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Abstract
The data used for analysis are becoming increasingly complex along several directions: 
high dimensionality, number of examples and availability of labels for the examples. This 
poses a variety of challenges for the existing machine learning methods, related to ana-
lyzing datasets with a large number of examples that are described in a high-dimensional 
space, where not all examples have labels provided. For example, when investigating the 
toxicity of chemical compounds, there are many compounds available that can be described 
with information-rich high-dimensional representations, but not all of the compounds 
have information on their toxicity. To address these challenges, we propose methods for 
semi-supervised learning (SSL) of feature rankings. The feature rankings are learned in 
the context of classification and regression, as well as in the context of structured output 
prediction (multi-label classification, MLC, hierarchical multi-label classification, HMLC 
and multi-target regression, MTR) tasks. This is the first work that treats the task of feature 
ranking uniformly across various tasks of semi-supervised structured output prediction. 
To the best of our knowledge, it is also the first work on SSL of feature rankings for the 
tasks of HMLC and MTR. More specifically, we propose two approaches—based on pre-
dictive clustering tree ensembles and the Relief family of algorithms—and evaluate their 
performance across 38 benchmark datasets. The extensive evaluation reveals that rankings 
based on Random Forest ensembles perform the best for classification tasks (incl. MLC 
and HMLC tasks) and are the fastest for all tasks, while ensembles based on extremely 
randomized trees work best for the regression tasks. Semi-supervised feature rankings out-
perform their supervised counterparts across the majority of datasets for all of the different 
tasks, showing the benefit of using unlabeled in addition to labeled data.
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1 Introduction

In the era of massive and complex data, predictive modeling is undergoing some signifi-
cant changes. Since data are becoming ever more high dimensional, i.e., the target attrib-
utes potentially depend on a large number of descriptive attributes, there is a need to pro-
vide better understanding of the importance or relevance of the descriptive attributes for 
predicting the target attributes. This is achieved through the task of feature ranking (Guyon 
and Elisseeff 2003; Jong et al. 2004; Nilsson et al. 2007; Petković et al. 2020): the output of 
a feature ranking algorithm is a list (also called a feature ranking) of the descriptive attrib-
utes xi ordered by their importance (relevance) importance(xi) to the target attribute(s). The 
obtained feature ranking can then be used in two contexts: (1) to better understand the rel-
evance of the descriptive variables for the target variable or (2) to perform feature selection 
and reduce the number of descriptive variables. The latter not only decreases the computa-
tional complexity of building a predictive model later on, but also makes the models (that 
use fewer features) easier to explain and understand. This is of high importance in a variety 
of application domains such as medicine (Holzinger et al. 2019; Hoogendoorn et al. 2016; 
Tjoa and Guan 2020), life sciences (Grissa et  al. 2016; Saeys et  al. 2007; Tsagris et  al. 
2018) and ecological modeling (Bhardwaj and Patra 2018; Galelli et al. 2014; Zhou et al. 
2018).

For some domains, having a large number of features can be computationally demand-
ing, while at the same time labelling even a moderate number of examples might be very 
expensive. For instance, when doing sentiment analysis of text, e.g., tweets (Kralj Novak 
et al. 2015), or determining properties of new chemical compounds (DiMasi et al. 2003), 
e.g., in QSAR (quantitative structure activity relationship) studies (which is one of the con-
sidered datasets in the experiments), one can only label a limited quantity of data, since 
labeling demands a lot of human effort and time (labeling tweets Kralj Novak et al. 2015), 
or is expensive (performing wet lab QSAR experiments). Since the cases where many 
examples remain unlabeled are not that rare, advances in predictive modeling have brought 
us to the point where we can make use of them. In this work, we focus on semi-supervised 
learning (SSL) techniques that handle data where some examples are labeled and some are 
not (as opposed to supervised learning (SL), where all examples are labeled).

The SSL approaches are all based on the assumption that the distribution of the target 
values is well-reflected in the structure of the data, i.e., on the clustering hypothesis, stated 
below:

Assumption 1 (Clustering Hypothesis) Clusters of examples (in the input space of 
descriptive attributes) well resemble the distribution of target values (in the output space).

The hypothesis is not precisely defined, but a way of quantifying its validity is proposed 
in Sect. 6.2. The rationale behind the hypothesis is as follows. If the clustering hypothesis 
is satisfied, then an SSL algorithm that can make use of unlabeled data, may outperform 
the classical SL algorithms that simply ignore unlabeled data. This holds for predictive 
modeling tasks (Levatić 2017; Zhu et al. 2009), and as we show in this work, for feature 
ranking tasks also.

In addition to the massiveness, the complexity of the data is also increasing. Predic-
tive modeling is no longer limited to the standard classification and regression tasks, but 
also tackles their generalizations. For example, in classification, the target variable may 
take only one of the possible values, for each example in the data. On the other hand, 
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problems such as automatic tagging (e.g., the Emotions dataset (see Sect. 6.2), where 
the task is to determine emotions that a given musical piece carries) allow for more than 
one label per example (e.g., a song can be sad and dramatic at the same time). A further 
generalization of this problem is hierarchical multi-label classification, where the possi-
ble labels are organized into a hierarchy, such as the one in Fig. 1 (Sect. 2), which shows 
animal-related labels. If a model labels an example as a koala (Sect. 6.2), it should also 
label it with the generalizations of this label, i.e., Australian and animal. Similarly, the 
task of regression can be generalized to multi-target regression, i.e., to predicting more 
than one numeric variable at the same time, e.g., predicting canopy density and tree 
height in forests (cf. the Forestry dataset in Sect. 6.2).

The main motivation for the generalized predictive modeling tasks is that consider-
ing all the target variables at the same time may exploit the potential interactions among 
them. These are typically ignored when one predicts each variable separately. Moreover, 
building a single model for all targets can dramatically lower the computational costs.

In many cases, the data is at the same time semi-supervised (has missing target val-
ues), high dimensional and has a structured target, as for example in gene function pre-
diction: Labeling genes with their functions is expensive (semi-supervision), the genes 
can be described with a large number of variables (high dimensionality), and genes can 
have multiple functions that are organized into a hierarchy (structured target). Thus, 
designing feature ranking algorithms that (1) can use unlabeled data, and (2) can handle 
a variety of target types, including structured ones, is a relevant task that we address in 
this work. To the best of our knowledge, this is the first work that treats jointly the tasks 
of feature ranking and semi-supervised learning in the context of predicting different 
types of structured outputs.

We propose two general feature ranking approaches. In the first approach, a ranking 
is computed from an ensemble of predictive clustering trees (Kocev et al. 2013; Bloc-
keel 1998), which can handle structured outputs and SSL (Levatić 2017), whereas the 
second approach is based on the distance-based Relief family of algorithms (Kira and 
Rendell 1992). In a preliminary study, we investigated the performance of the ensem-
ble-based approach for the task of classification (Petković et al. 2019). In this work, we 
substantially extend our previous study in several directions: 

1. Additional datasets for classification are considered.
2. Additional four tasks are considered (multi-label and hierarchical multi-label classi-

fication, single- and multi-target regression), and the ensemble-based feature ranking 
methods are evaluated in these cases.

3. The Relief family of algorithms is extended to SSL, and evaluated for all five tasks (in 
comparison to the ensemble-based feature ranking methods).

4. We compare our feature ranking methods to competing methods from the literature, 
where such methods exist.

Fig. 1  An example hierarchy of 
animal related labels

animal

Australian African Asian

dingo koala giraffe elephant tiger
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The remainder of the paper is organized as follows. In Sect. 2, we give the formal defini-
tions of the different predictive modeling tasks, and introduce the notation. Section 3 sur-
veys the related work, whereas Secs. 4 and 5 define the ensemble-based and Relief-based 
feature importance scores, respectively. Section 6 fully describes the experimental setup. 
We present and discuss the results in Sect. 7, and conclude with Sect. 8.

The implementation of the methods, as well as the results are available at http:// source. 
ijs. si/ mpetk ovic/ ssl- ranki ng.

2  Preliminaries

Basic notation. The data D consist of examples (x, y) , where x is a vector of values of 
D descriptive variables (features), and y is a vector of values of T target variables. The 
domain Xi of the feature xi is either numeric, i.e., Xi ⊆ ℝ , or categorical, i.e., it is a finite 
set of categorical values, e.g., Xi = {A,B,AB, 0} if the feature xi describes blood type. Both 
numeric and categorical types are considered primitive unstructured types. The domain Y 
of the target variable depends on the predictive modeling task at hand. In this paper, we 
consider five tasks, two having unstructured, and three having structured target data types.

