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Abstract
More and more, large-scale pre-trained models show apparent advantages in solving the 
event detection (ED), i.e., a task to solve the problem of event classification by identify-
ing trigger words. However, this kind of model depends heavily on labeled training data. 
Unfortunately, there is not enough such data for some particular areas, such as finance, due 
to the high cost of the data annotation process. Besides, the manually labeled training data 
has many problems like uneven sampling distribution, poor diversity, and massive long-tail 
data. Recently, some researchers have used the generative model to label data. However, 
training the generative models needs rich domain knowledge, which cannot be obtained 
from a Few-Shot resource. Therefore, we propose a Domain-Aware Few-Shot (DAFS) 
generative model that can generate domain based training data through a relatively small 
amount of labeled data. First, DAFS utilizes self-supervised information from various cat-
egories of sentences to calculate words’ transition probability under different domain and 
retain key triggers in each sentence. Then, we apply our joint algorithm to generate labeled 
training data that considers both diversity and effectiveness. Experimental results demon-
strate that the training data generated by DAFS significantly improves the performance of 
ED in actual financial data. Especially when there are no more than 20 training data, DAFS 
can still ensure the generative quality to a certain extent. It also obtains new state-of-the-art 
results on ACE2005 multilingual corpora.

Keywords  Event detection · Domain-aware · Joint algorithm · Self-supervised

1  Introduction

Automatic event extraction is a fundamental task of information extrac-
tion. Generally speaking, event detection (ED) aims at identifying event trig-
gers which is a key step of event extraction. For example, from the sentence 
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“ It′s been ten minutes since I got home, and George called ”, systems should detect 
the event of “Movement  :  Transport" triggered by “ got home ", and the event of 
“ Contact ∶ Phone Writeε triggered by “called".

Most of the ED methods before 2018 applied a word-wise classification paradigm, 
which has achieved significant progress (Lin et al., 2018). Afterward, with the rise of 
the new pre-trained model BERT (Devlin et  al., 2018), the method of representation 
learning can obtain semantic information in a sentence more precisely, as it is known 
that word-wise ED models suffer from the trigger word ambiguity and semantic loss 
problems (Lin et  al., 2018). For instance, we can’t directly detect the event of "bank-
rupt" in the sentence “ Will the bankruptcy caused by the financial crisis affect Ali? ". 
Although it has the trigger word “bankruptcy", it does not mean anything happened in a 
real financial situation . The pre-trained model can learn the language of this interroga-
tive state through a fine-tuning mechanism, but it needs more data of this type.

Furthermore, we summarize the similarities and differences between training data 
and test data in real data in Table 1. As shown the first line in Table 1, the classifier can 
easily recognize the event type because of similar trigger words in both training and 
test corpus. In addition, the second line in Table 1 represents the data without similar 
trigger words but with special semantic between training and test corpus. As shown in 
the example, although they all have the trigger word “fire”, the data in TD is a nega-
tive sentence pattern, so it does not belong to Label 8 . The third line in Table 1 repre-
sents the test data with no repetition triggers but with similar semantics to the train-
ing corpus. “Typhon”in TD is the triggered word that has never appeared in TRD. To 
improve parts 2 and 3, most pre-trained-based methods for ED follow the supervised-
learning paradigm, which requires lots of labeled data for training. However, annotating 
large amount of data accurately will incur high labor costs. At this time, the genera-
tion model becomes a suitable research method. VAE(Shao et al., 2020) and GAN (Liu 
et al., 2020) are committed to generating highly simulated data, but their training itself 
requires thousands of data to make losses converge. However, in the field of ED, the 
number of data for one class ranges from 2 to 1000 (As shown in Fig. 1). According 
to the statistics, there are 78.2% of trigger words in the benchmark ACE2005 that have 
a frequency of less than 5. Another generation methods focus on generating data by 
argument replacement and adjunct token rewriting (Yang et al., 2019). But this method 
does little help to improve recall, because repeated semantics training data weakens the 
generalization ability of the classification model. Therefore, generating semantic diver-
sity is also a factor we need to consider. In addition, the fourth part in Table 1 represent 

Fig. 1   Training data distribution of ACE2005 corpus under 33 categories. The number ranged from 2 to 
1078 training data
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the data that most models can hardly predict because neither similar trigger words nor 
similar semantic sentences appeared in training data. Embedding prior knowledge is a 
good method (Tong et  al., 2020), but it still requires additional work of manual map-
ping and collection of new data sources. Specifically, to resolve these problems, this 
paper proposes a Domain Aware Few shot (DAFS) generative model which can gener-
ate diverse and effective labeled data using the few-shot resource. Firstly, we construct 
the domain to prepare for training data, and then we apply the long-distance attention 
component (Transformer-XL) to fully train the context dependence of words among 
different domains. Secondly, we use a joint algorithm to generate data that can ensure 
diversity and effectiveness in the classification model. Meanwhile, we develop a simple 
data filter process to remove duplication and guarantee sample balance by recognizing 
trigger words. Finally, we integrate DAFS and BERT into an active learning workflow 
to solve regarding one-shot learning issues.

