
Vol.:(0123456789)

Machine Learning (2023) 112:1365–1387
https://doi.org/10.1007/s10994-022-06199-4

1 3

Imbalanced regression using regressor‑classifier ensembles

Oghenejokpeme I. Orhobor1  · Nastasiya F. Grinberg2,3 · Larisa N. Soldatova4 ·
Ross D. King1,5,6

Received: 1 March 2021 / Revised: 13 May 2022 / Accepted: 26 May 2022 /
Published online: 27 June 2022
© The Author(s) 2022

Abstract
We present an extension to the federated ensemble regression using classification algo-
rithm, an ensemble learning algorithm for regression problems which leverages the dis-
tribution of the samples in a learning set to achieve improved performance. We evaluated
the extension using four classifiers and four regressors, two discretizers, and 119 responses
from a wide variety of datasets in different domains. Additionally, we compared our algo-
rithm to two resampling methods aimed at addressing imbalanced datasets. Our results
show that the proposed extension is highly unlikely to perform worse than the base case,
and on average outperforms the two resampling methods with significant differences in
performance.

Keywords  Ensemble regression · Machine learning · Imbalanced data

1  Introduction

Class imbalance (Ali et al., 2015; Japkowicz & Stephen, 2002) is a primary concern
when building classifiers, where the under-representation of one class can lead to sub-
optimal predictive accuracy on future samples. In our previous work (Orhobor et al.,

Editors: Annalisa Appice, Grigorios Tsoumakas.

 *	 Oghenejokpeme I. Orhobor
	 oghenejokpeme.orhobor@gmail.com

1	 Department of Chemical Engineering and Biotechnology, University of Cambridge,
CB3 0AS Cambridge, UK

2	 Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical
Centre, Department of Medicine, University of Cambridge, Cambridge Biomedical Campus,
CB2 0AW Cambridge, UK

3	 NIAB, 93 Lawrence Weaver Road, CB3 0LE Cambridge, UK
4	 Department of Computing, Goldsmiths, University of London, SE14 6NW London, UK
5	 The Alan Turing Institute, NW1 2DB London, UK
6	 Department of Computer Science and Engineering, Chalmers University of Technology,

SE‑412 96 Gothenburg, Sweden

http://orcid.org/0000-0003-1178-611X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06199-4&domain=pdf

1366	 Machine Learning (2023) 112:1365–1387

1 3

2020), we argued that the same can be said for the distribution of a response one is
interested in modelling for regression problems. The idea is that for a given response,
certain parts of the distribution might be underrepresented, making it difficult for a
model built using this data to make accurate predictions for unseen samples falling in
the underrepresented regions. To this end, we proposed an ensemble learning approach
which takes the underlying distribution into account.

Assume we have some learning data, a discretizer of choice, and a bin size of n. We
build a regressor for the base case, where n = 1 . For all other values of n where n > 1 ,
and up to some maximum bin size, we split the learning data into n bins using the dis-
cretizer. We then build a regressor for each bin in each of the n independent subsets,
and a classifier which predicts the probability that a new sample belongs in each of the
bins. This classifier is used to combine the predictions from the independent regressors
given an unseen sample. Given some unseen data, for each bin size n the regression
models produce n predictions, one for each bin. These are combined using bin prob-
abilities provided by the corresponding classifier. Finally, these combined predictions
are aggregated using weights that are determined on the learning set. The intuition is
that this process should leverage the predictive accuracy of the base and binned mod-
els, significantly reducing the possibility of performing worse than the base case, irre-
spective of the choice of discretizer, which improves upon our previous work (Orhobor
et al., 2020). The proposed algorithm is described in Fig. 1 and is formalised in Sect. 3.
We demonstrate empirically that it is highly unlikely that the proposed algorithm will
perform worse than the base case.

In the next section, we discuss the different techniques comprising the different parts
of the proposed extension and the algorithm in general. In Sect. 3 we describe the new
algorithm in detail. The evaluation setup is described in Sect. 4 and the results are pre-
sented in Sect. 5. We discuss possible improvements to the proposed algorithm and con-
clude in Sect. 6.

2 � Background

Ensemble learning, that is, the aggregation of the predictions made by multiple learning
algorithms plays a crucial role in both the original algorithm and the extension we propose.
Specifically, we use ensembles in (i) aggregating the predictions made within a given bin

Fig. 1   Representation of the
proposed approach when the
maximum bin size is 3. Note
that the weights ( w1,w2,w3 ) are
learned using cross-validation on
the learning set using stacking.
R
j

i
 represents the regressor for the

jth bin when the bin size is i. pj
i
 is

the predicted probability by the
Ci classifier that a new sample
belongs to the jth bin when bin
size is i. In the diagram, R1

1
 is the

base case regressor and does not
have a classifier

1367Machine Learning (2023) 112:1365–1387	

1 3

size that is not the base case (bin size = 1), and (ii) learning weights to combine the predic-
tions made for each bin size. In the former, there is a classifier and i regressors when bin
size is greater than 1. For a new sample, the regressors are used to predict the response
while the classifier(s) are used to determine how much we can trust those predictions
and weighting them accordingly, see Fig. 1. This differs from a more traditional ensem-
ble learning procedure like stacking in that we do not generate meta-features on which
a meta-learner is built, which is then used to aggregate the predictions. This scheme is
more closely related to the concept of local classifiers in hierarchical classification (Silla
& Freitas, 2011). Furthermore, this can be thought of as a form of dynamic weighting,
where instead of having a separate meta-feature generation-aggregation step (Mendes-
Moreira et al., 2012), dynamic weighting is implicit in the classifier-regressor aggregation
paradigm.

We use a traditional stacking procedure to learn weights to combine the predictions for
each bin size (from the base case, where the bin size = 1, to the determined maximum
bin size). We generate a meta-feature for each bin size using cross-validation and deter-
mine the aggregating weights using a meta-learner. During the testing phase, these weights
are applied uniformly to all samples in a test set, making it a static weighting procedure,
in contrast to dynamic weighting, where a unique weight is learned for each individual
test sample. This approach was chosen to reduce the overall computational complexity of
the extended algorithm. However, it is possible that a dynamic weighting paradigm might
improve predictive accuracy. We do not prune the meta-feature space, which is one of the
main processes in a stacking procedure (Mendes-Moreira et al., 2012). This is because the
meta-feature space is not expected to be very large and requiring pruning.

Response discretization is a fundamental part of our algorithm, for which supervised
and unsupervised methods have previously been proposed (Dash et al., 2011; Dougherty
et al., 1995). Although both supervised and unsupervised approaches are compatible with
what we propose, we considered only unsupervised techniques in our evaluation to reduce
the computational cost of our experiments. However, one can conjecture that if the super-
vised methods produce cleaner delineations between the different bins for a given response,
it could improve overall predictive accuracy, as the class data on which the classifiers are
built would be less noisy. There are other methods which also perform regression by means
of classification in an ensemble setting—the work by Ahmad et al. (2018), Halawani et al.
(2012) and Gonzalez et al. (2012), for example, are most closely related to what we pro-
pose. Ahmad et al. focus on extreme randomized discretization, and use the minimum or
maximum of the training data points and bin boundary to estimate the prediction for a
new sample, in contrast to our multi-bin and classifier-regressor paradigm. The approach
by Gonzalez et al. focus on multi-variate spatio-temporal data and differ from what we
propose in two important ways; (a) authors are interested in classifying bands of attributes
prior to performing regression, and (b) the final prediction for an unseen sample is obtained
by taking the median of the predicted values made by best models which are selected using
cross-validation.

