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Abstract
Zero-shot learning (ZSL) aims to recognize novel classes by transferring semantic knowl-
edge from seen classes to unseen classes. Though many ZSL methods rely on a direct 
mapping between the visual and the semantic space, the calibration deviation and hubness 
problem limit the generalization capability to unseen classes. Recently emerged generative 
ZSL methods generate unseen image features to transform ZSL into a supervised classi-
fication problem. However, most generative models still suffer from the seen-unseen bias 
problem as only seen data is used for training. To address these issues, we propose a novel 
bidirectional embedding based generative model with a tight visual-semantic coupling 
constraint. We learn a unified latent space that calibrates the embedded parametric distri-
butions of both visual and semantic spaces. Since the embedding from high-dimensional 
visual features comprises much non-semantic information, the alignment of visual and 
semantic in latent space would inevitably be deviated. Therefore, we introduce an informa-
tion bottleneck constraint to ZSL for the first time to preserve essential attribute informa-
tion during the mapping. Specifically, we utilize the uncertainty estimation and the wake-
sleep procedure to alleviate the feature noises and improve model abstraction capability. In 
addition, our method can be easily extended to the transductive ZSL setting by generating 
labels for unseen images. We then introduce a robust self-training loss to solve this label-
noise problem. Extensive experimental results show that our method outperforms the state-
of-the-art methods in different ZSL settings on most benchmark datasets.
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1  Introduction

Thanks to the abundant human annotated data, deep learning has achieved great success 
in many supervised learning problems, such as image classification and retrieval  (Kriz-
hevsky et  al., 2017; Zhou et  al., 2019, 2020), object detection  (Ren et  al., 2015; Wang 
et  al., 2018a), semantic segmentation  (Long et  al., 2015; Chen et  al., 2017). However, 
labeling large-scale training data for each task is time consuming and expensive. Inspired 
by the human’s remarkable ability in recognizing instances of unseen classes solely based 
on class descriptions without seeing any visual example of such classes, zero-shot learn-
ing (ZSL) was proposed as an image classification setting to mimic the human learning 
process (Lampert et al., 2009). Given the semantic descriptions of both seen and unseen 
classes but only the seen class training images, ZSL aims to classify test images of unseen 
classes.

Based on the images and labels that a model can see in the training phase, ZSL includes 
two settings which are Inductive ZSL(IZSL) and Transductive ZSL(TZSL). IZSL can only 
utilize the images and labels of seen classes during training. TZSL can use extra images 
of unseen classes without labels during training. In the test phase, the ZSL problem is fur-
ther categorized into two settings: conventional ZSL and generalized ZSL. In conventional 
ZSL, the images to be recognized at test time belong only to unseen classes. In the gen-
eralized ZSL (GZSL) setting, the images at test time may belong to both seen or unseen 
classes. The GSZL setting is practically more useful and challenging, since the assumption 
that images at test time come only from unseen classes need not hold.

Most early ZSL methods learn a direct or indirect mapping between the visual space 
and the semantic space  (Akata et  al., 2013; Romera-Paredes & Torr, 2015; Akata et  al., 
2015b; Xian et al., 2016; Guo et al., 2016; Kodirov et al., 2017; Xie et al., 2019, 2020; Liu 
et al., 2021). However, the performance of these methods is often poor on GZSL setting. 
The reason is that the embedding model is learned only from seen classes, which leads to 
a bias towards predicting seen classes. To address this issue, more recent approaches (Xian 
et al., 2018b; Mishra et al., 2018; Wang et al., 2018b; Li et  al., 2019a; Schonfeld et al., 
2019; Ma & Hu, 2020; Verma et al., 2020; Yu et al., 2020) utilize generative models, e.g., 
generative adversarial networks (GAN) (Goodfellow et al., 2014) or variational autoencod-
ers (VAE)  (Kingma and Welling 2013), to generate synthetic features of unseen classes. 
This transfers the ZSL task to a supervised classification problem. Since GAN-based loss 
functions are unstable in training, VAE-based methods (Schonfeld et al., 2019; Ma & Hu, 
2020) were developed to tackle this problem and achieved better performance. However, 
most of these generative models still suffer from the deviation between generated features 
and unseen classes due to the lack of tight visual-semantic coupling.

Since high-dimensional visual features contain non-semantic information which is 
redundant for semantic discrimination (Tong et al., 2019; Han et al., 2020b; Shen et al., 
2020), it is difficult to well align the semantic categories to the centers of visual sam-
ple distributions when mapping the semantic features to the visual space. This causes 
a calibration deviation problem as illustrated in Fig. 1. In addition, when high-dimen-
sional visual features are mapped to a low-dimensional semantic space, the shrink of 
feature space would aggravate the hubness problem that some instances in the high-
dimensional space become the nearest neighbors of a large number of instances (Rado-
vanovic et al., 2010). To address the above challenges, we propose an information bot-
tleneck (IB) (Tishby et al., 2000) constrained bidirectional embedding based generative 
model which utilizes advantages of both embedding model and generative model to 
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align visual and semantic distributions in a unified latent space. As shown in Fig.  2, 
our proposed method first learns a latent bidirectional embedding via a modified VAE 
network. Visual features � and attributes semantic � are embedded to the unified latent 
space respectively by two encoders. Then the visual-semantic distributions alignment 
is constrained in the latent space by KL-Divergence and Center-Calibration. To facili-
tate the distribution alignment, the redundant non-semantic information in the visual 
space should be discarded to preserve the attributed related part when it is flowing to 
the latent space. To achieve this, we design an IB loss ( LIB ) on the latent bidirectional 
embedding to impose the mutual information relationships between feature spaces. Due 
to the wide existence of noises such as the labeling noise (Kunran Xu et al., 2020), the 
human annotated semantics are insufficient to fully describe the diversified visual sam-
ples (Ding & Liu, 2019). The deviation between visual and semantic distributions will 
accumulate during the embedding process. Therefore, we learn the bias of the original 
visual distribution by introducing an uncertainty estimation technique (Kendall & Gal, 
2017) to alleviate the influence of noises. Since one semantic class may correspond to a 
variety of visual samples, we also propose a bias passing mechanism to share this vari-
ety bias to the latent semantic distribution to benefit the distributions alignment. The 
two decoders are respectively used to generate attributes semantic and visual features 
for auxiliary training, i.e., the reconstruction losses LVCE and LSCE . Since VAE does not 
incorporate the generated samples for learning, the latent features generated by VAE are 

