
Vol.:(0123456789)

Machine Learning (2023) 112:1253–1286
https://doi.org/10.1007/s10994-022-06161-4

1 3

Algorithm selection on a meta level

Alexander Tornede1 · Lukas Gehring1 · Tanja Tornede1 · Marcel Wever2 ·
Eyke Hüllermeier2

Received: 8 March 2021 / Revised: 19 October 2021 / Accepted: 19 February 2022 /
Published online: 18 April 2022
© The Author(s) 2022

Abstract
The problem of selecting an algorithm that appears most suitable for a specific instance of
an algorithmic problem class, such as the Boolean satisfiability problem, is called instance-
specific algorithm selection. Over the past decade, the problem has received considerable
attention, resulting in a number of different methods for algorithm selection. Although
most of these methods are based on machine learning, surprisingly little work has been
done on meta learning, that is, on taking advantage of the complementarity of existing
algorithm selection methods in order to combine them into a single superior algorithm
selector. In this paper, we introduce the problem of meta algorithm selection, which essen-
tially asks for the best way to combine a given set of algorithm selectors. We present a
general methodological framework for meta algorithm selection as well as several concrete
learning methods as instantiations of this framework, essentially combining ideas of meta
learning and ensemble learning. In an extensive experimental evaluation, we demonstrate
that ensembles of algorithm selectors can significantly outperform single algorithm selec-
tors and have the potential to form the new state of the art in algorithm selection.

Keywords Algorithm selection · Meta learning · Ensemble learning · Bagging · Boosting ·
Stacking

Editors: Annalisa Appice, Grigorios Tsoumakas.

 * Alexander Tornede
 alexander.tornede@upb.de

 Lukas Gehring
 lgehring@mail.upb.de

 Tanja Tornede
 tanja.tornede@upb.de

 Marcel Wever
 marcel.wever@ifi.lmu.de

 Eyke Hüllermeier
 eyke@ifi.lmu.de

1 Heinz Nixdorf Institut, Paderborn University, 33098 Paderborn, Germany
2 University of Munich (LMU), 80538 Munich, Germany

http://orcid.org/0000-0002-2415-2186
http://orcid.org/0000-0001-9954-462X
http://orcid.org/0000-0001-9782-6818
http://orcid.org/0000-0002-9944-4108
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06161-4&domain=pdf

1254 Machine Learning (2023) 112:1253–1286

1 3

1 Introduction

Looking at algorithmic problem classes such as Boolean satisfiability (SAT) (Xu et al.,
2007, 2011), the traveling salesman problem (TSP) (Pihera & Musliu, 2014), or constraint
satisfaction (CSP) (Lobjois et al., 1998), practical experience suggests that algorithms per-
form differently on different problem instances: while algorithm A might be better than B
on a specific instance (e.g., a specific TSP), B may outperform A on another instance (e.g.,
another TSP). This is not very surprising and completely in line with theoretical results
proving that there is “no free lunch”, i.e., excluding that one algorithm uniformly domi-
nates all others (Wolpert et al., 1997). The following task thus appears to be meaningful
from a practical point of view: Given a problem class and a pool of algorithms to choose
from, find a rule that automatically assigns a (presumably) most suitable algorithm to each
possible problem instance. This task is called (instance-specific) algorithm selection (AS)
in the literature (Rice, 1976). Here, suitability may refer to different performance crite-
ria, such as runtime (Tornede et al., 2020c) or a measure of solution quality (Wever et al.,
2021).

The problem of algorithm selection has received considerable attention over the past
decade, resulting in a large set of heterogeneous algorithm selection approaches. Many of
these approaches rely on machine learning, which essentially means that a rule assigning
algorithms to problem instances is learned from suitable training data, for example, the
performance observed in the past when running specific algorithms on specific instances.
Given a new instance, a machine learning algorithm leverages such data to predict the per-
formance of the candidate algorithms, or to predict the presumably best algorithm directly.
AS approaches of that kind achieve state-of-the-art performance and typically outperform
the best stand-alone algorithm, also referred to as “single best solver” (SBS) in the follow-
ing, by several orders of magnitude (Kerschke et al., 2019).

Interestingly, because an algorithm selector is again an algorithm (taking an instance
as input and returning a presumably best algorithm as output), the very same task of algo-
rithm selection can also be considered on a meta level, giving rise to the following ques-
tion: Given a problem instance and a set of algorithm selectors, which one should be used
to predict the best algorithm? This question could be answered by an algorithm selector on
the meta level, that is, by an “algorithm selector selector”, which does not choose among
the algorithms (or “base algorithms”, to distinguish them from the AS algorithms), but
among the algorithm selectors, which in turn are responsible for selecting an algorithm.
Indeed, a certain complementarity among AS approaches can be observed (e.g. Tornede
et al., 2020c) and the resulting meta-AS problem was first mentioned by Lindauer et al.
(2019) and Kerschke et al. (2019), though without pursuing it further.

Having the choice between a set of candidate algorithm selectors, limiting oneself to
choosing only a single one of them (which in turn chooses the final algorithm) might
actually seem unnecessarily restrictive. In fact, leveraging a composition of selectors,
which then choose the final algorithm jointly, might be a better idea. This naturally leads
to ensemble learning (Dietterich, 2000), which is a common approach in machine learn-
ing to combine several predictors into stronger compositions. Thus, instead of using a
single algorithm selector to choose an algorithm, a set of selectors is asked to evalu-
ate the available algorithms. Subsequently, these evaluations are aggregated into a joint
decision. Somewhat surprisingly, building ensembles of algorithm selectors has hardly
been considered in the AS literature so far (see Sect. 7), although ensemble learning
is well known to improve predictive accuracy in standard machine learning problems

1255Machine Learning (2023) 112:1253–1286

1 3

such as classification and regression. One reason could be that querying multiple mod-
els obviously takes more time than querying only a single one, so that ensembling may
appear counterintuitive in scenarios where runtime is considered as the target measure.