Regression (STR). In this case, the target is a single numeric variable. Since we later 
also consider its generalization (multi-target regression), we refer to this task as single-
target regression (STR).

Multi-target regression (MTR). Here, the target variable is a vector with T numeric 
variables as components, i.e., Y ⊆ ℝ

T . Equivalently, we can define MTR as having T 
numeric targets, hence the name. In the special case of T = 1 , MTR boils down to STR.

Classification. In this case, the target is categorical. Since the algorithms considered 
in this paper can handle any classification task, we do not distinguish between binary 
( |Y| = 2 ) and multi-class classification ( |Y| > 2).

Multi-label classification (MLC). In MLC, the target domain is the power set P(L) of 
some set L  of categorical values, whose elements are typically referred to as labels. Thus, 
the target values are sets. Typically, the target value y of the example (x, y) is referred to as 
a set of labels that are relevant for this example. The sets y can be of any cardinality, thus 
the labels are not mutually exclusive, as is the case with the task of (standard) classification 
(where |Y| = 1).

Hierarchical multi-label classification (HMLC). This is a generalization of MLC 
where the domain is again a power set of some label set L  , which, additionally, is now 
partially-ordered via some ordering ≺ . An example hierarchy (of animal-related labels), 
which results from such an ordering is shown in the corresponding Haase diagram in 
Fig. 1.

If �1 ≺ �2 , the label �1 is a predecessor of the label �2 . If, additionally, there is no such 
label � , such that �1 ≺ � ≺ �2 , we say that �1 is a parent of �2 . If a label does not have any 
parents, it is called a root. A hierarchy can be either tree-shaped, i.e., every label has at 
most one parent, or it can be a directed acyclic graph (DAG). Since the label elephant 
has two parents (African and Asian), the hierarchy in Fig. 1 is not a tree, but rather a 
DAG.

Regarding predictive modeling, the ordering results in a hierarchical constraint, i.e., if a 
label � is predicted to be relevant for a given example, then, also its predecessors must be 
predicted to be relevant, e.g., if a given example is koala, it must also be Australian 
and animal.

http://source.ijs.si/mpetkovic/ssl-ranking
http://source.ijs.si/mpetkovic/ssl-ranking
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In the cases of MLC and HMLC, each set of relevant labels S ⊆ L  is conveniently rep-
resented by the 0/1 vector s of length |L| , whose j-th component equals one if and only if 
�j ∈ S . Thus, we will also use the notation T = |L|.

Semi-supervised learning (SSL). The unknown target values will be denoted by ques-
tion marks (?). If the target value of the example is known, we say that the example is 
labeled, otherwise the example is unlabeled. This terminology applies to all types of targets 
and is not to be confused with the class-values being called labels in the tasks of MLC and 
HMLC.

3  Related work

In general, feature ranking methods are divided into three groups (Stańczyk and Jain 
2015). Filter methods do not need any underlying predictive model to compute the ranking. 
Embedded methods compute the ranking directly from some predictive model. Wrapper 
methods are more appropriate for feature selection than feature ranking, since they directly 
estimate the quality of a candidate feature subset by the predictive power of the corre-
sponding model, and this guides the selection process.

Filters are typically the fastest, but can be myopic, i.e., can neglect possible feature 
interactions, whereas the embedded methods are a bit slower, but can additionally serve 
as an explanation of the predictions of the underlying model. The importance of the task 
of feature ranking is reflected in numerous methods solving this task in the context of clas-
sification and STR (Guyon and Elisseeff 2003; Stańczyk and Jain 2015). However, the ter-
ritory of feature ranking for SSL is mainly uncharted, especially when it comes to feature 
ranking in the context of structured output prediction.

An overview of SSL feature ranking methods for classification and STR is given in 
Sheikhpour et al. (2017). However, the vast majority of the methods described there are 
either supervised or unsupervised (ignoring the labels completely). Two exceptions are the 
SSL Laplacian score (Doquire and Verleysen 2013), applicable to STR problems (we refer 
to it as STR-Laplace), and the SEFR method (Bellal et al. 2012), applicable to classifica-
tion problems.1

The SEFR method is a filter and stems from graph theory. It first converts a dataset 
into a graph, encoded as a weighted incidence matrix, whose weights correspond to the 
distances between the examples in the data. The distances are measured in the descriptive 
space, but more weight is put on the labeled examples. One of the drawbacks of the origi-
nal method is that it can only handle numeric features. Our modification that overcomes 
this is described in Sect. 6.6.

For structured output prediction in SSL, we could only find competing feature rank-
ing methods in the case of MLC. Model agnostic feature ranking (Gharroudi et al. 2016) 
is based on the random forest feature ranking score (Breiman 2001), computed from an 
ensemble of base learners. Next, a whole group of methods are based on—roughly speak-
ing—constructing a (constrained) linear model for predicting labels and extracting fea-
ture importances from the weights in the model. The most appropriate model is found by 
minimizing an objective function that depends on the method. For example, this has been 

1 In our previous work (Petković et al. 2019), we show that our ensemble based method outperforms SEFR 
on the task of semi-supervised classification.
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done in Chang et  al. (2014b), where a separate model for each label is built. A similar 
approached has been followed in Wang et al. (2017), where similarities between examples 
are included into the objective function, and l2,1 regularization is used, which would assure 
that the weights in the model are sparse. For computing similarities, a graph Laplacian 
was used, as in Chang et al. (2014a), where, additionally, a constant term was added to the 
linear model and Frobenius regularization was used. Similarly, the SFSS approach (Ma 
et al. 2012) uses a graph Laplacian, a constant term and �2,1 normalization. In Alalga et al. 
(2016), a graph Laplacian is used directly (without an underlying predictive model). The 
drawback of all these graph-Laplacian-based models is that their time complexity is cubic 
in terms of the number of instances (due to, e.g., matrix inverse computation), which might 
be prohibitive for their use in practice.

All these approaches can be used also for feature selection (when a number of top-
ranked features are selected). However, some approaches can be used only for feature 
selection, e.g., Li et al. (2010), where features are recursively eliminated with the help of 
MLC-kNN classifier.

Note that none of the authors of the above methods provide a publicly available imple-
mentation of their methods. Therefore, we have implemented the SFSS (Ma et al. 2012), 
MLC-Laplace (Alalga et al. 2016) and STR-Laplace (Doquire and Verleysen 2013) meth-
ods and used them in comparison with the feature ranking scores that we propose here. Our 
ensemble-based scores belong to the group of embedded methods, and crucially depend 
on ensembles of SSL predictive clustering trees (PCTs) (Levatić 2017). We thus describe 
below SSL PCTs and ensembles thereof.

3.1  Predictive clustering trees

PCTs are a generalization of standard decision trees. They can handle various structured 
output prediction tasks and have been recently adapted to SSL (Levatić 2017). This work 
considers the SSL of PCTs for classification, STR, MTR (Levatić et al. 2018), MLC, and 
HMLC. 
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The pseudo-code of the algorithm for learning PCTs is given in Algorithms 1 and 2. For 
each of the predictive modeling tasks, one has to specify the impurity function impu that 
is used in the best test search (Alg. 1), and the prototype function prototype that creates 
the predictions in the leaf nodes (Alg. 2). After the two functions are specified, a PCT is 
induced in the standard top-down-tree-induction manner.

Starting with the whole dataset DTRAIN , we find the test (Alg.  2, line  1) that greed-
ily splits the data so that the heuristic score of the test, i.e., the decrease of the impurity 
impu of the data after applying the test, is maximized. For a given test, the corresponding 
decrease is computed in line 4 of Alg. 1.

If no useful test is found, the algorithm creates a leaf node and computes the prediction 
as the prototype of the examples in the node (Alg. 2, line 3). Otherwise, an internal node 
N  with the chosen test is constructed, and the PCT-induction algorithm is recursively 
called on the subsets in the partition of the data, defined by the test. The resulting trees 
become child nodes of the node N  (Alg 2, line 7).

The impurity functions for a given subset E ⊆ DTRAIN in the considered tasks are 
defined as weighted averages of the feature impurities impu(E, xi) , and target impurities 
impu(E, yj).