We evaluate our model on the ACE2005 benchmark and real financial corpus. Our 
method surpasses the baselines of ACE2005 and achieves a high performance in a real 
financial corpus. Experiments show that our method is effective on multilingual corpora 
(English & Chinese) and alleviates the Zero-Shot, Few-Shot classification problems from a 
novel perspective. Our contributions can be summarized as: 

1)	 We propose a novel Domain-Aware Few-Shot Generative Model which can learn from 
existing few shot labeled corpus to generate more annotation data.

2)	 We propose a domain-based joint algorithm in our DAFS to maintain the diversity and 
effectiveness of generated training data. And it is approved to be effective in experi-
ments.

3)	 After integrating the active learning mechanism, DAFS can systematically alleviate the 
One-Shot, Few-Shot regarding issues in ED.

4)	 Experiments on benchmark ACE2005-Chinese (ACE2005-CH) show that our method 
improves the states of arts by 3.8 (4.6%), 9.3 (10.7%), 12.3 (14.7%) in Precision, Recall 
& F1-score respectively. On ACE2005-English (ACE2005-EN) corpus, our Recall 
increases by 6.7 (8.6%). Additionally, we get an increment of 7.0 (7.7%), 10.2 (11.4%), 
9.5 (10.6%) on real financial data.

2 � Related work

2.1 � Event detection

Traditional feature-based methods exploit both lexical and global features to detect events 
(Li et al., 2013). As neural networks become popular in NLP (Cao et al., 2018), data-driven 
methods use various superior DMCNN, DLRNN and PLMEE models (Duan et al., 2017; 
Nguyen & Grishman, 2018; Yang et  al., 2019) for end-to-end event detection. FBMA 
(Mehta et al., 2019) attends to different aspects of text while constructing its representa-
tion. Recently, weakly-supervised methods (Huang et  al., 2018; Zeng et  al., 2017; Yang 
et al., 2018) have been proposed to generate more labeled data. Wang et al. (Wang et al., 
2018) uses complementary information between domains to improve event detection.(Fer-
guson et al., 2018) relies on sophisticated pre-defined rules to bootstrap from the parallel-
ing news streams. (Wang et al., 2019) limit the data range of adversarial learning to trigger 
words appearing in labeled data.(Cao et al., 2021) propose an Incremental Heterogeneous 



1015Machine Learning (2023) 112:1011–1031	

1 3

Graph Neural Network for incremental social event detection. (Zheng et al., 2021) propose 
TaLeM: a novel taxonomy-aware learning model which can deal with the low-resources 
problem in ED. (Wang et al., 2020) propose a survey on Few-Shot Learning.

2.2 � Event generation

As the neural network architecture encounters bottlenecks, more and more attention is 
paid to data-driven methods, and event generation is one of the main application areas. 
External resources such as Freebase, Frame-Net and WordNet are commonly employed to 
generate events and enrich the training data. Several previous event generation approaches 
(Chen et al., 2017; Zeng et al., 2017) are based on a strong assumption in distant supervi-
sion to label events in an unsupervised corpus. In fact, co-occurring entities could have 
none expected relationship. In addition, (Huang et al., 2016) incorporates abstract meaning 
representation and distribution semantics to extract events. While (Liu et al., 2017) man-
ages to mine additional events from the frames in FrameNet. (Tong et al., 2020) leverages 
external open-domain trigger knowledge to reduce the inherent bias of frequent triggers in 
annotations. (Han et al., 2018) propose structure-aware probabilistic model incorporating a 
structure prior by mask mechanism which inspire us to use self-supervised information to 
support a Few-Shot generative model.

2.3 � Pre‑trained model

The Pre-trained model greatly improves the semantic generalization ability of classifica-
tion model through transfer learning. (McCann et al., 2017) exploits language model pre-
trained on supervised translation corpus in the target task. ELMO (Peters et al., 2019) gets 
context sensitive em- beddings by encoding characters with stacked bidirectional LSTM 
(Hochreiter & Schmidhuber, 1997) and residual structure (He et al., 2016). GPT (Radford 
et  al., 2018) improves the state of the art in 9 of 12 tasks. BERT (Devlin et  al., 2018) 
breaks records of 11 NLP tasks and receives a lot of attention. GPT-2 (Radford et al., 2019) 
is on the basis of GPT, focusing on solving Zero-Shot problem expanding by the training 
corpus. XLNet (Yang et al., 2019) applies the transformer-xl mechanism and outperforms 
BERT on 20 tasks.