In this paper, we formalize the problem of meta algorithm selection and propose
algorithmic solutions. Furthermore, we investigate their potential to make better deci-
sions with respect to the selection of algorithms. In an extensive empirical study, we
find that trying to learn the best algorithm selector, i.e., to predict which algorithm
selector will pick the best algorithm for a given query, does not lead to better algo-
rithm selection performance. On the other side, ensembling algorithm selectors helps
to improve efficacy, while the additional runtime consumed for querying multiple algo-
rithm selectors remains negligible. Of course, the improved performance comes at a
higher cost of building the ensemble algorithm selector, because multiple basic algo-
rithm selectors need to be fitted for one ensemble. However, this does not pose a prob-
lem in practice, because algorithm selectors are in general built in an offline phase prior
to the actual selection process.

The remainder of the paper is structured as follows. First, we give a formal introduction
to the algorithm selection problem in Sect. 2, followed by a definition of the meta AS prob-
lem in Sect. 3 and a first (still quite limited) solution to the problem in Sect. 4. As a more
advanced solution, we present algorithm selection ensembles in Sect. 5. Subsequently, we
present and discuss the results of our empirical evaluation in Sect. 6. Related work is dis-
cussed in Sect. 7, prior to concluding our paper in Sect. 8.

2 Algorithm selection

In the per-instance algorithm selection problem, first formalized by Rice (1976), we are
faced with a space of instances I of an algorithmic problem class (such as SAT, where
every instance is a logical formula) and a finite set of algorithms A , which solve such
instances. The goal is to find a map s ∶ I ⟶ A , called algorithm selector, which assigns
algorithms to instances. An assignment a = s(i) is interpreted as a recommendation, sug-
gesting that algorithm a ∈ A will perform strongly, or perhaps even best among all algo-
rithms, on problem instance i ∈ I . More formally, the goal is to optimize (expected) per-
formance in terms of a measure m ∶ I ×A ⟶ ℝ , which is also part of the AS problem
specification. Hence, the optimal algorithm selector for all instances i ∈ I , also known as
the oracle or virtual best solver (VBS), is defined as

where the expectation accounts for the potential randomness imposed by the algorithm.
We denote the algorithm that is best on average (in expectation) on a predefined set of
instances as the single-best solver (SBS). It constitutes the default baseline in algorithm
selection.

Observe that an exhaustive evaluation of all algorithms for computing the VBS is not
deemed a solution, because m is usually costly to evaluate and often even requires run-
ning the respective algorithm. For example, if runtime is the measure of interest, a single
evaluation already results in a solved instance, rendering all other evaluations unneces-
sary. Hence, instead of performing evaluations at query time, the algorithm selector should
make use of gathered knowledge to come to a decision.

(1)s∗(i) = argmin
a∈A

�[m(i, a)] ,

1256 Machine Learning (2023) 112:1253–1286

1 3

2.1 Algorithm selection methods

The majority of AS approaches leverages machine learning techniques to learn (in one way
or another) a surrogate performance measure m̂ ∶ I ×A ⟶ ℝ approximating m while
being cheap to evaluate. With such a surrogate performance measure at hand, an exhaus-
tive enumeration, actually excluded for the reasons explained before, does become possible
and yields the canonical algorithm selector

For the purpose of inferring such a surrogate, the setting is usually assumed to contain a
set of training instances ID ⊂ I on which some (but not necessarily all) of the algorithms
in A have been evaluated, so that performance evaluations m(i, a) are available. Note that
the corresponding training performance matrix spanned by ID and A is usually assumed to
contain (sometimes many) missing values. Furthermore, instances are assumed to be rep-
resentable by a set of d features generated by a feature map f ∶ I ⟶ ℝ

d . In many cases,
such features are available or can be defined in a quite natural way. In the case of SAT, for
example, common features include the length of a formula, the number of clauses or vari-
ables, etc. In general, the computation of features does not come for free and requires time.
This should be taken into account, especially when runtime is chosen as a performance
measure to be optimized.

One of the most straight-forward instantiations of the framework described above, in
this paper denoted by PerAlgo, was proposed by Xu et al. (2007), where one performance
surrogate m̂a ∶ I ⟶ ℝ is learned for each algorithm a ∈ A separately. The joint surrogate
can then be defined as m̂(i, a) = m̂a(i) for all instances i ∈ I .

Alternatively, the problem can be formalized as a multi-class classification problem,
where each algorithm corresponds to a class, so that a multi-class classifier (here called
Multiclass) of the form s ∶ I ⟶ A can be learned directly. A well-known example from
this category is SATzilla’11 (Xu et al., 2011), which employs an all-pairs decomposition
approach, learning a cost-sensitive classifier for each pair of algorithms and determining
the selected algorithm by majority voting. Building upon the idea of pairwise comparisons
of algorithms, Hanselle et al. (2020) suggest learning selectors via a combined ranking and
regression approach. Similarly, Kotthoff (2012) suggests employing a stacking approach,
using regression models to predict the performance of each algorithm, which is used as an
additional input for a meta-learner selecting the final algorithm.

Focusing on so-called censored information present in algorithm selection data,
Tornede et al. (2020c) propose a decision-theoretic approach (R2S-PAR10 and R2S-EXP),
leveraging techniques from survival analysis to effectively learn from such censored infor-
mation. Similarly, Hanselle et al. (2021) consider the censored information present in the
data within the framework of superset learning (Hüllermeier, 2014).