For nominal variables z, the impurity is defined in terms of the Gini Index 
Gini(E, z) = 1 −

∑
v p

2
E
(v) , where the sum goes over the possible values v of the var-

iable z, and pE(v) is the relative frequency of the value v in the subset E. In order not 
to favor any variable a priori, the impurity is defined as the normalized Gini value, i.e., 
impu(E, z) = Gini(E, z)∕Gini(DTRAIN, z) . This applies to nominal features and the target in 
classification.

For numeric variables z, the impurity is defined in terms of their variance Var(E, z) , 
i.e., impu(E, z) = Var(E, z)∕Var(DTRAIN, z) . This applies to numeric features and targets in 
other predictive modeling tasks, since the sets in MLC and HMLC are also represented by 
0/1 vectors, and the labels are treated as real-value targets. However, note that computing 
the Gini-index of a binary variable is equivalent to computing the variance of this variable 
if the two values are mapped to 0 and 1. When computing the single-variable impurities, 
missing values are ignored.

In a fully-supervised scenario, the impurity of data is measured only on the target side. 
However, (the majority of) target values may be missing in the semi-supervised case. 
Therefore, for SSL, also the features are taken into account when calculating the impurity, 
which is defined as

(1)impu(E) = w ⋅
1

T

T∑
j=1

�jimpu(E, yj) + (1 − w) ⋅
1

D

D∑
i=1

�iimpu(E, xi),
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where the level of supervision is controlled by the user-defined parameter w ∈ [0, 1] . Set-
ting it to 1 means fully-supervised tree-induction (and consequently ignoring unlabeled 
data). The other extreme, i.e., w = 0 , corresponds to fully-unsupervised tree-induction (also 
known as clustering). The dimensional weights �j and �i are typically all set to 1, except for 
HMLC where �i = 1 for the roots of the hierarchy, and �i = � ⋅ mean(parent weights) other-
wise, where � ∈ (0, 1) is a user-defined parameter. A MLC problem is considered a HMLC 
problem where all labels are roots.

The prototype function returns the majority class in the classification case, and the 
per-component mean [ȳ1,… , ȳT ] of target vectors otherwise. In all cases, the prototypes 
(predictions) are computed from the training examples in a given node/leaf. In the cases 
of MLC and HMLC, the values ȳj can be additionally thresholded to obtain the actual 
subsets, i.e., ŷ = {�j ∣ ȳj ≥ 𝜗, 1 ≤ j ≤ T} , where taking � = 0.5 corresponds to comput-
ing the majority values of each label.

3.2  Ensemble methods

To obtain a better predictive model, more than one tree can be grown, for a given data-
set, which results in an ensemble of trees. The predictions of an ensemble are the aver-
aged predictions of the trees (or, in general, arbitrary base models) in the ensemble. 
However, a necessary condition for an ensemble to outperform its base models is, that 
the base models are diverse (Hansen and Salamon 1990). Some randomization must 
thus be introduced into tree-induction, and three ways to do so have been used (Levatić 
2017).

Bagging. Instead of growing one tree using DTRAIN , a bootstrap replicate of DTRAIN is 
independently created for each tree, and used for tree induction.

Random Forests (RFs). In addition to the bootstrap replication mechanism of Bagging, 
RFs use an additional mechanism of randomization. For each internal node of a given tree, 
RFs consider only a random subset (of size D′ < D ) of all features when searching for the 
best test, e.g., D� = ceil(

√
D).

Extremely Randomized PCTs (ETs). As in Random Forests, a subset of features can 
be considered in every internal node (this is not a necessity), but additionally, only one test 
per feature is randomly chosen and evaluated. In contrast to Random Forests (and Bag-
ging), ETs did not originally use bootstrapping (Geurts et  al. 2006). However, Petković 
et al. (2019) show that it is beneficial to use bootstrapping with ETs when the features are 
(mostly) binary: Otherwise, each feature offers only one possible split and choosing one 
split (out of one) at random does not have the desired effect.

4  Ensemble‑based feature ranking

Once an ensemble (for a given predictive modeling task) has been built, we come to the 
main focus of this work: computing a feature ranking out of it. This can be done by using 
any of three feature ranking scores (Petković et al. 2020): Symbolic, Genie3 or Random 
Forest score. Note that the basic versions of the Genie3 and Random Forest scores for clas-
sification and regression had been proposed earlier in Huynh-Thu et al. (2010) and Brei-
man (2001), respectively. The exact (generalized) definitions of the scores are given below:
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The three proposed importance scores can be all computed from a single PCT. To stabilize 
the scores, they are rather computed from an ensemble. Since the trees in an ensemble are 
grown independently, the variance of each score importance(xi) decreases linearly with the 
number of trees.

Here, E is an ensemble of trees T  , T(xi) is the set of the internal nodes N  of a tree T  
where the feature xi appears in the test, E(N) ⊆ DTRAIN is the set of examples that reach the 
node N  , and h∗ is the heuristic value of the chosen test. e(OOBT) is the value of the error 
measure e , obtained when using T  as a predictive model for the set OOBT  of out-of-bag 
examples for a tree T  , i.e., examples that were not chosen into the bootstrap replicate, and 
thus not seen during the induction of T  . Similarly, e(OOBT

i) is the value of the error meas-
ure e obtained when using T  on OOBT

i , i.e., on OOBT  with randomly permuted values of 
the feature xi . For each feature, a new random permutation is generated, using the uniform 
distribution.

The Symbolic and Genie3 rankings take into account node statistics: the Symbolic 
score’s award is proportional to the number of examples that reach the node, while Genie3 
also takes into account the heuristic value of the test for the node, which is proportional to 
|E(N)| (see Alg. 1, line 4).

The Random Forest score, on the other hand, measures to what extent noising, i.e., per-
muting, the feature values decreases the predictive performance of the tree. In Eq. (4), it is 
assumed that e is a loss function, i.e., lower e values are better, as is the case, for example, 
in regression where (relative root) mean squared errors are used. Otherwise, e.g., for classi-
fication tasks and the F1 measure, the importance of a feature is defined as −importanceRF 
from Eq.  (4). Originally, it was designed to explain the predictions of the RFs ensemble 
(Breiman 2001) (hence the name), but it can be used with any predictive model. However, 
it is especially appropriate for trees, because their predictions can be computed fast, pro-
vided the trees are balanced.

4.1  Ensemble‑based ranking for SSL in structured output prediction

The PCT ensemble-based feature ranking methods for different structured output predic-
tion (SOP) tasks were introduced by Petković et al. (2020), Petković et al. (2020) and eval-
uated for different SL SOP tasks. In the SL case, PCTs use a heuristic based on impurity 
reduction on the target space, as defined by Eq. (1), in the special case when w = 1 . As for 
SSL, the general case of Eq. (1) applies.

Having implemented SSL PCTs and ensembles of SSL PCTs, the SSL feature ranking 
methods then follow a similar design as for the supervised counterparts. The feature rank-
ing methods have been evaluated in the case of SSL classification. However, they have not 
as yet been evaluated for STR and SOP tasks, which is the topic of this paper.

(2)importanceSYMB(xi) =
1

|E|
∑
T∈E

∑
N∈T(xi)

|E(N)|∕|DTRAIN|,

(3)importanceGENIE3(xi) =
1
||

∑

 ∈

∑

�∈ (xi)
h∗(� ),

(4)importanceRF(xi) =
1

|E|
∑
T∈E

e(OOBi
T
) − e(OOBT)

e(OOBT)
.
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4.2  Does the ensemble method matter?

From Eqs. (2)–(4), it is evident that all three feature ranking scores can in theory be computed 
from a single tree, and averaging them over the trees in the ensemble only gives a more stable 
estimate of �[importance(xi)] . However, one might expect that bagging, RFs and ETs on aver-
age yield the same order of features (or even the same importance values) since the latter two 
are more randomized versions of the bagging method. Here, we sketch a proof that this is not 
(necessarily) the case.

One of the cases when the expected orders of features are equal is a dataset where each of 
the two binary features x1 and x2 completely determine the target y, e.g., y = x1 and y = 1 − x2 , 
and the third feature x3 is effectively random noise. It is clear that the expected values of the 
importances are in all cases importance(x1) = importance(x2) > importance(x3).

