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Abstract
Deep Neural Networks (DNNs) have recently achieved great success in many classifica-
tion tasks. Unfortunately, they are vulnerable to adversarial attacks that generate adver-
sarial examples with a small perturbation to fool DNN models, especially in model shar-
ing scenarios. Adversarial training is proved to be the most effective strategy that injects 
adversarial examples into model training to improve the robustness of DNN models against 
adversarial attacks. However, adversarial training based on the existing adversarial exam-
ples fails to generalize well to standard, unperturbed test data. To achieve a better trade-
off between standard accuracy and adversarial robustness, we propose a novel adversarial 
training framework called LAtent bounDary-guided aDvErsarial tRaining (LADDER) 
that adversarially trains DNN models on latent boundary-guided adversarial examples. As 
opposed to most of the existing methods that generate adversarial examples in the input 
space, LADDER generates a myriad of high-quality adversarial examples through adding 
perturbations to latent features. The perturbations are made along the normal of the deci-
sion boundary constructed by an SVM with an attention mechanism. We analyze the merits 
of our generated boundary-guided adversarial examples from a boundary field perspective 
and visualization view. Extensive experiments and detailed analysis on MNIST, SVHN, 
CelebA, and CIFAR-10 validate the effectiveness of LADDER in achieving a better trade-
off between standard accuracy and adversarial robustness as compared with vanilla DNNs 
and competitive baselines.
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1  Introduction

In recent years, deep neural networks (DNNs) have been successfully applied to empower 
many advanced applications, such as image processing  (Huang et  al., 2017; Shi et  al., 
2021), speech generation (Seide et al., 2011; Amodei et al., 2016) and natural language pro-
cessing (Fedus et al., 2018; Alikaniotis et al., 2016). Nevertheless, training a DNN model 
often requires large amounts of labeled data and significant efforts of parameter tuning. As 
such, this catalyzes new ways of developing DNN models as a service that can be shared 
by a third party. This development leads to many offline and online Machine Learning as 
a Service (MLaaS) platforms that provide shared services for various tasks based on DNN 
models, such as image and video analysis from the AWS pre-trained AI Services (Amazon, 
2019), and powerful image analysis from Google Cloud Vision (Google, 2019).

In such model sharing scenarios, the increasing use of DNN models, however, has 
raised serious security and reliability concerns. As illustrated in Fig. 1, the service provider 
trains a DNN model using the training data that they have collected, expecting it to achieve 
high classification accuracy on test samples with similar distributions. End-users then pro-
vide their own test samples, mostly unknown to the service provider in advance, into the 
shared model to obtain prediction results. However, very often, test samples are likely to be 
mixed with unknown adversarial examples (Szegedy et al., 2013; Yuan et al., 2019), which 
are generated by attackers by adding small and hardly visible perturbations to standard test 
samples. What makes it even worse is that adversarial examples can be generated by vari-
ous types of unknown attacks, resulting in a dramatic drop in classification accuracy. This 
is due to the fact that the shared DNN models are not robustly trained to defend against 
unknown adversarial attacks before they are released as a service. Thus, research works 
have been proposed to improve the robustness of DNN models against adversarial attacks.

Adversarial training  (Goodfellow et al., 2015; Shaham et al., 2018; Shrivastava et al., 
2017) is one of the most successful techniques for improving the robustness of DNN mod-
els against adversarial attacks. Its key idea is to augment the training data with adversar-
ial examples to retrain DNN models. However, as studied in  (Tsipras et al., 2019), there 
exists a trade-off between standard accuracy on clean data and adversarial robustness. Bet-
ter robustness often leads to worse classification accuracy on clean data. To address this, 

End User

Unknown 
test data

Unknown 
adv. examples

Dropped
accuracy

Mix
Shared model

Attacker

Attack methods

Fig. 1   Attacks in model sharing scenarios. The end user performs classification tasks through the shared 
model without the knowledge on adversarial examples generated by attackers to attack the shared model
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several recent studies (Zhang et al., 2019b; Ding et al., 2020; Wang et al., 2020) have been 
proposed to add additional regularization terms into the loss function of adversarial train-
ing. These methods employ the modified adversarial training loss function with regulariza-
tion to achieve better generalization and adversarial robustness. This has raised a research 
question: Could  adversarial examples generated by the existing methods account  for the 
trade-off  between standard accuracy and adversarial  robustness? This motivates us to 
explore the curses and blessings of adversarial examples for achieving a better trade-off 
between standard accuracy and robustness against adversarial attacks.

The adversarial examples generated by the existing methods suffer from two major 
curses. First, most of these methods (Goodfellow et al., 2015; Madry et al., 2018; Papernot 
et  al., 2016b; Carlini & Wagner, 2017) generate adversarial examples through adding a 
small perturbation to legitimate samples in the input space, which often only craft adver-
sarial examples of repeating patterns. The DNN models adversarially trained with these 
examples would be effective only in defending very specific types of adversarial attacks, 
but still vulnerable  to other adversarial attacks. Thus, this presses a need for increasing 
the diversity of generated adversarial examples so that DNN models can fully explore the 
unknown data space to improve the robustness against adversarial attacks.

Second, the generated adversarial samples might hurt the standard accuracy of DNN 
models on clean (legitimate) samples. As shown in Fig. 2a, the adversarial examples gen-
erated by most existing methods are within a ball in the input space. When adversarially 
trained with these samples, the decision boundary of the DNN classifier would dramati-
cally change as compared with the original one. This leads legitimate samples (sample A) 

Vanilla Classifier Adv. Trained Classifier

Latent Space

Normal of Boundary

Input Space Input Space

Boundary Field

(a)
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A

Fig. 2   a: Adversarial examples generated by the existing methods are often within a ball in the input 
space, which leads the decision boundary of the adversarially trained classifier (dotted line) to dramatically 
change. The legitimate sample, sample A, would be misclassified. c: Our LADDER method perturbs latent 
features of samples within the boundary field in the latent space. The generated adversarial examples would 
reside in a more restricted area. Sample A would thus be classified correctly. b: The adversarially trained 
classifier by existing adversarial examples (red dotted line) would misclassify legitimate samples (sample 
B and C), which would hurt the standard accuracy. The adversarially trained classifier using our method 
(purple dashed line) would change less remarkably than the existing one (red dotted line), which would cor-
rectly classify the samples (Color figure online)
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to be misclassified. Moreover, as perturbations are added in the input space, the generated 
adversarial examples would contain lots of noise. This can be seen from adversarial exam-
ples (in Fig. 6) generated by FGSM (Goodfellow et al., 2015) or JSMA (Papernot et al., 
2016b). Consequently, it would hurt the standard accuracy of adversarially trained models. 
This inspires us to generate adversarial examples of better quality through the latent space.

Furthermore, existing methods treat all examples equally while generating adversarial 
examples, but neglect the decision boundary information. Our work stems from the obser-
vation that incorporating information about the decision boundary in the latent space into 
the generation of adversarial examples would be a blessing to achieve better generaliza-
tion on standard clean data. As shown in Fig. 2c, latent features of samples are perturbed 
along the normal of decision boundary to move within the boundary field, i.e., the nearby 
area of the decision boundary. The generated adversarial examples would thus reside in a 
restricted area and prevent the adversarially trained classifier from misclassifying legiti-
mate samples (sample B and C), which, however, could be misclassified by existing meth-
ods. Motivated by this observation, we focus on how to leverage the decision boundary to 
guide the generation of adversarial examples, aiming to achieve a better trade-off between 
standard accuracy and adversarial robustness.

In this paper, we propose a novel adversarial training framework called Latent Bound-
ary-guided Adversarial Training (LADDER), which adversarially trains DNN models with 
myriad adversarial examples generated based on the decision boundary in a latent space. 
Unlike some of the existing methods that operate in the input space and generate noisy 
adversarial examples of repeated patterns, LADDER generates high-quality and diverse 
adversarial examples by adding perturbations to latent features. The generation of adver-
sarial examples is guided by the normal of decision boundary in the latent space, which is 
learned via a linear support vector machine (SVM) (Boser et al., 1992) with an attention 
mechanism. After adversarial training on generated adversarial examples, the adversarially 
trained DNN model is effective in achieving a trade-off between standard accuracy and 
robustness against adversarial attacks. Comprehensive experiments and analyses are con-
ducted on MNIST, SVHN, CelebA, and CIFAR-10 to verify the effectiveness of the pro-
posed method.