Furthermore, instance-based approaches, such as SUNNY (Amadini et al., 2014) or
ISAC (Kadioglu et al., 2010), have proven to successfully perform algorithm selection by
exploiting performances recorded on similar instances in the training data. To this end,
they employ k-nearest neighbor or clustering techniques in order to estimate the perfor-
mance of an algorithm on an unseen instance.

Finally, Tornede et al. (2019, 2020a) propose the setting of “extreme algorithm selec-
tion”, in which the pool of algorithms to choose from can be extremely large. They show
that, by leveraging a feature representation not only for problem instances but also for algo-
rithms, convincing selection performance can be achieved even in this setting.

(2)s(i) ∶= argmin
a∈A

m̂(i, a) .

1257Machine Learning (2023) 112:1253–1286

1 3

2.2 Loss functions

One of the most natural and interesting performance measures to consider for satisfaction
problems is the time until the instance is solved, i.e., the algorithm runtime. Unfortunately,
combinatorial problems often feature skewed runtime distributions, such that some algorithms
are running extremely long on some instances (Gomes et al., 1997). As a consequence, algo-
rithms are generally executed with an upper bound C on their runtime. If an algorithm does
not terminate within this bound, called cutoff, the instance is considered unsolved and the
algorithm is forcefully terminated; see Fig. 1 for an illustration. As choosing an algorithm run-
ning into a cutoff leads to an unsolved instance, such a choice should be avoided by all means.
One of the most common loss functions in AS, called the penalized average runtime (PAR10),
considers this by explicitly penalizing such timeouts. The PAR10 over a set of instances
I
′ ⊂ I , called scenario, is defined as follows, where m(i, s(i)) corresponds to the runtime of

the algorithm s(i) chosen by the algorithm selector s (and potentially the time required to com-
pute the corresponding instance features) on instance i:

Naturally, PAR10 scores can vary drastically across scenarios making them incomparable.
To alleviate this situation, one often falls back to the normalized PAR10 score of an algo-
rithm selector s defined as

An nPAR10 score of 0 corresponds to the oracle performance, a score of 1 corresponds to
a performance on a par with the SBS, whereas scores above 1 indicate a deterioration in
comparison to the SBS. Therefore, lower nPAR10 scores indicate better performance, and a
successful algorithm selector should definitely have a score of less than 1.

(3)

PAR10(s, I�) =
1

|I�|
∑

i∈I�

PR10(s, i)

PR10(s, i) =

{
m(i, s(i)) if m(i, s(i)) ≤ C

10 ⋅ C else

(4)nPAR10(s, I�) =
PAR10(s, I�) − PAR10(oracle, I�)

PAR10(SBS, I�) − PAR10(oracle, I�)
.

X
X

X
Runtime

Fig. 1 This figure depicts the process of running multiple algorithms on an instance (e.g. for training data
generation). If an algorithm requires longer than C to solve an instance, it is forcefully terminated and a
selection of the corresponding algorithm will be punished

1258 Machine Learning (2023) 112:1253–1286

1 3

3 Meta algorithm selection

Similar to the algorithms actually solving the problem instances, the algorithm selectors
also show the phenomenon of performance complementarity, as mentioned earlier. This
gives rise to the question whether choosing between different algorithm selectors might be
beneficial. In fact, by moving to the meta level, i.e. from the level of choosing among algo-
rithms to the level of choosing among the algorithm selectors, we gain more freedom and
can even select multiple selectors instead of only a single algorithm as long as we ensure
to aggregate the selections made by the selectors such that a single algorithm is returned
at the end. Thus, the problem of per-instance meta algorithm selection (meta AS) con-
cerns the problem of selecting one or multiple algorithm selectors together with an aggre-
gation, for a given instance of an algorithmic problem class. Each of the selected algorithm
selectors then in turn selects an algorithm for solving the problem. Finally, these selected
algorithms are aggregated such that only a single algorithm (of these) is returned. Hence,
instead of directly choosing an algorithm to solve a problem instance, we take a detour by
selecting one or multiple algorithm selectors and aggregating their decisions.

Formally, in the meta AS problem, we are given a set of algorithm selectors
S ⊆ {s|s ∶ I ⟶ A} , which is a subset of all possible selection functions, in addition
to the instance space I , the set of algorithms A and the performance measure m known
from the AS problem. We then seek to find a mapping

called algorithm selector selector (ASS), and an aggregation function

such that the algorithm resulting from the aggregation optimizes the original performance
measure m. Accordingly, we seek to find the best pair (agg, ass) of aggregation function
agg and algorithm selector selector ass , such that for all instances i ∈ I the best algorithm
is returned, i.e.,

Observe that we principally allow the concrete aggregation to depend on the instance,
thereby allowing for learning instance-specific aggregation functions.

Figure 2 illustrates the relation between algorithms, algorithm selectors and algorithm
selector selectors. In the following, we present several instantiations of this framework.

4 Selecting single algorithm selectors through meta learning

The arguably simplest solution to the meta AS problem is achieved through meta learn-
ing (Vanschoren, 2018; Brazdil et al., 2008; Vilalta et al., 2009), namely to learn which
algorithm selector takes the best decision for a given instance. More formally, one could
seek to learn a map

(5)ass ∶ I ⟶ 2S ,

(6)agg ∶ I × 2S ⟶ A ,

(7)agg(i, ass(i)) ∈ argmin
a∈A

�[m(i, a)] .

(8)smeta ∶ I ⟶ S ,

1259Machine Learning (2023) 112:1253–1286

1 3

such that the chosen selector returns the most suitable algorithm for a given instance i, i.e.,

In this case, the co-domain of the function ass in (5) is effectively restricted to singleton
sets ass(i) = {s} ∈ S consisting of only a single algorithm selector s — we shall discuss
the consequences of this self-imposed restriction in Sect. 4.1. Moreover, the aggregation
agg in (6) is the identity, or, stated differently, there is actually no need for learning an
aggregation function. Lastly, the instance features computed by the feature map f for the
standard AS problem are also used on the meta level and thus constitute what is known as
meta features in the context of meta learning. Likewise, as (8) indicates, the set of selectors
S corresponds to the set of meta targets.