3 � Methodology

In this section, we introduce DAFS to generate even and diverse data to improve ED. In 
general, our workflow mainly divides into three parts. Firstly, we introduce our process of 
domain-construction and architecture of the DAFS that is about how to use self-supervised 
information to train the generation model. Secondly, we illustrate our joint algorithm which 
can combine prior and domain transition probability to generate more diverse annotation 
data. Finally, we describe the whole workflow from data generation to data classification.

3.1 � Domain construct

Definition 1 - Domain Domain is a semantic block that contains the event type, the event 
trigger and related event semantic sentences, which is integrated through preprocessing. Event 
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definition focuses on the label and trigger-words, but domain is the concept of integrating all 
event-related information in a region. Formally, we can define as

where x, y, z denote event type, event trigger and domain context semantics. Zdn , Zen , Zw 
stand for domain set, event set, corpus set respectively.

Definition 2 - Domain-aware Domain aware means that word considers the relevant infor-
mation of the current domain in the process of transferring to the next word. Specifically, it 
can be divided into two phases: 1) During the training phrase, through the preprocessing of 
domain construct, the relationship between domain label and domain data can be strength-
ened, and the diversity and domain correlation can be balanced through the algorithm. 2) 
During the testing phase, by outputting labels, we can automatically generate data in related 
domains.

As we have 33 event types in the ACE-2005 corpus, we will automatically build 33 
domains at initialization. Moreover, for our real financial data,we have 10 domains. For-
mally, we denote xi as the word in each sentence then we have Si = {x1, x2,⋯ , xi} . Mean-

while, for each labeled sentence, we have a set HW =
{(

Si, Yi
)}W

i=1
 . W stands for the num-

ber of sentences for the whole training dataset and Yi stands for the supervision label of the 
event. Then we assign data to different domains to which its label belongs, so that we can 
construct a domain-based corpus HD = {(Sj, Yj)}

D
j=1

 . D stands for the number of sentences 
for a special domain. With the above supervision data, we can get the transition matrix of 
each word for specific domain �D and the whole data �W by calculating the word frequency. 
Based on the matrix �D , �W , we can get the transition probability of the top 10 tokens which 
are Ed = [�D

i,top1
,�D

i,top2
,⋯ ,�D

i,top10
] , Ew = [�W

i,top1
,�W

i,top2
,⋯ ,�W

i,top10
] . And i stands for the 

given word. Given a chain of words Si , our goal is to jointly calculate the generation probabil-
ity G of the next word:

Em represents the transition matrix of each word according to the context. As in Fig. 2(a), 
"Start-Position" and "End-Position" are two examples of domain building. And the 

(1){x, y, z} ∈ Zdn, {x, y} ∈ Zen, Zen ≠ �, Zdn ≠ �, Zen ⊂ Zw

(2)max
G

P
(

G ∣ Ed,Ew,Em

)

Fig. 2   Sample of Domain construction on the left and training process of DAFS model on the right. 
DAFS not only guarantees the learning of the potential relationship of key features in a domain, but also 
generates more abundant annotated corpus by combining the transfer probability of words outside the 
domain. {x1, x2, x3} stands for a sentence in a domain. x1, x3 stands for B − Tags , E − Tags and x2 stands 
for main content in a sentence. Sentence 1:{x1, x2, x3} , Sentence 2: {x4, x5, x6} are in Domain1. Sentence 
3:{x7, x8, x9} , Sentence4: {x10, x11, x12} are in Domain2
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preparation of �D and �W adjacency matrices is essential for the following chapters. Em is 
obtained through the generation model in Sect. 3.2. Ew,Ed,Em is embedded in the data and 
we can train and use it without additional labels. This is the self-supervised information 
mainly used in the DAFS.

3.2 � Event generation

In order to make the information flow across domains in either the forward or backward pass, 
we employ Transformer-XL (Dai et al., 2019) as our feature extractor. As in Transformer-XL, 
we define the length of each segment as L. Each segment contains several sentences, for the 
consecutive segments we have St = [xt1,⋯ , xtL] and St+1 = [xtL+1,⋯ , xt2L] respectively. So 
the n-th hidden states of the t-th segment is expressed as hn

t
∈ ℝ

L×d , where d is the hidden 
dimension. To obtain a longer dependency, we combine two consecutive segments and get