One of the cases where bagging gives rankings different from those of RFs, is a dataset 
where knowing the values of any of the feature pairs (x1, x2) and (x3, xi) , for 4 ≤ i ≤ D again 
completely reconstructs the target value y, and h(x1) > h(xi) > max{h(x2), h(x3)} , for i ≥ 4 . 
Additionally, we assume that D = 100 , so many pairs (x3, xi) determine the target values.

When using bagging, the feature x1 would be chosen in the root node of the trees, since 
h(x1) = maxi h(xi) . In the remaining two internal nodes of the trees x2 would be chosen. 
Therefore, x1 and x2 would be the most important features. On the other hand, when using RFs 
with D� = 1 , in the majority of the cases, one of the features xi , i ≥ 4 , would be chosen in the 
root node. Then, sooner or later, x3 would be chosen. Unlike in the bagging-based ranking, x3 
is now more important than x1.

4.3  Time complexity

In predictive clustering, the attributes in the data belong to three (not mutually exclusive) cat-
egories: (1) descriptive attributes are those that can appear in the tests of internal nodes of a 
tree, (2) target attributes are those for which predictions in the leaf nodes of a tree are made, 
and (3) clustering attributes are those that are used in computing the heuristic when evaluating 
the candidate tests. Let their numbers be D, T and C, respectively, and let M be the number of 
examples in DTRAIN . Let D′ be the number of descriptive attributes that are randomly chosen 
by random forests at each node. Note that in the SSL scenario (if w ∉ {0, 1} ), we have the 
relation C = D + T . Assuming that the trees are balanced, we can deduce that growing a sin-
gle semi-supervised tree takes O(MD� logM(logM + C)) (Levatić 2017).

After growing a tree, ranking scores are updated in O(M) time (since O(M) is the number of 
internal nodes in the tree) for the Symbolic and Genie3 score, whereas updating the Random 
Forest scores takes O(DM logM) . Thus, computing the feature ranking scores does not change 
the O-complexity of growing a tree, and we can compute all the rankings from a single ensem-
ble. Growing an ensemble E and computing the rankings takes O(|E|MD� logM(logM + C)).

5  Relief‑based feature ranking

The Relief family of feature ranking algorithms does not use any predictive model. Its 
members can handle various predictive modeling tasks, including classification (Kira and 
Rendell 1992), regression (Kononenko and Robnik-Šikonja 2003), MTR (Petković et  al. 
2020), MLC (Petković et al. 2018; Reyes et al. 2015), and HMLC (Petković et al. 2020). 
The main intuition behind Relief is the following: the feature xi is relevant if the differences 
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in the target space between two neighboring examples are notable if and only if the differ-
ences in the feature values of xi between these two examples are notable.

5.1  Supervised relief

More precisely, if r = (x1, y1) ∈ DTRAIN is randomly chosen, and n = (x2, y2) is one of its 
nearest k neighbors, then the computed importances importanceRelief(xi) of the Relief algo-
rithms equal the estimated value of

where the probabilities are modeled by the distances between r and n in the appropriate 
subspaces. For the descriptive space X  spanned by the domains Xi of the features xi , we 
have

where 1 denotes the indicator function. The definition of the target space distance dY 
depends on the target domain. In the cases of classification and regression, the categorical 
and numeric part of the definition di in Eq. (6) apply, respectively. Similarly, in multi-target 
regression, dY is the analogue of dX above.

In the cases of MLC and HMLC, we have more than one option for the target distance 
definition (Petković et al. 2018), but in order to be as consistent as possible with the STR 
and MTR cases, we use the Hamming distance between label sets. Recalling that sets 
S ⊆ L  are presented as 0/1 vectors s (Sect. 2), the Hamming distance dY is defined as

where the weights �i are based on the hierarchy and are defined as in Eq. (1), and � is the 
normalization factor that assures that dY maps to [0, 1]: � = 1

|L| in the MLC case, while its 
value depends on the data in the HMLC case (Petković et al. 2020).

To estimate the conditional probabilities P1,2 from Eq.  (5), they are first expressed in 
the unconditional form, e.g., P1 = P(x1

i
≠ x

2
i
∧ y

1 ≠ y
2)∕P(y1 ≠ y

2) . Then, the numerator is 
modeled as the product didY , whereas the nominator is modeled as dY . The probability P2 
is estimated analogously.

5.2  Semi‑supervised relief

In the SSL version of the above tasks, we have to resort to the predictive clustering par-
adigm, using descriptive and clustering attributes instead of descriptive and target ones. 
More precisely, the descriptive distance is defined as above. As for the clustering distance, 
it equals dY when the target value of both y1 and y2 are known, and equals dX otherwise. 
The contribution of each pair to the estimate of probabilities is weighted according to their 
distance to the labeled data. The exact description of the algorithm is given in Alg. 3. 
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 SSL-Relief takes as input the standard parameters ( DTRAIN , the number of iterations m, 
and the number of Relief neighbors k), as well as the interval [w0,w1] ⊆ [0, 1] , which the 
influence levels of r-n pairs are computed from (line 4): First, for every (x, y) ∈ DTRAIN , 
we find the distance d

x
 to its nearest labeled neighbor. If d = 0 , i.e., the value y is known, 

the influence w of this example is set to 1. Otherwise, the influence of the example is 
defined by a linear function d ↦ w(d) that goes through the points (max(x,?) dx,w0) and 
(min(x,?) dx,w1) . Thus, the standard regression version of Relief is obtained when no target 
values are missing.

5.3  Time complexity

The actual implementation of SSL-Relief does not follow the Alg. 3 word for word. It first 
computes all nearest neighbors to speed up the computation. This takes O(mMD) steps, 
since the majority of the steps in this stage is needed for computing the distances in the 
descriptive space. We use the brute-force method, because it is, for the data used in the 
experiments (see Sect. 6.2), still more efficient than, for example, k-D trees. Since the num-
ber of iterations is typically set to be a proportion of M (in our case m = M ), the number of 
steps is O(M2D) . When computing the instances’ influence (line 4) only the nearest neigh-
bor of every instance is needed, so this can be done after the K-nearest neighbors are com-
puted, within a negligible number of steps.

In the second stage, the probability estimates are computed and the worst-case time 
complexity is achieved when all examples are labeled, since this is the case when we have 
to additionally compute dY (otherwise, we use the stored distances dX ). The number of 
steps needed for a single computation of dY depends on the domain: O(1) suffices for clas-
sification and STR, whereas O(T) steps are required in the MTR, MLC and HMLC cases.



4391Machine Learning (2023) 112:4379–4408 

1 3

The estimate updates themselves take O(D) steps per neighbor, thus, the worst case time 
complexity is O(M2D + kM(T + D)) = O(M2D + kMC) where C = D + T  is (again) the 
number of clustering attributes.

6  Experimental setup

In this section, we experimentally evaluate the proposed feature ranking methods. We first 
pose a set of experimental questions below. We then describe in detail how the experimen-
tal evaluation is carried out to answer them.

6.1  Experimental questions

The evaluation is based on the following experimental questions: 

1. For a given ensemble-based feature ranking score, which ensemble method is the most 
appropriate?

2. Are there any qualitative differences between the semi-supervised and supervised feature 
rankings?

3. Can the use of unlabeled data improve feature ranking?
4. Which feature ranking algorithm performs best?

6.2  Datasets

All datasets used in the evaluation are well-known benchmark problems that come from 
different domains. For classification, we use the datasets from Petković et al. (2019) and 
include five new datasets. The latter are listed as the last five in Table 1 (below the splitting 
line).

MLC can be seen as a special case of HMLC with a trivial hierarchy of depth 1. We 
thus show the basic characteristics of the considered MLC and HMLC problems in a single 
table (Table 2), separating the MLC and HMLC datasets by a line. Similarly, the regression 
problems (for STR and MTR) are shown in Table 3.

The given characteristics of the data differ from tasks to task, but the last column of 
every table (CH) always gives an estimate of how well the clustering hypothesis (Assump-
tion 1) holds. For all predictive modeling tasks, this estimate is based on k-means cluster-
ing (Arthur and Vassilvitskii 2007) or, more precisely, on the agreement between the distri-
bution of the target values in these clusters. The number of clusters was set to the number 
of classes in the case of classification, and to 8 otherwise, i.e., the default scikit-learn’s 
(Pedregosa et al. 2011) parameters are kept. The k-means algorithm is run five times and 
the highest agreement across the five runs is reported.