Observe that this approach is essentially a special case of the standard AS problem
itself, with a very specific set of algorithms to choose from, namely algorithm selectors.
Hence, standard AS methods (see Sect. 2.1) can in principle be applied. It is important
to note that algorithm selection approaches not relying on a feature representation of
instances do not necessarily have an advantage in terms of runtime anymore, because they
may select an algorithm selector which in turn requires the feature representation. If the
feature computation has to be performed either on the meta or on the base level, its time
has to be taken into account as well. However, there is no need to perform the computation
twice, if both the algorithm selector selector and the algorithm selector require it, because
the resulting features can be shared.

4.1 Limits of learned algorithm selector selection

Limiting ourselves to choosing only a single algorithm selector for a given instance instead
of leveraging multiple ones obviously has consequences in terms of achievable algorithm
selection performance. To elaborate on these consequences, let us define an algorithm
selector oracle (AS-oracle) as

(9)
(
s
meta

(i)
)
(i) ∈ argmin

a∈A
�[m(i, a)].

AlgorithmsAlgorithm SelectorsAlgorithm Selector
Selectors

Fig. 2 Illustration of the connection between algorithms (A), algorithm selectors (S) and algorithm selec-
tor selectors. Algorithms solve instances of an algorithmic problem, whereas algorithm selectors are map-
pings from an instance to a single algorithm from A . Algorithm selector selectors select one or multiple
algorithm selectors, which in turn each select an algorithm. These selections are then aggregated using an
aggregation function (not displayed here)

1260 Machine Learning (2023) 112:1253–1286

1 3

It is important to note that the AS-oracle is in general not identical to the oracle on the
base level, as the set of algorithms to choose from may change. For a better understanding,
consider an example with two algorithms a1 and a2 and two algorithm selectors s1 and s2 ,
where both always select algorithm a1 . Furthermore, assume there exists an instance for
which a2 performs better than a1 , and hence the oracle would select a2 . However, the AS-
oracle can only select s1 or s2 , which in turn both select a1 , resulting in a decrease in oracle
performance.

Generally speaking, in order to preserve the original oracle, it is necessary that, for
each instance, at least one algorithm selector exists that selects the best algorithm for that
instance. Otherwise, the AS-oracle performance may degrade compared to the oracle. In
practice, there will be at least one such instance most of the time, and hence an important
question is how much the oracle performance degrades. As we show in our experimental
evaluation, the degradation strongly depends on the scenario at hand, and ranges from less
than 1% to over 116%.1

Similarly to the oracle, the SBS on the meta level changes as well, since the single best
algorithm selector (SBAS), i.e., the algorithm selector which is best on average, is now
an algorithm selector, making it a lot stronger baseline than the single best solver. Hence,
while the SBS selects the actual problem solving algorithm that is best on average and
accordingly does not depend on instance features, the SBAS does in fact depend on such
features as long as it is not identical to the SBS. Observe that this results in a significant
disadvantage for the SBAS in terms of achievable PAR10 scores due to the time required to
compute these instance features.

Obviously, these implications also influence the performance gains that can be achieved
by algorithm selector selectors of the form (8) in comparison to algorithm selectors. As
the oracle performance most likely degrades, while the SBS performance most likely
improves, the gap between the two also decreases, offering less potential for algorithm
selection approaches to close this gap.

5 Constructing ensembles of algorithm selectors

As mentioned earlier, the restriction to choose only a single algorithm selector seems like
an unnecessary constraint and may even lead to a potential loss in achievable algorithm
selection performance. Accordingly, one may think about using a composition of algorithm
selectors, which can play to their strengths on some instances while compensating for each
other’s weaknesses on other instances. This idea motivates us to construct a mapping of the
form (5) through ensemble learning.

Ensemble learning (Dietterich, 2000) presumably constitutes the most natural tech-
nique to combine several machine learning approaches into a joint one, with the goal to
improve in performance. In algorithm selection, an ensemble can be thought of as a set
of algorithm selectors S , called base algorithm selectors, which are either trained inde-
pendently or dependently on each other. At prediction time, each selector is queried for

(10)ass∗(i) ∈ argmin
s∈S

�[m(i, s(i))] .

1 Note that on the CPMP-2015 scenario the degradation is even around 900% , but constitutes a clear out-
lier.

1261Machine Learning (2023) 112:1253–1286

1 3

the given instance i, and the algorithm choices are aggregated into a final choice using
an aggregation function as defined in (6). The concrete strategy used to make the selec-
tors cooperate depends on the ensemble technique being used. Figure 3 depicts the gen-
eral process of predicting / selecting an algorithm for a given instance through a trained
ensemble of algorithm selectors.

As mentioned earlier, allowing for the selection of multiple algorithm selectors also
requires the definition of an aggregation function in order to finally return a single algo-
rithm. In principle, the aggregation functions can either depend on the instance, i.e., are
instance-specific, or can be fixed across instances. Similarly, they can either be learned
or be predefined.

In general, to be successful, ensembles require a certain degree of heterogeneity of
the predictions. Therefore, the different algorithm selectors should not always coincide
in their selections. Otherwise, it can easily happen that the majority of predictions made
by the base selectors are identical. Hence, in such a situation, the prevalent selector
(maybe with slight but negligible variations) dominates the predictions of the entire
ensemble, only yielding a computationally more expensive variant of the respective
dominating selector. To avoid this problem, most ensemble methods strive for a hetero-
geneous set of base selectors. This can be achieved through a suitable choice of base
selectors given to the method, like for example in voting. Alternatively, in the case of
methods such as bagging, which only work with a single base selector, different variants
of the same selector can be trained on different data sets.