An alternative approach to treating imbalanced data is to redress ratio of “rare” and
“common” values in a dataset by strategic resampling. Inspired by a similar problem of
imbalanced classes in classification, Torgo et al. (2015) proposed two resampling strategies
for continuous outcomes in regression analysis. Both methods rely on the notion of rel-
evance (Torgo & Ribeiro, 2007), a function mapping output variable domain to [0, 1]. Rel-
evance is inversely proportional to probability density function of the output variable with
rarer observations having higher relevance and more common observations having lower
relevance. Choosing a relevance threshold allows one to divide the dataset into two subsets:

1368	 Machine Learning (2023) 112:1365–1387

1 3

“common” observations and “rare” observations. Torgo et al. propose two schemes: (i)
undersampling of common observations (undersampler) and (ii) undersampling of com-
mon observations combined with oversampling of rare observations (SmoteR). Both
schemes attempt to create a more balanced dataset allowing for a better representation of
values in low probability density areas. Undersampling consists of randomly selecting a
subset of normal observations of a pre-specified size. In oversampling, additional “syn-
thetic” rare observations are created by interpolation between existing rare cases and one of
its k nearest neighbours. Any regressor can then be applied to a new, re-balanced dataset.

Both, undersampling and SmoteR, are honed towards datasets with rare values concen-
trated in tail(s) of the distribution. For such distributions, relevance function can be easily
calculated and has one or two “relevance bumps”—areas of high relevance, local max-
ima. However, for more sophisticated distributions (e.g. bimodal), the user has to provide
bespoke parameters for construction of the relevance function. This is in contrast to our
method, where binning of data is automated via a chosen discretization method. We note
that these resampling methods can also be used as part of our proposed framework (see
Sect. 6).

3 � Methodology

3.1 � Algorithm

The original algorithm is described formally in Algorithm 1 and the extension in Algo-
rithm 2. However, we also provide an informal description of the extended algorithm below
and a descriptive figure (see Fig. 2). Like the original algorithm, the proposed extension is
also split into a build and a prediction phase. In the build phase, the required inputs are a
learning set with a continuous response one is interested in modelling, a specified maxi-
mum bin size, an unsupervised discretizer, and classification and regression algorithms of
one’s choosing. The following steps are performed:

1.	 Discretize the learning set into n bins, where n runs from 1 to the maximum bin size.
Note that n = 1 is the base case and so no discretization is performed. For example, for
a maximum bin size of 3, we end up with three response sets: set 1—base case, set 2—
learning set discretized into 2 bins, and set 3—learning set discretized into 3 bins (see
Fig. 1).

2.	 Build a regressor for the base case. For response sets 2 up to the specified maximum bin
size, build a single classifier which classifies whether a new sample belongs to a certain
bin, and build a regressor for each bin. Therefore, a single classifier and two regressors
are built for response set 2, a single classifier and 3 regressors are built for response set
3, and so on.

3.	 Learn weights that will be used for combining the predictions from the different response
sets using the standard stacking procedure. That is, for each response set, generate a
meta-feature using the previous two steps and learn combining weights that will be
applied to the predictions made for unseen samples. Using these meta-features, also
identify the single best performing bin size, which may be the base case.

It is worth noting that depending on the choice of discretizer and response, one can specify
a maximum bin size that is too large, and the number of discretized bins fails to reach

1369Machine Learning (2023) 112:1365–1387	

1 3

the specified size. In this case, the algorithm can be implemented in such a way that it
automatically detects the maximum possible bin size before any models are built. This can
be achieved by splitting the learning set response into random cross-validation folds, then
holding out each fold and attempting to discretize the remaining values at the specified
maximum bin size. The minimum discretization size achieved during this cross-validation
procedure is chosen as the new maximum. This is how we implemented the algorithm in
our evaluation. Given a new sample, the following is performed in the prediction phase:

Fig. 2   Data-centric representation of the proposed approach where the max bin size equals 2

1370	 Machine Learning (2023) 112:1365–1387

1 3

1.	 Make predictions for the base case using the base case regressor. Then for response sets
2 up to the maximum bin size, make predictions using the regressors and aggregate them
using the paired classifier.

2.	 After the previous step, one should be left with a number of predictions equal to the
maximum bin size. These predictions are then aggregated using the weights from (3) in
the building phase. The single best performing bin size can also be identified using the
results from (3) in the building phase.

3.2 � Considerations

A major consideration is that of practicality from a model building computational expense
perspective. Imagine that one has a response they are interested in predicting and let s be the
determined maximum bin size. This means that s − 1 classifiers and

∑s

l=1
l regressors will

be built, making a total of (s − 1) +
∑s

l=1
l ∼ s2 models, excluding any additional models

built to determine the best hyperparameters for the chosen learning algorithms. Given the k
cross-validation folds required to learn the combining weights, the total number of required
models built during the learning phase is k((s − 1) +

∑s

l=1
l) + (s − 1) +

∑s

l=1
l ∼ ks2 or

O(s2) models, which is more expensive than the 2s or O(s) models built in the original
algorithm. Intuitively, the obvious benefits of this additional computational cost are that (i)
one need not know the best performing bin size apriori, and can specify an arbitrarily large
value for the maximum bin size, which the algorithm will automatically scale to the most
viable, and (ii) between the weighted prediction and the identified best bin, one is guaran-
teed to never do significantly worse than the base case.

Implicit in this implementation is the assumption that one will use upsampling to
resolve class imbalance issues. Empirical evidence from our previous work indicates that
this is necessary, where we found that upsampling outperformed all other methods for
handling class imbalance in this setting (Orhobor et al., 2020). However, replacing it with
one’s preferred method is trivial. The only other major decision which is left to the discre-
tion of the user is the choice of discretizer, which can either be done using supervised or
unsupervised approaches.

1371Machine Learning (2023) 112:1365–1387	

1 3

Algorithm 1 Federated Ensemble Learning using Classification. Adapted from

Input: Training set matrix L ∈ IRm×b, response vector y, bin size c, and test set matrix
T ∈ IRn×b

Output: Test set predictions
Training:

1: Split y into c bins using a discretization technique of choice, producing L = (L1, . . . ,Lc)
and Y = (y1, . . . , yc)

2: for each bin c in L and Y do
3: Build a regressor Rc using Lc and yc
4: Build a classifier Cc using Lc as the positive samples and L − Lc as negative samples.