CH computation. In the case of classification, the measure at hand is the Adjusted 
Random Index (Hubert and Arabie 1985) (ARI). It computes the agreement between the 
classes that examples are assigned via clustering, and the actual class values. The optimal 
value of ARI is 1, whereas the value 0 corresponds to the case when clustering is inde-
pendent of class distribution.

In the other cases, we compute the variance of each target variable. These are the origi-
nal target variables in the STR and MTR case. For MLC and HMLC case, the label sets 
are represented as 0/1 vectors and we compute the variance of their components. Let C be 
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the set of the obtained clusters, i.e., c ⊆ D , for each cluster c ∈ C . Then, for every target 
variable yj , we compute vj =

∑
c p(c)Var(c, yj)∕Var(D, y) , i.e., the relative decrease of the 

variance after the clustering is applied, where p(c) = |c|∕|D| . It can be proved (using the 
standard formula for the estimation of sample variance and some algebraic manipulation) 
that vj ≤ 1 . Trivially, vj ≥ 0 . We average the contributions vj over the target variables to 
obtain the score v. In the case of HMLC, we use weighted average where the weights are 
proportional to the hierarchical weights �i , defined in Sect. 3.1. Finally, the tables report 
the values of CH = 1 − v ∈ [0, 1] , to make the value 1 optimal.

Table 1  Basic properties of the classification datasets: number of examples |D| , number of features D, num-
ber of classes (the y-domain size |Y| ), the proportion of examples in the majority class (MC), and the CH 
value

Dataset |D| D |Y| MC CH

Arrhythmia (Lichman, 2013) 452 279 16 0.54 0.02
Bank (Lichman, 2013; Moro et al., 2011) 4521 16 2 0.88 0.00
Chess (Lichman, 2013) 3196 36 2 0.52 0.22
Dis (Gijsbers, 2017) 3772 28 2 0.98 0.00
Gasdrift (Lichman, 2013) 13,910 128 6 0.22 0.02
Pageblocks (Lichman, 2013) 5473 10 5 0.90 0.03
Phishing (Lichman, 2013) 11,055 30 2 0.56 0.00
Tic-tac-toe (Lichman, 2013) 958 9 2 0.65 0.70
Aapc (Džeroski et al., 1997) 335 84 3 0.47 0.34
Coil2000 (Van Der Putten and Van Someren, 2004) 9822 85 2 0.94 0.00
Digits (Xu et al., 1992) 1797 64 10 0.10 0.00
Pgp (Levatić et al., 2013) 932 183 2 0.52 0.00
Thyroid (Lichman, 2013) 3772 27 2 0.94 0.01

Table 2  Basic properties of the MLC (above the line) and HMLC (below the line) datasets: number of 
examples |D| , number of features D, number of labels |L| , label cardinality (average number of labels per 
example) �

c
 , the depth of the hierarchy, and the CH value

Dataset |D| D |L| �
c

Depth Shape CH

Bibtex (Katakis et al., 2008) 7395 1836 159 2.4 1 tree 0.02
Birds (Briggs et al., 2013) 645 260 19 1.0 1 tree 0.05
Emotions (Trochidis et al., 2008) 593 72 6 1.9 1 tree 0.04
Genbase (Diplaris et al., 2005) 662 1185 27 1.3 1 tree 0.26
Medical (Pestian et al., 2007) 978 1449 45 1.3 1 tree 0.04
Scene (Boutell et al., 2004) 2407 294 6 1.1 1 tree 0.21

Clef07a-is (Dimitrovski et al., 2008) 11,006 80 96 3.0 3.0 tree 0.05
Ecogen (Chen et al., 2004) 1893 138 56 15.5 3.0 tree 0.03
Enron-corr (Klimt and Yang, 2004) 1648 1001 67 5.3 3.0 tree 0.03
Expr-yeast-FUN (Clare, 2003) 3788 552 594 8.9 4.0 tree 0.00
Gasch1-yeast-FUN (Clare, 2003) 3773 173 594 8.9 4.0 tree 0.01
Pheno-yeast-FUN (Clare, 2003) 1592 69 594 9.1 4.0 tree 0.00
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6.3  Parameter instantiation

We parametrize the used methods as follows. The number of trees in the ensembles was 
set to 100 (Kocev et al. 2013). The number of features that are considered in each inter-
nal node was set to 

√
D for RFs and D for ETs (Geurts et al. 2006). The optimal value 

of the level of supervision parameter w for computing the ensembles of SSL PCTs was 
selected by internal 4-fold cross-validation on the training data set that contains both 
labelled and unlabelled data. For selecting the optimal value, only the labelled data 
and the evaluation metrics from Sect. 6.5 were used. The considered values for w were 
w ∈ {0, 0.1, 0.2,… , 0.9, 1}.

The amount of supervision in SSL-Relief is adaptive, which allows for a coarser set 
of values, and we consider w1,2 ∈ {0, 0.25, 0.5, 0.75, 1} (where w1 ≤ w2 ). The considered 
numbers k of Relief neighbors were k ∈ {15, 20, 30} , and the best hyper-parameter setting 
option (the values of w1 , w2 , and k) was again chosen via internal 4-fold cross-validation. 
Since more is better when the number of iterations m in Relief is concerned, this parameter 
was set to m = |D|.

The possible numbers of labeled examples L in the training datasets were 
L ∈ {50, 100, 200, 350, 500} (Levatić 2017).

6.4  Evaluation pipeline

For the tasks of MLC and HMLC, the data come with predefined training and test parts 
( DTRAIN and DTEST ). This is not the case for the tasks of classification, STR and MTR, 
where 10-fold cross validation is performed. To obtain the training-test pairs in cross-vali-
dation, we follow the procedure used by Petković et al. (2019), as shown in Fig. 2.

Each dataset D is randomly split into x = 10 folds which results in the test sets DTESTi , 
0 ≤ i < x . In contrast to cross-validation in the SL scenario, where DTRAINi = ∪j≠iDTESTj , 
we first define the copy DTEST

L
i
 of DTESTi in which we keep the target values for 

⌊L∕(x − 1)⌋ + ri randomly selected examples (orange parts of columns in Fig.  2) and 
remove the others (white parts). Here, ⌊⋅⌋ is the floor function, r is the reminder of L when 

Table 3  Basic properties of the 
STR and MTR datasets: number 
of examples |D| , number of 
features D, number of targets T, 
and the CH value

Dataset |D| D T CH

CHEMBL2850 (Gijsbers, 2017) 1211 1024 1 0.09
CHEMBL2973 (Gijsbers, 2017) 1521 1024 1 0.18
Mortgage sps5 (sps5) 1049 15 1 0.57
Pol sps5 (sps5) 5000 26 1 0.12
QSAR (Gijsbers, 2017) 2145 1024 1 0.20
Treasury sps5 (sps5) 1049 15 1 0.54

Atp1d (Spyromitros-Xioufis et al., 2016) 337 411 6 0.49
CollembolaV2 (Kampichler et al., 2000) 393 47 3 0.02
Edm1 (Karalič and Bratko, 1997) 154 16 2 0.23
Forestry-LIDAR-IRS (Stojanova, 2009) 2730 28 2 0.19
Oes10 (Spyromitros-Xioufis et al., 2016) 403 298 16 0.63
Scm20d (Spyromitros-Xioufis et al., 2016) 8966 61 16 0.16
Soil-quality (Demšar et al., 2006) 1944 142 3 0.07
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divided by x − 1 , and ri = 1 if i < r and 0 otherwise. This assures that every training set 
DTRAIN

L
i
= ∪j≠iDTEST

L
i
 contains a number of labeled examples as close as possible to L.

For the MLC and HMLC data, we can choose L labeled instances from the training set 
and delete the target values for the others. This is done for different numbers L of labeled 
examples, and we make sure that the implication L1 ≤ L2 ⇒ labeled examples of DTRAIN

L1
i

 
are a subset of the labeled examples in DTRAIN

L2
i

 holds.
The ranking evaluation proceeds as follows. First, SSL-ranking is computed from 

DTRAIN
L
i
 and its SL counterpart is computed on the DTRAIN

L
i
 with the unlabeled examples 

removed. Afterward, both rankings are evaluated on DTEST
L
i
 (in the cases of MLC and 

HMLC, DTRAIN
L and DTEST

L are used).
This is done by using the kNN algorithm with k ∈ {20, 40} where a weighted version 

of the standard squared Euclidean distance is used. For two input vectors x1 and x2 , the 
distance d between them is defined as d(x1, x2) =

∑D

i=1
wid

2
i
(x1

i
, x2

i
) , where di is defined as 

in Eq. (6). The dimensional weights wi are defined as wi = max{importance(xi), 0} , since 
Random Forest and Relief ranking can award a feature a negative score. In the degenerated 
case where the resulting wi values all equal 0 we define wi = 1 , for all features xi . The first 
step is necessary to ignore the features that are of lower importance than a randomly gen-
erated one would be. The second step is necessary to ensure d is well-defined. We chose 
more than one value of k to show the qualitative differences between the supervised and 
semi-supervised feature rankings.