Intuitively, the training and querying of more than one selector might be counter-
intuitive in settings where runtime is optimized, as it automatically results in larger runt-
ime. In this regard, it is important to note that the majority of the runtime is required
for training the selectors in the ensembles. In AS, we can assume this training to be
performed offline, i.e., prior to the actual selection of algorithms. Hence, longer training
times do not constitute a real disadvantage, as long as prediction (querying the ensemble
members) remains fast, which is the case as most selectors are known to be extremely
fast such that even compositions of them are slower, but still fast.

In the following, we first elaborate on different aggregation strategies. Although
some of these aggregation functions include learnable components, they are fixed across
instances, i.e., the aggregation of predictions does not depend on the query instance.
Then, we present several ensemble techniques for creating a pool of algorithm selec-
tors, in particular voting (Dietterich, 2000), bagging (Breiman, 1996), and boosting
(Schapire, 1990). We continue with a discussion of stacking (Wolpert, 1992), which
can be seen as a learned, instance-specific aggregation method. As such, it is somehow
positioned in-between ensemble and meta learning. Finally, we close this section with a
methodological comparison of the presented approaches.

Fig. 3 This figure depicts the general process of predicting / selecting an algorithm for a given instance
through a trained ensemble of algorithm selectors s

1
, s

2
, s

3

1262 Machine Learning (2023) 112:1253–1286

1 3

5.1 Aggregation strategies

One of the most natural forms of aggregation in our context is (weighted) majority aggre-
gation. As the name suggests, it aggregates the algorithm choices by selecting the algo-
rithm that was selected most frequently, potentially weighting the choices of the selectors
differently. This is motivated by the idea that selectors with a strong performance should
potentially be trusted more than weaker ones. More formally, weighted majority aggrega-
tion can be defined as2

where ws ∈ ℝ
+ denotes the weight associated with selector s. With ws = 1 for all s ∈ S ,

we recover standard majority voting. To obtain proper weights, a plethora of methods
are applicable in principle. However, we simply consider the nPAR10 score of the dif-
ferent base algorithm selectors on the training data in order to determine corresponding
weights — conducting a cross-validation on the training data for the same purpose turned
out to result in similar performance while being computationally more expensive.

Up to now, we assumed that an algorithm selector only returns a single algorithm.
While this is typically true in practice, the majority of approaches internally feature more
nuanced predictions, often constituting some kind of loss (or score) for each algorithm in
A . Accordingly, instead of using only a concrete algorithm choice as the output of the
algorithm selectors, we adapted them to return such nuanced predictions where possible.

More formally, let us assume that each trained algorithm selector s ∈ S cannot only
be evaluated on i ∈ I , but that it also allows access to m̂s(i, a) , i.e., to the corresponding
internal score of each algorithm a ∈ A . For those approaches where such a score cannot be
extracted explicitly, e.g., multi-class algorithm selectors, we define dummy losses as

for all instances i ∈ I and algorithms a ∈ A , such that all approaches can be assumed to
work as defined in (2).

With this consideration, aggregations on this more nuanced level of scores instead of
the level of final choices can be made. The most straight-forward aggregation function on
this level is the arithmetic mean, i.e.,

While conceptually simple, it requires the performance surrogates of the different selec-
tors to approximate the same function. Otherwise, the predictions are incomparable, and
averaging is not a meaningful operation. For example, combining the output of a rank-
ing loss function optimized by one selector with the estimated average PAR10 scores of
another does not make any sense. In principle, the arithmetic mean can also be turned into
a weighted version as done in (11).

(11)agg(w)maj(i,S) = argmax
a∈A

∑

s∈S

ws ⋅ [[s(i) = a]] ,

(12)m̂s(i, a) =

{
0 if s(i) = a

1 else

(13)aggavg(i,S) = argmin
a∈A

1

|S|
∑

s∈S

m̂s(i, a) .

2 [[⋅]] denotes the indicator function evaluating to 1 if the expression is true, and to 0 otherwise.

1263Machine Learning (2023) 112:1253–1286

1 3

In order to be able to aggregate on this more nuanced level while overcoming the weak-
ness of the arithmetic mean, we propose to aggregate rankings (rank aggregation) of algo-
rithms constructed from the algorithm scores obtained from the selectors. More precisely,
we can assume that each selector s returns a ranking over the algorithms in A by sorting
them in increasing order w.r.t. m̂s(i, ⋅) , such that the presumably best algorithm is put on the
first position in the ranking, the second-best on the second position, etc. Having obtained
such a ranking over the algorithms for each selector, they need to be aggregated in order to
draw a conclusion and eventually return a single algorithm as the final choice.

A very simple method for rank aggregation is called Borda count (Borda, 1784). Given
a ranking of n items, it assigns n points to the top item, n − 1 points to the second-best,
and so forth. This is done for each ranking to be aggregated, and the consensus ranking
is obtained by sorting the items (algorithms in our case) in descending order according
to their total sum of points. As pointed out by Dwork et al. (2001), the Borda count has a
number of less appealing properties, at least from a theoretical point of view. On the other
side, its linear time complexity makes it fast to compute. This is in sharp contrast to other
rank aggregation techniques that involve intractable optimization problems (Dwork et al.,
2001). Besides, Borda comes with provable approximation guarantees for several other
aggregation techniques (Coppersmith et al., 2006). Overall, it seems to be a good compro-
mise for the case of algorithm selection, where predictions are performed under tight time
constraints.