(a) (b)

Fig. 1   Comparison of existing direct mapping methods and our latent bidirectional embedding based gen-
erative model. a Traditional ZSL frameworks are based on direct mapping. The hubness problem and cali-
bration deviation make it difficult to accurately align visual and semantic distributions in respective spaces. 
b Our bidirectional embedding based generative model with a unified latent space. Firstly, an information 
bottleneck constraint on the latent bidirectional embedding preserves more essential attribute information 
while eliminating the non-semantic information of visual features. Secondly, uncertainty estimation is uti-
lized to alleviate the visual noises and a bias passing mechanism is designed to solve the unicity of human 
annotated semantics. Thirdly, a wake-sleep procedure uses both real and generated data for joint training to 
improve the model representation and abstraction capability
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largely randomized and uncontrollable (Hu et al., 2017, 2018). Therefore, we introduce 
a wake-sleep procedure (Hinton et al., 1995) that uses both real and generated data for 
joint training to improve the model representation and abstraction capability. Further-
more, base on the proposed framework, we can easily extend our method to solve the 
TZSL task. We use the generated semantics as pseudo labels for unseen images and 
regard the problem as a label noise circumstance. Then a robust loss is introduced to 
solve this label noise problem. Finally, with the generated latent features, we can solve 
both the IZSL and TZSL as a supervised classification problem.

The contributions of this paper are as follows.

•	 We propose a novel ZSL method based on an information bottleneck (IB) constrained 
generative model with a tight visual-semantic bidirectional embedding. The IB loss 
minimizes the non-semantic information when embedding the visual domain to latent 
space. To the best of our knowledge, this is the first work that adopts the IB theory in 
ZSL.

•	 We exploit the data uncertainty estimation technique for the first time in ZSL to learn 
the bias of visual distribution and design a bias passing mechanism, which alleviates 
the noises and gap between visual features and human annotated semantics.

•	 We train the model on both real and generated data with a wake-sleep training mecha-
nism to improve the model representation and abstraction capability via a VAE model.

•	 We further extend our method to adapt the transductive ZSL setting with a robust label 
noise loss.

Extensive experimental results on four widely used ZSL benchmarks for both generalized 
ZSL and conventional ZSL show the superiority of our method under both inductive ZSL 
and transductive ZSL settings compared with state-of-the-art ZSL methods.

Fig. 2   Illustration of the proposed model. We learn a latent bidirectional embedding based generative 
model via a modified VAE network. A unified latent space is simultaneously learned to align visual and 
semantic distributions. A novel Information Bottleneck (IB) loss ( L

IB
 ) is proposed as the constraint between 

the latent space and the other two spaces. We exploit the data uncertainty estimation to learn the bias ( � ) of 
the original visual data and share the bias from visual distribution to the semantic distribution (bias pass-
ing). In addition, a wake-sleep procedure is used for joint training of real data and generated data
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The rest of this paper is organized as follows: We first review the related works on two 
different ZSL settings in Sect. 2. In Sect. 3, we describe the problem setting and our pro-
posed method. The extended method for TZSL is introduced at the end of Sect. 3. Sec-
tion 4 shows the experimental results on four benchmark datasets under different ZSL set-
tings. Finally, we conclude our method in Sect. 5.

2 � Related works

In this section, we review related works on IZSL and TZSL. For the IZSL, we divide the 
existing methods into two categories, embedding models and generative models.

2.1 � Embedding models for IZSL

Embedding models for ZSL focus on learning a direct or indirect mapping between visual 
and semantic spaces to transfer semantic knowledge from seen classes to unseen classes. 
There are three typical embedding strategies. The earliest methods learned the mapping 
function from the visual space to the semantic space, which include, for example DAP and 
IAP (Lampert et al., 2013), ALE (Akata et al., 2015a), DeViSE (Frome et al., 2013) and 
ESZSL (Romera-Paredes & Torr, 2015). To alleviate the severe hubness problem caused 
by embedding from the high-dimensional visual space to the low-dimensional semantic 
space, reverse mapping from the semantic space to the visual space was proposed for the 
nearest neighbor classification in the visual space (Changpinyo et al., 2017; Zhang et al., 
2017). Some models such as SSE (Zhang et al., 2015), SYNC (Changpinyo et al., 2016) 
and BiDiLEL (Wang & Chen, 2017) explore the idea of embedding both visual and seman-
tic features into a common intermediate space. Though these methods perform well in the 
conventional ZSL setting, their performance deteriorates on the GZSL setting since there 
are only seen class features for model training.

