
Vol.:(0123456789)

Machine Learning (2023) 112:4351–4378
https://doi.org/10.1007/s10994-022-06188-7

1 3

STUDD: a student–teacher method for unsupervised
concept drift detection

Vitor Cerqueira1 · Heitor Murilo Gomes2 · Albert Bifet2,3 · Luis Torgo1

Received: 27 February 2021 / Revised: 28 January 2022 / Accepted: 9 May 2022 /
Published online: 21 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
Concept drift detection is a crucial task in data stream evolving environments. Most of state
of the art approaches designed to tackle this problem monitor the loss of predictive models.
However, this approach falls short in many real-world scenarios, where the true labels are
not readily available to compute the loss. In this context, there is increasing attention to
approaches that perform concept drift detection in an unsupervised manner, i.e., without
access to the true labels after the model is deployed. We propose a novel approach to unsu-
pervised concept drift detection based on a student-teacher learning paradigm. Essentially,
we create an auxiliary model (student) to mimic the primary model’s behaviour (teacher).
At run-time, our approach is to use the teacher for predicting new instances and monitoring
the mimicking loss of the student for concept drift detection. In a set of experiments using
19 data streams, we show that the proposed approach can detect concept drift and present a
competitive behaviour relative to the state of the art approaches.

Keywords Concept drift detection · Data streams · Model compression

1 Introduction

Learning from time-dependent data is a challenging task due to the uncertainty about the
dynamics of real-world environments. When predictive models are deployed in environ-
ments susceptible to changes, they must detect these changes and adapt themselves accord-
ingly. The phenomenon in which the data distribution evolves is referred to as concept
drift, and a sizeable amount of literature has been devoted to it Gama et al. (2014).

An archetype of concept drift is the interest of users in a service, which typically
changes over time (Kim & Park, 2017). Changes in the environment have a potentially

Editors: Annalisa Appice, Grigorios Tsoumakas.

 * Vitor Cerqueira
 vitor.cerqueira@dal.ca

1 Dalhousie University, Halifax, Canada
2 University of Waikato, Hamilton, New Zealand
3 Télécom ParisTech, Paris, France

http://orcid.org/0000-0002-9694-8423
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06188-7&domain=pdf

4352 Machine Learning (2023) 112:4351–4378

1 3

strong negative impact on the performance of models (Gama et al., 2014). Therefore, it is
fundamental that these models can cope with concept drift. That is, to detect changes and
adapt to them accordingly.

Following Gama et al. (2014), concept drift can be split into two types: real concept
drift and virtual concept drift. The former denotes changes in the conditional distribution
of the target variable given the input explanatory variables—in this scenario, the marginal
distribution of the explanatory variable does not have to change. The latter occurs if the
marginal distribution of the input explanatory variables changes but not the conditional
distribution.

Concept drift detection and adaptation are typically achieved by coupling predictive
models with a change detection mechanism (Gomes et al., 2019). The detection algorithm
launches an alarm when it identifies a change in the data. Typical concept drift strategies
are based on sequential analysis (Page, 1954), statistical process control (Gama et al.,
2004), or monitoring of distributions (Bifet & Gavalda, 2007). When change is detected,
the predictive model adapts by updating its knowledge with recent information. A simple
example of an adaptation mechanism is to discard the current model and train a new one
from scratch. Incremental approaches are also widely used (Gomes et al., 2017).

The input data for the majority of the existing drift detection algorithms is the perfor-
mance of the predictive model over time, such as the error rate. In many of these detec-
tion methods, alarms are signalled if the performance decreases significantly. However, in
several real-world scenarios, labels are not readily available to estimate the performance
of models. Some labels might arrive with a delay or not arrive at all due to labeling costs.
This is a major challenge for learning algorithms that rely on concept drift detection as the
unavailability of the labels precludes their application (Gomes et al., 2019).

In this context, there is increasing attention toward unsupervised approaches to concept
drift detection. These assume that, after an initial fit of the model, no further labels are
available during the deployment of this model in a test set. Most works in the literature
handle this problem using statistical hypothesis tests, such as the Kolmogorov–Smirnov
test. These tests are applied to the output of the models (Žliobaite, 2010), either the final
decision or the predicted probability, or the input attributes (dos Reis et al., 2016).

Our goal in this paper is to address concept drift detection in an unsupervised man-
ner. To accomplish this, we propose a novel approach to tackle this problem using a stu-
dent–teacher learning paradigm called STUDD (Student–Teacher approach for Unsuper-
vised Drift Detection). The gist of the idea is as follows. On top of the main predictive
model, which we designate as the teacher, we also build a second predictive model, the stu-
dent. Following the literature on model compression (Buciluǎ et al., 2006) and knowledge
distillation (Hinton et al., 2015), the student model is designed to mimic the behaviour of
the teacher.

Using the student–teacher framework, our approach to unsupervised concept drift detec-
tion is carried out by monitoring the student’s mimicking loss. The mimicking loss is a
function of the discrepancy between the teacher’s prediction and student’s prediction in the
same instance. In summary, we use the student model’s loss as a surrogate for the behav-
iour of the main model. Accordingly, we can apply any state of the art approach in the
literature, which considers the loss of a model as the main input, for example, the Page-
Hinkley test (Page, 1954).

When concept drift occurs, it causes changes in the classes’ prior probabilities or
changes in the class conditional probabilities of the explanatory variables. In effect, we
hypothesise that, if these changes affect the distribution of the input explanatory variables
(virtual concept drift), they will disrupt the collective behaviour between the teacher and

4353Machine Learning (2023) 112:4351–4378

1 3

student models. In turn, this change of behaviour may be captured by monitoring the mim-
icking loss of the student model.

We compared STUDD to several state-of-the-art methods, both unsupervised and super-
vised ones using 19 benchmark data streams. The results indicate that the proposed method
is useful for capturing concept drift. STUDD shows a more conservative behaviour relative
to other approaches, which is beneficial in many domains of application.

To summarise, the contributions of this paper are the following:

• STUDD: a novel method for unsupervised concept drift detection based on a student–
teacher learning approach;

• A set of experiments used to validate the proposed method. These include comparisons
with state of the art approaches, and an analysis of the different scenarios regarding
label availability.

The proposed method is publicly available online.1 Our implementation is written in
Python and is based on the scikit-multiflow framework (Montiel et al., 2018). We also
remark that this article is an extension of a preliminary work published previously (Cer-
queira et al., 2020). The experimental setting has been extended considerably. While in
the previous work we validated STUDD using synthetic drifts based on two data sets, we
now focus on a realistic evaluation scenario based on 19 benchmark data streams. We also
include an increased number of state of the art approaches in the experiments.

The rest of this paper is organised as follows. In the next section (Sect. 2), we formally
define the problem of concept drift detection in data streams, while in the following section
(Sect. 3), we briefly review the literature on the topic of our work. We describe the meth-
odology behind STUDD in Sect. 4. The experiments are reported in Sect. 5. The results of
these are discussed in Sect. 6. Finally, Sect. 7 concludes the paper.

2 Background

2.1 Problem definition

Let D(X, y) = {(X1, y1),… , (Xt, yt)} denote a possibly infinite data stream, where each X is
a q-dimensional array representing the input explanatory variables. Each y represents the
corresponding output label. We assume that the values of y are categorical. The goal is to
use this data set {Xi, yi}

t
1
 to create a classification model to approximate the function which

maps the input X to the output y. Let T denote this classifier. The classifier T can be used
to predict the labels of new observations X. We denote the prediction made by the classifier
as ŷT .

Many real-world scenarios exhibit a non-stationary nature. Often, the underlying pro-
cess causing the observations changes in an unpredictable way, which degrades the perfor-
mance of the classifier T . Let p(X, y) denote the joint distribution of the explanatory vari-
ables X and the target variable y. According to Gama et al. (2014), concept drift occurs if
p(X, y) is different in two distinct points in time across the data stream. Changes in the joint
probability can be caused by changes in p(X), the distribution of the explanatory variables

1 https:// github. com/ vcerq ueira/ studd.

https://github.com/vcerqueira/studd

4354 Machine Learning (2023) 112:4351–4378

1 3

or changes in the class conditional probabilities p(X|y) (Gao et al., 2007). These may even-
tually affect the posterior probabilities of classes p(y|X). Depending on which distributions
are affected, concept drift may be considered one of two types: real concept drift, or virtual
concept drift. We described these in the previous section.

2.2 Label availability

When concept drift occurs, the changes need to be captured as soon as possible, so the
decision rules of T can be updated. The vast majority of concept drift detection approaches
in the literature focus on tracking the predictive performance of the model. If the perfor-
mance degrades significantly, an alarm is launched and the learning system adapts to these
changes.

The problem with these approaches is that they assume that the true labels are readily
available after prediction. In reality, this is rarely the case. In many real-world scenarios,
labels can take too long to be available, if ever. If labels do eventually become available,
often we only have access to a part of them. This is due to, for example, labeling costs. The
different potential scenarios when running a predictive model are depicted in Fig. 1.