Then applied with the self attention mechanism, we can have n-th layer hidden state as 
follows:

where NBP represents the hidden state st no longer propagates backward and TL stands for 
transformer-layer. �n

t+1
, �n

t+1
, �n

t+1
 represent the query, key, value from the training sentences 

at time t + 1 . �̃n−1
t+1

 stands for the extended context and W∗ denotes model parameters. Fur-
thermore, each domain contains several segments. As in Fig. 2b, the hidden state of each 
position, except itself, depends on the token of first (L − 1) position in the next layer. So 
the length of dependency will increase L-1 with each layer going down. Therefore, the 
longest dependency length is n(L − 1) , and n is the number of layers in the model. Context 
aware distance of dependency can be approximately O(N × L) , so the number of sentences 
in each domain of the training corpus should be more than N × L∕Na , while Na is the 
average length of each sentence. In particular, the characteristics of the initial and trigger 
words of each domain can be well learned, because they appear repeatedly in the domain 
as Sl = {B − Tags, xn1,⋯ , xnl ,E − Tags} , where “ B − tags " and “ E − Tags " are repre-
sented as the special domain label as visualized in Fig.  2a. For completeness, we adopt 
Masked LM task (Devlin et  al., 2018) Masked-Softmax and relative positional encoding 
mechanism(Dai et al., 2019) Positionwise-Feed-Forward to exploit surrounding words to 
learn the specific semantics of each character and the expression of transfer probability 
from context-based attention features �n

t
 . Then we get the final output �n

t
 as:

(3)�̃n−1
t+1

=
[

NBP

(

�n−1
t

)

◦�n−1
t+1

]

(4)
�n
t+1

, �n
t+1

, �n
t+1

=

�n−1
t+1

�⊤
q
,��n−1

t+1
�⊤

k
,��n−1

t+1
�⊤

v

(5)�n
t+1

= TL
(

�n
t+1

, �n
t+1

, �n
t+1

)

(6)�n
t
= Masked-Softmax

(

�n
t

)

�n
t

(7)�n
t
= LayerNorm

(

Linear
(

�n
t

)

+ �n−1
t

)

(8)�n
t
= Positionwise-Feed-Forward

(

�n
t

)
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As a result, the effective context can be transferred in and out of the domain, which makes 
the generated labeled semantics more diverse.

3.3 � Domain‑based joint algorithm

Although we employ a domain-aware generation model for considering context infor-
mation, when it comes to predicting and generating new labeled data, we believe 
embedding prior knowledge is also an important factor. However, the extra annotation 
information will make our model appear to be meaningless in practice, because our 
original intention is to save the cost of human annotation. We turn to use the self-super-
vised information (From which we get Em , as described it in Sect. 3.1.) and take into 
account of diversity and effectiveness to generate labeled data. �D and �W mentioned in 
Sect. 3.1 are considered to be effective supervision information because they contain not 
only domain-specific knowledge, but also the possibility of global transition probability. 
Formally, for given the input Si , the generation model will generate the next word xi+1 
which considers context information. However, as different domains are adjacent to each 
other, part of the generated data might undergo domain transfer, that is, other types of 
generated data appear in the current domain. To alleviate this problem, �D is extremely 
important, because once the probability of words in a particular domain increases, it is 
possible to maintain the key features of the domain. Meanwhile, �W gives us the pos-
sibility of more words appearing in the generated sentence, because there will be more 
choices for the next word in the global probability. All in all, to ensure the effectiveness 
and diversity of the generated data, the global information (that is, prior knowledge), 
the transfer information in the domain, and the context information must be considered 
comprehensively. Formally, a joint probability can be described as:

For Em , Ed , Ew , we have illustrated in Formula (1). Ew , Ed has been calculated before train-
ing and we get Em through generative model. Therefore, our lightweight generation model 
will not encounter the problem of loss convergence. � is the only hyper parameter in this 
formula to adjust the smoothness of generated words. Em uses a masking mechanism to 
make the predicted sentences more like the original distribution, but the sentences gener-
ated by Em alone can generate a lot of repeated sentences like data sources. At this time, 
the larger � makes the data more like source data, while the smaller � makes the word pay 
more attention to domain information Ed and global information Ew in the process of trans-
fer to the next word. It should be noted that the Ew information contains more possibili-
ties for each word, because it is the global transfer matrix, which is the source of making 
generated sentence diversity. The higher weight of Ew , the more choices for next word. To 
alleviate long tail issues, weight parameter � is used to increase the transfer weight of the 
probability of words in small sample events and it’s inversely related to the proportion of 
domain in the total sentence.

Ndomain stands for labeled training data in a specific domain, while Ntotal stands for the total 
number of sentences.