2.2 � Generative models for IZSL

Recently, abundant generative models  (Guo et  al., 2017; Chen et  al., 2018; Felix et  al., 
2018; Kumar  Verma et  al., 2018; Xian et  al., 2018b; Zhu et  al., 2018; Li et  al., 2019a; 
Schonfeld et al., 2019; Ma & Hu, 2020; Keshari et al., 2020) were proposed to address the 
training data imbalance problem between seen and unseen classes by synthesizing unseen 
class features. Among these, both generative adversarial networks (GAN)  (Chen et  al., 
2018; Felix et al., 2018; Zhu et al., 2018; Li et al., 2019a), and variational autoencoders 
(VAE) (Bucher et al., 2017; Kumar Verma et al., 2018; Schonfeld et al., 2019; Ma & Hu, 
2020; Keshari et  al., 2020) have been used for ZSL. f-CLSWGAN  (Xian et  al., 2018b) 
adapts the Wasserstein GAN (WGAN)  (Arjovsky et  al., 2017; Gulrajani et  al., 2017) by 
adding a classification loss to enforce the generator to synthesize features that are suited for 
ZSL. Motivated by the cycle consistency loss (Zhu et al., 2017), cycle-CLSWGAN (Felix 
et al., 2018) utilizes a multi-modal cycle consistency loss to enforce that the generated vis-
ual features map back to their original semantic features, which can generate more robust 
unseen samples. LisGAN (Li et al., 2019a) exploits conditional WGAN to generate fake 
unseen classes from random noises and introduces soul samples regularizations to guaran-
tee the generated sample is close to real. Due to the hardness of training GAN based mod-
els, CADA-VAE (Schonfeld et  al., 2019) adopts a cross-aligned VAE to align the visual 
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and semantic distributions in a latent space. More recently, a new flow-based generative 
model  (Shen et  al., 2020) was introduced to ZSL which utilizes an invertible generative 
flow network to generate distinguishable samples.

Although these generative models have achieved encouraging performance for GZSL, 
feature generation for unseen classes still needs tight visual-semantic coupling constraints 
to alleviate the deviation. Our proposed method combines the advantages of both embed-
ding and generative models for an accurate alignment of visual-semantic distributions 
while generating discriminative image features.

2.3 � Transductive ZSL

Different from the IZSL, the TZSL assumes the availability of unlabeled target unseen 
images (Fu et al., 2015) during training. But the relationship between the unseen image and 
label is still unavailable. With unseen images, the distribution discrepancy between seen 
and unseen domains can be exploited to alleviate the domain shift problem. Therefore, 
the TZSL methods usually achieve better performance than the IZSL setting. QFSL (Song 
et al., 2018) alleviates the bias problem with a proposed Quasi-Fully Supervised Learning 
framework. GXE (Li et al., 2019b) utilizes semantic attributes to train a visual feature clas-
sifier and calibrates the classifier with unlabeled data. SABR (Paul et al., 2019) learns two 
different GANs to generate the latent space features for seen and unseen classes, respec-
tively. Recently, SDGN (Wu et al., 2020) integrates a self-supervised learning mechanism 
into the feature generating model to effectively exploit the unlabeled data and uses the 
self-supervision lurking in the data structure of different domains to conduct cross-domain 
mining.

Our method can be easily extended to adapt the TZSL setting. The latent space we 
learned can effectively eliminate the possible noise in visual and semantic features. We 
select unseen data with higher confidence and mark these data with pseudo labels. Unlike 
training the seen classes, the labels of the unseen classes are noisy, hence we introduce a 
robust loss for the label noise problem during the unseen classes training.

3 � Proposed method

In this section, we first define the problem setting, notations and then present the details of 
each module of our method. Finally, we extend our method to adapt the TZSL setting with 
a robust loss for the noisy label.

3.1 � Problem setting and notations

The GZSL problem is defined as follows. Let XS and XU denote the image fea-
ture sets of seen classes and unseen classes respectively, X = XS ∪ XU . 
S = {(�, y, �(y))|� ∈ XS, y ∈ YS, �(y) ∈ CS} denotes the training set, where � ∈ ℝ

D are 
image features extracted by a plain CNN model. y are the seen class labels which are 
available during training and �(y) ∈ ℝ

K are attribute features. The auxiliary training set is 
U = {(u, �(u))|u ∈ YU , �(u) ∈ CU} , where u denote unseen class labels. The seen classes 
and unseen classes are disjoint, i.e., YS ∩ YU = � . Here, C = CS ∪ CU is used to transfer 
information between seen classes and unseen classes. C can be human-annotated attrib-
utes  (Xian et  al., 2018b) or articles describing the classes  (Zhu et  al., 2018). In the 
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conventional ZSL, the task is to learn a classifier fZSL ∶ XU
→ YU . However, in more real-

istic and challenging setup of GZSL, the aim is to learn a classifier fGZSL ∶ X → YU ∪ YS.
The architecture of the proposed model is shown in Fig.  2. It consists of two sets of 

latent embedding VAEs with (Ev→l,Dl→a) and (Ea→l,Dl→v) . These two sets of VAEs share 
the same latent space l. Ev→l maps visual space v to latent space l, and Dl→a maps latent 
space l to semantic space a. Ea→l maps semantic space a to latent space l, and Dl→v maps 
latent space l to visual space v. The visual-semantic distributions are aligned in the latent 
space l by KL-Divergence and Center-Calibration. Information bottleneck loss and uncer-
tainty estimation are used to facilitate the distribution alignment. A wake-sleep procedure 
is exploited to improve the quality of generated features by VAE decoder. Following we 
give the detailed descriptions of each module.

3.2 � Latent bidirectional embedding with uncertainty estimation

The goal of our model is to learn a latent space that can accurately align vis-
ual and semantic distributions. We first learn a Visual to Semantic (VS) network 
VS = Ev→l◦Dl→a ∶ ℝ

D
→ ℝ

K to project the visual features through latent space into 
semantic space. The latent embedding model is shown in Fig.  3. Because there may be 
inherent noise in the visual features  (Chang et  al., 2020). To reduce the impact of data 
uncertainty, we define the latent representation �(v)

i
 embedded from each visual sample �i as 

a Gaussian distribution:

where �(v)

i
 and �2

i
 are the mean and variance of the Gaussian distribution learned by the 

encoder Ev→l ∶ �
(v)

i
= Ev→l,�1

(�i), log�
2
i
= Ev→l,�2

(�i) , where �1 and �2 refer to the model 
parameters. The re-parameterization trick (Kingma & Welling, 2013) is used to keep gradi-
ents of the model as usual. With this trick, we generate the latent sampling representation 
�
(v)

i
 as

where � is a random noise.
Then, �̃(yi) = Dl→a(�

(v)

i
) projects the latent feature �(v)

i
 into semantic space, i.e., the map-

ping of a visual sample �i is calculated as VS (�i):