Precisely, a predictive model is built using an initial batch of training data of which
labels are available. When this model is deployed in a test set, concept drift detection is
carried out in an unsupervised or supervised manner.

In unsupervised scenarios, no further labels are available to the predictive model. Con-
cept drift detection must be carried out using a different strategy other than monitoring the
loss. For example, one can track the output probability of the models (Žliobaite, 2010) or
the unconditional probability distribution p(X) (Kuncheva, 2004).

Concept drift detectors have access to labels when the scenario is supervised. On the
one hand, the setting may be either strongly supervised or weakly supervised (Zhou, 2018).
In the former, all labels become available. In the latter, the learning system only has access
to a part of the labels. This is common in applications which data labeling is costly. On the
other hand, labels can arrive immediately after prediction, or they can arrive with some
delay. In some domains, this delay may be too large, and unsupervised approaches need to
be adopted.

Label Access

UnsupervisedSupervised

Weak
Supervision

Delayed Feedback

Strong
Supervision

Immediate
Feedback

Fig. 1 The distinct potential scenarios regarding label access after the initial fit of the model (adapted from
Gomes et al., 2017)

4355Machine Learning (2023) 112:4351–4378

1 3

In this paper, we address concept drift detection from an unsupervised perspective. In
this setting, we are restricted to use p(X) to detect changes, as the probability of the explan-
atory variables is not conditioned on y.

3 Related research

In this section, we briefly review previous research related to our work. We split this review
into two parts. In the first part, we overview approaches for concept drift detection, giving
particular emphasis to unsupervised approaches. The second part addresses model com-
pression and the related work on the student–teacher learning approach, which is the basis
of the proposed method.

3.1 Concept drift detection

Concept drift can occur in mainly three different manners: suddenly, in which the current
concept is abruptly replaced by a new one; gradually, when the current concept slowly
fades; and reoccurring, in which different concepts are prevalent in distinct time intervals
(for example, due to seasonality). A variation of gradual concept drifts are incremental
drifts, which are extremely difficult to detect as they consist of many concepts that continu-
ally evolve.

We split concept drift detection into two dimensions: supervised and unsupervised. The
supervised type of approaches assumes that the true labels of observations are available
after prediction. Hence, they use the error of the model as the main input to their detection
mechanism. On the other hand, unsupervised approaches preclude the use of the labels in
their techniques.

3.1.1 Supervised approaches

Plenty of error-based approaches have been developed for concept drift detection. These
usually follow one of three sort of strategies: sequential analysis, such as the Page-Hinkley
test (PHT) (Page, 1954); statistical process control, for example the Drift Detection Method
(DDM) (Gama et al., 2004) or the Early Drift Detection Method (EDDM) (Baena-Garcıa
et al., 2006); and distribution monitoring, for example the Adaptive Windowing (ADWIN)
approach (Bifet & Gavalda, 2007).

3.1.2 Unsupervised approaches

Although the literature is scarce, there is an increasing interest in approaches which try
to detect drift without access to the true labels. Žliobaite (2010) presents a work of this
type. She proposed the application of statistical hypothesis testing to the output of the
classifier (either the probabilities or the final categorical decision). The idea is to moni-
tor two samples of one of these signals. One sample serves as the reference window,
while the other represents the detection window. When there is a statistical difference
between these, an alarm is triggered. This process can be carried out using a sliding
reference window (c.f. Fig. 2) or a fixed reference window (c.f. Fig. 3). The sliding
reference window is more suitable for detecting drastic and abrupt data changes as it
compares a window of instances adjacent to the detection window. Conversely, the fixed

4356 Machine Learning (2023) 112:4351–4378

1 3

reference window may be fitting to detect gradual changes in the data, which are not
apparent when the reference and detection window are adjacent.

In a set of experiments, Žliobaite shows that concept drift is detectable using this
framework. The hypothesis tests used in the experiments are the two-sample Kolmogo-
rov–Smirnov test, the Wilcoxon rank-sum test, and the two-sample t-test.

dos Reis et al. (2016) follow a strategy similar to Žliobaite (2010). They propose
an incremental version of the Kolmogorov–Smirnov test and use this method to detect
changes without using any true labels. However, they focus on tracking the attributes
rather than the output of the predictive model. Specifically, they use a fixed window
approach (c.f. Fig. 3) to monitor the distribution of each attribute. If a change is detected
in any of these attributes, a signal for concept drift is issued.

In the same line of research, Yu et al. (2018) apply two layers of hypothesis test-
ing hierarchically. Kim and Park (2017) also apply a windowing approach. Rather than
monitoring the output probability of the classifier, they use a confidence measure as the
input to drift detectors.

Pinto et al. (2019) present an automatic framework for monitoring the performance
of predictive models. Similarly to the above-mentioned works, they perform concept
drift detection based on a windowing approach. The signal used to detect drift is com-
puted according to a mutual information metric, namely the Jensen–Shannon Diver-
gence (Lin, 1991). The window sizes and threshold above which an alarm is launched
is analysed, and the approach is validated in real-world data sets. The interesting part
of the approach by Pinto et al. (2019) is that their method explains the alarms. This
explanation is based on an auxiliary binary classification model. The goal of applying
this model is to rank the events that occurred in the detection window according to how
these relate to the alarm. These explanations may be crucial in sensitive applications
which require transparent models.

Gözüaçık et al. (2019) also develop an auxiliary predictive model for unsupervised
concept drift detection, which is called D3 (for Discriminative Drift Detector). The dif-
ference to the work by Pinto et al. (2019) is that they use this model for detecting con-
cept drift rather than explaining the alarms.

Training
Observations

t

Change
Detected

Detection
Window

Reference
Window

Fig. 2 Detecting changes using a sliding reference window. Change occurs at time t if the reference window
is statistically different than the detection window

Training Observations /
Reference Window

t

Change
Detected

Detection
Window

Fig. 3 Detecting changes using a fixed reference window

4357Machine Learning (2023) 112:4351–4378

1 3

3.2 Student–teacher learning approach

Model compression, also referred to as student-teacher learning, is a technique proposed
by Buciluǎ et al. (2006). The goal is to train a model, designated as a student, to mimic the
behaviour of the first model (the teacher). To perform model compression, the idea is to
first retrieve the predictions of the teacher in observations not used for training (e.g. a vali-
dation data set). Then, the student model is trained using this set of observations, where the
explanatory variables are the original ones, but the original target variable is replaced with
the predictions of the teacher. The authors use this approach to compress a large ensemble
(the teacher) into a compact predictive model (the student).

Buciluǎ et al. (2006) use the ensemble selection algorithm (Caruana et al., 2004) as
the teacher and a neural network as the student model and address eight binary classifica-
tion problems. Their results show that the compressed neural network performs compara-
bly with the teacher while being “1000 times smaller and 1000 times faster”. Moreover,
the compressed neural network considerably outperforms the best individual model in the
ensemble used as the teacher.

Hinton et al. (2015) developed the idea of model compression further, denoting their
compression technique as knowledge distillation. Distillation works by softening the
probability distribution over classes in the softmax output layer of a neural network. The
authors address an automatic speech recognition problem by distilling an ensemble of deep
neural networks into a single and smaller deep neural network.

Both Buciluǎ et al. (2006) and Hinton et al. (2015), show that combining the predictions
of the ensemble leads to a comparable performance relative to a single compressed model.

While our concerns are not about decreasing the computational costs of a model, we can
leverage model compression approaches to tackle the problem of concept drift detection.
Particularly, by creating a student model which mimics the behaviour of a classifier, we can
perform concept drift detection using the loss of the student model. Since this loss is not
conditioned on the target variable y, concept drift detection is carried out in an unsuper-
vised manner.

4 Methodology

In this section, we describe STUDD, the proposed approach to unsupervised concept drift
detection. STUDD is split into two steps: an initial offline stage, which occurs during the
training of the data stream classifier (Sect. 4.1); and an online stage, when the method is
applied for change detection (Sect. 4.2). In Sect. 4.3, we overview our adaptation approach
after concept drift is detected.

4.1 Stage 1: student–teacher training

The first stage of the proposed approach refers to the training of the predictive models. This
process is illustrated in Fig. 4. A batch of training observations is retrieved from the source
data stream D . These observations (D(Xtr, ytr)) are used to train the classifier T . This is the
predictive model to be deployed in the data stream.

After creating T , we carry out a student–teacher approach in which T acts as the
teacher. First, T is used to make predictions on the training set. This leads to a new training

4358 Machine Learning (2023) 112:4351–4378

1 3

data set, in which the targets ytr are replaced with the predictions of T , ŷ{T,tr} . Finally,
the student model S is trained using the new data set. Essentially, the student model S is
designed to mimic the behavior of the teacher T .

It might be argued that using the same instances to train both the teacher and the student
models leads to over-fitting. However, Hinton et al. (2015) show that this is not a concern.

The student-teacher learning paradigm is at the core of model compression (Buciluǎ
et al., 2006) or knowledge distillation (Hinton et al., 2015) methods. These approaches aim
at compressing a model with a large number of parameters (teacher), such as an ensemble
or a deep neural network, into a more compact model (student) with a comparable pre-
dictive performance. Accordingly, the student model is deployed in the test set, while the
teacher is not used in practice due to high computational costs.