Note: class balancing may be required
5: end for

Prediction:
6: for each c and regressor-classifier pair Rc and Cc do
7: Predict the response for T using Rc

8: Predict the probability that the samples in T belong in c using Cc

9: end for
The process above generates predicted response and probability matrices R,P ∈ IRn×c

10: vn =
∑c

j=1 pn,j

11: Create weight matrix W ∈ IRn×c by dividing all elements in each row i in P by vi
12: Create weighted response matrix Rw ∈ IRn×c by performing the element-wise multiplica-

tion of R and W
13: The final prediction T =

∑c
j=1 r

w
n,j

14: return T

Orhobor et al., 2020.

1372	 Machine Learning (2023) 112:1365–1387

1 3

Algorithm 2 Imbalanced Regression using Regressor-Classifier Ensembles.
Input: Learning set matrix L ∈ IRm×d, response vector y, s maximum bin size, k cross-

validation folds, and test set matrix T ∈ IRn×d

Output: Weighted test set predictions and best performing individual bin size predictions

Validate maximum bin size:
1: Validate maximum bin size s. Randomly split y into k folds. Discretize each yk, where bin

size is set to s. For some discretizers and yk, the maximum number of possible bins is less
than s, set s to the minimum of bins from discretizing all yk.

Learn combining weights:
2: for each 1 . . . k folds do
3: Split L into a train (LT) and validation (LV) set, where V represents the samples in k,

and T represents the remaining samples in L
4: Split yT into i response sets for all i = 1, . . . , s, where i = 1 is the base case and no

discretization is performed, but for 2 ≤ i ≤ s discretize yT into i bins.
5: for i in 1, . . . , s response sets do
6: if i = 1 (base case) then
7: Build a regressor for the base case Ri using LT

8: Make predictions for LV using Ri, producing a single prediction vector ri
9: else
10: Build a classifier Ci using LT , where each bin b is a class, upsampling the minority

class when necessary
11: Build a regressor for each bin b, Rb

i , where b = 1, . . . , i, using the appropriate
samples in LT

12: Make predictions for LV using all Rb
i , producing b prediction vectors rbi

13: Merge rbi into a single prediction vector by averaging the predictions using the
probabilities predicted by Ci for LV , producing ri

14: end if
15: end for

Steps 5-15 creates a validation meta-feature matrix Vk ∈ IRv×s, where v is the number
of samples in the validation set and s is the number of response sets (ri)

16: end for
17: Combine all Vk into a single meta-feature matrix M ∈ IRm×s, where m is the number of

samples in the learning set and s is the number of response sets. Learn combining weights
w on M, and identify the best performing individual response set.

Main model building :
18: Split y into c bins using a discretization technique of choice, producing L = (L1, . . . ,Lc)

and Y = (y1, . . . , yc)
19: for each bin c in L and Y do
20: Build a regressor Rc using Lc and yc
21: Build a classifier Cc using Lc as the positive samples and L − Lc as negative samples.

Note: class balancing may be required
22: end for

Prediction:
23: for i in 1, . . . , s do
24: if i = 1 (base case) then
25: Predict the response ri for T using Ri=1
26: else
27: Predict the response for T using all Rb

i , where b = 1, . . . , i. This produces a response
matrix R ∈ IRn×i

28: Predict the probability that the samples in T belong the b bins. This should produce
a classification matrix C ∈ IRn×i

29: The final response ri =
∑i

j=1 Ynj , where Y = (R)nj(C)nj

30: end if
31: end for

The process above generates a predicted response matrix P ∈ IRn×s

32: The final weighted prediction W is gotten by applying the learned weights w from step
17 to P above. The prediction S, which should be treated as the best performing indi-
vidual response set is trivially identified by comparing each meta-feature which maps to a
particular bin size in M on step 17 against the true values in the learning set.

33: return W and S

1373Machine Learning (2023) 112:1365–1387	

1 3

4 � Evaluation setup

4.1 � Datasets

We evaluated the proposed algorithm and the two resampling methods using 119
responses from a variety of datasets. Specifically, we considered the 20 genes from the
LINCS Phase II dataset (Koleti & Terryn, 2017) which we used in the evaluation of
the original algorithm (Algorithm 1), 46 traits from the yeast dataset used by Grinberg
et al. (2020), 24 drug targets from quantitative structure-activity relationship problems
(Olier et al., 2018), 14 responses from the OpenML AutoML Regression Benchmark
(Bischl et al., 2017), and 15 responses from work by Branco et al. (2019). We refer
to these dataset collections as gene expression, yeast, QSAR, OpenML, and Branco,
respectively, during the discussion of our evaluation in Sect. 5. The exact versions
of these datasets used in our experiments are available for download from http://​dx.​
doi.​org/​10.​17632/​mpvwn​hv4vb.2. We used a 70–30% learning and test set split in our
evaluation. See Tables in "Appendix A" for the distribution of imbalance in the consid-
ered responses as described by Branco et al. (2019).

4.2 � Learning setup

We considered the unsupervised frequency interval and clustering (k-means) discretiz-
ers (Dougherty et al., 1995). The specified maximum bin size was 10, 5-fold cross-
validation was used in the internal stacking procedure to learn weights and identify
the best performing individual bin size on the learning set. We used convex linear
regression as our weight learning algorithm, which is multiple linear regression with
the constraint that its coefficients are non-negative and must sum to 1 (Breiman, 1996).
For the classifiers, we used random forests (RF) (Breiman, 2001), naive bayes (NB)
(Rish, 2001), decision trees (DT) (Quinlan, 1986), and k-nearest neighbours (KNN)
(Altman, 1992). For the regressors, we used the least absolute shrinkage and selection
operator (LS) (Tibshirani, 1996), ridge regression (RR) (Hoerl & Kennard, 1970), RF,
and eXtreme gradient boosting (XGB) (Chen & Guestrin, 2016). The RF models were
built with 1000 trees and a third of the number of attributes was used as the number of
splitting variables considered at each node, the defaults were used for everything else.
The KNN models were tuned for the k parameter (the number of neighbours) over a
range of values: (1, 3, 5, 7, 11, 13, 15). The regularization parameter for both LS and
RR was tuned using 10-fold internal cross-validation. Lastly, the learning rate of the
XGB models were tuned with (0.001, 0.01, 0.1, 0.2, 0.3) and the number of rounds
set to 1500. Default values were used for all other parameters. Note that, out of the
four regression models, only RF is capable of handling non-binary categorical input
variables. Hence, LS, RR and XGB were not applied to datasets which included such
inputs. Predictive performance was measured as the coefficient of determination ( R2 ).
All experiments were performed in R (Ihaka & Gentleman, 1996), and the code used
in our experiments is available at https://​github.​com/​oghen​ejokp​eme/​EFERUC. All
our results are available for independent analysis at http://​dx.​doi.​org/​10.​17632/​mpvwn​
hv4vb.2.

http://dx.doi.org/10.17632/mpvwnhv4vb.2
http://dx.doi.org/10.17632/mpvwnhv4vb.2
https://github.com/oghenejokpeme/EFERUC
http://dx.doi.org/10.17632/mpvwnhv4vb.2
http://dx.doi.org/10.17632/mpvwnhv4vb.2