(1)p(�
(v)

i
|�i) = N(�

(v)

i
;�

(v)

i
,�2

i
�),

(2)�
(v)

i
= �

(v)

i
+ ��i, � ∼ N(�, �),

Fig. 3   Illustration of the latent bidirectional embedding and data uncertainty estimation. Left: the visual 
to semantic network. Here we define the latent representation as a Gaussian distribution to learn the data 
uncertainty. Right: the semantic to visual network
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The affinity between VS (�i) and the yi-th attribute feature �(yi) could be measured by 
their inner product VS (�i)

T�(yi) . Then the probability of �i belong to the yi-th category in 
semantic space can be calculated as:

Then the semantic cross-entropy (SCE) loss can be written as:

Similarly, we learn a semantic to visual (SV) network SV = Ea→l◦Dl→v ∶ ℝ
K
→ ℝ

D , 
which first projects the semantic feature �(yi) to latent space as �(a)

i
 , then projects �(a)

i
 to 

visual space as the generated visual prototype �̃(yi) for the yi-th category:

The probability of �i belong to the yi-th category in visual space is calculated as:

Then the visual cross-entropy (VCE) loss is:

The total cross-entropy (CE) loss is as follow:

In order to learn an accurate latent bidirectional embedding, we perform center calibration 
for each category. Such a structured objective requires the center embedding of �i being 
closer to the latent embedding of its groundtruth �(yi) than other classes, the Center Cali-
bration (CC) is defined as:

where d(⋅, ⋅) denotes a certain distance metric. Here, we utilize the Euclidean distance in 
the experiments. 𝛥 > 0 is a margin to make LCC more robust.

3.3 � Feature generation with noise supervision

For each category y, there could be many visual samples � , but the semantic description 
� of each category is unique. Thus, this unique semantic attribute � is insufficient to fully 
describe the variety of visual samples. Therefore, we assume the latent semantic distribu-
tion similar to the Gaussian distribution of latent visual features in Eq. (1). To adapt to this 

(3)VS (�i) = �̃(yi) = Dl→a

(
�
(v)

i

)
= Ev→l◦Dl→a(�i).

(4)pA(yi��i) =
exp

�
VS (�i)

T�(yi)
�

∑
y∈YS exp

�
VS (�i)

T�(y)
� .

(5)LSCE = −
∑

i

log pA(yi|�i).

(6)SV (�(yi)) = �̃(yi) = Dl→v

(
�
(a)

i

)
= Ea→l◦Dl→v(�(yi)).

(7)pV (yi��i) =
exp

�
�
T
i
SV (�(yi))

�

∑
y∈YS exp

�
�
T
i
SV (�(y))

� .

(8)LVCE = −
∑

i

log pV (yi|�i).

(9)LCE = LSCE + LVCE.

(10)LCC =
∑

i,y

[� − d(Ev→l,�1
(�i),Ea→l(�(y))) + d(Ev→l,�1

(�i),Ea→l(�(yi)))]+,
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task, we use two sets of encoder-decoder structures. Ev→l encodes the visual features �i to 
a Gaussian distribution N(�

(v)

i
,�2

i
) in the latent space, and Ea→l encodes the semantic fea-

ture �(yi) to the center �(a)

i
 of category yi . Since the latent semantic Gaussian distribution 

N(�
(a)

i
,�2

i
) should be consistent with the latent visual distribution, we design a bias pass-

ing mechanism to share the noise (bias) from the visual diversity for the latent semantic 
distribution. Then we use the decoders Dl→a to decode �(v)

i
 or �(a)

i
 to semantic feature �̃(yi) , 

and use Dl→v to decode �(v)
i

∼ N(�
(v)

i
,�2

i
) or �(a)

i
∼ N(�

(a)

i
,�2

i
) to visual feature �̃i . Finally, 

the loss with noise supervision for the modified VAE can be written as:

where � refers to the parameters of Ev→l and Ea→l , �1 and �2 refer to the parameters of 
Dl→a and Dl→v , respectively. The hyperparameter � is set following CADA-VAE (Schonfeld 
et al., 2019).

3.4 � Information bottleneck constraint

In our method, information is gradually disentangled from the visual space through the 
latent space to the semantic space. The semantic feature � is related disentangled attrib-
ute information while the visual feature � has high-dimensional entangled non-semantic 
information. Therefore, we hope that the latent feature � should contain as much semantic 
information of � as possible while discarding the redundant non-semantic information of � . 
In information theory, the dependence between two random variables could be measured 
by mutual information I(⋅;⋅) . As illustrated in Fig. 1, we maximize the mutual information 
between the semantic space and the latent space ( I(�;�) ) and minimize the mutual informa-
tion between the visual space and the latent space ( I(�;�) ). We define the information bot-
tleneck (IB) (Tishby et al., 2000) to constrain the information relationship between spaces:

Since � may be sampled from different distributions like N(�(v),�2) or N(�(a),�2) in our 
model, we resample �∗ ∼ N(�∗,�2) , where �∗ = ��(v) + (1 − �)�(a) with a uniform distri-
bution � ∼ U(0, 1).

Since the VAE model does not utilize the generated samples for training, the latent 
features generated are largely randomized and uncontrollable. Inspired by the work of 
Hu et al. (2018), we train the modified VAE model in a wake-sleep procedure, using real 
data and generated data for joint training. The extended wake-sleep procedure is shown 
in Fig. 4. In the wake phase, we use real visual data � to train the feature representation 
capability of the model. In the sleep phase, we use generated data �̃ to train the abstraction 
capability of the model. So that the model can generate disentangled latent features. The 
wake-sleep information bottleneck constraint is as follow:

where �̃∗ is the latent embedding representation of �̃ . The weighting factor � is obtained by 
grid search on the validation set.