Conversely, our objective for using a student-teacher strategy is different. We regard the
student model S as a model which is able to predict the behavior of the teacher model T ,
i.e., what the output of T will be for a given input observation. Moreover, it is important
to remark that, in our methodology, both student and teacher models are applied in the test
phase.

4.2 Stage 2: change detection

The second stage of the proposed method refers to the change detection process. As we
have described before, the state-of-the-art concept drift detection methods take the loss of
predictive models as their primary input. Since we assume that labels are unavailable, we
cannot compute the model’s loss T . This precludes the typical application of state-of-the-
art change detection approaches to unsupervised concept drift detection.

However, we can compute the student model’s loss, which is independent of the true
labels. The loss of the student is quantified according to the discrepancy between the
prediction of T (̂yT) and the prediction of S about ŷT (̂yS). Accordingly, the loss of S is
defined as L(ŷT, ŷS) , where L is the loss function (e.g. the error rate).

Therefore, our approach to concept drift detection uses a state of the art detector, such
as the Page-Hinkley test (Page, 1954). However, the main input to this detector is the stu-
dent model’s error, rather than the teacher model’s error. This process is depicted in Fig. 5.
For a given input observation xi , we obtain the prediction from the models T and S . Then,
a function of the discrepancy between these predictions is given as input to the detection
model.

When concept drift occurs, it potentially causes changes in the posterior probability of
classes, p(y|X). Thus, we hypothesise that such changes will also potentially affect the joint

Fig. 4 Fitting the teacher (T) and student (S) models using an initial batch of training observations

4359Machine Learning (2023) 112:4351–4378

1 3

behaviour between student and teacher models. This effect will then be reflected on the
student’s imitation error, and the underlying change detection mechanism can capture it.

In effect, the teacher model is deployed in the data stream and used to make predictions
on the upcoming observations. For concept drift detection, we track the error of the student
model.

4.3 Concept drift adaptation

When a detection mechanism detects a change it triggers an adaptation process for the pre-
dictive model. In our work, we follow a retraining approach, in which the predictive model
is retrained with a batch of recent observations. A common alternative to this is an incre-
mental strategy in which predictive models are updated as labels become available.

5 Empirical experiments

This section details the experiments carried out to validate the proposed approach to unsu-
pervised concept drift detection. We start by describing the research questions we aim at
answering 5.1, followed by a brief description of the data streams used in the experiments
5.2. Afterwards, we explain the workflow used to analyse each approach under comparison
5.3, and in the respective evaluation scheme 5.4. We also describe the methods used to
compare STUDD with 5.5, and detail the value of important parameters 5.7. Finally, the
results are presented in Sect. 5.8.

5.1 Research questions

We designed a set of experiments to answer the following research questions:

• RQ1: Is STUDD able to detect concept drift?
• RQ2: What is the performance of STUDD for concept drift detection relative to state of

the art approaches? These include both unsupervised and supervised ones;
• RQ3: When, in terms of label availability scenarios, is STUDD beneficial relative to a

supervised approach?

Fig. 5 The concept drift detection process of STUDD. We retrieve the predictions from both models for a
new observation. A function of the discrepancy of these predictions, which is independent from the true
labels, is given as input to a state of the art detection model

4360 Machine Learning (2023) 112:4351–4378

1 3

5.2 Data sets

We used 19 benchmark data streams to answer the above research questions and validate
the applicability of STUDD. These data sets include the following data streams: Electricity
(Harries & Wales, 1999), forest cover type (Blackard & Dean, 1999), Poker (Cattral et al.,
2002), Gas (Vergara et al., 2012), Luxembourg (Žliobaitė, 2011), Ozone (Dua & Graff,
2017), Power supply (Zhu, 2010), Rialto (Losing et al., 2016), Outdoor (Losing et al.,
2015), Keystroke (Souza et al., 2015), NOAA (Ditzler and Polikar 2012), Bike (Fanaee-T
& Gama, 2014), Arabic (Hammami & Bedda, 2010), Arabic with shuffled observations
as per dos Reis et al. (2016), Insects (de Souza et al., 2013), Insects with artificial abrupt
concept drift (dos Reis et al., 2016), Posture (Kaluža et al., 2010), and GMSC (Gomes
et al., 2017). These are briefly described in Table 1. In order to speed up computations, we
truncated the sample size of all data streams to 150.000 observations. These data sets are
commonly used as benchmarks for mining data streams. We retrieved them from an online
repository for data streams (Souza et al., 2020), or the repository associated with two pre-
vious works related to data streams.2,3

5.3 Workflow of experiments

We designed the experiments according to a batch setup, split into an offline stage and an
online stage.

In the offline stage, we train the main classifier T to be deployed in the data stream
using an initial batch of W observations. We also carry out any task specific to the underly-
ing drift detection approach. For example, in the case of the proposed approach, we also
train the student model S.

The online stage starts when the classifier T is deployed in the data stream. For each
new observation xi , the classifier T makes a prediction ŷi . Meanwhile, the underlying
detection mechanism uses the available data (e.g. xi , ŷi) to monitor the classifier’s behav-
iour. If the detection mechanism detects a change, it launches an alarm and the classifier T
is adapted with recent information.

The adaptation mechanism adopted in this work is based on a re-training procedure. The
current model is discarded, and a new model is re-trained using the latest W observations.
This workflow is depicted in Fig. 6. We remark that, in the case of STUDD, the student
model is also updated as described.

5.4 Evaluation

Our goal is to evaluate the performance of the concept drift detection mechanisms. We
focus on unsupervised scenarios, in which the true labels are not readily available. How-
ever, for evaluation purposes, we use the labels to assess the quality of change detectors.
We aim at measuring a trade-off between predictive performance and the number of alarms
issued by the detector. The alarms represent a cost as they trigger the retrieval (and annota-
tion) of a batch of observations.

We evaluate each approach from two dimensions:

2 https:// github. com/ denis mr/ incre mental- ks.
3 https:// github. com/ hmgom es/ Adapt iveRa ndomF orest.

https://github.com/denismr/incremental-ks
https://github.com/hmgomes/AdaptiveRandomForest

4361Machine Learning (2023) 112:4351–4378

1 3

Ta
bl

e
1

 D
at

a
str

ea
m

s u
se

d
in

 th
e

ex
pe

rim
en

ts

Th
e

sh
ap

e
co

lu
m

n
de

sc
rib

es
 th

e
di

m
en

si
on

al
ity

 o
f t

he
 d

at
a

in
 th

e
fo

rm
 (n

um
be

r o
f r

ow
s ×

 n
um

be
r o

f c
ol

um
ns

)

D
at

a
str

ea
m

D
es

cr
ip

tio
n

Sh
ap

e

C
la

ss
es

El
ec

tri
ci

ty
Pr

ic
e

di
re

ct
io

n
of

 e
le

ct
ric

ity
 m

ar
ke

t i
n

A
us

tra
lia

45
.3

12
 ×

 9
2

C
ov

er
Ty

pe
Fo

re
st

co
ve

r t
yp

e
fro

m
 th

e
U

S
Fo

re
st

Se
rv

ic
e

58
1.

01
2

×
55

5
Po

ke
r

Po
ke

r h
an

ds
 d

ra
w

n
fro

m
 a

 d
ec

k
of

 5
2

ca
rd

s
1.

02
5.

01
0
×

 1
2

10
G

as
G

as
 m

ea
su

re
m

en
ts

 fr
om

 c
he

m
ic

al
 se

ns
or

s
13

.9
10

 ×
 1

7
6

Lu
xe

m
bo

ur
g

Su
rv

ey
 c

on
ce

rn
in

g
th

e
in

te
rn

et
 u

sa
ge

 (h
ig

h
or

 lo
w

) f
ro

m
 2

00
2

to
 2

00
7

1.
90

1
×

31
2

O
zo

ne
A

ir
m

ea
su

re
m

en
ts

 c
on

ce
rn

in
g

oz
on

e
le

ve
ls

2.
57

4
×

32
2

Se
ns

or
s

Se
ns

or
 id

en
tifi

ca
tio

n
fro

m
 e

nv
iro

nm
en

ta
l d

at
a

2.
21

9.
80

3
×

5
54

Po
w

er
su

pp
ly

H
ou

r i
de

nt
ifi

ca
tio

n
fro

m
 p

ow
er

 su
pp

ly
 d

at
a

fro
m

 a
n

Ita
lia

n
el

ec
tri

ci
ty

 c
om

pa
ny

29
.9

28
 ×

 2
24

R
ia

lto
B

ui
ld

in
g

id
en

tifi
ca

tio
n

ne
ar

 fr
om

 p
ro

ce
ss

ed
 im

ag
es

 ta
ke

n
in

 th
e

R
ia

lto
 b

rid
ge

 in
 V

en
ic

e
82

.2
50

 ×
 2

7
10

O
ut

do
or

O
bj

ec
t i

de
nt

ifi
ca

tio
n

fro
m

 im
ag

es
 ta

ke
n

ou
td

oo
r u

nd
er

 v
ar

yi
ng

 li
gh

tin
g

co
nd

iti
on

s (
su

nn
y

an
d

cl
ou

dy
)