1374	 Machine Learning (2023) 112:1365–1387

1 3

4.3 � SmoteR and undersampler

We compared our proposed method with two resampling approaches from Torgo et al.
(2015), SmoteR and undersampler. For SmoteR, we used a relevance threshold of 0.7,
k = 5 and all combinations of undersampling rate of (50, 100, 200, 300)% and oversam-
pling rate of (200, 500)% . For undersampler, we used a relevance threshold of 0.7 and resa-
mpling rates of (50, 100, 200, 300)% . These combination of parameters were used in the
original paper (Torgo et al., 2015). The results from the best performing parameters are
reported. We applied the four regression methods (LS, RR, RF and XGB), which were
tuned as detailed above, to each resampled dataset and reported the R2 on a test set for the
best combination of resampling parameters. For majority of outputs, the relevance function
was generated automatically (the phi function in the uba package in R) with either one
or two relevance bumps corresponding to tail(s) of the distribution. However, some outputs
required bespoke relevance functions with areas of importance identified through inspec-
tion of the output histograms. We note that the undersampling algorithm and SmoteR
failed in the instances when no extreme values were identified by the relevance function
and in some rare cases where a dataset contained discrete or categorical input variables
with very low-frequency values.

5 � Results

5.1 � Base regressor performance

We found that the overall best performing regressor in the base case for the frequency
and clustering based discretization approaches was XGB, with RF a close second (see
Tables 1 and 2). One might ask why we have separated the base case results by dis-
cretizer given that the results should be the same either way. This is because we only
included base case results where the proposed approach could be successfully executed
for at least one regressor-classifier pair given a particular discretizer. This is important
because the learning process can fail depending on how a response is discretized. Fail-
ure in this sense can be caused by either the inability to discretize a response beyond a
bin size of 1, or the discretization could be performed, but all the values in one bin were

Table 1   Base case mean predictive performance ( R2 ) for the regressors we considered in our evaluation
where the discretization approach is frequency for the data collections we considered

Note that for each data collection, we only included results from responses where (1) performance values
are available for all learners, and (2) each regressor could be successfully paired with at least one other
classifier without failure. The number of experiments for each data subset is given and the best performing
regressor is in boldface

Dataset LS RR RF XGB

Branco (3) 0.793 ± 0.12 0.794 ± 0.12 0.923 ± 0.05 0.943 ± 0.04
Gene expression (20) 0.069 ± 0.06 0.074 ± 0.06 0.086 ± 0.1 0.088 ± 0.09
OpenML (8) 0.225 ± 0.23 0.232 ± 0.22 0.434 ± 0.27 0.357 ± 0.27
QSAR (24) 0.570 ± 0.06 0.582 ± 0.05 0.676 ± 0.06 0.660 ± 0.06
Yeast (46) 0.439 ± 0.15 0.392 ± 0.13 0.380 ± 0.15 0.419 ± 0.15

1375Machine Learning (2023) 112:1365–1387	

1 3

the same, causing some learners to fail. It is also worth noting that we did not perform
experiments for base regressors which only support numeric input variables but the
input dataset under consideration has nominal variables with more than two classes. For
example, we did not build a LS regressor for fuelCons dataset in the Branco collection
(see Table 11 in “Appendix A”). Paired t-tests showed that there is significant difference
in performance between the regressor pairs in the base case for some dataset collections
but not for others (see Tables 3 and 4).

Table 2   Base case mean predictive performance ( R2 ) for the regressors we considered in our evaluation
where the discretization approach is clustering for the data collections we considered

Note that for each data collection, we only included results from responses where (1) performance values
are available for all learners, and (2) each regressor could be successfully paired with at least one other
classifier without failure. The number of experiments for each data subset is given and the best performing
regressor is in boldface

Dataset LS RR RF XGB

Branco (3) 0.793 ± 0.12 0.794 ± 0.12 0.923 ± 0.05 0.943 ± 0.04
Gene expression (19) 0.059 ± 0.05 0.064 ± 0.05 0.072 ± 0.08 0.074 ± 0.06
OpenML (14) 0.395 ± 0.35 0.398 ± 0.34 0.552 ± 0.34 0.520 ± 0.37
QSAR (23) 0.571 ± 0.06 0.582 ± 0.06 0.676 ± 0.06 0.660 ± 0.06
Yeast (46) 0.439 ± 0.15 0.392 ± 0.13 0.380 ± 0.15 0.419 ± 0.15

Table 3   P-values from paired t-tests for each unique regressor pair for the data subsets (including the num-
ber of experiments) we considered when the discretization approach is frequency 

Pair Branco (3) Gene expression (20) OpenML (8) QSAR (24) Yeast (46)

LS-RR 0.225 6.010e-06 0.327 2.258e-09 3.832e-06
LS-RF 0.233 0.058 0.024 1.981e-15 3.619e-06
LS-XGB 0.172 0.004 0.023 3.120e-15 0.028
RR-RF 0.238 0.152 0.030 9.416e-15 0.448
RR-XGB 0.175 0.022 0.038 1.594e-14 0.050
RF-XGB 0.130 0.907 0.314 1.374e-06 5.248e-09

Table 4   P-values from paired t-tests for each unique regressor pair for the data subsets (including the num-
ber of experiments) we considered when the discretization approach is clustering 

Pair Branco (3) Gene expression (19) OpenML (14) QSAR (23) Yeast (46)

LS-RR 0.225 1.639e-05 0.433 7.883e-09 3.832e-06
LS-RF 0.233 0.111 0.020 1.306e-14 3.619e-06
LS-XGB 0.172 0.005 0.013 2.012e-14 0.028
RR-RF 0.238 0.276 0.022 5.792e-14 0.448
RR-XGB 0.175 0.033 0.017 9.520e-14 0.050
RF-XGB 0.130 0.913 0.481 3.452e-06 5.248e-09

1376	 Machine Learning (2023) 112:1365–1387

1 3

5.2 � Classifier performance

We observed that the best performing classifier, when paired with a particular regres-
sor, is largely dependent on the discretization approach and varies by dataset collection.
For example, RF is the best performing classifier on the Branco dataset collection for
all regressors when frequency is the discretization approach. This is in contrast to when
clustering is used for discretization. In this case, KNN is the best classifier for LS and
RR, RF is the best classifier for the RF regressor, and NB and DT perform equally well
when paired with XGB (see Tables 5 and 6). Given these results, we argue that for a
new unseen problem, one would need to also select the best performing classifier that
should be paired with a given regressor. This can be done using any standard model
selection approach.