(11)

LVAE = �q�(�
(v)|�)

[
log p�1 (�|�

(v))
]
+ �q�(�

(a)|�)
[
log p�1 (�|�

(a))
]

+ �q�(�
(v)|�)

[
log p�2 (�|�

(v))
]
+ �q�(�

(a)|�)
[
log p�2 (�|�

(a))
]

− �DKL

(
q�(�

(v)|�)||N(�(a), �)
)
,

(12)max I(�;�) − �I(�;�).

(13)max
[
I(�∗;�) − �I(�∗;�)

]
+ �

[
I (̃�∗;�) − �I (̃�∗;�̃)

]
,
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Since the information bottleneck with high dimension is intractable to calculate, we fol-
low the strategy proposed by Alemi et al. (2016). The information bottleneck (IB) loss is 
shown as follow:

where r(�) is a standard normal distribution in the experiments. � is initialized to 10−5 and 
changed with the IB loss.

Finally, the overall loss of the proposed model is defined as:

where � , � , and � are the weighting factors of the cross entropy loss, center calibration, and 
information bottleneck loss, respectively. We empirically choose their values to balance the 
effect of different loss terms in the experiments.

For more intuitive understanding, we summarize our proposed method in Algorithm 1. 
When the encoder Ev→l is finished training, we utilize this encoder to learn latent represen-
tations of both the seen and unseen image features. Then the latent representations are used 
for classification.

(14)LIB =
1

N

N∑

i=1

�[− log q(�(yi)|Dl→a(�
∗
i
))] + �DKL[q�(�

∗|�i, �(yi))||r(�)],

(15)L = LVAE + �LCE + �LCC + �LIB,

(a) (b)

Fig. 4   The wake-sleep procedure. The features represented as dotted lines are generated. In the wake phase, 
we use real visual data � to train the model representation capability. In the sleep phase, the generated vis-
ual data �̃ is used to train the model abstraction capability
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3.5 � Transductive ZSL

Our proposed model can be easily extended to the TZSL setting. We adopt the self-training 
manner to exploit the unseen images. We first generate the pseudo labels Ỹ

U
 for unseen image 

features XU through calculating classification score O of the learned classifier in the IZSL 
stage. There will inevitably be noise in Ỹ

U
 . We use classification score peakiness based filter-

ing strategy (Li et al., 2019b) to mitigate the influence of noisy labels. The classification score 
of xu

i
∈ XU is oi ∈ ℝ

NU according to all the NU classes. The sum of each dimension of oi is 1. 
Let oi be the soft label of xu

i
 . We assume the maximum and second maximum score of oi are 

oi
um

 and oi
un

 . The pseudo label of xu
i
 should be um . If an unseen sample satisfies 

oi
um

oi
un

r , we assign 

soft label and pseudo label to it. r is the threshold, we set r = 1.4 in our experiment. Then we 
have a high confident training set Ũ = {(xu, ũ, �(ũ), o)|xu ∈ XU , ũ ∈ YU , �(ũ) ∈ CU , o ∈ O}.

For the seen classes, we still utilize the proposed method for the IZSL to train the model 
with training set S . The difference is that we use the cross entropy loss to replace center cali-
bration of Eq. (10). Simultaneously, we exploit the training set Ũ to calibrate the model with 
unseen classes. Unlike Eqs. (5) and (8), we use the soft label and soft cross-entropy loss to 
replace hard label and cross-entropy loss in the visual and semantic space. In the latent space, 
the probability xu

i
 belong to the ũi-th category is calculated as:

Then, we introduce the generalized cross-entropy (GCE) loss (Zhang & Sabuncu, 2018) to 
alleviate the influence of noisy pseudo labels:

where q ∈ (0, 1] is a hyper-parameter of which a higher value is preferred when the noise 
level is high. The GCE loss is a generalization of the categorical cross-entropy (CCE) loss 
and the mean absolute error (MAE). It is equivalent to the CCE loss when q infinitely 
approaches 0 and turns to MAE loss when q = 1 . We set q = 0.4 in our experiment. The 
CCE loss is powerful for classification tasks but will be overfitting on the label noise data-
set. The MAE loss is worse for label clean classification task but is robust to noisy labels. 
The hyper-parameter q can be tuned between 0 and 1 to fit different noise levels. In the 
TZSL experiments, we have also tried the other label-noise learning methods T-Revi-
sion (Xia et al., 2019) and SIGUA (Han et al., 2020a) to combat noisy labels. Results show 
that these different label-noise learning methods achieve similar performance. This may 
be because that the soft label assignment procedure is more important for the transductive 
ZSL. Therefore, we choose the compact GCE loss to handle the label-noise problem in our 
method.

(16)p(ũi�xui ) =
exp

�
Ev→l,�1

(xu
i
)TEa→l(�(ũi))

�

∑
u∈YU exp

�
Ev→l,�1

(xu
i
)TEa→l(�(u))

� .

(17)LGCE =
∑

i

1 − p
(
ũi|xui

)q

q
,
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4 � Experiments

In this section, we first give the experimental settings. Then the comparison with state-of-
the-art methods and ablation studies are conducted to demonstrate the effectiveness of our 
method. Finally, more analyzing experiments show the superiority of our method.