4.
00

0
×

21
40

K
ey

str
ok

e
U

se
r i

de
nt

ifi
ca

tio
n

fro
m

 ty
pi

ng
 rh

yt
hm

 o
f a

n
ex

pr
es

si
on

1.
60

0
×

10
4

N
O

A
A

R
ai

n
de

te
ct

io
n

fro
m

 w
ea

th
er

 m
ea

su
re

m
en

ts
 c

ol
le

ct
ed

 o
ve

r 5
0

ye
ar

s
18

.1
59

 ×
 8

2
B

ik
e

C
ou

nt
 o

f r
en

ta
l b

ik
es

 (h
ig

h
or

 lo
w

) f
ro

m
 a

 b
ik

e-
sh

ar
in

g
sy

ste
m

17
.3

78
 ×

 5
2

A
ra

bi
c

D
ig

it
id

en
tifi

ca
tio

n
fro

m
 a

ud
io

 (i
n

ar
ab

ic
) f

ea
tu

re
s

8.
80

0
××

 2
8

10
A

ra
bi

cS
hu

ffl
ed

Si
m

ila
r t

o
Ar

ab
ic

 b
ut

 o
bs

er
va

tio
ns

 a
re

 sh
uffl

ed
 b

y
ge

nd
er

 to
 e

nh
an

ce
 c

on
ce

pt
 d

rif
t (

c.
f.

do
s R

ei
s e

t a
l.,

 2
01

6)
8.

80
0

×
28

10
In

se
ct

s
Id

en
tifi

ca
tio

n
of

 th
e

sp
ec

im
en

 o
f a

 fl
yi

ng
 in

se
ct

 th
at

 is
 p

as
si

ng
 th

ro
ug

h
a

la
se

r
5.

32
5

×
50

5
In

se
ct

sA
br

up
t

Si
m

ila
r t

o
In

se
ct

s,
bu

t a
br

up
t d

rif
t i

s i
nt

ro
du

ce
d

in
 th

e
fe

at
ur

e
sp

ac
e

5.
32

5
×

50
5

Po
stu

re
M

ov
em

en
t i

de
nt

ifi
ca

tio
n

fro
m

 se
ns

or
s c

ar
rie

d
by

 d
iff

er
en

t p
eo

pl
e

16
4.

85
9

×
4

11
G

M
SC

C
re

di
t s

co
rin

g
da

ta
 se

t (
G

iv
e

m
e

so
m

e
cr

ed
it)

15
0.

00
0

×
11

2

4362 Machine Learning (2023) 112:4351–4378

1 3

• Predictive performance: We measure the quality of the classifier according to the
Cohen’s Kappa statistic (Cohen, 1960), which is a common metric used to evaluate
classification models;

• Annotation costs: We assume that we are working in environments where labels are
scarce and costly to obtain. Therefore, as explained before, each concept drift signal
triggers a request for an additional batch of labels. This request is expensive to the user,
and an important metric to minimize. We account for this problem by measuring the
ratio of labels with respect to the complete length of the data stream used by the respec-
tive approach.

Ideally, the optimal approach maximizes predictive performance and minimizes the amount
of labels requested.

5.5 Methods

Besides the proposed method we include nine other approaches in our experimental setup.
These can be described as follows.

We include the following two baselines:

• BL-st: A static baseline, which never adapts to concept drift. In practice, a model
(Random Forest) is fit using the training observations and used to predict the subse-
quent ones remaining in the data stream. Accordingly, the model may become outdated
due to concept drift, but incurs minimal labeling costs;

• BL-ret: A baseline which follows the opposite strategy to BL-st; it retrains the pre-
dictive model after every W observations. The model is always up to date, but at the
price of high labeling costs.

In terms of unsupervised methods, which do not use any true labels, we apply the follow-
ing state of the art approaches:

• Output Sliding (OS): A method that tracks the output of the predictive model
using a sliding reference window as described by Žliobaite (2010). Figure 2 shows the
workflow of this approach. According to previous studies (Žliobaite, 2010; dos Reis
et al., 2016), we apply the Kolmogorov–Smirnov test to assess whether or not change
occurs (c.f. Sect. 3.1.2 for more details);

• Output Fixed (OF): A similar approach to OS, but which tracks the output of the
predictive model using a fixed reference window. This approach is depicted in Fig. 3.
We also apply the Kolmogorov–Smirnov test in this case.

W Training
Observations

t

Change
Detected at t

W Observations
for re-training

Deployment
Point

Fig. 6 The workflow for applying and evaluating each method under comparison

4363Machine Learning (2023) 112:4351–4378

1 3

• Feature Fixed (FF): The method described by dos Reis et al. (2016), which
instead of tracking the output of predictive models (such as OS or OF), it tracks the
values of features. Following dos Reis et al. (2016), if a change is detected in any of the
features using the Kolmogorov–Smirnov test, the predictive model is adapted.

We also include the following supervised approaches in our experiments. These assume
some level of access to the true labels. While they may not be applicable in some scenarios
where labels are difficult to acquire, they are important benchmarks for comparisons.

• Strongly Supervised (SS): We apply the standard concept drift detection pro-
cedure which assumes that all the true labels are immediately available after making a
prediction. This can be regarded as the gold standard. The term strong refers to the fact
that all labels are available during testing (Zhou, 2018);

• Weakly Supervised (WS): In many real-world scenarios, particularly in high-
frequency data streams, data labeling is costly. Hence, predictive models can only be
updated using a part of the entire data set. This process is commonly referred to as
weakly supervised learning (Zhou, 2018). We simulate a weakly supervised scenario in
our experiments. Accordingly, predictive models only have access to l_access% of the
labels. In other words, after a model predicts the label of a given instance, the respec-
tive label is immediately available with a l_access% probability;

• Delayed Strongly Supervised (DSS): Labels can take some time to be avail-
able. We study this aspect by artificially delaying the arrival of the labels by l_delay
instances. After a label becomes available, the respective observation is used to update
the change detection model;

• Delayed Weakly Supervised (DWS): We combine the two previous scenarios.
In the DWS setup, only l_access% of the labels are available. Those which are available
arrive with a delay of l_delay observations.

Note that all methods above follow the procedure outlined in Sect. 5.3. There are two dif-
ferences between these approaches: (1) the degree of access to labels; and (2) how concept
drift detection is carried out.

5.6 Learning algorithm

5.6.1 Assumptions

In terms of application, the proposed method is agnostic to the underlying predictive mod-
els. Any learning algorithm can be used to train the teacher and the student models, and
these do not need to be the same. Notwithstanding, we assume that these are strong algo-
rithms which model the input data with arbitrarily good predictive performance. Regarding
the student, a strong model is important so it is able to model the input data along with the
bias of the teacher model. A strong teacher model is also crucial for two main reasons. One
is that in practice we want to maximize the predictive performance of the main model and
solve the underlying task. The second reason, and more related to the proposed method,
is that a weak model would be too stable to cause any significant effect on the error of the
student. That is, the behavior of the teacher would be stable and predictable. Consider the
extreme scenario in which the teacher model is the majority predictor, whose output is the

4364 Machine Learning (2023) 112:4351–4378

1 3

majority class for all instances. In this case, the error of the student model would be con-
stant zero, and the whole framework would fail.

5.6.2 Algorithm selection

In effect, we introduce an algorithm selection procedure in the experiments to pick the best
possible models (teacher and student) for each input data set. We consider the following
pool of learning algorithms:

 RF Random forest (Breiman, 2001)
 SVM Support vector machine (Chang & Lin, 2011)
 DT Decision tree (Breiman et al., 1984)
 LR Logistic regression (Friedman et al., 2001)
 RC Ridge classifier (Friedman et al., 2001)
 NB Naive Bayes (Friedman et al., 2001)
 XGB Extreme gradient boosting (Chen & Guestrin, 2016)

We resorted to the scikit-learn library (Pedregosa et al., 2011) for the implementation of
these algorithms.

For each data set, we first select the best teacher algorithm, and then the correspond-
ing student algorithm. We start by splitting an initial batch of W observations. These are
split into a train and validation sets, in which the former contains the initial 70% instances.
Then, each algorithm in the available pool is fit in the training data, and evaluated in the
validation data. The selected algorithm is the one maximizing predictive performance

Table 2 Learning algorithm used
to train the teacher and student
models in each data set

Data Teacher Student

AbruptInsects RF RF
Insects XGB XGB
Posture XGB RF
Arabic XGB XGB
Bike XGB RF
NOAA RF RF
Sensor DT DT
Powersupply SVC RF
Poker DT DT
Rialto XGB XGB
Ozone XGB XGB
Outdoor RF RF
Luxembourg RF RF
Gas RC RC
Keystroke XGB RF
ArabicShuffled RF RF
Covtype LR LR
GMSC XGB XGB
Electricity NB XGB

4365Machine Learning (2023) 112:4351–4378

1 3

according to Cohen’s Kappa statistic (Cohen, 1960). The selected algorithms for each data
set are reported in Table 2. Note that all methods under comparison leverage this optimiza-
tion process, though only STUDD applies the student model.