(9)J(�) = �Em + (1 − �)Ed + �Ew

(10)� =
e��

∑D

k=1
e��
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Therefore, we can see from formulas (8) and (9) that the smaller the proportion between 
the number of sentences in a domain and the number of all sentences, the larger weight of 
the domain transition probability Ed and the smaller weight of the global transition prob-
ability Ew . With � , the weight of the key word for Few-Shot data is increased which allevi-
ates domain shift caused by any long-tail issue. At the same time, due to the introduction of 
Ew , the vocabulary diversity in the field will be richer.

3.4 � Event detection

BERT has achieved SOTA performance on a wide range of tasks and has been proved very 
effective on ED secnarios (Wang et al., 2019). We apply BERT as our classifier. It could 
obtain semantics level information, overcoming the mismatch problem between words and 
event triggers (Lin et al., 2018). Following the mechanism of BERT fine-tuning in dealing 
with classification tasks, our event type classifier directly uses the sub-types of the event, 
which ignores the hierarchical relationship of event types and the direct impact of event 
trigger words on event detection.

Formally, given the token features of the input S, firstly we get the hidden representation 
H for each sentence through BERT, after which a fully connected layer and softmax will be 
applied to calculate the score assigned to each event sub-type:

3.5 � Active learning workflow

The most difficult part of test data to predict is the pentagram ones in Fig. 1. For this part 
of data, there are two main difficulties. Firstly, as there are no obvious trigger words or 
semantics supervision information in corresponding training domain, it’s hard to fit the dis-
tribution in test data. Secondly, when adding new trigger words that are similar to existing 
ones, it’s hard for a deep model to perfectly learn it and overcome the catastrophic forget-
ting issues in the incremental learning process. To alleviate these problems, we apply an 
active learning mechanism to directly evaluate correct and wrong labels of the generated 
data. As in Fig. 3, if a poor amount of data is generated Sc = {Sw, Yw} ∣w

1
 , the effect of the 

classification model will be reduced, and we will abandon this batch of data. In the mean-
time, DAFS will continue to generate new data Gw = {Gx,Gy} until our classifier achieves 
the relative higher scores when predicting [Sw, Yw] . Formally, For DAFS:

(11)� =

√

Ndomain

Ntotal

(12)H = BERT(S)

(13)c = HWf + bf

(14)P(y ∣ x) = softmax(c)

(15)g =

{

r = 1 add to G+

r = 0 turn to Gx+1
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For Classifier:

where Sy stands for the score from classifier and Tep is the critical point of our probability 
value in the multi-label classification task. G+ stands for new collection from valid gener-
ated data. Gx+1 stands for the data generated next. Finally, when we collect and generate a 
certain amount of data-Ng to G+ , we will train our classifiers in batches. Typically, we set 
Ng to one-tenth of the total data-W. The overall process is shown in algorithm 1.

On the other hand, in the learning of new trigger words, DAFS’s domain adjacency 
matrix solves the catastrophic forgetting problem of incremental learning very well. Sup-
pose we have a domain dictionary with d dimension and we have probability transition 
matrix �d×d

D
 , we face two situations: The first one is that the domain dictionary matrix 

contains new trigger word while the other does not. As shown in the Fig. 4, we can get 
the maximum in-degree and out-degree probability and their corresponding token of the 
original word. We define them as � 1×10

in
 and � 1×10

out
 . If the new trigger word is similar to the 

original one, we just need to modify the 20 relative positions in transition matrix �d×d
D

 . In 
addition, if the new trigger word is out of the dictionary of �d×d

D
 , we have to update the 

original matrix to �(d+1)×(d+1)

D
 and do the same thing as above.

Through the above two methods, we can generate a large number of sentences contain-
ing new trigger words, thereby improving the classifier’s ability to fit Zero-Shot and One-
Shot samples.

(16)r =

{

1 P(Yw) > Tep when predict Sw
0 otherwise

Fig. 3   The active learning workflow (AL) of our integration of DAFS and classifier to achieve incremental 
learning. For the event “Transport", DAFS generate valid samples as well as invalid ones, AL picks up the 
right ones through its prediction probability, if the generated samples do positive effects to classifier then 
we collect it up to a certain amount and use it to evolve DAFS
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Algorithm 1 Active Learning Workflow
Input: Classifier, DAFS, Ng, G+, Ld

Ld stands for domain name, TGD stands for total generative data for Ld

1: for N = 0 in Dt do
2: TGD = DAFS(Ld)
3: for Batch in TGD do
4: P(Yw) = Classifier(Batch)
5: if P(Yw) > Tep then
6: Bod add to G+, Leffective = Len(G+)
7: if Leffective >= Nstop then
8: Update(DAFS)
9: N = N + 1