Table 5   Mean predictive performance ( R2 ) of the best performing of the best individual bin size and
weighted cases for each regressor-classifier pair we considered when the discretization approach is fre-
quency 

Individual performance values (not entire entries) of less than zero and missing values (cases where a clas-
sifier building process failed) were replaced with 0s. For each data collection, the number of experiments
for each regressor n is given, and the best performing classifier is in boldface

n NB RF DT KNN

Branco
LS 3 0.819 ± 0.10 0.898 ± 0.09 0.830 ± 0.13 0.857 ± 0.10
RR 3 0.822 ± 0.10 0.895 ± 0.10 0.834 ± 0.14 0.860 ± 0.09
RF 12 0.724 ± 0.35 0.726 ± 0.35 0.231 ± 0.42 0.232 ± 0.42
XGB 3 0.943 ± 0.04 0.943 ± 0.03 0.943 ± 0.04 0.943 ± 0.03
Gene expression
LS 20 0.069 ± 0.06 0.097 ± 0.07 0.072 ± 0.06 0.098 ± 0.08
RR 20 0.075 ± 0.06 0.097 ± 0.07 0.076 ± 0.07 0.099 ± 0.07
RF 20 0.090 ± 0.09 0.110 ± 0.09 0.121 ± 0.08 0.091 ± 0.09
XGB 20 0.092 ± 0.09 0.112 ± 0.08 0.094 ± 0.09 0.111 ± 0.09
OpenML
LS 8 0.233 ± 0.23 0.373 ± 0.22 0.267 ± 0.22 0.247 ± 0.24
RR 8 0.237 ± 0.22 0.348 ± 0.25 0.260 ± 0.22 0.251 ± 0.23
RF 12 0.574 ± 0.30 0.510 ± 0.33 0.291 ± 0.30 0.290 ± 0.30
XGB 8 0.360 ± 0.27 0.411 ± 0.24 0.365 ± 0.26 0.360 ± 0.27
QSAR
LS 24 0.572 ± 0.06 0.639 ± 0.06 0.574 ± 0.06 0.642 ± 0.06
RR 24 0.583 ± 0.05 0.641 ± 0.06 0.583 ± 0.06 0.645 ± 0.06
RF 24 0.676 ± 0.06 0.677 ± 0.06 0.676 ± 0.06 0.679 ± 0.06
XGB 24 0.660 ± 0.06 0.667 ± 0.06 0.660 ± 0.06 0.672 ± 0.05
Yeast
LS 46 0.445 ± 0.15 0.442 ± 0.15 0.445 ± 0.16 0.440 ± 0.15
RR 46 0.401 ± 0.14 0.404 ± 0.14 0.426 ± 0.15 0.393 ± 0.13
RF 46 0.398 ± 0.15 0.381 ± 0.15 0.382 ± 0.15 0.382 ± 0.15
XGB 46 0.425 ± 0.15 0.420 ± 0.15 0.421 ± 0.15 0.419 ± 0.15

1377Machine Learning (2023) 112:1365–1387	

1 3

5.3 � Discretizer performance

Our results suggests that the effect of the chosen discretizer is dependent on the response
and the regressor-classifier pair. We only see a statistically significant difference in per-
formance between the frequency and clustering discretizers in 13 of the 80 regressor-
classifier pairs across the dataset collections we considered. However, the choice of dis-
cretizer might be worth optimising given a new problem, as the analysis for the gene
expression dataset collection indicates significant effects on performance (see Table 7).

Table 6   Mean predictive performance ( R2 ) of the best performing of the best individual bin size and
weighted cases for each regressor-classifier pair we considered when the discretization approach is cluster-
ing 

Performance values less than zero and missing values (cases where the classifier building process failed)
were replaced with 0s. For each data subset, the number of experiments for each regressor n is given, and
the best performing classifier is in boldface

n NB RF DT KNN

Branco
LS 3 0.550 ± 0.49 0.604 ± 0.41 0.694 ± 0.44 0.892 ± 0.10
RR 3 0.551 ± 0.49 0.612 ± 0.40 0.695 ± 0.45 0.891 ± 0.10
RF 9 0.900 ± 0.13 0.903 ± 0.13 0.308 ± 0.46 0.309 ± 0.46
XGB 3 0.943 ± 0.04 0.942 ± 0.03 0.943 ± 0.04 0.942 ± 0.03
Gene expression
LS 19 0.059 ± 0.05 0.069 ± 0.05 0.060 ± 0.05 0.081 ± 0.05
RR 19 0.064 ± 0.05 0.071 ± 0.05 0.065 ± 0.05 0.084 ± 0.05
RF 19 0.074 ± 0.07 0.077 ± 0.07 0.086 ± 0.07 0.074 ± 0.07
XGB 19 0.078 ± 0.06 0.086 ± 0.06 0.079 ± 0.06 0.091 ± 0.06
OpenML
LS 14 0.408 ± 0.35 0.552 ± 0.35 0.447 ± 0.36 0.439 ± 0.38
RR 14 0.411 ± 0.34 0.536 ± 0.37 0.444 ± 0.36 0.441 ± 0.37
RF 14 0.552 ± 0.34 0.557 ± 0.33 0.550 ± 0.34 0.546 ± 0.33
XGB 14 0.527 ± 0.37 0.570 ± 0.36 0.533 ± 0.36 0.523 ± 0.37
QSAR
LS 23 0.571 ± 0.06 0.649 ± 0.06 0.573 ± 0.06 0.637 ± 0.06
RR 23 0.583 ± 0.06 0.651 ± 0.06 0.584 ± 0.06 0.640 ± 0.06
RF 23 0.676 ± 0.06 0.677 ± 0.06 0.676 ± 0.06 0.678 ± 0.06
XGB 23 0.660 ± 0.06 0.669 ± 0.06 0.660 ± 0.06 0.670 ± 0.06
Yeast
LS 46 0.444 ± 0.15 0.443 ± 0.15 0.447 ± 0.16 0.440 ± 0.15
RR 46 0.399 ± 0.14 0.408 ± 0.14 0.426 ± 0.16 0.393 ± 0.13
RF 46 0.396 ± 0.15 0.381 ± 0.15 0.382 ± 0.15 0.381 ± 0.15
XGB 46 0.426 ± 0.15 0.420 ± 0.15 0.421 ± 0.15 0.419 ± 0.15

1378	 Machine Learning (2023) 112:1365–1387

1 3

5.4 � Algorithm performance

We compared the base regressor performance to the best performing regressor-clas-
sifier pair for the frequency and clustering discretizers. Note that the values for the
regressor-classifier pairs here are the best performing of either the best performing
single bin or the weighted case. For example, assume a predicted response and LS
as the base regressor. We compared the base LS performance value to the best per-
forming pair out of LS-NB, LS-RF, LS-DT, and LS-KNN, where the value for each of
these pairs is the best performer out of the best performing single bin and the weighted
case. There were a total of 853 performance data points. Our approach performed as
well as the base case on 134 and strictly outperformed it on 709. The base case never
outperforms our proposed approach. For the cases in which our proposed approach
outperformed the base case, the average increase in predictive performance ( R2 ) is

Table 7   The percentage of regressor-classifier pairs for which the considered discretization approaches
(frequency/clustering) strictly outperforms the other