The novelty and contribution of this paper are three-fold:

•	 We analyze the curses and blessings of adversarial examples for adversarial training 
and explain the advantages of latent boundary-guided solution.

•	 We propose a new method called LADDER that generates high-quality and diverse 
adversarial examples by adding boundary-guided perturbations in a latent feature 
space.

•	 After adversarial training on the generated adversarial examples, LADDER achieves a 
better trade-off between standard accuracy and adversarial robustness as compared with 
vanilla DNNs and competitive baselines.

2 � Related work

This section reviews two branches of related literature: adversarial attack methods and 
adversarial defence methods.
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2.1 � Adversarial attack

From the methodology point of view, most of the existing adversarial attack methods can 
be grouped into two categories: gradient-based attacks  (Goodfellow et  al., 2015; Madry 
et al., 2018; Papernot et al., 2016b) and decision-based attacks (Carlini & Wagner, 2017; 
Song et al., 2018; Moosavi-Dezfooli et al., 2016; Su et al., 2019).

Gradient-based attacks: Gradient-based attacks mainly add perturbations in the direc-
tion of the gradient of loss function with respect to the input sample. (Goodfellow et al., 
2015) proposed the fast gradient sign method (FGSM) that uses the sign of gradient 
( ∇�

J(�, �, y) ) of loss function with respect to input examples as perturbation. Built upon 
FGSM, the one-step attack method, (Madry et  al., 2018) proposed a multi-step attack 
method called PGD. PGD iteratively uses the gradient information and generates adver-
sarial examples on the results of the last step. Similarly, DI2-FGSM (Xie et al., 2019) gen-
erates adversarial examples on the results of last step, but it uses the gradients of stochastic 
transformed inputs rather than the original ones. (Papernot et al., 2016b) introduced sali-
ency map based on Jacobian matrix into the generation of adversarial examples. The sali-
ency values computed by forward derivative of a target model are used as an indicator to 
determine the locations in the input examples to add perturbations. This method is called 
Jacobian saliency map attack (JSMA).

Decision-based attacks: Decision-based attacks manipulate the labels of training data 
to make the learned DNN model beneficial to their specific purposes. This line of methods 
uses Eq. (1) as a measure, i.e., changing the original label to target label, to generate adver-
sarial examples. For a given classifier f, the predicted label of an input sample � is defined 
as f (�) , and f (��) is the label of adversarial example �′:

where � is a small perturbation added to an input sample � . �′ is the generated adversarial 
example. Carlini and (Carlini & Wagner, 2017) proposed an approach, CW, to generate 
adversarial examples by adding small changes to the original images in the input space. 
CW tries  to minimize the distance between benign examples and adversarial ones, while 
enforcing the labels of adversarial examples as the targeted ones. A deep learning based 
attack method was developed by Song et  al. (2018). This method explored the AC-
GAN (Odena et al., 2017) latent space to generate adversarial images, which could most 
likely mislead the targeted classifier. GeoDA  (Rahmati et  al., 2020) estimates the deci-
sion boundary for each data point in the input space to generate adversarial examples. In 
contrast, our LADDER trains an SVM to obtain the decision boundary between any two 
classes in the latent space.

Other adversarial attacks: Recently, distribution-based methods have also been pro-
posed for adversarial attack. DAA (Zheng et al., 2019), HMCAM (Wang et al., 2020) and 
N attack  (Li et  al., 2019) generate diverse adversarial examples through modeling their 
probability distribution in the input space. The goal of DAA (Zheng et al., 2019) is to gen-
erate globally optimal adversarial examples and N attack (Li et al., 2019) aims to develop 
a powerful black-box adversarial attack method. HMCAM (Wang et al., 2020) generates a 
sequence of adversarial examples to improve adversarial robustness. In contrast, our LAD-
DER, as one adversarial training based defence method, generates adversarial examples 
individually for each input to achieve a better trade-off between standard accuracy and 
adversarial robustness.

(1)�
� = � + �, s.t. f (��) ≠ f (�),



3856	 Machine Learning (2023) 112:3851–3879

1 3

Apart from distribution-based methods, (Croce & Hein, 2020b) proposed an ensemble 
attack method called AutoAttack. This method firstly extends the PGD attack method into 
APGDCE by automatically choosing step sizes and APGDDLS by using a difference of logits 
ratio (DLR) loss. Then, four attack methods, including APGDCE , APGDDLS , FAB (Croce & 
Hein, 202a) and square attack (Andriushchenko et al., 2020) are combined as AutoAttack.

From the knowledge accessibility point of view, the adversarial attacks can be divided 
into white-box attacks and black-box attacks. Under white-box attack settings, the attack-
ers have access to full knowledge about the target model, i.e., model structure and model 
parameters. On the contrary, the attackers have no knowledge about the target model under 
black-box attack settings. In this work, we are mainly concerned with model sharing sce-
narios, where model structure and model parameters are unknown to attackers. Thus, we 
focus on defending black-box attacks.

2.2 � Adversarial defence

For various types of adversarial attacks, a key research question is, how can we improve 
the adversarial robustness of a DNN model before it is deployed as a service? In response, 
adversarial defence strategies have been proposed to mitigate the effect of adversarial 
attacks  (Papernot et  al., 2016c; Papernot & McDaniel, 2017; Samangouei et  al., 2018; 
Meng & Chen, 2017; Guo et  al., 2018; Kannan et  al., 2018; Mustafa et  al., 2019; Xiao 
et al., 2020).

Gradient masking methods: Gradient masking methods (Papernot et al. 2017) construct 
a model which does not provide useful gradients to be attacked. For example, Defensive 
distillation (Papernot et al., 2016c; Papernot & McDaniel, 2017) learns a smooth targeted 
defence model with d training times, where the predicted labels from (d − 1)-th model are 
used as ground truth to train the d-th model except for the first time.

Clean sample reconstruction: Defense-GAN (Samangouei et al., 2018), DIPDefend (Dai 
et al., 2020) and MagNet (Meng & Chen, 2017) are three typical methods that remove the 
perturbation added on adversarial examples to reconstruct a clean sample similar to the 
legitimate one. The reconstructed examples can be easily recognised by the model, com-
pared with adversarial examples.

Adversarial training: Among others, adversarial training (Goodfellow et al., 2015; Sha-
ham et al., 2018; Shrivastava et al., 2017; Kurakin et al., 2016) is proved as one of the most 
effective defence methods, which augments the training data with adversarial examples 
when training the targeted model. It can be achieved either by training the targeted model 
with original samples augmented with adversarial examples (Kurakin et al., 2016) or with 
a modified loss function (Goodfellow et al., 2015). Our LADDER falls into the realm of 
adversarial training based defence methods.

Recently, Tsipras et  al. (2019) found the adversarial robustness is at odds with the 
standard accuracy on clean samples. Several recent methods were proposed to trade the 
adversarial robustness off the standard accuracy. Most of these methods considered add-
ing different regularization terms to the adversarial training loss to achieve a better trade-
off (Zhang et al., 2019b; Ding et al., 2020; Wang et al., 2020; Zhang et al., 2021). TRADES 
(Zhang et al. 2019b) is a regularization-based method that minimizes the loss between the 
predicted labels and ground truth of legitimate samples as well as the ’difference’ between 
the predictions of legitimate samples and the corresponding adversarial examples. The ’dif-
ference’ term was regarded as the regularization. GAIRAT (Zhang et al., 2021) uses the 
distance to the decision boundary to assign a weight for each adversarial example in the 
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adversarial training loss. The weight is estimated based on the difficulty of attacking the 
input by PGD rather than the actual distance to the decision boundary. On the contrary, 
our LADDER derives an explicit decision boundary to generate adversarial examples for 
adversarial training. It is worth noting that, the existing regularization based methods and 
our LADDER method provide two different views to achieve a better trade-off between the 
standard accuracy and adversarial robustness. Our LADDER method can be used in com-
bination with these regularization based methods to further boost their performance (See 
our empirical results in Sect. 4.5).