5.7 Parameter setup

In terms of parameters, we set the training window size W to 2000 observations for most
data streams. Due to low sample size, for the data streams Insects, AbruptInsects, Key-
stroke, Ozone, Outdoor, and Luxembourg, we set this parameter to 500 observations. We
follow the setup used by dos Reis et al. (2016) to set these values.

We apply the Page-Hinkley test (Page, 1954) for concept drift detection, specifically
its implementation from the scikit-multiflow library (Montiel et al., 2018). This approach
is a state of the art method for concept drift detection. We set the value of the � parameter,
which concerns the magnitude of changes, to 0.001, while the remaining parameters are
left as default.

For the state of the art unsupervised concept drift detection approaches, the significance
level parameter for rejecting the null hypothesis in the Kolmogorov–Smirnov test is set to
0.001, similarly to dos Reis et al. (2016). Regarding the delayed supervised methods (DSS
and DWS), we set the delay parameter (l_delay) to W/2, which is half of the training win-
dow size. For the weakly supervised variants (WS and DWS), the access to labels (l_access)
is set to 50. Finally, the loss function used as input to the Page-Hinkley test is the error rate.

5.8 Results

In this section, we present the results obtained from the experiments. First, we start by
visualizing the alarms triggered by STUDD for concept drift and comparing to those of
a supervised benchmark method (Sect. 5.8.1). Then, we present the main results which
shows the performance of each approach and the respective costs (Sect. 5.8.2). Finally, we
carry out a sensitivity analysis which compares the performance of STUDD with a super-
vised approach with varying degrees of access to labels (Sect. 5.8.5).

0.25

0.50

0.75

1.00

0 1000 2000 3000 4000 5000
Time

P
er

fo
rm

an
ce

 (
C

oh
en

's
 K

ap
pa

)

Method SS STUDD Student

Fig. 7 An example using the AbruptInsects data stream where the proposed method is able to detect con-
cept drift and adapt to the environment similarly to a supervised approach (Color figure online)

4366 Machine Learning (2023) 112:4351–4378

1 3

5.8.1 Visualizing alarms

We start the analysis of the results by visualizing the alarms launched and the predictive
performance by STUDD. We also include the behaviour of SS for a comparative analysis.
In the interest of conciseness, we focus on three examples out of the 19 problems: two suc-
cessful examples, in which STUDD is able to detect concept drift and obtain a competitive
performance with a supervised approach with complete access to the true labels; and a
negative example, which shows a problem in which STUDD performs poorly.

The first example is shown in Fig. 7. The figure shows the performance of SS, STUDD,
and the student model of STUDD across the data stream InsectsAbrupt. The performance is
computed in a sliding window of 200 observations. The vertical dashed lines represent the
time points in which the respective approach (SS or STUDD) triggers an alarm for concept
drift.

In the initial part of the data stream the performance of both approaches is identical
(black and green lines are superimposed). Their behaviour are different from the point SS
triggers the first alarm. This alarm has a visible impact on predictive performance because
the score of STUDD continues to decreases considerably. Notwithstanding, STUDD is able
to detect the change soon after and regain the previous level of predictive performance. The
STUDD method behaves as expected. Initially, the student model is able to predict the pre-
dictions of the teacher with an arbitrarily good performance. However, when concept drift
occurs, this performance decreases which leads to concept drift detection.

Figure 8 shows another example for the data stream Posture which follows the same
structure as the previous one. In this case, STUDD is also able to launch an alarm soon after
SS, and provide a competitive adaptation (despite launching fewer alarms) relative to the
supervised approach. These examples show that the proposed approach is able to detect
changes in the environment.

We show a final example in Fig. 9 for data stream Bike. In this scenario, STUDD strug-
gles to adapt to the environment, though an early alarm is triggered. In the figure, it is
visible that the performance of the teacher and student models are contrasting in somein-
tervals of the data, for instance around data point 5000. While the performance score of the
teacher is 0, which denotes a poor performance, the performance of the student is perfect

Fig. 8 An example using the Posture data stream where the proposed method is able to detect concept drift
and adapt to the environment similarly to a supervised approach

4367Machine Learning (2023) 112:4351–4378

1 3

(score of 1). Effectively, the student is able to anticipate the behaviour of the teacher
model, though this behaviour is quite poor in terms of predictive ability. Consequently, no
alarm is triggered for concept drift as the performance of the student model is good and
stable. The main reason for this outcome is closely tied with the assumptions we put forth
in Sect. 5.6.1. We hypothesized that STUDD is able to detect changes provided both teacher
and student models have an arbitrarily good predictive performance.

0.00

0.25

0.50

0.75

1.00

0 5000 10000 15000
Time

P
er

fo
rm

an
ce

 (
C

oh
en

's
 K

ap
pa

)

Method SS STUDD Student

Fig. 9 An example using the Bike data stream where the proposed method struggles to detect changes in the
environment (Color figure online)

Table 3 Performance of each method in each data set according to to Cohen’s kappa score

STUDD BL-st BL-ret SS DSS WS DWS OS OF FF

AbruptInsects 0.73 0.59 0.74 0.78 0.78 0.79 0.73 0.79 0.80 0.77
Insects 0.81 0.81 0.77 0.74 0.74 0.79 0.81 0.71 0.70 0.77
Posture 0.50 0.34 0.51 0.40 0.48 0.46 0.50 0.49 0.47 0.49
Arabic 0.71 0.63 0.72 0.78 0.76 0.68 0.75 0.73 0.75 0.72
Bike 0.32 0.31 0.31 0.30 0.35 0.32 0.32 0.23 0.32 0.31
NOAA 0.39 0.39 0.45 0.44 0.43 0.46 0.41 0.46 0.40 0.46
Sensor 0.59 0.11 0.67 0.83 0.63 0.77 0.56 0.53 0.60 0.67
Powersupply 0.10 0.09 0.11 0.11 0.09 0.11 0.11 0.11 0.10 0.11
Poker 0.48 0.28 0.46 0.65 0.61 0.68 0.58 0.20 0.18 0.45
Rialto 0.38 0.30 0.34 0.47 0.37 0.40 0.36 0.40 0.36 0.34
Ozone 0.13 0.13 0.17 0.14 0.13 0.13 0.13 0.14 0.17 0.17
Outdoor 0.36 0.37 0.38 0.38 0.34 0.32 0.36 0.38 0.37 0.38
Luxembourg 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gas 0.48 0.32 0.51 0.62 0.53 0.58 0.51 0.44 0.57 0.51
Keystroke 0.84 0.84 0.93 0.88 0.84 0.84 0.84 0.84 0.84 0.93
ArabicShuffled 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
Covertype 0.52 0.50 0.67 0.63 0.58 0.53 0.53 0.33 0.54 0.66
GMSC 0.32 0.32 0.06 0.32 0.32 0.32 0.32 0.32 0.32 0.11
Electricity 0.29 0.13 0.39 0.39 0.39 0.39 0.34 0.33 0.38 0.39

4368 Machine Learning (2023) 112:4351–4378

1 3

The above examples show the behaviour of STUDD in different scenarios. In the next
section, we will analyse its performance in all data streams and compare it to state of the
art approaches.

5.8.2 Performance by data stream

The main results are presented in Tables 3 and 4 . The first one reports the Kappa score of
each approach across each data set. The second table has a similar structure as Table 3, but
the values represent the ratio of labels (with respect to the full length of the data stream)
used by the respective approach.

We start by studying the results according to the average rank, both in terms of predic-
tive performance and labeling costs. The average rank describes the average relative posi-
tion of each method (the lower the better) under comparison across the data sets.

The analysis of the average rank is presented in Fig. 10, which shows a scatter plot that
compares the average rank of each method both in terms of predictive performance (x-axis)
and in terms of labeling costs (y-axis). Overall, there is a strong trend which indicates that
a better score in one component leads to a worse score in the other.