10: break
11: end if
12: else
13: continue
14: end if
15: end for
16: end for

4 � Experiments

4.1 � Experiment settings

Datasets We conducted experiments on three corpora: ACE2005-EN corpus, ACE2005-
CH corpus and our real financial corpus, Ant Financial Event Detection(AFED). For 
ACE2005-CH corpus, we use the same setup as (Chen et al., 2009), (Feng et al., 2018) and 
[35], in which 521/64/64 documents are used as training/development/test set. Due to the 
different definitions of trigger events, we build AFED to show the robustness of our model 
in dealing with different data. AFED corpus has more complex evaluation criteria, which 
embodies the following three aspects:1) Trigger words are not the only criteria for trigger-
ing an event. For instance, if the special case semantics in Table 3 occurs around the trigger 
word, it may mean that the event is not triggered. 2) In addition to the trigger words, there 
are many implicit features in the sentence. Only when the key features and trigger words 
appear at the same time can the event be truly triggered. For example, “actual control-
ler breaks law”, only when “controlling shareholder” and “actual controller” appear in the 
event “violation of the law” can the event be regarded as triggered. 3) The “Other” class 
is very complex, and there will be interference items with similar semantics. For exam-
ple, the negative sample of bankruptcy liquidation - “CIMC Group intends to purchase the 
bankrupt company”. This belongs to the “Other” category, because “bankrupt" is not to 
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describe the subject. Data distribution for AFED can be seen in Table 2. All AFED data are 
obtained from real-time news and will be released on GitHub in the future.

Comparison Methods In order to demonstrate the robustness of our approach on Mul-
tilingual and real data sets, We applied different optimal models to Chinese and English 
corpora:

ACE2005 Chinese We include classic papers such as Convolutional Bi-LSTM model 
(C-BiLSTM) proposed by (Zeng et  al., yyy), Forward-backward Recurrent Neural Net-
works (FBRNN) as proposed by (Ghaeini et al., 2018), word-based DMCNN and Hybrid 
Neural Network proposed by (Feng et  al., 2018), incorporate CNN with Bi-LSTM and 
achieves the SOTA NN based result on ACE2005. Rich-C (Chen & Ng, 2012) developed 
several handcraft Chinese-specific features, which improve the effect of Chinese ED. In 
addition, we adopt NPNs (Lin et  al., 2018) which can solve the word-trigger mismatch 
problem by directly proposing entire trigger nuggets centered at each character. Hybrid 
Character Representation(HCR) for ED (Xiangyu et al., 2019) employs BERT-base model 
as its trigger classifier and achieve a relatively good score. It is the-state-of-the-arts for an 
ACE2005-CH corpus.

ACE2005 English We compare our methods with other six state-of-the-art data 
enhancement models, including: GCN-ED deeply excavates the structural information 
from labeled data with dependency syntax tree and uses GCN for classification (Nguyen 
& Grishman, 2018). Lu’s DISTILL proposes a learning approach that applied effective 
separation, incremental learning, and finally adaptive synthesis of different event feature 
representation (Lu et al., 2019). TS-DISTILL exploits the entity ground-truth and uses 
an adversarial imitation-based knowledge distillation approach for ED (Liu et al., 2019). 
AD-DMBERT adopts a confrontational simulation model to continuously train the dis-
criminator’s resistance to noise (Wang et al., 2019). DRMM employs an alternating dual 
attention to select informative features for mutual enhancements to ED (Tong et  al., 

Table 2   Ant Financial Event 
Detection(AFED) corpus

Event Type Train Dev Test

Cooperation 793 74 463
Business/asset arrangement 820 93 580
Provide false certification 676 48 10
Actual controller breaks law 395 38 42
Actual controller arbitration 321 15 100
Guarantee liability 160 31 35
Bankruptcy liquidation 349 44 170
Stop production 516 43 198
Serious safety accident 911 102 200
Other 4087 406 3098

Table 3   The influence of special semantics on ED. ACE2005 is not sensitive to the above special seman-
tics, but in real scenes, these semantics are more important to trigger events

DataSet Adversative Negation Interrogative Hypothesis Uncertainty

ACE(EN, CH) ✖ ✖ ✖ ✖ ✖
AFED ✔ ✔ ✔ ✔ ✔
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2020). EKD leverages external open-domain trigger knowledge to reduce the inherent 
bias of frequent triggers in annotations (Tong et al., 2020) The last three baselines both 
use BERT as the feature extractor.

AFED To reflect the effectiveness of our model DAFS, we use only the original 
BERT (Devlin et  al., 2018) model which is the best classifier in the real data set for 
comparison.