Different from the existing methods that use a regularized loss to improve the trade-
off, AVmixup (Lee et al., 2020) is a data augmentation method that uses linear interpola-
tion to acquire the augmented examples in the input space based on adversarial examples 
generated by PGD attack. However, as proved in Manifold Mixup (Verma et al., 2019a), 
AVmixup may produce less semantically meaningful examples as a result of linear interpo-
lation in the input space. In contrast, our LADDER method alleviates this issue by adding 
perturbations along the normal of the decision boundary in the latent space.

3 � Latent boundary‑guided adversarial training

To achieve a better trade-off between standard accuracy and adversarial robustness, 
LADDER aims to generate better adversarial examples based on the decision bound-
ary constructed in a latent space. Perturbations are added to latent features along the 
normal of decision boundary and inverted to the input space by the trained genera-
tor. Through adversarial training with the generated adversarial examples, LADDER 
achieves a better trade-off between standard accuracy and adversarial robustness.

For clarity, we first define key notations and symbols. Define � = {�
�
, ..., �n} as the 

set of samples, where n is the number of samples. For each sample �i , �i is the latent 
feature vector extracted from a trained DNN model. � is the normal of the decision 
boundary. � is the perturbation added to the latent feature vector �i . �̂i is the generated 
sample from the latent feature �i.

3.1 � Latent boundary‑guided generation

The adversarial examples are generated through perturbating the latent space, guided by 
the decision boundary, which is obtained from an attention SVM learned on latent features.

3.1.1 � Boundary‑guided attention

To approximate local decision boundaries in the latent space, we train a linear SVM with 
an attention mechanism (Zhang et al., 2019a) with latent features of a DNN model. This 
idea is grounded on the theoretical proof by Li et  al. (2018) that, the last layer of neu-
ral networks trained by cross-entropy loss converges to a linear SVM. For any neural net-
work used for binary or multi-class classification, when the cross-entropy loss gradually 
approaches to 0, the last layer weights of neural networks would converge to the solution 
of an SVM. Specifically, we use the latent feature � , the input to the last layer of the DNN 
model to train a linear SVM with an attention mechanism. The trained linear SVM pro-
vides an explicit margin as compared to other linear models such as a linear mixture model.
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By employing an attention mechanism when training the linear SVM, our aim is to cap-
ture a better representation with different weights assigned to different elements of latent 
features. To this end, an attention layer is added to process latent features, before passing 
them to the SVM. The attention layer is defined as follows:

where �i is a latent feature vector, the input to the last layer of the DNN model; conv is the 
convolutional operation; tanh is the activation function; � i is the attention weight vector 
that can be learned; �att

i
 is the output after applying attention weights on latent feature vec-

tor �i.

3.1.2 � Latent feature perturbation

After training an SVM with attention, the latent features of each sample are perturbed 
along the normal of the decision boundary of the SVM. The normal � provides a direction 
to guide the generation, where the attention weight � captures the importance of different 
components of latent features to move across the boundary. Different perturbations � can be 
added to the same latent features �i to obtain the perturbed latent features �j

i
 by:

where vector � is the normal of the decision boundary of the linear SVM; � i is the attention 
weight vector obtained by the SVM for each sample; 𝜖j > 0 represents the perturbation; j is 
the index of different perturbation.

When the perturbation is big enough, the class label of the perturbed latent features 
would change from positive to negative, or vice versa. That means it would cross the deci-
sion boundary of the DNN model. As shown in Fig. 3, perturbed latent features �1

i
 move 

from the left side of the decision boundary to the right side. As the perturbation continues 
to increase, perturbed latent features �2

i
 would move far away from the decision boundary. 

The effect of perturbation will later be empirically investigated in Sect. 4.4.

3.1.3 � Boundary‑guided generation

To enable humans to understand what changes happen in the input space, caused by the 
perturbations to latent features, we train a generator to invert the perturbed latent features 
to the input space.

For a specific DNN model (i.e., LeNet), we learn a generator Ĝ on the training set 
�train = {�1, ..., �n} to map latent features to the input space. As shown in Fig. 3, each sam-
ple in the training set is fed into the DNN model, to extract the corresponding latent fea-
tures. The output of the last fully connected layer of a DNN model can be used to construct 
the set of latent features ℤtrain = {�1, ..., �n} . Sample �i and its corresponding latent features 
�i are fed to the designed generator. The objective function of G over the neural network 
class G is defined as follows:

(2)�i = tanh
�
conv(�i)

�
, �

j

i
=

exp(�
j

i
)

∑N

j=1
exp(�

j

i
)
, and �

att
i
=� i��,

(3)�
j

i
= �i + �

j� i�,
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where ‖ ⋅ ‖p denotes Lp norm, p = 1 or p = 2 in this paper; �i = Φ(�i) , where Φ is a feature 
extractor in a DNN model. A mapping between the latent space and the input space is 
learned by optimizing Eq. (4).

The reconstructed sample �̂i can be obtained by passing �i to the trained generator Ĝ , 
that is, �̂i = Ĝ

(
�i + 𝜖��

)
 . For example, in Fig. 3, different latent features ( �i , �1i  and �2

i
 ) are 

fed into the trained generator Ĝ to obtain the corresponding samples �̂j
i
(j = 0, 1, 2) in the 

input space.
When the generated samples are fed into the targeted DNN model, the predicted labels should 

be the same as the ground-truth label ŷ . That is, the following equation should be satisfied:

As shown in Fig. 3, samples �̂0
i
 and �̂2

i
 are generated from �i and �2

i
 , with 0 and �2 perturba-

tion added, respectively. Among them, �i does not cross the boundary and the predicted 
label of �̂0

i
 is still the ground-truth label, y0

i
= 3 . For �2

i
 that has crossed the boundary, the 

predicted label of its corresponding sample �̂2
i
 has changed to 5, y2

i
= 5 . This satisfies the 

rules specified by Eq. (5).
However, Eq. (5) does not always hold for some perturbed latent features. Figure 3 pro-

vides such an illustration. The perturbed �1
i
 has crossed the boundary and the predicted 

label y1
i
 of its generated sample �̂1

i
 has also changed to 5. However, the ground-truth label 

(4)Ĝ = argmin
G∈G

n−1
n∑

i=1

‖‖�i − G(�i)
‖‖
p

p
,

(5)f
(
Ĝ(�

j

i
)

)
=

{
ŷi, if �

j

i
not cross the boundary

ŷother, if �
j

i
cross the boundary

Attention
Trained

Generator

Classifier

Normal of boundary

Attention SVM

Dataset

Latent Space

DNN Model

Generated
data

Generator

Fig. 3   Overview of Latent Boundary-guided Adversarial Training. LADDER generates adversarial exam-
ples by perturbing latent features alongside the normal of decision boundary obtained from an SVM with 
an attention mechanism. These generated adversarial examples are inverted to the input space via a trained 
generator to adversarially train the DNN model. �i is the latent feature of one original sample �i ; � is atten-
tion weight; � is the normal of the decision boundary; �1

i
 and �2

i
 are the perturbed latent features for gen-

eration; �̂j
i
(j = 0, 1, 2) are the generated images after perturbing the latent features; yj

i
(j = 0, 1, 2) are the 

predicted labels of the generated images.
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of �̂1
i
 is still 3. Such samples, whose predicted labels of the reconstructed samples and 

ground-truth labels are inconsistent, are adversarial examples that are effective to attack the 
targeted DNN model.