Note that the value for each regressor-classifier pair in this comparison is the best performer of the best
bin or weighted case. The number of experiments (n) for each pair is given, and an asterisk ( ∗ ) is given
where there is a statistically significant difference in performance between the discretization approaches on
a paired t-test

n NB RF DT KNN

Branco
LS 3 66.7/33.3 66.7/33.3 33.3/66.7 0/66.7
RR 3 66.7/33.3 66.7/33.3 33.3/66.7 0/66.7
RF 9 11.1/0 11.1/33.3 0/0 11.1/11.1
XGB 3 0/0 66.7/0 0/0 33.3/66.7
Gene expression
LS 19 26.3/10.5 100/0∗ 78.9/5.3∗ 78.9/21.1
RR 19 15.8/0 100/0∗ 57.9/15.8 68.4/15.8
RF 19 52.6/10.5∗ 100/0∗ 100/0∗ 26.3/5.3
XGB 19 42.1/26.3 94.7/0∗ 42.1/36.8 68.4/21.1∗

OpenML
LS 8 37.5/25 50/37.5 50/25 50/37.5
RR 8 37.5/37.5 37.5/25 37.5/37.5 37.5/37.5
RF 11 9.1/9.1 27.3/18.2 9.1/27.3 27.3/36.4
XGB 8 37.5/12.5 50/12.5 37.5/12.5 25/37.5
QSAR
LS 23 39.1/17.4 21.7/73.9∗ 52.2/13 65.2/26.1∗

RR 23 17.4/13 8.7/87∗ 30.4/34.8 69.6/30.4∗

RF 23 8.7/0 8.7/21.7 0/0 30.4/26.1
XGB 23 4.3/0 34.8/39.1 0/4.3 56.5/26.1
Yeast
LS 46 43.5/21.7 17.4/13 23.9/39.1 13/13
RR 46 43.5/19.6 13/45.7∗ 39.1/34.8 15.2/21.7
RF 46 54.3/26.1 10.9/2.2 13/17.4 17.4/13
XGB 46 32.6/32.6 2.2/0 10.9/19.6 2.2/4.3

1379Machine Learning (2023) 112:1365–1387	

1 3

0.04 ± 0.06 (an average increase of performance of ∼35%). We performed significance
testing using paired t-tests for each individual regressor given the two discretizers we
considered. This analysis showed that the difference in performance is statistically
significant for the four regressors with a significance level of 0.01 (see Table 8 and
Fig. 3). The most marked improvement in performance is observed for the two linear
methods, LS and RR, for both discretization approaches, whilst performance of RF and
XGB is very similar for base and best regressor-classifier pair. These results suggest
that the proposed approach (a) is capable of dealing with the problem of imbalanced
distributions in a target response, and (b) is highly unlikely to perform worse than the
base case.

Table 8   P-values from paired
t-test significance testing of
the difference in performance
between the regressor base
case and the best performing
regressor-classifier pair (best of
best bin and weighted). n is the
number of samples used in the
significance tests

Last column is mean increase in R2 of the best performing regressor-
classifier pair compared to the base case (± standard deviation)

p-value n Mean R2 increase

Frequency
LS 1.086e−12 92 .05 ± .06
RR 2.041e−12 93 .05 ± .06
RF 1.093e−15 86 .02 ± .02
XGB 4.482e−10 78 .02 ± .03
Clustering
LS 6.146e−08 91 .06 ± .09
RR 1.056e−08 99 .06 ± .09
RF 6.662e−12 85 .01 ± .02
XGB 0.002 85 .02 ± .06

Fig. 3   Comparison of performance ( R2 ) of the base case and the best performing regressor-classifier pair
for each regressor and discretization approach, across all datasets. Dashed red line is the x = y line

1380	 Machine Learning (2023) 112:1365–1387

1 3

5.5 � Comparison to resampling approaches

We compared the best performing resamplers (SmoteR and undersampler) to the best
performing regressor-classifier pair for the frequency and clustering discretizers. Also
note that, as in the previous section, the values for the regressor-classifier pairs here
are the best performing of either the best performing single bin or the weighted case.
We observed that for all combinations of the resamplers, discretizers, and dataset col-
lections, our approach outperforms the resampling methods (see Table 9 and Fig. 4).
Paired t-tests show that these differences in performance are statistically significant with
a significance level of 0.01 (see Table 10).

6 � Discussion and conclusion

Although we have demonstrated the utility of the proposed algorithm, we conjecture
that modifications to three main components could further improve the predictive accu-
racy of the algorithm’s output at some additional computational cost. These components

Table 9   Comparison of the resampling approaches (SmoteR and undersampler) to the discretizers (fre-
quency and clustering) used in the evaluation of our proposed methods across the considered collections of
datasets (B—Branco, G—Gene expression, O—OpenML, Q—QSAR, Yeast - Y)

n is the number of samples that were compared, eq is the number of times a resampling and discretization
approach perform equally well, lt is the number of times a resampling approach outperforms a discretiza-
tion approach, lt_avg is the average performance increase ( R2 ) and standard deviation of the resampling
approach over a discretization approach, and gt_avg is the average performance increase ( R2 ) and standard
deviation of a discretization approach over a resampling approach. The overall best performing approach for
each comparison (lt) or (gt) is in boldface

Resampler Discretizer Dataset n eq lt lt_avg gt gt_avg

SmoteR Frequency B 21 1 7 .01 ± .01 13 .08 ± .12
SmoteR Frequency G 80 0 0 – 80 .08 ± .03
SmoteR Frequency O 27 3 6 .02 ± .03 18 .15 ± .12
SmoteR Frequency Q 84 0 0 – 84 .12 ± .08
SmoteR Frequency Y 180 0 14 .03 ± .03 166 .08 ± .07
SmoteR Clustering B 18 2 5 .01 ± .01 11 .08 ± .13
SmoteR Clustering G 76 0 0 – 76 .07 ± .03
SmoteR Clustering O 35 7 4 .03 ± .04 24 .20 ± .22
SmoteR Clustering Q 80 0 0 – 80 .12 ± .08
SmoteR Clustering Y 180 1 14 .03 ± .03 165 .08 ± .07
Undersampler Frequency B 21 0 2 .00 ± .00 19 .08 ± .11
Undersampler Frequency G 80 0 0 – 80 .07 ± .03
Undersampler Frequency O 31 1 1 .01 ± – 29 .13 ± .11
Undersampler Frequency Q 84 0 0 – 84 .22 ± .12
Undersampler Frequency Y 180 0 2 .01 ± .00 178 .10 ± .08
Undersampler Clustering B 18 0 0 – 18 .08 ± .11
Undersampler Clustering G 76 0 0 – 76 .06 ± .03
Undersampler Clustering O 40 5 1 .01 ± – 34 .18 ± .20
Undersampler Clustering Q 80 0 0 – 80 .23 ± .13
Undersampler Clustering Y 180 1 3 .01 ± .00 176 .10 ± .08

1381Machine Learning (2023) 112:1365–1387	

1 3

Fig. 4   Comparison of performance ( R2 ) of the two resampling methods and the best performing regressor-
classifier pair for each regressor and discretization approach, across all datasets. Dashed black line is the
x = y line