Formally, we can use Borda count as an aggregation function for our setting as follows,
where rank ∶ I × S ×A → ℕ returns the rank of an algorithm a in the ranking returned by
a selector s on an instance i:

Ties are handled by assigning to all tied algorithms the average of the block of ranks they
occupy (Saari, 2000). In practice, ties can only be caused through the dummy scores intro-
duced in (12). Therefore, they always occur at the end of the rankings. Theoretically, iden-
tical scores of m̂(i, ⋅) could also result in ties, but this never happened in practice.

While the aggregation techniques outlined above appear to be meaningful in the context
of the algorithm selection task, we would like to point out that other aggregation tech-
niques are of course conceivable and could be used instead.

5.2 Voting

Voting ensembles are presumably the easiest form of ensemble learning: Each algorithm
selector in a set S′ ⊆ S is trained independently of the others on the same training data ID .

(14)aggborda(i,S) = argmin
a∈A

∑

s∈S

rank(i, s, a)

Fig. 4 This figure depicts the training process of a voting ensemble, where each base algorithm selector is
trained with the same training instances. Ensemble heterogeneity is achieved by choosing a heterogeneous
set of algorithm selectors in advance

1264 Machine Learning (2023) 112:1253–1286

1 3

At prediction time, all algorithm selectors in S′ are queried, and the predictions are aggre-
gated using one of the previously described aggregation strategies. Figure 4 depicts the
training process of a voting ensemble.

As we demonstrate empirically, it is important to optimize the ensemble composition,
i.e., the set of base algorithm selectors S′ ⊆ S specifying the ensemble, because the per-
formance of a voting ensemble solely depends on this configurable parameter. Intuitively, a
complete evaluation of each possible composition to check the corresponding performance
might seem intractable due to the exponential (in |S|) number of compositions. However, in
practice this can be a viable option under certain circumstances. To this end, we hold back
a portion of the training data ID as validation data I′

D
⊂ ID . Then, all base algorithm selec-

tors can be trained on the reduced training data ID ⧵ I′
D
 once, so that, in order to estimate

the performance of an ensemble composition, only the predictions of the used selectors on
the validation data I′

D
 need to be obtained and aggregated.3 As the training of the selectors

has to be performed only once at the beginning, and the computation of both the predic-
tions and the aggregation can be performed in a negligible amount of time, the evaluation
of all possible compositions is feasible as long as the set of algorithm selectors remains
moderately large. For example, computing the training performance of each possible vot-
ing ensemble composed of up to 7 algorithm selectors required less than 5 minutes for all
scenarios presented in Sect. 6. However, we want to stress that this approach still has an
exponential complexity even if the corresponding predictions can be obtained quite fast
as the number of ensemble compositions to evaluate is exponential in the number of algo-
rithm selectors. Thus, if the amount of algorithm selectors becomes larger, more sophisti-
cated ensemble pruning methods as Rokach (2009), Lazarevic and Obradovic (2001) and
Hernández-Lobato et al. (2009) can be used to find good compositions.

5.3 Bagging

In contrast to voting, bagging4 (Breiman, 1996) only leverages a single kind of algo-
rithm (selector). Therefore, heterogeneity between the ensemble members has to be
achieved through data manipulation techniques. To this end, bagging leverages a
data resampling technique from statistics called bootstrapping, which works as fol-
lows. Given a set of training instances ID of size N = |ID| , it creates a new training
instance set by sampling N times from ID with replacement. The actual ensemble is
constructed by sampling k such new training instance sets I(1)

D
,… , I

(k)

D
 and training one

Fig. 5 This figure depicts the
training process of a bagging
ensemble consisting of several
instantiations of the same base
algorithm selector trained on
bootstrapped versions of the
original training data

3 We note that, although theoretically sound, we do not split up validation data for the ensemble optimiza-
tion as this resulted in worse performance in practice and thus simply evaluate the performance of a compo-
sition on the same training data. Note that despite this, the final evaluation of an approach is still performed
on separate test data.
4 The term is short for short for “bootstrap aggregating”.

1265Machine Learning (2023) 112:1253–1286

1 3

instantiation of the provided algorithm selector on each of the k training sets. Thus, the
ensemble eventually consists of k algorithm selector instances. At prediction time, one
of the previously discussed aggregation functions can be used to aggregate the predic-
tions (selections) of the different selectors. Figure 5 depicts the training process of a
bagging ensemble.

We would like to point out that we bootstrap on the level of the problem instances
and not on the level of the actual training data points ((instance/algorithm)-pairs or
(instance/algorithm performance)-pairs). This is done in order to allow the selection
algorithms themselves to construct their training data points. In principle, this may
lead to differently large training data sets for the corresponding base algorithm selec-
tors if the number of training performance values m(i, ⋅) varies across instances. How-
ever, we assume that either m(i, a) is available or we know at least that m(i, a) > C for
all i ∈ ID, a ∈ A , and hence can reasonably impute these missing values, thereby solv-
ing the problem of differently sized training data sets.

5.4 Boosting

While both voting and bagging fit ensemble members independently of each other
(except for (partially) identical training data), boosting successively trains its members,
each time re-weighting the training instances (Schapire, 1990). After each iteration,
i.e., trained selector, the error of the previous selectors is determined and more weight
is put onto those instances where a wrong algorithm selection has been performed,
while the weight on correctly judged instances is reduced. Similar to bagging, boosting
only uses a single selector as a basis of which it trains instantiations based on differ-
ently weighted versions of the same training instance set in order to achieve diver-
sity w.r.t. its ensemble members. At prediction time, the predictions of each of the
trained selectors are obtained and combined into a joint prediction using a weighted
aggregation, using the weights that have been determined as part of the boosting algo-
rithm during the training phase. Figure 6 illustrates the training process of a boosting
ensemble.