3.2 � Latent boundary‑guided adversarial training

To improve the adversarial robustness of the DNN models, we adopt the adversarial train-
ing method (Goodfellow et al., 2015; Shaham et al., 2018) that uses the generated adver-
sarial examples to augment the training data for retraining. Specifically, we get the per-
turbed latent features �j

i
 through Eq. (3) and pass �j

i
 to the trained generator Ĝ to generate 

adversarial examples. Then, we adversarially train the DNN model through the following 
adversarial loss function:

where J(�) is the original loss function of the DNN model and � is the parameter of the 
targeted DNN model. The first and second term is the loss for the original training sam-
ples � and the generated adversarial examples Ĝ(� + 𝜖��) , respectively. � is the weighting 
factor that trades off the two terms, which is usually set as 0.5. Through adversarial train-
ing on the generated boundary-guided adversarial examples, the adversarially trained DNN 
model can achieve a better trade-off between standard accuracy and adversarial robustness. 
Without loss of generality, other consistency losses (Zhang et al., 2018; Liu & Tan, 2021; 
Verma et al., 2019b) in semi-supervised learning can also be used here, but they require 
additional modifications to be adapted for our adversarial training purposes.

Complexity analysis: Compared with the adversarial training based defence methods 
that generate adversarial examples in the input space, the extra overhead of LADDER 
mainly lies in the construction of a linear SVM and the training of our generator. The com-
plexity of training a linear SVM is O(n2) , where n = 400 is the number of samples used 
to train the SVM in our method. The complexity of training our generator is related to the 
number of layers and number of weights in the generator. After our generator is trained, the 
generation of adversarial examples is just one forward propagation of the trained generator. 
For the adversarial training part, our method has the same computational complexity as we 
use the original adversarial training loss function to adversarially train the model.

4 � Experimental evaluation

In this section, we present experimental results to show the effectiveness of our method 
in achieving a better trade-off between standard accuracy and adversarial robustness. We 
conduct extensive experiments on MNIST (LeCun & Cortes, 1998), SVHN (Netzer et al., 
2011), CelebA (Liu et al., 2015), and CIFAR-10 (Krizhevsky & Hinton, 2009) from four 
perspectives. The source code of our implementations is provided1.

(6)J̃ = 𝛼J(�;�, y) + (1 − 𝛼)J
(
�;Ĝ(� + 𝜖��), y

)
,

1  https://​github.​com/​zhoux​iaowe​i1120/​LADDER

https://github.com/zhouxiaowei1120/LADDER
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P1: Blessings of Adversarial Examples To show the merits of our latent boundary-
guided adversarial examples, we visualize and analyse the generated adversarial exam-
ples. (Sect. 4.2).
P2: Standard Accuracy and Adversarial Robustness We evaluate the standard accuracy 
and adversarial robustness of different adversarially trained models and demonstrate 
the competitiveness of our LADDER method (Sect. 4.3). In model sharing scenarios, 
we focus on adversarial robustness against black-box attacks. Detailed experiments on 
adversarial robustness against white-box attacks can be found in Appendix 2).
P3: Effect of Perturbation We investigate how perturbation impacts the performance of 
our LADDER method. (Sect. 4.4)
P4: Complement to Regularization-based Adversarial Training Methods We verify the 
complement effect of LADDER to the existing regularization-based adversarial training 
methods to achieve a better trade-off between standard accuracy and adversarial robust-
ness. (Sect. 4.5)

4.1 � Experiments settings

4.1.1 � Datasets and shared DNN models

We conduct our experiments on four datasets: MNIST (one grey digits dataset), SVHN 
(one colorful digits dataset), CelebA (one human face image dataset), and CIFAR-10 (one 
natual image dataset). On the four datasets, we use DNN models with different architec-
tures and depths, LeNet (LeCun et al., 1995), SVHNNet (shallow VGG model), CelebANet 
[deep VGG model  (Simonyan & Zisserman, 2014)], and CifarNet (ResNet18) as the tar-
geted classifiers for defence in model sharing scenarios, respectively. Note that, on Cel-
ebA, because the size of original images is 178 × 218, we first pre-process the images to 
128 × 128 using DLIB (Dlib, 2019). We detect faces in images and crop them into square 
sizes. Our task is the classification of smile or non-smile for an input image.

4.1.2 � Baseline methods

The competing methods used for comparison are summarized as follows. FGSM (Goodfel-
low et al., 2015), JSMA (Papernot et al., 2016b), PGD (Madry et al., 2018), CW (Carlini 
& Wagner, 2017) and AutoAttack (Croce & Hein, 2020b) are five baselines that generate 
adversarial examples by adding perturbations in the input space. (Song et al., 2018) is one 
baseline method that generates adversarial examples in the latent space. TRADES (Zhang 
et  al., 2019b) is one representative method that adds regularisation into the adversarial 
training loss to improve the trade-off between standard accuracy and adversarial robust-
ness. It uses adversarial examples generated by FGSM for adversarial training. We also 
compare with another baseline called TRADES+LADDER that combines TRADES with 
LADDER. This baseline is used to assess whether methods that regularize the adversar-
ial training loss can be complemented when using adversarial examples generated by our 
LADDER method.

For ablation study, we compare with two variants of our LADDER method: LAD-
DER_cavRandom and LADDER_Random, which use different strategies for generating 
adversarial examples �̂i . LADDER_cavRandom adds some random noise � on the normal 
of decision boundary obtained from the SVM: �̂i = Ĝ

(
�i + 𝜖�(� + �)

)
 . LADDER_Ran-

dom uses a random noise � to replace the normal of decision boundary for generation: 
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�̂i = Ĝ
(
�i + 𝜖��

)
 . The two baselines are used to show LADDER’s effectiveness in using 

the normal of decision boundary to guide the generation of adversarial examples.
For FGSM, PGD, JSMA and CW, we generate adversarial examples using the open-

source attack library cleverhans  (Papernot et al., 2016a). For the method of (Song et al., 
2018), AutoAttack  (Croce & Hein, 2020b) and TRADES  (Zhang et  al., 2019b), we use 
the source code released by the authors. The number of generated adversarial examples for 
adversarial training on each dataset is: 4,500 on MNIST; 4,500 on SVHN; 2,000 on Cel-
ebA; and 50,000 on CIFAR-10. The hyper-parameters used for all methods in adversarial 
training are summarized in Table 6 in Appendix 1.

4.2 � Blessings of adversarial examples

4.2.1 � Fidelity of generator

We first validate the performance of our trained generator in terms of the quality of the gen-
erated samples. Here, MNIST is used as a case study to visualize and analyze the results. 
We train a generator on MNIST using latent features with a dimension of 500, the input to 
the last layer of LeNet. All components of the generator architecture except for activation 
functions are provided in Table 10 in Appendix 4. After the last convolutional layer, a sig-
moid activation function is added and the loss function used is mean squared error (MSE): 
�(�, �̂) =

1

n

∑n

i=1

�
�i − �̂i

�2.
We evaluate our generator through both quantitative and qualitative results. The train-

ing loss on the training dataset after 1000 epoches and the test loss over test dataset are 
0.00757 and 0.00765, respectively. Figure 4 shows examples of reconstructed images using 
our generator trained on MNIST, where (a) and (c) are the original training and test images, 
while (b) and (d) are the generated training and test images. The generated images are very 
similar to the original ones. This indicates that the trained generator is able to capture the 
mapping between the latent space and the input space.

To demonstrate the quality of adversarial examples generated by LADDER on natural 
images, we show adversarial examples of selected classes on SVHN, CIFAR-10 and Cel-
ebA in Fig. 5. These examples are generated by perturbing the latent features with different 
perturbations � . As we can see, these generated images are of high quality without any pep-
per noise.

Fig. 4   Reconstructed images of our generator trained on MNIST. a and c indicate the original training and 
test images, whereas b and d show the generated training and test images
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4.2.2 � Diversity of generated adversarial examples

We compare adversarial examples generated by our LADDER method and other meth-
ods (FGSM, JSMA, PGD and (Song et  al.,  2018)) on MNIST. For LADDER, we used 
the trained generator to generate adversarial examples against the vanilla LeNet. The 
latent features that input to the last fully connected layer in LeNet are used to train a linear 
SVM which yields the normal of boundary for generation. Each extracted latent feature is 
changed by adding perturbations. Finally, perturbed latent features are fed into the trained 
generator to generate adversarial examples.