4.1 � Experimental settings

Datasets We evaluated our framework on four widely used benchmark datasets including 
CUB-200-2011 (CUB)  (Welinder et  al., 2010), SUN attribute (SUN)  (Patterson & Hays, 
2012), attributes Pascal and Yahoo (aPY) (Farhadi et al., 2009) and Animals with Attributes 
2 (AwA2) (Xian et al., 2018a) for the GZSL. We extracted a 2048-dimensional CNN features 
for images using ResNet-101 (He et al., 2016) as the visual features. The pre-defined attributes 
on each dataset were used as the semantic descriptors. Moreover, we adopted the proposed 
split (PS) (Xian et al., 2018a) to divide all classes into seen and unseen classes on each dataset. 
The dataset details are listed in Table 1.

Implementation details In our modified VAE model, we utilized multilayer perceptrons to 
implement the encoders ( Ev→l and Ea→l ) and decoders ( Dl→a and Dl→v ). The encoders Ev→l 
and Ea→l had 1560 and 1450 hidden units, respectively. The hidden units of Dl→a and Dl→v 
were 665 and 1660, respectively. The latent embedding dimensions were 64 for AwA2 and 
aPY and 256 for CUB and SUN. � , � , � , � and � were set to 0.5, 0.1, 1.0, 0.1 and 1.0. The mar-
gin � was set to 10−3 . Adam optimizer (Kingma & Ba, 2014) was used for training, the epoch 
size was 120 and the batch size was 64. After the model training, the encoders Ev→l and Ea→l 
transformed the visual features of seen classes and attribute features of unseen classes into the 
unified latent space. Finally, we trained a softmax classifier to classify latent features.

Evaluation metrics The performance of our method is evaluated by per-class Top-1 accu-
racy. In conventional ZSL, the Top-1 accuracy is evaluated on seen classes, denoted as T1. 
In GZSL, since the test set is composed of seen and unseen images, the Top-1 accuracy is 
evaluated respectively on seen classes, denoted as S, and unseen classes, denoted as U. Their 
harmonic mean (H) (Xian et al., 2018a) is used to evaluate the performance of GZSL, which 
is defined as:

(18)H =
2 × S × U

S + U
.

Table 1   The details for SUN, 
CUB, AwA2 and APY. YS and 
YU are seen class number and 
unseen class number

Tr, Val, Ts are the number of images at training, validation and test 
time

Datasets Attributes |YS| |YU| Tr Val Ts

SUN 102 645 72 10320 2580 1440
CUB 312 150 50 7057 1764 2967
AwA2 85 40 10 23527 5882 7913
aPY 64 20 12 5932 1483 7924
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4.2 � Comparison with baseline methods

Inductive ZSL We selected several state-of-the-art GZSL methods for comparison, which 
include non-feature generation methods ALE (Akata et al., 2013), DeViSE (Frome et al., 
2013), ESZSL (Romera-Paredes & Torr, 2015), SJE (Akata et al., 2015b), LATEM (Xian 
et al., 2016), SYNC (Changpinyo et al., 2016), SAE (Kodirov et al., 2017), SP-AEN (Chen 
et al., 2018), TCN (Jiang et al., 2019), TripletLoss (Cacheux et al., 2019) and feature gen-
eration based methods SE-GZSL (Kumar Verma et al., 2018), CVAE-ZSL (Mishra et al., 
2018), f-CLSWGAN (Xian et al., 2018b), LisGAN (Li et al., 2019a), GDAN (Huang et al., 
2019) CADA-VAE (Schonfeld et al., 2019), ABP (Zhu et al., 2019), OCD-CVAE (Keshari 
et al., 2020), LsrGAN (Vyas et al., 2020). Table 2 shows the results of different methods 
on four datasets. It can be seen that our proposed method outperforms all the ten com-
pared non-feature generation methods with a large margin for the harmonic mean results. 
Moreover, our method significantly improves the Top-1 accuracy on unseen classes bene-
fited from the generated unseen class samples. Compared with the feature generation based 
methods, our method can also achieve the best harmonic mean results on CUB, AwA2, and 
aPY. Since the IB constrained bidirectional embedding between the visual space and the 
semantic space can preserve essential attribute information and discard the non-semantic 
information. To further demonstrate the effectiveness of our method. We also compared 
our method under the conventional ZSL setting that the test image only belongs to unseen 

Table 2   Results of the state-of-the-arts generalized zero-shot learning for inductive setting

The best and the second-best results are respectively marked by italic and bold

Methods CUB AwA2 SUN aPY

U S H U S H U S H U S H

ALE 23.7 62.8 34.3 14.0 81.8 23.9 21.8 33.1 26.3 4.6 73.3 8.7
DeViSE 23.8 53.0 32.8 17.1 74.7 27.8 16.9 27.4 20.9 4.9 76.9 9.2
ESZSL 12.6 63.8 21.0 5.9 77.8 11.0 11.0 27.9 15.8 2.4 70.1 4.6
SJE 23.5 59.2 33.6 8.0 73.9 14.4 14.7 30.5 19.8 3.7 55.7 6.9
LATEM 15.2 57.3 24.0 11.5 77.3 20.0 14.7 28.8 19.5 0.1 73.0 0.2
SYNC 11.5 70.9 19.8 10.0 90.5 18.0 7.9 43.3 13.4 7.4 66.3 13.3
SAE 7.8 54.0 13.6 1.1 82.2 2.2 8.8 18.0 11.8 0.4 80.9 0.9
SP-AEN 34.7 70.6 46.6 23.3 90.0 37.1 24.9 38.6 30.0 13.7 63.4 22.6
TCN 52.6 52.0 52.3 61.2 65.8 63.4 31.2 37.3 34.0 24.1 64.0 35.1
TripletLoss 55.8 52.3 53.0 48.5 83.2 61.3 47.9 30.4 36.8 – – –
SE-GZSL 41.5 53.3 46.7 58.3 68.1 62.8 40.9 30.5 34.9 – – –
CVAE-ZSL – – 34.5 – – 51.2 – – 26.7 – – –
f-CLSWGAN 43.7 57.7 49.7 53.8 68.2 60.2 42.6 36.6 39.4 – – –
LisGAN 46.5 57.9 51.6 54.3 68.5 60.6 42.9 37.8 40.2 34.3 68.2 45.7
GDAN 39.3 66.7 49.5 32.1 67.5 43.5 38.1 89.9 53.4 30.4 75.0 43.4
CADA-VAE 51.6 53.5 52.4 55.8 75.0 63.9 47.2 35.7 40.6 – – –
ABP 47.0 54.8 50.6 55.3 72.6 62.6 45.3 36.8 40.6 – – –
OCD-CVAE 44.8 55.9 51.3 59.5 73.4 65.7 44.8 42.9 43.8 – – –
LsrGAN 48.1 59.1 53.0 – – – 44.8 47.7 40.9 – – –
Ours 52.2 56.2 54.1 56.0 80.0 65.9 43.8 37.8 40.6 34.2 69.8 45.9
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classes. As shown in Table 3, our proposed method achieves the best for three out of the 
four datasets.