The baseline methods BL-st and BL-ret represent two extremes: The former
shows the worsts average rank in predictive performance but the best one in terms of
costs, while the latter presents one of the best scores for predictive performance but
at high costs relative the the other approaches. Every other method shows a trade-off
between predictive performance and labeling costs: a better score in one component

Table 4 Ratio of additional labels (with respected to the full length of the data stream) required by each
method in each data set

STUDD BL-st BL-ret SS DSS WS DWS OS OF FF

AbruptInsects 0.28 0.09 0.94 0.19 0.19 0.19 0.28 0.19 0.19 0.66
Insects 0.09 0.09 0.94 0.28 0.28 0.09 0.09 0.47 0.66 0.94
Posture 0.02 0.01 0.99 0.08 0.05 0.11 0.11 0.02 0.02 0.74
Arabic 0.23 0.11 0.91 0.34 0.23 0.80 0.57 0.34 0.23 0.80
Bike 0.06 0.06 0.98 0.46 0.35 0.46 0.17 0.06 0.06 0.98
NOAA 0.06 0.06 0.99 0.22 0.22 0.28 0.17 0.28 0.22 0.99
Sensor 0.16 0.01 0.99 1.43 0.51 2.05 0.71 0.37 0.47 0.99
Powersupply 0.07 0.03 0.97 0.30 0.10 0.33 0.20 0.43 0.57 0.94
Poker 0.01 0.01 0.97 2.69 2.51 4.51 3.45 0.43 0.62 0.97
Rialto 0.21 0.01 1.00 1.23 0.50 1.16 0.79 0.50 0.75 1.00
Ozone 0.39 0.39 1.18 0.39 0.39 0.39 0.39 0.39 0.39 0.99
Outdoor 0.25 0.25 1.00 0.50 0.62 0.25 0.62 0.62 0.75 1.00
Luxembourg 0.53 0.53 1.05 0.53 0.53 0.53 0.53 0.53 0.53 1.05
Gas 0.86 0.07 0.93 0.89 0.78 2.00 1.58 0.50 0.86 0.93
Keystroke 0.31 0.31 0.94 0.31 0.31 0.31 0.31 0.31 0.31 0.63
ArabicShuffled 0.11 0.11 0.91 0.11 0.11 0.11 0.11 0.23 0.11 0.23
Covtype 0.09 0.01 0.99 0.49 0.42 0.51 0.16 0.09 0.29 0.99
GMSC 0.01 0.01 0.99 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Electricity 0.43 0.02 0.99 0.69 0.51 0.82 0.29 0.09 0.38 0.99

4369Machine Learning (2023) 112:4351–4378

1 3

leads to a worse one in the other. Focusing on STUDD, it shows a comparable per-
formance score relative to two other unsupervised approaches, namely OS and OF.
The remaining method of this type (FF) shows the best score among unsupervised
approaches, though it also shows considerable labeling costs relative to the others. In
terms of costs, STUDD is the best non-baseline approach.

The average rank analysis only measures the relative position of each method (aver-
aged across data sets), and it does not take into account the magnitude in the differ-
ence between scores. In many of the data sets, the difference of performance between
STUDD and the other approaches is negligible while the difference in labeling costs (in
favor of STUDD) are considerable. For example, in the Rialto dataset, STUDD shows a

STUDD

BL−st

BL−ret

SS

DSS

WS

DWS

OSOF

FF

2.5

5.0

7.5

10.0

2.5 5.0 7.5 10.0
Average Rank in Predictive Performance

Av
er

ag
e

R
an

k
in

 C
os

ts

Fig. 10 Scatter-plot which compares the average rank of each model in terms of performance and the aver-
age rank of each model in terms of costs

0.00

0.25

0.50

0.75

1.00

B
L−

st

B
L−

re
t

S
S

D
S

S

W
S

D
W

S

O
S

O
F FF

P
ro

po
rti

on
 o

f p
ro

ba
bi

lit
y

Result STUDD loses draw STUDD wins

Fig. 11 Results of applying the Bayesian sign test to the percentage difference in predictive performance
between STUDD and the respective method. The stacked bars represent the proportion of probability for
each outcome

4370 Machine Learning (2023) 112:4351–4378

1 3

competitive predictive performance (c.f. Table 3) with other approaches but with con-
siderable less costs (c.f. Table 4). This outcome is also visible in other problems, such
as Powersupply, Outdoor, among others.

We carried out a Bayesian analysis to assess the significance of the results in terms
of magnitude of differences. We applied the Bayes sign test (Benavoli et al., 2014) to
measure the significance of the percentage difference in scores between STUDD and
each of the other approaches in the experiments. We applied this test with a ROPE
(region of practical equivalence) value of 5%, which means that the respective pair
of methods under comparison are practically equivalent if the absolute difference in
their scores falls below this value. The results for predictive performance are shown
in Fig. 11 while the results for labeling costs are presented in Fig. 12. We refer to
Benavoli et al. (2017) for a comprehensive read on Bayesian analysis for comparing
multiple approaches. As an example from Fig. 11, STUDD has around 25% probability
of winning against the baseline BL-st, while with around 75% the outcome is a draw
(i.e. percentage difference in predictive performance below 5%).

In terms of predictive performance, STUDD often leads to comparable scores rela-
tive to the remaining methods. When compared to supervised approaches (SS, DSS,
WS, and DWS), STUDD either shows practically equivalent predictive performance or
loses significantly. Relative to unsupervised approaches (OS, OF, and FF), STUDD
shows an equivalent performance, though there is around 25% probability of losing to
FF.

The main benefit of STUDD becomes apparent in Fig. 12, when the Bayesian sign
test is applied to the labeling costs. Except for the baseline BL-st (which is never
retrained), STUDD wins significantly (incurs significantly less costs) over all other
methods with high probability. In summary, STUDD often shows a practically equiva-
lent predictive performance but with significantly less labeling costs.

0.00

0.25

0.50

0.75

1.00

B
L−

st

B
L−

re
t

S
S

D
S

S

W
S

D
W

S

O
S

O
F FF

P
ro

po
rti

on
 o

f p
ro

ba
bi

lit
y

Result STUDD loses draw STUDD wins

Fig. 12 Results of applying the Bayesian sign test to the percentage difference in labeling costs between
STUDD and the respective method

4371Machine Learning (2023) 112:4351–4378

1 3

5.8.3 Analysing the alarms

As we described before, the results presented above evaluate each method by focusing on
the trade-off between predictive performance and the costs of triggering an alarm (and
acquiring labeled instances). In this section and for completeness, we also analyse the
detection methods using typical drift detection metrics, namely:

• Missed detection ratio (MDR), which represents the ratio of datasets in which the
respective approaches fail to detect concept drift;

• False alarm ratio (FAR), denoting the ratio of datasets in which the respective
approaches launch at least one false alarm;

• Mean time to detection (MTD), which quantifies the average number of data points it
takes for a method to detect a change—since we work with multiple data sets with dis-
tinct sample size we normalize MTD by the total number of observations of the data;

• Mean time between false alarms (MTFA), which denotes the mean time between false
alarms triggered by the model—Similarly to MTD, this metric is also normalized by
the sample size of the respective dataset.

These metrics are, to an extent, implicitly incorporated in the previous analysis. In prin-
ciple, lower (better) scores in MDR, FAR, or MTD denote a more accurate detection and
faster adaptation, which consequently leads to a better predictive performance. On the other
hand, higher (better) MTFA scores represent less, in principle unnecessary, labeling costs.

To compute these metrics we have to know in advance at which time instance concept
drift occurs. This point is difficult to find in practice, and the typical approach is to resort
to synthetic experimental designs, e.g. (Žliobaite, 2010; Bifet, 2017). In our work, we keep
the same experimental design presented in the previous sections, and use the behaviour of
SS as benchmark. Essentially, we compute the metrics outlined above using the first alarm
triggered by SS as the concept drift occurrence. Since the drift point is based on the alarms
of a specific method, we apply the following approach for considering true detections and
false alarms: if a given detector trigger an alarm up to W observations before the first alarm
of SS, then the alarm is considered a true detection. Otherwise, if the alarm occurs more
than W observations before the first alarm of SS, it is considered a false positive. We intro-
duce this window of W observations because a detector may be faster to detect a change
and should not be penalized for it.

The results for this analysis are presented in Table 5. We exclude the baselines from this
study as they do not comprise a change detection mechanism. Moreover, the MTD and MTFA

Table 5 Alarm analysis for each
method across 16 datasets

Method MDR FAR MTD MTFA

STUDD 0.19 0 0.09 NA
DSS 0.06 0 0.14 NA
WS 0.12 0 0.14 NA
DWS 0.19 0 0.16 NA
OS 0.06 0.12 0.12 0.44
OF 0.06 0.12 0.11 0.30
FF 0.00 0.25 0.07 0.15

4372 Machine Learning (2023) 112:4351–4378

1 3

scores are only computed for the 16 out of 19 datasets for which SS triggers at least one alarm.
The three datasets excluded are the following: Luxembourg, ArabicShuffled, GMSC.
STUDD shows a MDR of around 19% (3 out of 16 problems), which is the highest value

recorded (tied with DWS). We studied the outcome in these three particular data sets, which
are the Insects, NOAA, and Keystroke problems. From the results in Table 3, STUDD leads to
the best performance in one of the datasets (Insects), tied with DWS. In the Keystroke problem,
only two approaches show a better predictive performance. In the remaining dataset, NOAA,
STUDD shows the second to last performance. Overall, although STUDD does not trigger any
alarm in these three problems, this results in a competitive performance in two cases.

5.8.4 Analysis of label efficiency

This section analyses the competing methods according to their labeling efficiency. Labe-
ling efficiency combines the two metrics used before (predictive performance and annotation
costs) into a single measure. It attempts to measure how much performance a given method
gains by retrieving additional labels.