Figure 6 shows example images generated by FGSM, JSMA, PGD, (Song et al., 2018)  
and our LADDER method. Clearly, LADDER generates a more diverse set of distinct 
examples, whereas FGSM, JSMA and PGD tend to generate noisy images of repeating 
patterns. This is because LADDER generates the examples by modifying latent features 
rather than slightly altering the original images in the input space. As compared with 

Fig. 5   Adversarial examples generated by our LADDER method on SVHN, CIFAR-10 and CelebA, where 
the texts on the left indicate the actual class labels

FGSM

LADDER

JSMA

1 2 3 4 5 6 7 8 9

PGD

Song et al.

Fig. 6   Adversarial examples generated by FGSM, JSMA, PGD, (Song et  al.,  2018) and our LADDER 
method, where the topmost number indicates the predicted class label
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(Song et al., 2018), adversarial examples generated by LADDER are in general more visu-
ally diverse. This diversity property enables LADDER to be more effective for defending 
against adversarial attacks.

4.2.3 � High‑quality adversarial examples near boundary

Figure 7 shows adversarial examples generated by our LADDER method in relation to the 
decision boundary. Compared with adversarial examples generated by FGSM and JSMA 
(see Fig. 6), LADDER is able to generate non-blurry images of adversarial examples that 
contain no noise in the background. Such high-quality adversarial examples would not hurt 
the standard accuracy.

From classification perspectives, samples close to the decision boundary are more likely 
to be misclassified by a classifier. These samples should be more useful for constructing the 
classifier to obtain good standard accuracy. LADDER uses the normal of decision bound-
ary as a guide to generate adversarial examples near the boundary. As shown in Fig. 7a, 
the original sample is apparently a digit 2. When we increase the perturbation ( � ) added to 
its corresponding latent features along the normal of the decision boundary, the predicted 
label of the generated samples changes from 2 to 3. The two examples near the decision 
boundary, generated with � = 7 and � = 9 , are inherently ambiguous, even making humans 
difficult to make a judgement. If we add these ambiguous adversarial examples with labels 
to the training set, it would enrich the data space near the decision boundary, thereby 
improving the generalization of the trained classifier. This is the same case for Fig.  7b. 
The DNN classifier predicts the two examples, generated with � = 9 and � = 10 , as class 1 
and class 7, while they look very similar. Such similar adversarial examples would be ben-
eficial to improve the standard accuracy. We provide more illustrative examples in Fig. 10 
in Appendix 3 to demonstrate the ability of our generator to generate sensible adversarial 
examples and the effectiveness of perturbing latent features along the normal of the deci-
sion boundary.

4.3 � Standard accuracy and adversarial robustness

To validate the efficacy of our LADDER method on standard accuracy, i.e., the accu-
racy on clean test datasets, as well as adversarial robustness, we conduct experiments on 
MNIST, SVHN, CelebA and CIFAR-10.

The results are reported in Tables 1, 2, 3 and 4, where row 1 indicates the vanilla 
model, and other rows indicate adversarially trained models; column 2 represents the 
clean test dataset, and columns 3–8 represent different attack methods that are used to 
generate adversarial examples for attacking the targeted model. Under our setting, we 
focus on defence methods based on adversarial training, and each adversarially trained 
model is trained on adversarial examples generated by different methods under white-
box setting. For FGSM and PGD, we set perturbation as 0.3; for CW, we choose l2 norm 
distance. For CW and JSMA, the generation of adversarial examples is under targeted 
attack condition. For other methods, the generation is under untargeted attack condi-
tion. For LADDER, the architectures of the generators on four datasets are provided in 
Appendix 4. To improve the generation performance on natural images, i.e., CelebA and 
CIFAR-10, we generalize LADDER by replacing the Lp norm loss with an adversarial 
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loss used in generative adversarial network (GAN)  (Goodfellow et al., 2014) to train a 
stronger generator. This leads to a variant of our method called LADDER-GAN.

In model sharing scenarios, after one trained model is released, it could be targeted 
by different attacks, which are unknown to the trained models. Thus, we focus on black-
box attacks as indicated in columns 3–8, where adversarial examples are generated with 
no access to the trained models. In particular, we assess the ability of each adversari-
ally trained model to defend other types of attacks. Thus, the robustness results of each 
adversarially trained model are not reported against the same attack used to generate 
adversarial examples.

We focus on assessing the performance of different models in terms of both standard 
accuracy on clean test dataset and adversarial robustness. We thus calculate the average 
rank for each adversarially trained model to show its trade-off between standard accu-
racy and adversarial robustness against several other adversarial attacks. The average 
rank is calculated over the ranks of each adversarially trained model on clean test data-
set and defending all other attacks, which is reported as the last column in the tables.

Fig. 7   Generated adversarial examples by our LADDER method are high quality and they are generated 
near the decision boundary. The number on top of an image is the perturbation ( �)
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4.3.1 � Results on SVHN

Table 1 reports the standard accuracy on clean SVHN test dataset and adversarial robust-
ness of different models against other adversarial attacks. We can see that, among all 
the adversarially trained models, LADDER achieves the second best standard accuracy 

Table 1   SVHN: Classification accuracy of vanilla and adversarially trained models on clean test dataset and 
adversarial examples

Smaller means better for the average rank (Avg. Rank). The best method is highlighted in bold and the sec-
ond best is italic

Defence method Clean (%) FGSM (%) JSMA (%) PGD (%) CW (%) Song 
et al. (%)

Auto 
attack (%)

Avg. 
rank

Vanilla model 93.85 25 34.04 17.16 86.78 99.42 54.62 4.00

FGSM adv. 88.66 – 37.49 20.62 83.07 97.51 66.36 4.83
JSMA adv. 91.04 28.4 – 19.6 86.22 98.69 61.8 3.83
PGD adv. 87.75 34.2 42.18 – 85.96 96.69 73.18 4.17
CW adv. 91.11 23.6 37.64 18.11 – 98.16 63.42 4.33
Song et al. adv. 93.53 28 33.91 17.18 87.29 – 56.27 4.00

LADDER_
cavRandom

91.55 24.8 36.96 14.78 84.93 98.72 50.78 5.86

LADDER_Ran-
dom

90.12 21 35.69 16.42 83.96 98.33 53.87 6.86

LADDER 91.71 26.8 37.29 16.82 86.42 98.96 62 3.71

Table 2   MNIST: Classification accuracy of vanilla and adversarially trained LeNet on clean and adversarial 
examples 

Smaller means better for the average rank (Avg. Rank). The best method is highlighted in bold and the sec-
ond best is italic

Defence method Clean (%) FGSM (%) JSMA (%) PGD (%) CW (%) Song 
et al. (%)

Auto 
attack (%)

Avg. 
rank

Vanilla model 99.13 46.6 93.91 29.93 99.09 99.82 99.56 3.57

FGSM adv. 92.31 – 83.67 80.91 90.58 95.53 92.22 6.50
JSMA adv. 98.56 57.8 – 51.04 98.56 99.87 98.69 4.17
PGD adv. 90.79 76.2 83.31 – 90.67 94.44 90.36 7.00
CW adv. 98.87 59.2 94.67 44.62 – 99.91 99.36 3.17
Song et al. adv. 97.23 55.6 89.16 49.91 96.87 – 96.69 6.00

LADDER_
cavRandom

99.01 54.8 92.76 48.2 98.56 99.78 98.89 5.00

LADDER_Ran-
dom

98.99 64.4 92.93 56.87 98.33 99.89 99.04 3.29

LADDER 99.12 55.8 93.13 49.2 98.9 99.82 99.36 3.29
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(91.71%) on clean test dataset, which lags behind the Song et al.  Adv. model only. Com-
pared with other models, LADDER achieves an improvement of 3.96% and 3.05% over 
PGD and FGSM, respectively. As compared with the other two variants, LADDER_
cavRandom and LADDER_Random, LADDER performs better on clean test dataset.