In boosting algorithms for multi-class classification, such as SAMME (Hastie et al.,
2009), and regression problems, such as AdaBoost.R2 (Drucker, 1997), one would
naturally consider multi-class classification errors and regression losses, respectively,
for re-weighting training instances. However, due to the inferior performance of Ada-
Boost.R2 in preliminary experiments, we focus on SAMME for the remainder of this
paper.

Fig. 6 This figure depicts the training process of a boosting ensemble. Similar to bagging, the ensemble
constitutes several instances of the same base algorithm selector. These are subsequently trained on differ-
ently weighted versions of the training data

1266 Machine Learning (2023) 112:1253–1286

1 3

5.5 Stacking

In the previous ensemble techniques, the aggregation strategy is always fixed from the
beginning and independent of the actual instance at hand. The idea of stacking is to learn
the aggregation, i.e., how to best aggregate the predictions of the base algorithm selectors
for a given instance. Therefore, a meta-learner

is fitted and used to aggregate the predicted performances m̂(i, a) of each algorithm selector
s ∈ S for a given instance i ∈ I and each algorithm a ∈ A into a joint decision. To avoid
any bias in the training data for the meta-learner, it needs to be ensured that this data is
disjoint from the training data of the base algorithm selectors. Therefore, the set of train-
ing instances ID is normally split into a set of base algorithm selector training instances
I
′
D
⊂ ID and a set of meta-learner training instances I′′

D
⊂ ID such that I�

D
∩ I

��
D
= �.5

As all possible base algorithm selectors are used, each can be trained independently on
the same subset of training instances I′

D
 as a first step such that the training data for the

meta-learner can be built. Then, the meta-learner is trained based on the features f (i) ∈ ℝ
d

of each training instance i ∈ I
��
D
 extended by the predictions m̂s(i, ⋅) of all base algorithm

selectors s ∈ S on these instances. At prediction time, each base algorithm selector s ∈ S
is queried, its predictions m̂s(i, ⋅) are concatenated and attached to the instance features
f (i) ∈ ℝ

d of instance i, based on which the meta-learner predicts which algorithm to
choose. As the meta-learner is an algorithm selector itself, any of the base algorithm selec-
tors can be used. Figure 7 depicts the general idea of a stacking ensemble.

Since stacking is working on an (extended) feature representation, standard feature
selection techniques can be used to reduce the number of features and help the meta-
learner achieve better prediction performance. Thus, the ensemble composition does not
require any optimization upfront. For an overview of feature selection methods, we refer to
Guyon and Elisseeff (2003).

(15)�agg ∶ I ×ℝ
|S|×|A|

→ A

Fig. 7 This figure depicts the general idea behind a stacking ensemble. Each ensemble member is trained
with the same subset of training instances and the remaining instances are augmented with the correspond-
ing predictions of the trained selectors. Then, a meta-learner, i.e. an additional algorithm selector, hagg is
trained on this augmented data, which decides on the algorithm to select

5 Although theoretically correct, we did actually not do that split in our experimental evaluation in Sect. 6,
where is led to worse empirical performance.

1267Machine Learning (2023) 112:1253–1286

1 3

5.6 Comparison of the approaches

To put the approaches presented so far into the broader context of meta AS, we close this
section by revisiting them w.r.t. to their most important properties. Figure 8 provides an
overview and illustrates how the approaches relate to each other. It clarifies what kind of
mapping these approaches model, how this mapping is constructed, and how the required
aggregation function is constructed.

As an important observation, note that some approaches involve learning on the meta
level while others do not. The former most obviously holds for learning an algorithm selec-
tor selector (cf. Sect. 4), where the modeled mapping is learned directly. On the other
side, most ensemble approaches (cf. Sect. 5) do not require any learning on the meta level,
because their mapping is essentially predefined. Stacking is somehow in-between these two
groups: the mapping itself is predefined, but the aggregation function is learned on the
meta level.

6 Experimental evaluation

In this section, we provide an empirical evaluation of the ideas presented in the preceding
sections. It is organized into four main parts. First, we introduce our experiment setup.
Second, we investigate the chance for performance improvements when learning algorithm
selector selectors and evaluate the performance of standard algorithm selectors working as
algorithm selector selectors. Third, we evaluate the performance of the different ensemble
methods presented earlier and discuss the results. We end this section by drawing a broader
conclusion from these results.

6.1 Experiment setup

All evaluations are run on a subset of the scenarios from the ASlib v4.0 benchmark suite
(Bischl et al., 2016) with a 10-fold cross-validation, where the folds are provided by the
benchmark. ASlib is a curated collection of algorithm selection problems spanning a vari-
ety of different problems such as the Boolean satisfiability problem (SAT), the quanti-
fied Boolean formula problem (QBF) and others. Most of these problems focus on runt-
ime as a measure of interest as such problems often exhibit the property of performance

Mapping Mapping Type

Learned

Predefined

Aggregation

None

Learned

Predefined

Meta-Learning ASS

Voting
Boosting
Bagging

Stacking

Fig. 8 Illustration of the different approaches w.r.t. the kind of mapping they model, how this mapping is
constructed, and how the required aggregation is obtained

1268 Machine Learning (2023) 112:1253–1286

1 3

Ta
bl

e
1

 O
ve

rv
ie

w
 o

f e
xa

m
in

ed
 A

Sl
ib

 sc
en

ar
io

s i
nc

lu
di

ng
 th

ei
r n

um
be

r o
f i

ns
ta

nc
es

 (#
I)

, u
ns

ol
ve

d
in

st
an

ce
s (

#U
),

al
go

rit
hm

s (
#A

),
pr

ov
id

ed
 fe

at
ur

es
 (#

F)
, a

nd
 th

e
cu

to
ffs

 (C
)