Transductive ZSL Under the TZSL setting, we mitigated the deviation of the model 
on seen classes by utilizing the data of unseen classes during training. We compared our 
method with recent state-of-the-art TZSL methods, which include ALE-trans (Akata et al., 
2015b), GFZSL-trans  (Verma et  al., 2017), QFSL  (Song et  al., 2018), GXE  (Li et  al., 
2019b), GMN (Sariyildiz & Cinbis, 2019), f-VAEGAN (Xian et al., 2019), WDVSc (Wan 
et  al., 2019). Tables  4 and 5 show the results of different methods on CUB, AwA2, 
and SUN for GZSL and conventional ZSL, respectively. We can see that our method 

Table 3   Results of conventional 
zero-shot learning for inductive 
setting

The best and the second-best results are respectively marked by italic 
and bold

Methods CUB AwA2 SUN aPY

ALE 54.9 62.5 58.1 39.7
DeViSE 52.0 59.7 56.5 39.8
ESZSL 53.9 58.6 54.5 38.3
SJE 53.9 61.9 53.7 32.9
LATEM 49.3 55.8 55.3 35.2
SYNC 55.6 46.6 56.3 23.9
SAE 33.3 54.1 40.3 8.3
TCN 59.5 71.2 61.5 38.9
SE-GZSL 59.6 69.2 63.4 –
CVAE-ZSL 52.1 65.8 61.7 –
f-CLSWGAN 57.3 – 60.8 –
LisGAN 58.8 – 61.7 43.1
ABP 58.5 70.4 61.5 –
OCD-CVAE 60.3 71.3 63.5 –
LsrGAN 60.3 - 62.5 –
Ours 62.2 70.1 64.2 43.5

Table 4   Results of the 
generalized zero-shot learning 
for transductive setting

The best and the second-best results are respectively marked by italic 
and bold

Methods CUB AwA2 SUN

U S H U S H U S H

ALE-trans 23.5 45.1 30.9 12.6 73.0 21.5 19.9 22.6 21.2
GFZSL-trans 24.9 45.8 32.2 31.7 67.2 43.1 0.0 41.6 0.0
QFSL 17.3 39.0 24.0 20.8 74.7 32.6 17.7 25.0 20.7
GXE 57.0 68.7 62.3 80.2 90.0 84.8 45.4 58.1 51.0
GMN 60.2 70.6 65.0 – – – 57.1 40.7 47.5
f-VAEGAN 61.4 65.1 63.2 84.8 88.6 86.7 60.6 41.9 49.6
WDVSc 43.3 85.4 57.5 76.4 88.1 81.8 – – –
Ours-trans 65.3 66.5 65.9 82.7 89.2 85.8 57.5 44.6 50.2
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outperforms all the compared methods for both GZSL and conventional ZSL on the CUB 
dataset. For AwA2 and SUN datasets, our method achieves the second highest perfor-
mance. This validates that our method can be readily adapted to the TZSL setting.

4.3 � Further analyses for inductive setting

Ablation study We conducted ablation experiments to verify the effectiveness of the pro-
posed modules. Table 6 shows the influence of different losses. We can see that our pro-
posed method achieves the best harmonic mean results with all the losses. Specifically, 
the proposed IB loss can significantly improve the performance. For the proposed wake-
sleep IB constraint, we also performed ablation study with different conditions on CUB, 
as shown in Table  7. It can be seen that the IB loss constrained on the generated seen 
classes features (Sleep(S)) has significantly improved the classification accuracy of the 
seen classes and conventional ZSL. Accordingly, the IB loss constrained on the generated 
unseen classes features (Sleep(U)) also improves the result of unseen classes. Our method 
achieves the highest harmonic mean result under the wake-sleep IB constraint. In addition, 

Table 5   Results of conventional 
zero-shot learning for 
transductive setting

The best and the second-best results are respectively marked by italic 
and bold

Methods CUB AwA2 SUN

ALE-trans 54.5 70.7 55.7
GFZSL-trans 49.3 78.6 64.0
QFSL 72.1 79.7 58.3
GXE 61.3 83.2 63.5
GMN 64.6 – 64.3
f-VAEGAN 71.7 89.8 70.1
WDVSc 73.4 87.3 63.4
Ours-trans 73.5 88.1 67.6

Table 6   Ablation study of the proposed modules

Table 7   Ablation study of wake-sleep IB constraint on CUB dataset

Wake phase only uses real data for training. Sleep(S/U) phase uses generated seen/unseen classes data for 
training
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we use N(�(a), �) to replace the latent semantic distribution N(�(a),�2) to verify the effec-
tiveness of the proposed bias passing mechanism. The results on four datasets are CUB(H 
= 53.6), AwA2(H = 64.3), SUN(H = 39.5) and aPY(H = 45.5). It shows that the bias 
passing mechanism can alleviate the visual and semantic noises problem.