We also find that, LADDER achieves the best performance in terms of defending the 
(Song et al., 2018)   attack, compared with all other adversarially trained models. As for 

Table 3   CelebA: Classification accuracy of vanilla and adversarially trained CelebANet on clean examples 
and adversarial examples

Smaller means better for average rank (Avg. Rank). The best method is highlighted in bold and the second 
best is italic

Defence method Clean (%) FGSM (%) JSMA (%) PGD (%) CW (%) Song 
et al. (%)

Auto 
attack (%)

Avg. 
rank

Vanilla model 91.4 52.65 83.05 13.9 62.1 92.05 49.30 5.43

FGSM adv. 89.4 – 67.15 18.55 62.95 54.95 53.95 7.67
JSMA adv. 90.45 53.1 – 14.95 65.9 93.5 40.35 5.50
PGD adv. 89.55 51.75 63.65 – 67.05 59.55 55.95 6.00
CW adv. 89.5 50.1 77.1 43.25 – 77.8 68.35 5.67
Song et al.  adv. 91.15 53.2 83.9 20 66.15 – 49.95 3.50

LADDER_
cavRandom

91.1 52.8 81.9 24.9 64.95 86.8 42.55 5.43

LADDER_Ran-
dom

91.05 55.1 80.15 24.65 64.45 87 55.1 4.71

LADDER-GAN 91.45 52.75 80.9 25.25 64.7 88 46.7 4.71
LADDER 91.95 53.25 82.4 27.6 65.1 87.1 48.95 3.29

Table 4   CIFAR-10: Classification accuracy of vanilla and adversarially trained models on clean and adver-
sarial examples

Smaller means better for the average rank (Avg. Rank). The best method is highlighted in bold and the sec-
ond best is italic

Defence method Clean (%) FGSM (%) JSMA (%) PGD (%) CW (%) Song 
et al. (%)

Auto 
attack (%)

Avg. 
rank

Vanilla model 88.99 58.02 80.81 56.87 59.99 28.01 42.31 4.57

FGSM adv. 67.21 – 63.4 63.85 68.56 24.1 63.08 4.83
JSMA adv. 87.87 70.72 – 73.54 78.76 29.61 67.63 2.17
PGD adv. 79.12 70.71 75.7 – 72.15 23.92 69.37 4.17
CW adv. 84.53 76.9 81.3 79.46 – 28.15 77.55 2.17
Song et al.  adv. 48.66 9.99 45.7 11.01 8.87 – 10.75 7.33

LADDER-GAN 85.04 59.71 75.84 58.83 60.39 31.27 45.68 3.86
LADDER 85.92 58.26 75.84 60.18 53.92 29.85 47.75 4.00
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the overall performance on defending all attacks and on clean test dataset, LADDER 
achieves an average rank of 3.71, outperforming all other methods. This shows that LAD-
DER achieves a better trade-off between standard accuracy and adversarial robustness. 
Compared with two variants LADDER_cavRandom and LADDER_Random, LADDER 
improves the average rank by 2.15 and 3.15, respectively. This validates the necessity of 
using the normal of decision boundary as guidance to generate adversarial examples.

4.3.2 � Results on MNIST

Table 2 reports the classification results of the vanilla and adversarially trained LeNet mod-
els on the clean MNIST test dataset and adversarial robustness against other  attacks. In 
terms of standard accuracy on clean test dataset, LADDER performs the best and LAD-
DER_cavRandom achieves the second best among all the adversarially trained models. The 
performance of LADDER ( 99.12% ) is very close to that of the vanilla model ( 99.13% ), 
with only 0.01% difference. Moreover, LADDER outperforms the baseline PGD Adv. by a 
large margin of 8.33% . LADDER is also observed to perform better than its two counter-
parts, LADDER_cavRandom and LADDER_Random, while LADDER_cavRandom per-
forms better than LADDER_Random.

In terms of adversarial robustness, it is clear to observe that LADDER improves the 
vanilla model in defending FGSM attack and PGD attack by 9.2% and 19.27%, respec-
tively. When defending the JSMA attack, LADDER performs similarly to the vanilla 
model. Among all attacks, LADDER achieves the best performance of defending the CW 
attack and AutoAttack, compared with other adversarially trained models. Overall, LAD-
DER and LADDER_Random achieve an average rank of 3.29, which is the highest among 
all adversarially trained models except for CW Adv. model. Yet, LADDER achieves better 
performance than CW Adv. on clean test dataset and against PGD attack, and achieves the 
same performance against AutoAttack. LADDER_cavRandom also outperforms FGSM, 
PGD and Song et  al.   Adv. model. This confirms the usefulness of leveraging the latent 
features to generate adversarial examples.

4.3.3 � Results on CelebA

Table 3 reports standard accuracy and adversarial robustness of the vanilla model and dif-
ferent adversarially trained models on CelebA. In terms of standard accuracy on clean test 
dataset, LADDER yields the highest accuracy, while LADDER-GAN achieves the second 
best performance. For the two variants of LADDER, LADDER_cavRandom performs bet-
ter than LADDER_Random, while both variants outperform the FGSM, PGD, JSMA and 
CW Adv. models. This shows that performing feature perturbations in the latent space is 
beneficial to achieve better standard accuracy.

As for the adversarial robustness performance against adversarial attacks, LADDER 
achieves better performance of defending FGSM, JSMA, PGD and (Song et  al.,  2018) 
attacks, compared with most of the baseline models. In particular, for the PGD attack, 
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LADDER improves the accuracy from 13.90% to 27.60% . As a whole, LADDER achieves 
an average rank of 3.29, which is the best among all methods. The smaller the average 
rank, the better the overall performance of defending adversarial attacks and achieving 
standard accuracy simultaneously. LADDER-GAN and LADDER_Random both achieve 
an average rank of 4.71, which stands behind only Song et al.   Adv. and LADDER. This 
proves the overall effectiveness of LADDER and its variants.

4.3.4 � Results on CIFAR‑10

We also compare standard accuracy and adversarial robustness of LADDER with other 
baseline methods on CIFAR-10 – a more challenging dataset for the generation task. 
Table  4 shows the classification results of the  vanilla model  and different adversarially 
trained models. We can see that, LADDER is the second best performer among all adver-
sarially trained models, achieving an accuracy of 85.92%. Only the JSMA Adv. model per-
forms slightly better than LADDER with a small gap of 1.95%. Compared to Song et al., 
FGSM and PGD Adv., LADDER achieves significant improvements by 37.26%, 18.71%, 
and 6.8%, respectively. The performance of LADDER-GAN slightly lags behind LAD-
DER. This signifies the competitive performance of LADDER in achieving good standard 
accuracy on CIFAR-10.

For the adversarial robustness, LADDER achieves the best performance when defend-
ing the (Song et al., 2018) attack. In general, LADDER achieves a better average rank than 
FGSM, PGD and Song et al.   based adversarially trained models. As the generation task 
on CIFAR-10 is more challenging, we also compare with LADDER-GAN. As can be seen, 
LADDER-GAN improves the average rank of LADDER from 4.0 to 3.86. Yet, we find that 
LADDER and LADDER-GAN perform worse than CW and JSMA adversarially trained 
models. This indicates that generator-based defence methods have difficulties in achieving 
the most appealing results on challenging datasets like CIFAR-10. Our findings reaffirm 
the results of (Song et al., 2018) and those reported in (Jang et al., 2019) where a recursive 
and stochastic generator is used to generate adversarial examples for adversarial training. 
We leave further investigation of this problem to future work.