We define the labeling efficiency of a method m according to the ratio between its predic-
tive performance and its annotation costs. These scores are normalized by those of the base-
line BL-st in order to obtain a scale-independent metric. Label efficiency can be formalized
as follows:

(1)Normalized_Performance(m) =
Performance(m)

Performance(�� − ��)

(2)Normalized_Cost(m) =
Cost(m)

Cost(�� − ��)

(3)Labeling_Efficiency(m) =
Normalized_Performance(m)

Normalized_Cost(�� − ��)

0.00

0.25

0.50

0.75

1.00

STUDD BL−ret SS DSS WS DWS OS OF FF
Method

La
be

l e
ffi

ci
en

cy

Fig. 13 Distribution of label efficiency of each method across the 19 datasets

4373Machine Learning (2023) 112:4351–4378

1 3

This metric assumes that the scores are non-negative.
Figure 13 shows the distribution of label efficiency of each method across the 19 data-

sets. The proposed approach STUDD shows the best overall label efficiency distribution. As
previously mentioned, STUDD shows a comparable (and sometimes slightly worse) pre-
dictive performance relative to other approaches. However, the labeling efficiency is the
best among the competing methods because of the significantly lower annotation costs.
Excluding the baseline BL-ret, the unsupervised approach FF shows the worst labeling
efficiency distribution. In effect, while FF shows one of the best predictive performance
(the best among unsupervised approaches, including STUDD) its edge is accompanied by
higher annotation costs.

5.8.5 Sensitivity analysis to label access and delay

In the previous sections we showed the applicability of STUDD for concept drift detection,
and how it compares with other state of the art approaches. While we approach the concept
drift task in a completely unsupervised manner, there may be scenarios in which labels are
available, though in a limited manner. We described these scenarios in Sect. 2.2. We intro-
duced observation delay and availability in some of the methods used in the experiments,
namely DSS, WS, and DWS. In this section, we aim at making another comparison between
STUDD and these methods. Specifically, our goal is to study the relative performance of
these methods for different values of label delay (l_delay) and label access (l_access).

As described in Sect. 5.5, we define the label availability according to two parameters:
l_access%, which denotes the probability of a label becoming available; and l_delay, which
represents the number of observations it takes for a label to become available. For l_access,
we test the following values: {1, 10, 25, 50}. In terms of l_delay, the set of possibilities is
{250, 500, 1000, 1500, 2000, 4000}. For example, suppose that l_access is equal to 50 and
l_delay is set to 250. This means that a label becomes available with 50% probability after
250 observations.

0

2

4

SS
STUDD

S_W2000

S_W4000

S_W1500

S_W500

S_W1000

S_W250

A
ve

ra
ge

 R
an

k

Observation Perc. = 1

0

2

4

SS
STUDD

S_W1000

S_W250

S_W500

S_W4000

S_W2000

S_W1500

A
ve

ra
ge

 R
an

k

Observation Perc. = 10

0

2

4

6

SS
S_W250

S_W1000

S_W500

STUDD

S_W1500

S_W2000

S_W4000

A
ve

ra
ge

 R
an

k

Observation Perc. = 25

0

2

4

SS
S_W250

S_W500

S_W1500

S_W1000

STUDD

S_W4000

S_W2000
A

ve
ra

ge
 R

an
k

Observation Perc. = 50

Fig. 14 Analysing the results for different values of l_access and l_delay. Each barplot represents the aver-
age rank of each approach across the 19 data streams

4374 Machine Learning (2023) 112:4351–4378

1 3

We show the results of this analysis in Fig. 14, which presents four barplots, one for
each value of l_access. Each barplot represents the average rank of each method across
the 19 data streams. A method has rank 1 in a data set if it presents the best performance
score in that task. In each barplot, we include SS, STUDD, and six supervised variants
(one for each delay value). Each one of these methods is identified by the delay value.
For example, S_W2000 represents a supervised variant with a delay of 2000 observa-
tions and the respective l_access. We note that in each barplot, the value of l_access is
only valid for the six supervised variants and not for SS or STUDD.

The results show that STUDD performs relatively better as the probability of the label
availability (l_access) decreases. Regarding the delay time (l_delay), lower values typi-
cally lead to better performance in terms of average rank. However, this parameter has
a weaker impact relative to l_access. For example, for a l_access equal to 50, STUDD is
the worst approach irrespective of the delay time. In summary, the results indicate that
the proposed approach is beneficial if label acquisition is a problem.

6 Discussion

6.1 Main results

In the previous section we analysed the proposed approach for concept drift detec-
tion. STUDD is designed to detect changes in the environment without any access
to true labels after the model is deployed. In this sense, we refer to this approach as
unsupervised.

The results obtained provided enough empirical evidence verifying the ability of
STUDD to detect concept drift (RQ1). While its predictive performance is comparable to
other unsupervised approaches in most of the problems, it is often able to considerably
reduce the label requirements (RQ2) as it triggers few alarms. This feature is important in
domains of application in which the annotation process or false alarms are costly. We also
compared STUDD with several variants of supervised approaches to concept drift detec-
tion. The results indicated that STUDD provides better performance only if the access to
labels is low (RQ3).

6.2 Types of concept drift and label availability

In the introductory section of this paper we outlined the two main types of concept drift:
real concept drift and virtual concept drift. Similarly to other unsupervised approaches to
concept drift, the proposed methodology assumes that labels are unavailable. It is clear that
these methods are only able to capture changes if they affect the input explanatory vari-
ables. Therefore, STUDD is appropriate for capturing virtual concept drift.

We believe that addressing this limitation represents an important direction for future
research. STUDD, and other unsupervised approaches for concept drift, do not make use
of labels even if they are available. Yet, while in many domains of applications labels are
scarce they may be available in a small quantity (c.f. Fig. 1). Therefore, attempting to com-
bine unsupervised approaches for concept drift with supervised approaches with poten-
tially delayed or limited feedback may be worthwhile.

4375Machine Learning (2023) 112:4351–4378

1 3

6.3 Choice of learning algorithm

We make an important assumption regarding the learning algorithms when apply-
ing STUDD. This method relies on predictive models (both teacher and student) which
provide an arbitrary good fit to the data. Otherwise, the behaviour of the teacher may
become too predictable, which leads to a stable performance for the student model. Fig-
ure 9 provides an example of this scenario. We coped with this limitation by introducing
an algorithm selection procedure based on grid search optimization, where we select the
most appropriate pair of models (teacher and student) for each dataset. To be clear, the
teacher model is optimized for all approaches besides STUDD.

6.4 Experimental design choices

In the experiments, we evaluate different approaches according to predictive perfor-
mance and labeling costs. This approach, which was taken before by dos Reis et al.
(2016), directly quantifies the risk/reward of applying a specific detection mechanism.
Notwithstanding, for completeness, we also measure traditional drift detection metrics,
such as missed detection ratio or mean time to detection, using the approach SS as a
benchmark.

Another important aspect of our experimental design is concept drift adaptation.
We focus on typical batch learning classification models. After a change detection
method launches an alarm it triggers an adaptation process in which a predictive model
is retrained using a batch of recent observations. In principle, online learning systems
can also be applied within our framework, e.g. the Adaptive Random Forest (Gomes
et al., 2017). However, these methods typically self-adapt to the environment without
explicit change detection method (Gama et al., 2014). Notwithstanding, as Gama et al.
(2014) point out, explicit detection methods provide additional information regarding
the dynamics of the relationship between the predictive model and the data.

In terms of application, we found that optimizing the predictive models (both teacher
and student) is important. In terms of change detection the Page-Hinkley test provided
interesting results, though other detection mechanisms are applicable.

7 Conclusions

Detecting concept drift is an important task in predictive analytics. Most of the state of
the art approaches designed to tackle this problem are based on monitoring the loss of
the underlying predictive model.

In this paper, we follow the idea that the assumption that labels are readily available
for computing the loss of predictive models is too optimistic (Žliobaite, 2010; Pinto
et al., 2019). Therefore, we focus on solving this problem in an unsupervised manner,
i.e., without any access to the true labels.

We propose a method to deal with this task based on a model compression (Buciluǎ
et al., 2006) approach. The core of the idea is to replace the loss of the predictive model
which is deployed in the data stream (the teacher) with the mimicking loss of the student
model as the input to traditional concept drift detection methods, such as the Page-Hin-
kley test (Page, 1954).

4376 Machine Learning (2023) 112:4351–4378

1 3

We carry out empirical experiments using 19 benchmark data streams and several
state of the art methods. We show that the proposed method is able to detect concept
drift and adapt itself to the environment. The behavior of the method is conservative
with respect to other approaches, which is an advantage in domains where false alarms
or label acquisition is costly. We published the code necessary to reproduce the experi-
ments online. The data sets used are also available in public online repositories.

Author contributions Vitor Cerqueira, Heitor Murilo Gomes, Albert Bifet, Luis Torgo authors contributed
to writing and research.

Funding The work of L. Torgo was undertaken, in part, thanks to funding from the Canada Research Chairs
program.

Availability of data and materials All experiments and data are publicly available (c.f. footnote 1).

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

 Ethics approval Not applicable.

 Consent to participate Not applicable.

 Consent for publication Not applicable.