4.2 � Overall performance

Tables 4, 5 and 6 show the results on ACE2005-CH & EN and AFED respectively. From 
the results, we can make the following observations:

Table 4   Results on 
ACE2005-CH Corpus for Event 
Detection

Method Precision Recall F1-Score

FBPNN(Char) 57.5 42.8 49.1
DMCNN(Char) 57.1 58.5 57.8
C-BiLSTM 60 60.9 60.4
FBRNN(Word) 59.9 59.6 59.7
DMCNN(Word) 61.6 58.8 60.2
HNN* 77.1 53.1 63.0
Rich-C* 58.9 68.1 63.2
NPN(Task-specific) 60.9 69.3 64.8
HCR 66.6 77.0 71.2
BERT 78.1 80.5 79.2
DAFS+BERT 80.9 86.3 83.5

Table 5   Results on ACE2005 
English Corpus for Event 
Detection

Method Precision Recall F1-Score

GCN-ED 77.9 68.8 73.1
Lu’s DISTILL 76.3 71.9 74.0
TS-DISTILL 76.8 72.9 74.8
AD-DMBERT 77.9 72.5 75.1
DRMM 77.9 74.8 76.3
EKD 79.1 78.0 78.6
BERT 70.1 77.4 74.5
DAFS+BERT 74.1 84.1 78.8

Table 6   Table caption Method Precision Recall F1-Score

BERT 83.4 79.4 80.4
DAFS+BERT 90.4 89.6 89.9
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(1)	 DAFS achieve significant improvement of the precision, recall and F1-score by 3.8, 9.3, 
12.3 on ACE2005-CH and 7, 12, 9.5 on AFED respectively. This is benefiting mainly 
from the effective data enhancement and the large-scale pre-training information of 
BERT. Our method expands the training data to further enhance BERT, which achieve 
better performance and demonstrates the effectiveness of our model. HCR also uses 
BERT as its feature extractor. It uses word vector splicing. Experiments show that 
compared with the whole sentence vector produced by original BERT Finetune, it will 
cause a loss in precision.

(2)	 For English Corpus as shown in Table 5, BERT contributes 4.9 of recall enhancement 
compared with none-BERT-base model TS-DISTILL. Since we expect to generate 
more realistic words, we retain tense, plural and other forms in the process of word seg-
mentation, making our English vocabulary up to 10355. In the meantime, the vocabu-
lary of ACE2005-CH is only 3305. This brings some difficulties to the generation of 
sparse features, but our data enhancement based on DAFS still keeps the growth of 
4, 6.6 and 4 compared with original BERT. DAFS+BERT improves the state of the 
arts by 6.7 in Recall. EKD introduces data from the outside, which improves precision 
considerably, indicating it introduces a lot of additional constraints. Due to the increase 
of positive samples from DAFS, Recall is greatly improved. However, due to the similar 
combination from internal dictionary, the boundary of each event is not obvious, and 
the improvement of precision is limited.

(3)	 As analyzed in Sect. 4.1, AFED has complex interference and class boundary complex-
ity. As shown in Table 8, experiments show that DAFS contributed a lot of effective 
data to the original corpus, significantly improving the Precision,Recall and F1-score 
by 7, 10.2, 9.5 respectively. This proves that our model is also effective in generating a 
corpus with fuzzy boundaries, negative and questionable semantics problems in actual 
scene.

(4)	 Figure 5 show that, our model delivers obvious improvement in alleviating the long 
tail problem. The F1-Scores of Chinese and English training data between 10 and 30 
were improved by 0.2 and 0.16 respectively. In addition to the number of 0-10, the 
amounts of other train data phases have increased by about 0.05-0.1 due to its original 
high score. It’s worth noting that we increased “0-10" phase from 0, 0 to 0.1, 0.2 for 
ACE-EN and ACE-CH respectively.

4.3 � Domain‑based joint algorithm of generative model

To prove the effectiveness of our joint algorithm, we perform the following ablation exper-
iments. Firstly, we define zero-shot as test data with no trigger word appearing in training 
data for the classifier. Secondly, we define “Few-Shot" as the number of data in the train-
ing corpus does not exceed 50. In the meantime, as shown in Table 7, “Normal" means 
the number of training data for generative model is around 200. We choose the “Meet” 
event as our “Normal” case with its data of 190 in training data. To be fair, we choose 
“End-Org” event as our “Zero-Shot” and “Few-Shot” case. It has 31 records of training 
data. “Dismantling", “dissolved”, “crumbled” are the trigger words that appears in the 
test set but not in the training set. Experiments in Table 7 show that the DTP matrix is 
helpful to maintain the stability of data generation, especially under the case of zero shot 
condition. It improves from 0 to 5 of when DTP is taken into consideration. Meanwhile, 
GTP increases the diversity of generated text. As shown in Table 7, DAFS with GTP could 
provide more data than DAFS with DTP in Few shot and normal region. And with GTP, 
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Fig. 4   The Global and specific domain transition probability. Example of the transition probability for the 
word “open” in Event “Start-org”, “End-Org”and train data. OD is short for Out of Degree and ID is short 
for In Degree