The influence of latent dimensions We first evaluated our method with different dimen-
sions of latent features, as shown in Fig. 5. The harmonic mean results have less fluctu-
ation with different latent feature dimensions on four datasets. Our method achieves the 
best performance on CUB and SUN with the latent feature dimensions equal to 256. The 
best results are reached for AwA2 and aPY when the latent feature dimension is 64. We 
speculate the reason is that on the one hand the CUB and SUN are fine-grained datasets 
which need more information to distinguish. On the other hand, excessive dimensions lead 
to redundant information.

The influence of latent features We show the influence of different numbers of gener-
ated features per seen and unseen classes on CUB. Figure 6 reports the harmonic mean 
results (H) of GZSL (a) and T1 results of conventional ZSL (b). We can see that the GZSL 
performance of our method increases with more generated unseen features in most cases 
and when the number of generated unseen features is twice the generated seen features, our 
method achieves the best result. The results of conventional ZSL show a similar conclusion 
with GZSL, which validates the soundness of our method.

Visualization Result We use the t-SNE (Maaten & Hinton, 2008) to visualize our latent 
features used for the final GZSL classification. Figure  7 shows the distributions of the 
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Fig. 5   The influence of the dimension of latent features generated by our model. We measured the Top-1 
accuracy on seen classes and unseen classes and the harmonic mean accuracy on CUB, AwA2, SUN, and 
aPY datasets
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latent features of 50 classes on the CUB dataset. The top is the latent visual embedding fea-
tures and the bottom is the latent semantic embedding features. From the almost consistent 
distribution, we can see our latent features can well align visual and semantic distributions.

4.4 � Further analyses for transductive setting

The influence of q and r Figure 8a shows the results of H and T1 for CUB dataset when 
varying hyper-parameter q of generalized cross-entropy loss from 0.1 to 0.9. Our method 
achieves the best performance when q = 0.4 . GCE loss combines the advantages of CCE 
loss and MAE loss, which makes our model more robust in the classification task with 
noisy labels. The influence of r on the results of H and T1 for CUB dataset is shown in 
Fig. 8b. We varied the value of r from 1.0 to 3.0 in steps of 0.2. At the first, the accuracy of 
H and T1 increases with the change of r. Our model achieves the best result when r = 1.4 . 
Then the performance of the model declines with the change of r. Since the quality of 
the noisy unseen data used for training becomes higher, the performance of the model is 
increasing. While the higher the quality of the unseen data, the less noise in the label, and 
the smaller the amount of training data. Therefore the performance of the model decreases.

Quality analysis of noisy data We further analyzed the influence of the threshold r on 
the generated pseudo labels for CUB, AwA2, and SUN. As shown in Table 8, Acc is the 
accuracy of the generated pseudo label with different thresholds r. It shows that a larger 
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Fig. 7   Visualization of the latent feature distributions. The top is the latent visual embedding features and 
the bottom is the latent semantic embedding features
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threshold r can make the confidence of the pseudo label higher. Num illustrates the rela-
tionship between the number of noisy data for training and threshold r. Although the 
confidence of pseudo labels has become higher, the number of samples used for training 
is decreasing. Max, Min and Avg respectively show the maximum, minimum and aver-
age number of training samples for different categories with different r. We can see that 
when r is large, the sample numbers for different categories will be unbalanced, especially 
the number of training samples in some categories will even become 0. Therefore, we set 
r = 1.4 to achieve a good tradeoff in sample quality, sample training number, and sample 
balance in the experiment.

5 � Conclusion

In this paper, we introduced a novel bidirectional embedding based generative model for 
zero-shot learning. This method learns a unified latent space to align the feature distribu-
tions of both visual domain and semantic domain. A novel information bottleneck (IB) 
constrained latent bidirectional embedding allows the latent features to contain more essen-
tial attributes related information while discarding non-semantic information flowed from 
the visual features. In addition, data uncertainty estimation and wake-sleep procedure are 
introduced to facilitate latent distributions alignment. The proposed method has outper-
formed several state-of-the-art methods in different ZSL settings in experimental com-
parison, showing the advantages of our approach. Furthermore, our method can be lightly 
extended to adapt the transductive ZSL task and also achieves competitive performance.

For the future works, further investigation on information bottleneck and uncertainty 
estimation theories for the cross-domain alignment problem is significant. For example, the 
other feature generation based ZSL models, such as GANs and generative flows, can also 

Table 8   Quality analysis of noisy data. Acc is the accuracy of the pseudo label

Num is the number of noise data for training. Max, Min and Avg respectively show the maximum, minimum 
and average number of training samples for different categories

r 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

CUB Acc 0.61 0.66 0.70 0.75 0.78 0.81 0.83 0.84 0.85 0.87 0.88
Num 2967 2420 2065 1786 1573 1404 1276 1162 1077 994 928
Max 60 59 59 59 59 59 59 58 58 57 56
Min 50 29 19 15 7 5 3 3 1 0 0
Avg 59 48 41 35 31 28 25 23 21 19 18

AwA2 Acc 0.61 0.66 0.7 0.72 0.74 0.75 0.77 0.78 0.79 0.8 0.82
Num 7913 6080 4741 3736 2976 2341 1844 1481 1193 979 832
Max 1645 1354 1106 893 699 515 427 389 345 309 281
Min 174 151 100 71 49 30 19 12 10 9 9
Avg 791 608 474 373 297 234 184 148 119 97 83

SUN Acc 0.63 0.67 0.70 0.73 0.75 0.76 0.78 0.79 0.81 0.82 0.83
Num 1440 1267 1136 1040 964 900 837 792 752 720 688
Max 20 20 20 20 20 20 20 20 20 19 19
Min 20 12 9 6 5 4 4 4 2 2 1
Avg 20 17 15 14 13 12 11 11 10 10 9
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utilize information bottleneck and uncertainty estimation methods to generate more reli-
able unseen samples.
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