Table 10   P-values from paired
t-test significance testing of
the difference in performance
between the resampling methods
and the best performing
regressor-classifier pair (best of
best bin and weighted) for each
discretizer across the considered
datasets on a per regressor basis

n is the number of experiments used in the significance tests

p-value n

Frequency - SmoteR
LS 1.827e−26 95
RR 1.255e−28 95
RF 5.343e−17 107
XGB 2.264e−12 95
Frequency - Undersampler
LS 3.838e−20 96
RR 2.259e−23 96
RF 7.154e−21 108
XGB 1.018e−16 96
Clustering - SmoteR
LS 3.484e−19 95
RR 1.321e−22 95
RF 7.209e−15 104
XGB 4.662e−11 95
Clustering - Undersampler
LS 2.215e−17 96
RR 2.053e−20 96
RF 5.937e−18 106
XGB 2.610e−14 96

1382	 Machine Learning (2023) 112:1365–1387

1 3

are the method by which class imbalance is handled, the type of discretizer, and how
weighting is performed in the internal stacking procedure. In our evaluation, we used
simple upsampling to deal with class imbalance, however, we expect that a more sophis-
ticated but more computationally expensive approach like SMOTE (Chawla et al.,
2002) would perform better. The reasoning behind this is that building the classifiers
with higher quality samples will lead to improved classification accuracy of the models,
which will in turn improve the classification accuracy of the overall system. For the
discretizers, we only considered unsupervised discretizers because of their negligible
computational cost, however, we also expect overall performance improvement of the
proposed algorithm with supervised discretizers. We think that supervised discretiz-
ers would produce cleaner delineations between the different bins, thus reducing the
amount of noise between bin regions, improving the predictive accuracy of the classifi-
ers. One might also choose to use a bespoke discretization approach that is tailored to a
given problem using domain knowledge, which may outperform the mainstream super-
vised and unsupervised discretization techniques. Lastly, rather than the static weighting
scheme we used in aggregating the predictions from the different bin sizes, it is possible
that a dynamic weighting approach might perform better. One might argue that depend-
ing on their choice for the internal components (discretizer, class balancing, regres-
sor, classifier, etc), the computational cost (finance and time) of the proposed approach
might be limiting. However, we argue that this is not the case, given that compute costs
are cheap and are steadily declining, and certain aspects of the algorithm can be paral-
lelised, which should dramatically reduce computation time.

In summary, we have presented an extension to the federated ensemble regression
using classification algorithm. Our evaluation shows that it is highly unlikely to perform
worse than the base case, and it outperforms state-of-the-art resampling approaches
intended to address distribution imbalance in target responses for regression problems.

Appendix A: Dataset details

The fraction of rare values was calculated with a threshold of 0.7 using the formulation
given in Branco et al. (2019) (Tables 11, 12, 13, 14 and 15).

1383Machine Learning (2023) 112:1365–1387	

1 3

Table 11   Dataset description for
the gene expression targets

Target Samples Features Rare fraction (%)

AKT1 10000 1154 13.87
APOE 10000 1154 17.31
BRCA1 10000 1154 16.22
CDK4 10000 1154 13.35
EGF 10000 1154 17.04
EGFR 10000 1154 12.3
KIT 10000 1154 11.06
PAX8 10000 1154 12.8
TGFBR2 10000 1154 21.69
TP53 10000 1154 14.46
STK10 10000 1154 15.97
CDH3 10000 1154 15.3
IGF1R 10000 1154 13.31
TNFRSF21 10000 1154 17.2
RAD51C 10000 1154 16.69
CFLAR 10000 1154 14.12
TERT 10000 1154 12.37
FGFR2 10000 1154 12.94
LYN 10000 1154 14.32
PTK2 10000 1154 16.02

Table 12   Dataset description for
the OpenML datasets

Dataset Samples Features Rare fraction (%)

house sales 21613 21 10.13
abalone 4177 8 21.12
brazillian houses 10692 12 13.58
santander transactions 4459 4991 14.62
mercedes benz 4209 376 4.06
mip 1090 146 22.48
house16h 22784 16 14.18
quake 2178 3 9.78
socmob 1156 5 18.86
space 3107 6 8.43
topo 8885 266 19.08
yprop 8885 251 19.08
wine quality 6497 11 23.44
elevators 16599 18 15.53
pol 15000 48 17.69

1384	 Machine Learning (2023) 112:1365–1387

1 3

Table 13   Dataset description for
the Branco datasets

Dataset Samples Features Rare fraction (%)

a1 198 11 16.16
a2 198 11 13.13
a3 198 11 17.17
a4 198 11 18.69
a6 198 11 17.68
a7 198 11 14.65
Abalone 4177 8 21.12
Accel 1732 14 6.12
availPwr 1802 15 10.93
bank8FM 4499 8 8.54
boston 506 13 14.62
cpuSm 8192 12 9.81
fuelCons 1764 37 12.76
heat 7400 11 10.7
maxTorque 1802 32 9.05

Table 14   Dataset description for
the QSAR datasets

Target Samples Features Rare fraction (%)

CHEMBL1907610 3083 1024 4.67
CHEMBL203 5012 1024 6.17
CHEMBL204 5742 1024 17.29
CHEMBL205 3664 1024 12.96
CHEMBL214 3356 1024 3.52
CHEMBL226 3490 1024 6.05
CHEMBL228 4156 1024 2.55
CHEMBL233 4089 1024 18.34
CHEMBL234 3133 1024 42.36
CHEMBL251 4081 1024 5.71
CHEMBL253 4332 1024 2.29
CHEMBL256 3438 1024 5.47
CHEMBL260 3889 1024 33.81
CHEMBL261 3019 1024 4.24
CHEMBL262 3058 1024 5.36
CHEMBL264 3134 1024 6.51
CHEMBL267 3650 1024 7.1
CHEMBL284 3429 1024 13.09
CHEMBL313 3527 1024 3.09
CHEMBL332 3459 1024 5.84
CHEMBL333 3617 1024 25.38
CHEMBL339 4378 1024 7.38
CHEMBL340 3649 1024 10.69
CHEMBL344 3048 1024 1.71

1385Machine Learning (2023) 112:1365–1387	

1 3

Table 15   Dataset description for
the yeast dataset

Target Samples Features Rare fraction (%)

Cadmium_Chloride 799 11623 13.52
Caffeine 1004 11623 10.46
Calcium_Chloride 949 11623 10.12
Cisplatin 990 11623 8.18
Cobalt_Chloride 1007 11623 4.47
Congo_red 979 11623 27.17
Copper 972 11623 14.4
Cycloheximide 1004 11623 11.16
Diamide 1003 11623 6.88
E6_Berbamine 1005 11623 10.85
Ethanol 967 11623 10.34
Formamide 999 11623 12.71
Galactose 962 11623 11.43
Hydrogen_Peroxide 769 11623 11.57
Hydroquinone 960 11623 20.1
Hydroxyurea 944 11623 12.29
Indoleacetic_Acid 994 11623 15.79
Lactate 973 11623 8.84
Lactose 1004 11623 11.25
Lithium_Chloride 1002 11623 4.79
Magnesium_Chloride 964 11623 8.51
Magnesium_Sulfate 1006 11623 18.39
Maltose 1005 11623 13.23
Mannose 957 11623 11.91
Menadione 1005 11623 5.17
Neomycin 1005 11623 8.96
Paraquat 1004 11623 6.37
Raffinose 662 11623 10.27
SDS 873 11623 7.79
Sorbitol 599 11623 9.02
Trehalose 1003 11623 7.78
Tunicamycin 1006 11623 23.56
x4.Hydroxybenzaldehyde 964 11623 6.85
x4NQO 1005 11623 21.39
x5.Fluorocytosine 957 11623 12.12
x5.Fluorouracil 992 11623 11.69
x6.Azauracil 1001 11623 8.99
Xylose 1003 11623 7.28
YNB 1006 11623 10.93
YNB.ph3 979 11623 3.98
YNB.ph8 887 11623 8.57
YPD 1006 11623 11.63
YPD.15C 1005 11623 23.18
YPD.37C 1003 11623 9.77
YPD.4C 806 11623 8.06