The evaluation through kNN was chosen because of three main reasons. First it can 
be used for all the considered predictive modeling tasks. Second, this is a distance based 
method, hence, it can easily make use of the information contained in the feature impor-
tances in the learning phase. Third, kNN is simple: its only parameter is the number of 
neighbors. In the prediction stage, the neighbors’ contributions to the predicted value are 
equally weighted, so we do not introduce additional parameters that would influence the 
performance.

6.5  Evaluation measures

To asses the predictive performance of a kNN model, the following evaluation measures 
are used: F1 for classification (macro-averaged for multi-class problems), Root Relative 
Squared Error (RRMSE) for STR and MTR, and area under the average precision-recall 
curve for MLC and HMLC ( AU PRC  ). Their definitions are given in Table 4. In the cross-
validation setting, we average the scores over the folds (taking test set sizes into account).

For each ranking and dataset, we construct a curve that consists of points 
(L, performanceL) , where L ranges across the versions of the dataset with different amounts 

train test

· · ·
unlabelled

labelled

Fig. 2  Training and test set creation in SSL cross-validation: in the test fold, all examples keep their labels, 
whereas the folds that form the training set, together contain (approximately) L labeled examples
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of labeled data. The comparison of two methods is then based either (1) on these curves 
directly (see Figs. 3 and 4 ), or (2) on the area under the computed curves.

6.6  The considered methods

The methods, that our proposed methods are compared to, depend on the predictive mod-
eling task considered:

• Classification: we have shown (Petković et al. 2019) (by comparing them to competi-
tors) that ensemble-based SSL ranking algorithms have state-of-the-art performance 
(better than that of the SEFR method). Thus, only their versions and the Relief’s SSL 
and SL versions are compared here.

• STR and MTR: as mentioned before (Sect. 3), the existing SSL ranking state-of-the-art 
competitor for STR is the STR-Laplace method. Thus, we compare STR-Laplace (for 
STR only), and the SL/SSL versions of both ensemble-based rankings and Relief-based 
rankings.

• MLC and HMLC: for MLC, an existing competitors are SFSS and MLC-Laplace, 
which we consider here. To the best of our knowledge, there are no existing methods 
that can perform feature ranking in the SL/SSL HMLC scenarios. We also consider 
both versions of the ensemble-based and the Relief-based rankings.

Despite our best efforts, we could not obtain any existing implementation of the Laplace 
method for STR and MLC, so we provide ours together with the rest of the code. Also 
note that the ensemble-based and Relief-based methods work out of the box, i.e., no 
data preprocessing is necessary, whereas by design, Laplace can handle only numeric 
features. To overcome this issue, we extend the method by the following procedure: (1) 
transform the nominal features using 1-hot encoding, (2) compute the Laplace scores si , 
(3) for the originally nominal features xi , define their score si as the sum of the scores of 
the corresponding 1-hot encoded features, and, finally, (4) define the importance scores 
importanceLaplace(xi) = S + s − si (where S and s denote the maximum and the minimum 
of the scores, respectively). The last step is necessary since less is better, for the originally 
computed Laplace scores. The transformation si ↦ S + s − si maps S to s and vice-versa, 
thus, the scale remains intact. The other problem of the method are constant features (they 
cause 0/0 values), present, for example, in QSAR data: these had to be manually removed.

Table 4  Evaluation measures, for different predictive modeling tasks

The F
1
 measure and AU PRC  are defined in terms of precision p = tp∕(tp + fp) and recall r = tp∕(tp + fn) , 

where the numbers tp , fp and fn denote the number of true positive, false positive and false negative exam-
ples, respectively

Task Measure Definition

Classification F
1

2∕(1∕p + 1∕r)

MLC, HMLC AU PRC Area under average precision-recall curve, where 
precision and recall are micro-averaged across 
labels (Vens et al. 2008)

STR, MTR RRMSE
1

T
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7  Results

Unless stated otherwise, the rankings are compared in terms of the areas under the per-
formance curves (see Sect. 6.5) of the kNN classifier using the corresponding importance 
scores as weights. When an SSL-ranking is compared to a SL-ranking, and the difference 
Δ between the two performances is computed, Δ > 0 always corresponds to the SSL-rank-
ing performing better.

7.1  The optimal ensemble method for ensemble‑based ranking

We first determine the most appropriate ensemble method, for each of the three ensem-
ble scores, and their two versions (SSL and SL). The results in Table 5 give the average 
ranks of the ensemble methods in each setting, in terms of the areas under the performance 
curves (as described above).

We observe that for both regression tasks (STR and MTR), RFs ensembles almost 
never perform best (with the exception of Genie3 SSL-rankings), whereas for the (other 
three) classification tasks, they quite consistently outperform the other two ensemble 
methods. The differences among the average ranks are typically not considerable (except 
for the most of the MLC rankings, and supervised MTR rankings) which is probably 
due to the fact that the split selection mechanisms of the considered ensemble methods 
are still quite similar, and the trees are fully-grown, so sooner or later, a relevant feature 
appears in a tree node. In the case of ties, we choose the more efficient method (see 

Table 5  Average ranks of the SSL and SL ensemble methods, for a fixed ensemble-based importance score 
and predictive modeling task

The best ranks are shown in bold, unless all three methods perform equally well. In the case of ties, the 
most efficient method’s rank is shown in bold (see Table 6)

Task Score SSL ensemble SL ensemble

RFs ETs Bagging RFs ETs Bagging

Classification Genie3 2.00 2.15 1.85 1.69 2.46 1.85
Random Forest 1.92 2.15 1.92 2.00 2.08 1.92
Symbolic 1.77 2.23 2.00 1.77 2.23 2.00

MLC Genie3 1.50 2.67 1.83 2.17 2.17 1.67
Random Forest 2.00 2.00 2.00 1.67 2.00 2.33
Symbolic 1.33 2.33 2.33 2.00 2.50 1.50

HMLC Genie3 1.67 2.00 2.33 1.67 1.83 2.50
Random Forest 2.17 1.83 2.00 1.83 1.67 2.50
Symbolic 2.17 2.00 1.83 1.67 2.00 2.33

STR Genie3 1.67 2.00 2.33 2.17 2.00 1.83
Random Forest 2.00 1.83 2.17 2.67 1.67 1.67
Symbolic 2.17 1.50 2.33 2.33 1.83 1.83

MTR Genie3 2.14 1.86 2.00 2.43 1.71 1.86
Random Forest 2.29 2.14 1.57 2.43 1.71 1.86
Symbolic 2.00 2.00 2.00 2.29 1.71 2.00
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Table  6): RFs are always the most efficient, whereas the second place is determined 
by the number of possible splits per feature. For lower values (e.g., when most of the 
features are binary, as is the case for MLC and HMLC data), bagging is faster than ETs.

To make the graphs in the next section more readable, we plot, for every score, only 
the curve that corresponds to the most suitable ensemble method for this score.

7.2  Qualitative difference between SSL and SL rankings

We first discuss the qualitative difference between the SSL-rankings and their super-
vised counterparts. In the process of obtaining a feature ranking, the SSL-version of 
the ranking algorithm sees more examples than its supervised version, and it turns out 
that this is well-reflected in the results. Figs. 3 and 4 show the results for five datasets 
(one dataset for each task) in terms of the performance of the rankings, as assessed by 
kNN models, for k ∈ {20, 40} . The use of these two values of k shows that SSL-rankings 
(solid lines) tend to capture a more global picture of the data (i.e., work better with 
larger values of k), whereas the supervised ones (dashed lines) reflect a more local pic-
ture (i.e., work better with smaller values of k).