References

Baena-Garcıa, M., del Campo-Ávila, J., Fidalgo, R., Bifet, A., Gavalda, R., & Morales-Bueno, R. (2006).
Early drift detection method. In Fourth international workshop on knowledge discovery from data
streams (Vol. 6, pp. 77–86).

Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., & Ruggeri, F. (2014). A Bayesian Wilcoxon signed-rank
test based on the Dirichlet process. In International conference on machine learning (pp. 1026–1034).
PMLR.

Benavoli, A., Corani, G., Demšar, J., & Zaffalon, M. (2017). Time for a change: A tutorial for compar-
ing multiple classifiers through Bayesian analysis. The Journal of Machine Learning Research, 18(1),
2653–2688.

Bifet, A. (2017). Classifier concept drift detection and the illusion of progress. In International conference
on artificial intelligence and soft computing (pp. 715–725). Springer.

Bifet, A., & Gavalda, R. (2007). Learning from time-changing data with adaptive windowing. In Proceed-
ings of the 2007 SIAM international conference on data mining (pp. 443–448). SIAM.

Blackard, J. A., & Dean, D. J. (1999). Comparative accuracies of artificial neural networks and discriminant
analysis in predicting forest cover types from cartographic variables. Computers and Electronics in
Agriculture, 24(3), 131–151.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees.
Wadsworth International Group (Vol. 432, pp. 151–166).

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Buciluǎ, C., Caruana, R., & Niculescu-Mizil, A. (2006). Model compression. In Proceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 535–541).
ACM.

Caruana, R., Niculescu-Mizil, A., Crew, G., & Ksikes, A. (2004). Ensemble selection from libraries of mod-
els. In Proceedings of the twenty-first international conference on machine learning (p. 18). ACM.

Cattral, R., Oppacher, F., & Deugo, D. (2002). Evolutionary data mining with automatic rule generalization.
Recent Advances in Computers, Computing and Communications, 1(1), 296–300.

4377Machine Learning (2023) 112:4351–4378

1 3

Cerqueira, V., Gomes, H. M., & Bifet, A. (2020). Unsupervised concept drift detection using a student–
teacher approach. In International conference on discovery science (pp. 190–204). Springer.

Chang, C. C., & Lin, C. J. (2011). Libsvm: A library for support vector machines. ACM Transactions on
Intelligent Systems and Technology (TIST), 2(3), 1–27.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM
sigkdd international conference on knowledge discovery and data mining (pp. 785–794).

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measure-
ment, 20(1), 37–46.

de Souza, V. M., Silva, D. F., & Batista, G. E. (2013). Classification of data streams applied to insect recog-
nition: Initial results. In 2013 Brazilian conference on intelligent systems (pp. 76–81). IEEE.

Ditzler, G., & Polikar, R. (2012). Incremental learning of concept drift from streaming imbalanced data.
IEEE Transactions on Knowledge and Data Engineering, 25(10), 2283–2301.

dos Reis, D. M., Flach, P., Matwin, S., & Batista, G. (2016). Fast unsupervised online drift detection using
incremental Kolmogorov–Smirnov test. In Proceedings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining (pp. 1545–1554).

Dua, D., & Graff, C. (2017). Uci machine learning repository.
Fanaee-T, H., & Gama, J. (2014). Event labeling combining ensemble detectors and background knowledge.

Progress in Artificial Intelligence, 2(2–3), 113–127.
Friedman, J., Hastie, T., & Tibshirani, R., et al. (2001). The elements of statistical learning (Vol. 1).

Springer series in statistics, New York.
Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift detection. In Brazilian sympo-

sium on artificial intelligence (pp. 286–295). Springer.
Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adap-

tation. ACM Computing Surveys (CSUR), 46(4), 1–37.
Gao, J., Fan, W., Han, J., & Yu, P. S. (2007). A general framework for mining concept-drifting data streams

with skewed distributions. In Proceedings of the 2007 SIAM international conference on data mining
(pp. 3–14). SIAM.

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F., Pfharinger, B., et al. (2017). Adaptive ran-
dom forests for evolving data stream classification. Machine Learning, 106(9–10), 1469–1495.

Gomes, H. M., Read, J., Bifet, A., Barddal, J. P., & Gama, J. (2019). Machine learning for streaming data:
State of the art, challenges, and opportunities. ACM SIGKDD Explorations Newsletter, 21(2), 6–22.

Gözüaçık, Ö., Büyükçakır, A., Bonab, H., & Can, F. (2019) Unsupervised concept drift detection with a
discriminative classifier. In Proceedings of the 28th ACM international conference on information and
knowledge management (pp. 2365–2368).

Hammami, N., & Bedda, M. (2010). Improved tree model for Arabic speech recognition. In 2010 3rd inter-
national conference on computer science and information technology (Vol. 5, pp. 521–526). IEEE.

Harries, M., & Wales, N. S. (1999). Splice-2 comparative evaluation: Electricity pricing.
Hinton, G., Vinyals, O., & Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint

arXiv: 1503. 02531.
Kaluža, B., Mirchevska, V., Dovgan, E., Luštrek, M., & Gams, M. (2010). An agent-based approach to

care in independent living. In International joint conference on ambient intelligence (pp. 177–186).
Springer.

Kim, Y., & Park, C. H. (2017). An efficient concept drift detection method for streaming data under limited
labeling. IEICE Transactions on Information and Systems, 100(10), 2537–2546.

Kuncheva, L. I. (2004). Classifier ensembles for changing environments. In International workshop on mul-
tiple classifier systems, (pp. 1–15). Springer.

Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information The-
ory, 37(1), 145–151.

Losing, V., Hammer, B., & Wersing, H. (2015). Interactive online learning for obstacle classification on a
mobile robot. In 2015 international joint conference on neural networks (ijcnn) (pp. 1–8). IEEE.

Losing, V., Hammer, B., & Wersing, H. (2016). Knn classifier with self adjusting memory for heterogene-
ous concept drift. In 2016 IEEE 16th international conference on data mining (ICDM) (pp. 291–300).
IEEE.

Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: A multi-output streaming frame-
work. The Journal of Machine Learning Research, 19(1), 2915–2914.

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100–115.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:

Machine learning in python. The Journal of Machine Learning Research, 12, 2825–2830.
Pinto, F., Sampaio, M. O., & Bizarro, P. (2019). Automatic model monitoring for data streams. arXiv pre-

print arXiv: 1908. 04240

http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1908.04240

4378 Machine Learning (2023) 112:4351–4378

1 3

Souza, V., Reis, D. M. D., Maletzke, A. G., & Batista, G. E. (2020). Challenges in benchmarking stream
learning algorithms with real-world data. arXiv preprint arXiv: 2005. 00113.

Souza, V. M., Silva, D. F., Gama, J., & Batista, G. E. (2015). Data stream classification guided by cluster-
ing on nonstationary environments and extreme verification latency. In Proceedings of the 2015 SIAM
international conference on data mining (pp. 873–881). SIAM.

Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer, M. L., & Huerta, R. (2012). Chemical gas sensor
drift compensation using classifier ensembles. Sensors and Actuators B: Chemical, 166, 320–329.

Yu, S., Wang, X., & Principe, J.C. (2018). Request-and-reverify: Hierarchical hypothesis testing for concept
drift detection with expensive labels. arXiv preprint arXiv: 1806. 10131.

Zhou, Z. H. (2018). A brief introduction to weakly supervised learning. National Science Review, 5(1),
44–53.

Zhu, X. (2010). Stream data mining repository. http:// www. cse. fau. edu/ xqzhu/ stream. html.
Žliobaite, I. (2010). Change with delayed labeling: When is it detectable? In 2010 IEEE international con-

ference on data mining workshops (pp. 843–850). IEEE.
Žliobaitė, I. (2011). Combining similarity in time and space for training set formation under concept drift.

Intelligent Data Analysis, 15(4), 589–611.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/2005.00113
http://arxiv.org/abs/1806.10131
http://www.cse.fau.edu/xqzhu/stream.html

	STUDD: a student–teacher method for unsupervised concept drift detection
	Abstract
	1 Introduction
	2 Background
	2.1 Problem definition
	2.2 Label availability

	3 Related research
	3.1 Concept drift detection
	3.1.1 Supervised approaches
	3.1.2 Unsupervised approaches

	3.2 Student–teacher learning approach

	4 Methodology
	4.1 Stage 1: student–teacher training
	4.2 Stage 2: change detection
	4.3 Concept drift adaptation

	5 Empirical experiments
	5.1 Research questions
	5.2 Data sets
	5.3 Workflow of experiments
	5.4 Evaluation
	5.5 Methods
	5.6 Learning algorithm
	5.6.1 Assumptions
	5.6.2 Algorithm selection

	5.7 Parameter setup
	5.8 Results
	5.8.1 Visualizing alarms
	5.8.2 Performance by data stream
	5.8.3 Analysing the alarms
	5.8.4 Analysis of label efficiency
	5.8.5 Sensitivity analysis to label access and delay

	6 Discussion
	6.1 Main results
	6.2 Types of concept drift and label availability
	6.3 Choice of learning algorithm
	6.4 Experimental design choices

	7 Conclusions
	References