Fig. 8   Classification accuracy 
of different defence methods on 
adversarial examples generated 
by (Song et al., 2018) and on 
CelebA clean test dataset. Each 
model is adversarially trained on 
varying numbers of adversarial 
examples, with 7 points for each 
method compared in the figure 
(Color figure online)
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4.3.5 � Analyse of the trade‑off between standard accuracy and robustness

To visually demonstrate the advantages of our LADDER method in achieving a better 
trade-off between standard accuracy and adversarial robustness, we explicitly compare the 
trade-off performance of different defence methods with respect to different numbers of 
adversarial examples on CelebA as a case study. Specifically, we vary the number of exam-
ples used to adversarially train the models from 100 to 2,000. The classification results are 
plotted in Fig. 8, where there are 7 points for each adversarially trained model. In the fig-
ure, the x-axis indicates the accuracy of adversarially trained models on adversarial exam-
ples generated by (Song et  al., 2018), and the y-axis indicates the standard accuracy of 
adversarially trained models on clean CelebA test dataset. If the trade-off achieved by one 
method is better, the method is expected to locate in the top right corner. It can be seen 
clearly that, our LADDER method and its variants (marked in circles) are located in the 
top right corner. Markedly, our LADDER method outperforms FGSM Adv., PGD Adv., 
and CW Adv. by a large margin. Again, this confirms that our LADDER method is able to 
achieve a better trade-off between standard accuracy and adversarial robustness.

4.4 � Effect of perturbation

Next, we empirically evaluate the effect of perturbation � on the performance of our LAD-
DER method. First, we study the impact of � on standard accuracy. To adversarially train 
the LeNet, we randomly select 450 images per class from MNIST dataset to generate 4,500 
adversarial examples for each perturbation [0.1, 2.0, 5.0, 7.0, 10.0, 15.0, 20.0]. These 
adversarial examples with different perturbations are separately used to adversarially train 
the LeNet. We undertake classification on clean MNIST test dataset using these adversari-
ally trained LeNet models. The results are reported in Fig. 9, colored in blue. It is clear to 
observe  that: (1). As � increases, the classification accuracy of the adversarially trained 
models decreases firstly and then slightly increases at a later stage. (2). With different � val-
ues, the changes in classification accuracy are within an interval of 1.56% only. (3). When 
� is not too large, i.e.   < 7 , the performance of the adversarially trained models and the 
vanilla LeNet is very close.

Fig. 9   Classification accuracy of 
vanilla LeNet and adversarially 
trained LeNet on MNIST test 
dataset and adversarial examples 
with different perturbations � 
(Color figure online)
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Second, we study the impact of � on adversarial robustness. We still use the adver-
sarially trained LeNet models in the previous step for conducting experiments. These 
models are used to defend adversarial examples generated using the (Song et  al., 2018) 
attack method. From the red part in Fig. 9, we can see that, as � increases, the performance 
of the adversarially trained model drops slightly. Overall, with different � values, our LAD-
DER method is able to achieve stable performance within a reasonably small range.

4.5 � Complement to regularization‑based adversarial training methods

Experiments are further performed to testify whether LADDER can complement the 
existing regularization-based adversarial training methods that regularize the adversarial 
loss to achieve a better trade-off between standard accuracy and adversarial robustness. 
TRADES (Zhang et al., 2019b) is a strong competing method in this category. To achieve 
the same objective, our LADDER method takes a complementary approach to generate 
better adversarial examples but to use the original adversarial training loss. We expect that 
the performance of TRADES could be improved in combination with LADDER.

We perform experiments on MNIST, SVHN, CelebA and CIFAR-10 to compare LAD-
DER, TRADES and the combined TRADES+LADDER. The results are shown in Table 5. 
As we can see, LADDER achieves better defence performance than TRADES in 18 out 
of 28 cases on the four datasets. Especially on SVHN, LADDER outperforms TRADES 
against all attacks and on clean test dataset. As expected, TRADES+LADDER is found to 
outperform TRADES in most cases (23 out of 28) on the four datasets. This proves that, 
by generating high-quality and diverse adversarial examples, LADDER can complement 
regularization-based methods that modify the adversarial training loss function to further 
improve the performance.

Table 5   Classification accuracy  of vanilla and adversarially trained models on clean test dataset and adver-
sarial examples generated by different attack methods

Higher means better for classification accuracy. The best results are highlighted in bold

Dataset Defence method Clean (%) FGSM (%) JSMA (%) PGD (%) CW (%) Song 
et al. (%)

Auto 
attack (%)

MNIST TRADES 98.44 60.8 92.6 52.31 98.4 99.8 98.71
LADDER 99.12 55.8 93.13 49.2 98.9 99.82 99.36
TRADES+LADDER 98.94 54.8 93.36 52.04 98.78 99.82 99.78

SVHN TRADES 85.88 13 27.24 10.38 73.93 92.31 44.36
LADDER 91.71 26.8 37.29 16.82 86.42 98.96 62
TRADES+LADDER 91.01 26.2 38.02 20.11 84.89 98.36 64.16

CelebA TRADES 91.95 52.85 83.1 12.85 63.45 89.2 53.7
LADDER 91.95 53.25 82.4 27.6 65.1 87.1 48.95
TRADES+LADDER 91.7 52.75 83.3 18.05 64.55 93.25 50

CIFAR-
10

TRADES 74.32 73.49 72.39 73.89 73.01 17.2 73.79
LADDER 85.92 58.26 75.84 60.18 53.92 29.85 47.75
TRADES+LADDER 80.7 75.83 76.58 77.04 76.20 28.18 76.78
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5 � Conclusion and future work

We proposed a novel adversarial training framework called Latent Boundary-guided 
Adversarial Training (LADDER), which adversarially trains DNN models through 
adversarial examples generated based on decision boundary in the latent space. We 
analyzed that, LADDER can generate high-quality and diverse adversarial examples. 
After adversarial training on the generated adversarial examples, LADDER achieves 
a better trade-off between standard accuracy and adversarial robustness. The effective-
ness of our LADDER method was validated through extensive experiments on MNIST, 
SVHN, CelebA, and CIFAR-10. From the new angle of improving the generation of 
adversarial examples, we showed that our method is also able to complement the exist-
ing regularization-based adversarial training methods.

In the future, we will extend our work from the following aspects. Firstly, our method 
generates adversarial examples by perturbing along the normal of decision boundary to 
reduce the level of minimal perturbations in the latent space. For inverting to the input 
space, we will try to derive theoretical bounds about when the perturbations of our gener-
ated examples are narrower than the Lp norm perturbations in the input space. Secondly, 
for complex datasets like CIFAR-10 and ImageNet, where the generation task is more chal-
lenging, we have made attempts to use an adversarial loss rather than the Lp norm loss for 
training a strong generator. We will investigate how to generate better adversarial examples 
to boost the adversarial robustness on complex datasets. Finally, we would like to reduce 
the computational complexity of our proposed method by removing the generator and 
directly using the adversarial features vectors in the latent space for adversarial training.

Appendix

Hyper‑parameters in experiments

The hyper-parameters used for adversarial training in our experimental part are summa-
rized in the Table 6.

Table 6   Hyper-parameters 
of adversarial training for all 
methods

Dataset Learning rate Epochs   Batch 
Size

Optimizer (momen-
tum; weight decay)

MNIST 0.01 100 64 SGD (0.5; 0)
SVHN 0.001 100 128 SGD (0.9; 5e-4)
CelebA 0.01 100 64 SGD (0.5; 5e-4)
CIFAR-10 0.001 100 128 SGD (0.9; 5e-4)
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Robustness under white‑box attacks

Robustness on defending white‑box attacks

To verify the robustness of our method in defending white-box attacks, we have conducted 
experiments under white-box settings, where attack methods generate adversarial examples 
with gradients available from the network. The comparison of our method and other base-
line methods on MNIST are shown in Table 7. As can be seen, our methods (LADDER and 
LADDER_Random) are the best two performers for defending different types of attacks 
simultaneously. Especially, our LADDER method achieves the best defence performance, 
when defending CW attacks. Compared with the vanilla model, LADDER improves the 
performance against all attacks except for CW and (Song et al., 2018).  Overall, our pro-
posed method exhibits competitive performance in defending white-box attacks.
LADDER’s robustness against LADDER attacks

We have also conducted experiments to compare the defence performance of the vanilla 
model and our trained model against white-box adversarial examples generated using 
LADDER. The results are reported in Table 8. As can be clearly seen, our trained model 
(LADDER) significantly improves the defence performance of the vanilla model on the 
three datasets by 28.54%, 31.56, and 5.95%, respectively. This proves the efficacy of our 