This phenomenon is most visible in the performances on the two regression datasets. 
In the case of the treasury dataset, SSL-rankings perform worse than supervised 
ones on the local scale for smaller numbers L of labeled examples (Fig.  4a), and are 
equal or better for L ≥ 200 . However, on the global scale (Fig. 4b), the SSL-rankings 
are clear winners. A similar situation is observed for the other datasets in Figs. 3 and 4 , 
and also in general.

Table  7 reveals that for the vast majority of the rankings (and datasets), the SSL 
rankings are more global. This proportion is the highest for STR data (it even equals 
100% ), and is understandably the lowest for classification, where the datasets have the 
smallest number of examples on average.

Table 6  Average ranks of the 
ensemble methods, in terms of 
induction times

Task RFs ETs Bagging

Classification 1.00 2.23 2.77
MLC 1.00 2.67 2.33
HMLC 1.00 2.50 2.50
STR 1.17 2.33 2.50
MTR 1.29 1.71 3.00

Table 7  Proportions of datasets where the SSL feature rankings capture more global properties of the data, 
as compared to supervised rankings

The differences �
20

 and �
40

 of the areas under the performance curves of 20NN and 40NN models are com-
puted in such a way that 𝛿 > 0 means that the SSL ranking performs better. Therefore, if Δ = 𝛿

40
− 𝛿

20
> 0 , 

then the SSL-ranking is more global, and Δ < 0 means that the SSL ranking is more local

Task Classification MLC HMLC STR MTR

P[Δ > 0] 0.73 0.83 0.96 1.00 0.93
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7.3  Can unlabeled data improve feature rankings?

To answer this question, we compare the SSL feature rankings to their supervised 
counterparts. In the previous section, we explained why sometimes the answer is not 
straightforward and depends on whether we consider a global or a local scale. Given 
that the question is whether the ranking can be improved by using unlabeled data, and 
given the qualitative differences between the SSL- and SL-rankings from the previous 
section, we fix the number of neighbors to k = 40.

We start with the classification results given in Table  8. From the mainly positive 
numbers in the table, one can conclude that SSL-rankings successfully recognize the 
structure in the data, and outperform their supervised analogs, even in most of the cases 
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Fig. 3  Comparison of the SL and SSL feature rankings, for different classification tasks. The curves for an 
SSL ranking and the corresponding SL ranking are shown as a solid and a dashed line of the same color. 
The graphs in the left column use 20NN models in the evaluation, whereas those in the right column use 
40NN models
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where the CH values are low, e.g., for the digits dataset in Fig. 3a, or, most notably, 
for pageblocs and phishing.

Continuing with the results for MLC (the upper part of Table 9), we first see that CH 
values are rather low, since, in contrast to the ARI values from classification, correction 
for chance is not incorporated into these CH values. An exception to this are the genbase 
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Fig. 4  Comparison of the SL and SSL feature rankings, for single- and multi-target regression tasks. The 
curves for an SSL ranking and the corresponding SL ranking are shown as a solid and a dashed line of the 
same color. The graphs in the left column use 20NN models in the evaluation, whereas those in the right 
column use 40NN models

Table 8  Classification tasks: the 
differences Δ in performance 
between SSL- and SL-rankings, 
as measured by areas under the 
curves of F

1
-values of the 40NN 

models with ranking-induced 
feature weights in the distance

Classification dataset Genie3 RForest Symbolic Relief CH

Arrhythmia 0.039 0.008 0.022 0.006 0.02
Bank 0.064 0.067 0.061 0.050 0.00
Chess − 0.084 0.021 − 0.081 0.022 0.22
Dis 0.066 0.046 0.050 0.123 0.00
Gasdrift 0.041 0.038 0.053 0.109 0.02
Pageblocks 0.272 0.250 0.250 0.243 0.03
Phishing − 0.125 − 0.128 − 0.132 − 0.115 0.00
Tic-tac-toe 0.148 0.225 0.152 0.141 0.70
Aapc 0.115 0.041 0.067 0.110 0.34
Coil2000 0.019 0.029 0.022 0.020 0.00
Digits 0.170 0.204 0.198 0.245 0.00
Pgp 0.043 0.113 0.096 0.139 0.00
Thyroid 0.288 0.268 0.285 0.265 0.01
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(see Fig. 3c, d) and the scene dataset. For both datasets, the SSL-versions of the rankings 
outperform their SL-analogs. This also holds for the birds and emotions datasets, for 
all rankings, and additionally for the medical dataset in the case of Relief.

The bottom part of Table 9 gives the results for HMLC datasets. One can notice that 
Assumption  1 is never satisfied (low CH values), and that SSL-scores mostly could not 
overcome this, with the exception of Relief rankings on the ecogen dataset. However, 
inspecting the corresponding curves in detail (Fig. 3f), reveals that the negative differences 
between the performance of SSL-rankings and SL-rankings are mostly due to the bad start 
of SSL-rankings: for L ≥ 200 , the SSL-versions prevail.

We finish this section with the regression results. The upper part of Table 10 shows that 
when CH is well-satisfied, i.e., for the datasets mortgage and treasury (see Fig. 4b), 
the SSL-rankings outperform the SL-rankings. Moreover, this also holds for the pol data 
(except for the Relief rankings). Inspecting the datasets where negative values are present 
(most notably the qsar dataset) reveals the same phenomenon as in the HMLC case: 
for extremely low values of L, e.g., L = 50 , the SSL-rankings do not perform well, pos-
sibly because knowing the labels of 50 out of approximately 2000 examples simply does 
not suffice. With more and more labels known, the performance of SSL-rankings drasti-
cally improves, while the performance of SL-rankings improves only slightly. Finally, for 
L ≥ 200 or L ≥ 350 , all SSL-rankings again outperform the SL-ones.

Similar findings hold for the MTR data and the results in the bottom part of Table 10. 
The SSL-rankings perform well from the very beginning on the three datasets where CH 
holds the most, i.e., oes10 (see Fig. 4d), atp1d, and edm1, but can only catch up with 
the SL-rankings (and possibly outperform them) for larger values of L in the other cases.

7.4  Which SSL‑ranking performs best?

To answer this question, we compare the predictive performances of the corresponding 
40NN models and report their ranks in Table 11. The results reveal that, for the majority 
of the tasks, ensemble-based rankings perform best. However, in some cases, the winners 

Table 9  The differences Δ of areas under the curves of AU PRC -values of the 40NN models whose dis-
tance weights are based on SSL- and SL-rankings for MLC and HMLC (below the line) datasets

MLC/HMLC Genie3 RForest Symbolic Relief MLC SFSS CH
Dataset Laplace

Bibtex − 0.115 − 0.078 − 0.100 − 0.019 − 0.121 − 0.100 0.02
Birds 0.039 0.052 0.021 − 0.013 − 0.014 − 0.029 0.05
Emotions 0.012 0.028 0.011 0.041 0.033 0.044 0.04
Genbase 0.091 0.121 0.094 0.131 0.105 0.189 0.26
Medical − 0.067 0.008 − 0.058 0.042 − 0.017 0.014 0.04
Scene 0.045 0.048 0.063 0.082 0.076 0.119 0.21
Clef07a-is − 0.097 − 0.066 − 0.102 − 0.041 0.05
Ecogen − 0.007 − 0.003 − 0.018 0.051 0.03
Enron-corr − 0.068 − 0.062 − 0.023 − 0.064 0.03
Expr-yeast-fun − 0.090 − 0.103 − 0.086 − 0.071 0.00
Gasch1-yeast-FUN − 0.080 − 0.087 − 0.084 − 0.096 0.01
Pheno-yeast-FUN − 0.032 − 0.031 − 0.036 − 0.029 0.00
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are not clear, e.g., in the case of classification. Still, Symbolic ranking quite clearly outper-
forms the others on both regression tasks, STR and MTR. The best performing algorithm 
in MLC tasks is SFSS, followed by the Random Forest and Symbolic feature importance 
scores.

To complement this analysis, we also compute the average ranks of the algorithms for 
their induction times.

As explained in Sect. 7.1, for the ensemble-based rankings, RFs are always preferable 
in terms of speed. They can still be outperformed by Relief if the number of features is 
higher and the number of examples is moderate, which follows directly from the O-values 
in Sects. 4.3 and 5.3.