1386	 Machine Learning (2023) 112:1365–1387

1 3

Acknowledgements  This work was supported by the Engineering and Physical Sciences Research Council
(EPSRC) UK through the ACTION on cancer Grant (EP/R022925/1, EP/R022941/1). The computational
resources were provided by the Swedish National Infrastructure for Computing (SNIC) at the Chalmers
University of Technology partially funded by the Swedish Research Council through Grant Agreement No.
2018-05973. Prof. King acknowledges the support of the Knut and Alice Wallenberg Foundation Wallen-
berg Autonomous Systems and Software Program (WASP). N. F. Grinberg would like to acknowledge fund-
ing from the Wellcome Trust (WT107881) and the MRC (MC_UU_00002/4).

Author Contributions  O.I.O., N.F.G., L.N.S., and R.D.K. designed research; O.I.O. and N.F.G performed
the experiments; O.I.O., N.F.G., and R.D.K. analyzed data; and O.I.O. and N.F.G wrote the paper with input
from co-authors.

Funding  This work was supported by the Engineering and Physical Sciences Research Council (EPSRC)
UK through the ACTION on cancer Grant (EP/R022925/1, EP/R022941/1).

Availability of data and material  All data used in this work is publicly available as reported in Sect. 4.

Code availability  All code used in this work is publicly available as reported in Sect. 4.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

Ethics approval  Not Applicable.

Consent to participate  Not Applicable.

Consent for publication  Not Applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Ahmad, A., Khan, S. S., & Kumar, A. (2018). Learning regression problems by using classifiers. Journal
of Intelligent & Fuzzy Systems, 35(1), 945–955.

Ali, A., Shamsuddin, S. M., Ralescu, A. L., et al. (2015). Classification with class imbalance problem: A
review. International Journal of Advances in Soft Computing and its Applications, 7(3), 176–204.

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression. The
American Statistician, 46(3), 175–185.

Bischl, B., Casalicchio, G., Feurer, M., Hutter, F., Lang, M., Mantovani, R.G., van Rijn, J.N., & Van-
schoren, J. (2017). OpenML benchmarking suites and the OpenML100. arXiv:​1708.​03731

Table 15   (continued) Target Samples Features Rare fraction (%)

Zeocin 957 11623 48.69

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1708.03731

1387Machine Learning (2023) 112:1365–1387	

1 3

Branco, P., Torgo, L., & Ribeiro, R. P. (2019). Pre-processing approaches for imbalanced distributions in
regression. Neurocomputing, 343, 76–99.

Breiman, L. (1996). Stacked regressions. Machine Learning, 24(1), 49–64.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic minority

over-sampling technique. Journal of Artificial Intelligence Research, 16, 321–357.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd

ACM SIGKDD international conference on knowledge discovery and data mining, pp. 785–794.
Dash, R., Paramguru, R. L., & Dash, R. (2011). Comparative analysis of supervised and unsupervised

discretization techniques. International Journal of Advances in Science and Technology, 2(3),
29–37.

Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and unsupervised discretization of continuous
features. In Machine Learning Proceedings 1995, pp. 194–202. Elsevier.

Gonzalez, D.L., Chen, Z., Tetteh, I.K., Pansombut, T., Semazzi, F., Kumar, V., Melechko, A., & Samatova,
N.F. (2012). Hierarchical classifier-regression ensemble for multi-phase non-linear dynamic system
response prediction: Application to climate analysis. In 2012 IEEE 12th international conference on
data mining workshops, pp. 781–788. IEEE.

Grinberg, N. F., Orhobor, O. I., & King, R. D. (2020). An evaluation of machine-learning for predicting
phenotype: Studies in yeast, rice, and wheat. Machine Learning, 109(2), 251–277.

Halawani, S.M., Albidewi, I.A., & Ahmad, A. (2012). A novel ensemble method for regression via classifi-
cation problems. Expert Systems with Applications

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12(1), 55–67.

Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational
and Graphical Statistics, 5(3), 299–314.

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study. Intelligent Data
Analysis, 6(5), 429–449.

Koleti, A., Terryn, R., et al. (2017). Data portal for the library of integrated network-based cellular signa-
tures (LINCS) program: Integrated access to diverse large-scale cellular perturbation response data.
Nucleic Acids Research, 46(D1), D558–D566.

Mendes-Moreira, J., Soares, C., Jorge, A. M., & Sousa, J. F. D. (2012). Ensemble approaches for regression:
A survey. ACM Computing Surveys, 45(1), 1–40.

Olier, I., Sadawi, N., Bickerton, G. R., Vanschoren, J., Grosan, C., Soldatova, L., & King, R. D. (2018).
Meta-QSAR: A large-scale application of meta-learning to drug design and discovery. Machine Learn-
ing, 107(1), 285–311.

Orhobor, O.I., Soldatova, L.N., & King, R.D. (2020). Federated ensemble regression using classification. In
International conference on discovery science, pp. 325–339. Springer.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
Rish, I., et al. (2001). An empirical study of the naive bayes classifier. In IJCAI 2001 workshop on empirical

methods in artificial intelligence, 22, pp. 41–46 (2001).
Silla, C. N., & Freitas, A. A. (2011). A survey of hierarchical classification across different application

domains. Data Mining and Knowledge Discovery, 22(1–2), 31–72.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical

Society: Series B (Methodological), 58(1), 267–288.
Torgo, L., & Ribeiro, R. (2007). Utility-based regression. In European conference on principles of data

mining and knowledge discovery, pp. 597–604. Springer.
Torgo, L., Branco, P., Ribeiro, R. P., & Pfahringer, B. (2015). Resampling strategies for regression. Expert

Systems, 32(3), 465–476.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Imbalanced regression using regressor-classifier ensembles
	Abstract
	1 Introduction
	2 Background
	3 Methodology
	3.1 Algorithm
	3.2 Considerations

	4 Evaluation setup
	4.1 Datasets
	4.2 Learning setup
	4.3 SmoteR and undersampler

	5 Results
	5.1 Base regressor performance
	5.2 Classifier performance
	5.3 Discretizer performance
	5.4 Algorithm performance
	5.5 Comparison to resampling approaches

	6 Discussion and conclusion
	Appendix A: Dataset details
	Acknowledgements
	References