Table 7   Defending white-box attacks targeted on LeNet: classification accuracy of the vanilla LeNet and 
adversarially trained LeNet models on white-box adversarial examples generated by different attack meth-
ods

Smaller means better for the average rank (Avg. Rank). The best method is in bold and the second best is 
italic

Defence method FGSM (%) JSMA (%) PGD (%) CW (%) Song et al. (%) Avg rank

Vanilla model 1.80 90.72 0.69 96.88 98.28 –
FGSM adv. – 82.04 76.28 86.88 90.76 5
JSMA adv. 11.24 – 2.08 95.54 98.65 4.25
PGD adv. 81.00 80.39 – 86.71 92.40 5.25
CW adv. 6.29 92.17 1.41 – 99.38 4
Song et al.  adv. 28.74 85.63 17.13 93.83 – 3.25
LADDER_cavRandom 15.31 90.31 4.60 93.47 94.19 4.8
LADDER_Random 25.80 91.54 8.52 95.86 98.51 3
LADDER 19.6 92.07 9.02 96.70 98.23 2.8

Table 8   Classification accuracy 
on white-box adversarial 
examples generated by LADDER

Higher means better for classification accuracy. The best results are 
highlighted in bold

Dataset Vanilla model (%) LADDER (%)

MNIST 69.78 98.23
SVHN 42.48 74.04
CelebA 83.85 89.8
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trained models against the adversarial examples generated under white-box settings using 
the same latent based attack method.

Susceptibility of Baseline methods against LADDER attacks

In Table  9, rows 3–7 show the defence performance of five conventional adversarially 
trained models against the adversarial examples generated by LADDER on three datasets. 
As compared to the vanilla model, the best performer among the five conventional adver-
sarially trained models improves the defence performance by only 3.55% on MNIST. All 
five conventional adversarially trained models exhibit worse defence performance than the 
vanilla model on SVHN and CelebA. This confirms the susceptibility of the conventional 
adversarially trained methods to the adversarial examples generated using LADDER. In 
contrast, the adversarially trained LADDER model is very successful in defending against 
adversarial samples generated using LADDER.

Table 9   Defence performance 
of the conventional adversarially 
trained models and our 
LADDER method against 
adversarial samples generated 
using LADDER

Higher means better for classification accuracy. The best method is 
highlighted in bold

Defence method MNIST (%) SVHN (%) CelebA (%)

Vanilla model 69.78 42.48 83.85
FGSM adv. 66.81 40.01 73.00
JSMA adv. 72.16 39.68 83.30
PGD adv. 67.65 39.12 75.35
CW adv. 73.33 42.23 80.95
Song et al.  adv. 72.55 42.16 83.15
LADDER 98.23 74.04 89.8

Fig. 10   Illustrative examples generated using our LADDER method with an increasing perturbation ( �)
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Illustrative examples generated by LADDER

We further provide more illustrative examples to demonstrate the ability of our generator 
to generate sensible adversarial examples and the effectiveness of perturbing latent features 
along the normal of the decision boundary.

As shown in Fig. 10, the first column is the original input image; the last column is the 
randomly sampled target class; columns 2–16 are the generated examples, which are gener-
ated by adding different perturbations ( � ) to latent features of the original inputs. From col-
umn 2 to column 16, the perturbation increases gradually from 0.5 to 30.0 along the normal 
of decision boundary between the class of original input and target class. We can see from 
the figure, when we increase the perturbation, the generated examples gradually change 
from the original class to the target class, and when the perturbation is too large  (i.e., the 
last 3 columns), the generated images are distorted.  The images marked with red rectan-
gles are inherently ambiguous between the class of the original input and the target class, 

Table 10   The architecture of 
boundary-guided generator for 
MNIST

Layers Layer parameters

Linear Input: 500, output: 50 × 4 × 4
Conv_Transpose kernel: 2 × 2, stride: 4 × 4
Conv kernel: 3 × 3, stride: 1 × 1
Conv_Transpose kernel: 2 × 2, stride: 3 × 3
Conv kernel: 4 × 4, stride: 1 × 1
Conv kernel: 5 × 5, stride: 1 × 1

Table 11   The architecture of 
boundary-guided generator for 
SVHN

Layers Layer parameters

Linear Input: 4096, output: 512 × 2 × 2
Conv & BN & ReLU kernels: 512, kernel: 3 × 3, stride: 1
Conv_Transpose & BN kernels: 512, kernel: 2 × 2, stride: 1
Conv & BN & ReLU kernels: 512, kernel: 3 × 3, stride: 1
Conv_Transpose & BN kernels: 512, kernel: 2 × 2, stride: 1
Conv & BN & ReLU kernels: 256, kernel: 3 × 3, stride: 1
Conv_Transpose & BN kernels: 256, kernel: 2 × 2, stride: 1
Conv & BN & ReLU kernels: 128, kernel: 3 × 3, stride: 1
Conv_Transpose & BN kernels: 128, kernel: 2 × 2, stride: 1
Conv & BN & ReLU kernels: 64, kernel: 3 × 3, stride: 1
Conv & Tanh kernels: 3, kernel: 1 × 1, stride: 1
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even making humans difficult to make a judgement. These images enrich the data space 
near the decision boundary, thereby improving the generalization of the trained classifier.

Generator architectures

The neural network architectures of boundary-guided generator for MNIST, SVHN, Cel-
ebA and CIFAR-10 are detailed in this part. In each table, Linear indicates linear trans-
formation; Conv_Transpose denotes transposed convolution; Conv represents convolution; 
BN represents batch normalization. kernels means number of kernels. kernel means the 
dimension of kernel. stride means steps of convolutions. ReLU means the ReLU activation 
function (Tables 10, 11, 12 and 13).

Author contributions  XZ carried out the experiments and wrote the manuscript. IWTand JY conceived of 
the presented idea. JY wrote and proofread the manuscript. All authors discussed the experimental results 
and commented on the manuscript.

Table 12   The architecture of 
boundary-guided generator for 
CelebA

Layers Layer parameters Repeat

Linear Input: 4096, output: 512 × 4 × 4 1
Conv_Transpose & BN kernels: 512, kernel: 2, stride: 1 1
Conv & BN & ReLU kernels: 512, kernel: 3, stride: 1 3
Conv_Transpose & BN kernels: 512, kernel: 2, stride: 1 1
Conv & BN & ReLU kernels: 512, kernel: 3, stride: 1 3
Conv_Transpose & BN kernels: 256, kernel: 2, stride: 1 1
Conv & BN & ReLU kernels: 256, kernel: 3, stride: 1 3
Conv_Transpose & BN kernels: 128, kernel: 2, stride: 1 1
Conv & BN & ReLU kernels: 128, kernel: 3, stride: 1 2
Conv_Transpose & BN kernels: 64, kernel: 2, stride: 1 1
Conv & BN & ReLU kernels: 64, kernel: 3, stride: 1 2
Conv & Tanh kernels: 3, kernel: 1, stride: 1 1

Table 13   The architecture of 
boundary-guided generator for 
CIFAR-10

Layers Layer parameters Repeat

Linear input: 512, output: 512 × 4 × 4 1
Conv & BN & ReLU kernels: 512, kernel: 3, stride: 1 1
Conv_Transpose & BN kernels: 512, kernel: 2, stride: 2 1
Conv & BN & ReLU kernels: 512, kernel: 3, stride: 1 4
Conv_Transpose & BN kernels: 512, kernel: 2, stride: 2 1
Conv & BN & ReLU kernels: 256, kernel: 3, stride: 1 4
Conv_Transpose & BN kernels: 256, kernel: 2, stride: 2 1
Conv & BN & ReLU kernels: 128, kernel: 3, stride: 1 4
Conv & BN & ReLU kernels: 64, kernel: 3, stride: 1 2
Conv & BN & ReLU kernels: 32, kernel: 3, stride: 1 2
Conv & BN & ReLU kernels: 8, kernel: 3, stride: 1 2
Conv & Sigmoid kernels: 3, kernel: 1, stride: 1 1
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