Robustness under white-box attacks
	Robustness on defending white-box attacks
	LADDER’s robustness against LADDER attacks
	Susceptibility of Baseline methods against LADDER attacks

	Illustrative examples generated by LADDER
	Generator architectures

	References