The ensemble and Relief methods are implemented in the Clus system (Java), whereas 
our implementation of the STR and MLC Laplace scores is, as mentioned before, Python-
based (scikit-learn and numpy). Thus, even though Laplace and Relief have the same core 
operations (finding nearest neighbors), using the highly-optimized scikit-learn’s meth-
ods (such as kNN) puts Laplace in the first place, whereas Relief is (second but) last, for 
STR problems. Similarly, for the MLC feature ranking implementations, our optimized 

Table 10  The differences Δ of areas under the curves of RRMSE-values of the 40NN models with distance 
weights based on SSL- and SL-rankings for STR and MTR (below the line) datasets

STR/MTR dataset Genie3 RForest Symbolic Relief STR-Laplace CH

CHEMBL2850 − 0.047 − 0.063 0.014 − 0.092 − 0.010 0.09
CHEMBL2973 − 0.143 − 0.103 − 0.114 − 0.168 − 0.109 0.18
Mortgage 0.074 0.092 0.097 0.078 0.120 0.57
Pol 0.027 0.249 0.127 − 0.049 0.278 0.12
QSAR − 0.347 − 0.446 − 0.442 − 0.523 − 0.262 0.20
Treasury 0.118 0.172 0.165 0.155 0.215 0.54
Atp1d 0.048 0.024 0.048 0.093 0.49
CollembolaV2 − 0.048 − 0.014 − 0.010 − 0.002 0.02
Edm1 0.002 0.018 0.004 0.006 0.23
Forestry-LIDAR-IRS − 0.115 − 0.070 − 0.101 − 0.114 0.19
Oes10 0.083 0.084 0.083 0.122 0.63
Scm20d − 2.357 − 2.317 − 2.295 − 2.281 0.16
Soil-quality − 0.044 − 0.085 − 0.080 − 0.111 0.07

Table 11  The average ranks of different SSL-ranking algorithms in terms of the performance of the cor-
responding 40NN models

The best result (the lowest rank) in every row is shown in bold
The column Laplace refers to STR-Laplace and MLC-Laplace, as appropriate

Task Genie3 Random Forest Symbolic Relief Laplace SFSS

Classification 2.62 2.46 2.62 2.31
MLC 4.17 3.00 3.67 3.33 4.33 2.50
HMLC 2.00 2.83 2.50 2.67
STR 3.00 3.33 1.83 4.17 2.67
MTR 2.57 2.57 1.71 3.14
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and vectorized Python implementations of Laplace and SFSS are faster than, e.g., ETs 
(Table 12).

For the dataset digits (see Fig. 3a, b), we additionally analyze the meaningfulness of 
the rankings. Namely, the feature values and feature importance scores can there be compactly 
shown in a 8 × 8 grid, representing the image of a digit. Figure 5 depicts an example from this 
dataset (Fig. 5a), which shows how digits are centered in the images and go from the very 
top to the very bottom of the images. Conversely, the first and the last column of an image 
are mostly blank, which is reflected well in the feature ranking in Fig. 5b. There, the average 
SSL Random Forest feature ranking (averaged over folds in CV) is shown and we can see 
that the most relevant features are in the center of the image, whereas the features in the first 
and the last column are irrelevant. The stability of feature ranking is measured as the standard 
deviation of the scores and is shown in Fig. 5c. The results for other feature ranking scores are 
similar.

Table 12  The average ranks of 
different SSL-ranking algorithms 
in terms of their induction times

Since the time complexity of ensemble-based rankings (almost) equals 
the induction time of the ensembles, we report the latter. For each 
task, we show the ranks for both extreme values of L. The column 
Laplace refers to both STR-Laplace and MLC-Laplace, as appropriate

Task L RFs ETs Bagging Relief Laplace SFSS

Classification 50 1.15 2.46 3.15 3.23
500  1.31 2.69 3.54 2.46

MLC 50 2.83 4.67 5.17 1.83 3.50 3.00
500 2.8 4.67 5.00 1.67 3.67 3.17

HMLC 50 1.17 2.83 3.17 2.83
500 1.33 3.00 3.50 2.17

STR 50 2.17 3.50 3.83 4.50 1.00
500 2.67 3.17 4.67 3.50 1.00

MTR 50 1.86 2.29 3.71 2.14
500 1.71 2.43 3.71 2.14
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Fig. 5  A detailed analysis of an SSL Random Forest feature ranking computed from a random forest 
ensemble, on the digits dataset, where each feature corresponds to a pixel in an 8 × 8 grid: a an example 
(digit 7) from the data set; b average feature importance scores, and c their standard deviations
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8  Conclusions

In this work, we focus on feature ranking in the context of semi-supervised learning. 
Feature rankings are learned in the context of (single-target) classification and regres-
sion as well as in the context of structured output prediction (multi-label classification, 
hierarchical multi-label classification and multi-target regression). This is the first work 
that treats the task of feature ranking for semi-supervised structured output prediction in 
an uniform and comprehensive manner - it treats all the different prediction tasks in an 
unified way.

We propose, develop and evaluate two approaches to SSL feature ranking for 
SOP, based on tree ensembles and the Relief family of algorithms, respectively. The 
tree ensemble-based rankings can be learned using three ensemble learning methods 
(Bagging, Random Forests, Extra Trees) coupled with three scoring functions (Genie3, 
Symbolic and random forest scoring). The Relief-based rankings use the regression var-
iant of the Relief algorithm for extension towards the SOP tasks. This is the first exten-
sion of the Relief algorithm towards semi-supervised learning.

An extensive experimental evaluation of the proposed methods is carried out on 
38 benchmark datasets for the five machine learning tasks: 13 for classification, 6 for 
multi-label classification, 6 for hierarchical multi-label classification, 6 for regression 
and 7 for multi-target regression. Whenever available, we compare the performance 
of our newly proposed methods to the performance of existing state-of-the-art meth-
ods. Furthermore, we compare the performance of the semi-supervised feature ranking 
methods with the performance of their supervised counterparts.

The results from the extensive evaluation are best summarized through the answers 
of the research questions we have posed ourselves at the start: 

1. For a given ensemble-based feature ranking score, which ensemble method is the most 
appropriate?

  Generally, Random Forests perform the best for the classification tasks (classification, 
muilti-label classification and hierarchical multi-label classification), while Extra-PCTs 
perform the best for the regression tasks (regression, multi-target regression). Further-
more, across all tasks, Random Forests are the most efficient ensemble method in terms 
of induction times.

2. Are there any qualitative differences between the semi-supervised and supervised feature 
rankings?

  The semi-supervised rankings tend to capture a more global picture of the data 
(i.e., provide better feature weights for kNN prediction with larger k-neighbourhoods), 
whereas the supervised ones reflect a more local view.

3. Can the use of unlabeled data improve feature ranking?
  When the clustering hypothesis (Assumption 1) holds—and even in some other 

cases—supervised feature rankings outperform their supervised counterparts. This is 
true for all the considered prediction tasks. However, note that the clustering hypothesis 
does not hold for most of the MTR and HMLC datasets.

4. Which feature ranking algorithm performs best?
  Different SSL feature ranking methods perform the best for the different tasks: Sym-

bolic ranking is the best for regression and multi-target regression, SFSS and Random 
forest ranking for multi-label classification (with Random forest ranking scaling much 
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better with data size), Genie3 for hierarchical multi-label classification, and Relief for 
classification.

We conclude the paper with several directions for further work. Due to the broad scope 
of the present paper, where we consider five different tasks of predictive modelling and 
the corresponding tasks of feature ranking, we only consider a fairly limited number of 
datasets for each task. We plan to extend the evaluation and comparison of different SSL 
feature ranking methods to additional datasets for each task, which would also enable tests 
of the statistical significance of the differences in performance. Moreover, we will look 
for datasets that are even larger in terms of number of examples, descriptive features and 
targets (labels) to investigate the scalability of the proposed methods. We would also like 
to apply the developed approaches to practically relevant tasks of SSL and/or structured 
output prediction (such as sentiment analysis and drug design/repurposing).

On the side of further development of SSL feature ranking methods, one direction 
would be to generalize the Laplace method to be able to handle all of the tasks considered 
here (e.g., HMLC and MTR). Another direction would consider the use of the developed 
feature ranking methods in the context of feature selection, where not only the relevance 
of individual features, but also their correlations and relative redundancy are considered. 
This issue is also related to investigating the stability of the feature rankings. Finally, recent 
work (Petković et al. 2020) has considered ensemble-based feature ranking for relational 
classification: extensions in the direction of SSL and structured output prediction would be 
worth exploring.
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