Fig. 5   The average F1-Score for different amount of training data on ACE multilingual dataset. X-axis rep-
resents the range of training data

Table 7   Data generation results 
on different training set scales. 
DTP is short for Domain transfer 
probability. GTP is short for 
global transfer probability. 
M represents DTP+GTP, N 
represents DTP+GTP+�

Method Zero Shot Few Shot Normal

DAFS 0 11 45
DAFS+GTP 0 10 43
DAFS+DTP 5 7 35
DAFS+M 7 8 37
DAFS+N 9 17 59

Table 8   DAFS-W represents the 
result of introducing incremental 
learning

Method ACE-CH ACE-EN AFED

DAFS 83.5 78.5 89.9
DAFS-W 85.4 80.6 91.4
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DTP works better in Zero Shot conditions improving the generated number from 5 to 7. 
Here, we define diversity as the generation of richer and non duplicate data. Formally, 
when duplicate data∕generate data < 0.75 , we consider it as diversity. Here, duplicate data 
means the generated data, which is same as in the training corpus. Experiments show that 
the global transition matrix provides more choices than the domain matrix. However, the 
out degree of probability in GTP used to be very small (around 8% for ID in Fig. 4c) and 
the probability of DTP is usually large (Figure 4b and c). So, we introduce weight param-
eter �1 to adjust its weight and calculate the joint probability that can achieve the best rela-
tive effect as visualized in Table 7.

4.4 � Case study

In this section, we use some generated corpus as case studies to show the generation model 
under Zero Shot, Few Shot and Normal conditions2. Note that, the generated data is not the 
fact, but the re combination of key trigger words and tags under the domain joint probabil-
ity. As shown in Table 9, the generated corpora are positive samples conductive to ED. For 
the Zero-Shot data, its trigger only appears in test data but not in training data. We change 
the transition probability of each word in the transition matrix to realize synonym replace-
ment. For example, in ACE2005,the trigger word “ordered” does not appear in the training 
corpus, but it has similar semantics to “buy” and “purchase”, which appear in the train-
ing corpus. And we generate “ordered” related data in the form of synonym substitution. 
The sample data generated by DAFS are all translated from Chinese, but it can be seen 
from the examples that the trigger words are complex in AFED, usually a combination 
of multiple words. For example, the triggered word is “Guarantee liability” in AFED for 
the domain Guarantee Liability, but in the test corpus showed the new word transposition 
combinations - “liability guarantee”and a new similar phrase - “liability for refund”. This 
phenomenon is more obvious in Chinese. Usually, a trigger word is composed of 4-5 words 
on average. However, our model can still generate more effective data to improve the clas-
sifier, which also proves the robustness for DAFS. In addition, as shown in the example, 
for the original data with normal level, DAFS can generate data that takes diversity and 
effectiveness into account.

4.5 � Active learning workflow

As shown in Table 8, when active learning workflow is applied in our model, the improve-
ment for F1-score on ACE2005-CH, ACE2005-EN, AFED for F1-score is 1.9, 2.1, and 
1.5 respectively. The workflow based on active learning technology can choose suitable 
generated data to improve support for the incremental evolution of the classification model. 
In a real production environment, we often need models which can learn the relevant fea-
tures through a sample quickly, and our joint algorithm based on domain transfer possibil-
ity could quickly generate data to fit new samples from the perspective of training data to 
realize incremental learning. Note that, under this workflow, we use test data to verify the 
generation data and then iterate to create both the DAFS and classifier evolution. This is 
more like offline learning, and so we discuss it separately in this chapter.

1  This has been introduced in Sect. 3.3.
2  The definitions of Zero-Shot, Few-Shot, Normal have been described in Sect. 4.3.
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5 � Conclusions and future work

By utilizing the potential supervisory information in the limited corpus, DAFS and the 
proposed domain-based algorithm generate more diverse and effective training data sets to 
solve the Zero-Shot and the Few-Shot problems, thus significantly improving the robust-
ness and accuracy of the classification model. Based on the framework of DAFS and the 
active learning mechanism, our workflow effectively solves the problems related to One-
Shot learning. Experiments demonstrate that our method surpasses the other 15 strong 
baselines through multilingual data sets. Our method is based on the comprehensive cal-
culation of context probability, global transition probability and domain transition prob-
ability. We are going to try the above methods in knowledge inference, QA and other tasks 
in the future.
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