A
SP

-
PO

TA
SS

CO
B

N
SL

-
20

16
C

PM
P-

20
15

C
SP

-
20

10
C

SP
-

M
ZN

-2
01

3
C

SP
-

M
in

iz
in

c-
Ti

m
e-

20
16

G
LU

-
H

A
CK

-1
8

M
A

X
SA

T-
PM

S-
20

16
M

A
X

SA
T-

W
PM

S-
20

16
M

A
X

SA
T1

2-
PM

S
M

A
X

-
SA

T1
5-

PM
S-

IN
D

U

PR
O

-
TE

U
S-

20
14

Q
B

F-
20

11

#I
12

94
11

79
52

7
20

24
46

42
10

0
35

3
60

1
63

0
87

6
60

1
40

21
13

68
#U

82
2

0
25

3
94

4
17

11
6

45
89

12
9

46
45

6
31

4
#A

11
8

4
2

11
20

8
19

18
6

29
22

5
#F

13
8

86
22

86
15

5
95

50
37

37
37

37
19

8
46

C
60

0
72

00
36

00
50

00
18

00
12

00
50

00
18

00
18

00
21

00
21

00
36

00
36

00

Q
B

F-
20

14
Q

B
F-

20
16

SA
T0

3-
16

_I
N

D
U

SA
T1

1-
H

A
N

D
SA

T1
1-

IN
D

U
SA

T1
1-

R
A

N
D

SA
T1

2-
A

LL
SA

T1
2-

H
A

N
D

SA
T1

2-
IN

D
U

SA
T1

2-
R

A
N

D
SA

T1
5-

IN
D

U
SA

T1
8-

EX
P

#I
12

54
82

5
20

00
29

6
30

0
60

0
16

14
76

7
11

67
13

62
30

0
35

3
#U

24
1

55
26

9
77

47
10

8
20

22
9

20
9

32
2

19
67

#A
14

24
10

15
18

9
31

31
31

31
28

37
#F

46
46

48
3

11
5

11
5

11
5

11
5

11
5

11
5

11
5

54
50

C
90

0
18

00
50

00
50

00
50

00
50

00
12

00
12

00
12

00
12

00
36

00
50

00

1269Machine Learning (2023) 112:1253–1286

1 3

complementarity motivating the AS problem. Table 1 shows the scenarios used with their
corresponding characteristics. Details regarding each scenario can be found in the corre-
sponding README file of the ASlib GitHub repository6 and in Bischl et al. (2016).

The performance of the approaches is measured in terms of the normalized penalized
average runtime (nPAR10) metric as defined in (4) if not mentioned otherwise. Recall that
a value of 0 indicates oracle performance, values below 1 an improvement over the SBS,
and values above 1 a degradation compared to the SBS. To allow for a better visual inter-
pretation, we sometimes illustrate results aggregated over all scenarios. Needless to say,
such aggregations have to be treated with care, because (differences between) performance
degrees are not easily comparable across scenarios.

The set of algorithm selectors used for the evaluation consists of S = {PerAlgo, SATz-
illa’11, R2S-Exp, R2S-PAR10, SUNNY, ISAC, Multiclass} , which all have been described
in Sect. 2. These are used both as meta-learners, but also as base algorithm selectors for the
ensembles. Furthermore, we compare all ensemble variants against the single best algo-
rithm selector (SBAS), i.e., the algorithm selector which performs best across all scenarios
in terms of average or median nPAR10 performance. Lastly, we note that in general we
leave out instances from the test sets where all algorithms run into the cutoff as no sensible
selection is possible for those. However, we do include these instances for the meta learn-
ing experiments in Sect. 6.2 as the set of instances in the test sets would otherwise vary
between the base level and the meta level yielding incomparable results. This is the case,
as we would potentially need to leave out an instance on the meta level (if none of the
algorithm selectors chose an algorithm solving it before the cutoff), which we might have
included on the base level (since there exists an algorithm solving it before the cutoff time).
This problem is very much related to the degradation in oracle performance, which was
previously discussed.

Fig. 9 This figures shows the PAR10 scores of the oracle, AS-oracle, SBS and SBAS on a subset of the
ASlib v4.0 benchmark scenarios as bar charts

6 https:// github. com/ coseal/ aslib_ data.

https://github.com/coseal/aslib_data

1270 Machine Learning (2023) 112:1253–1286

1 3

All experiments were run on machines featuring Intel Xeon E5-2695v4@2.1GHz CPUs
with 16 cores and 64GB RAM. In the interest of reproducibility of our results, all code,
including detailed documentation of the experiments and execution instructions, is avail-
able at GitHub.7

6.2 Meta learning for selecting an algorithm selector

Figure 9 shows the PAR10 scores of the oracle, AS-oracle, SBS and SBAS on a subset
of the ASlib v4.0 benchmark scenarios. As one can see, several of the implications we
noted in Sect. 4.1 can be validated empirically. Firstly and most importantly, although the
SBS/oracle gap is a lot larger than the SBAS/AS-oracle gap, the SBAS/AS-oracle gaps are
non-negligible, and hence constructing an algorithm selector selector can in principle make
sense. For example, consider scenarios BNSL-2016 or CPMP-2015 with large SBAS/AS-
oracle gaps.

As we noted earlier, the reason why these gaps become smaller is that the oracle per-
formance degrades when moving to the meta level for all scenarios, whereas the SBS per-
formance tends to improve, because the SBAS is essentially an algorithm selector. While
the degradation in oracle performance is moderate for the majority of scenarios (less than
10%), the improvement of the SBAS over the SBS is non-negligible, as the more successful
the algorithm selectors considered by the algorithm selector selectors are, the larger this
performance gain is.

Table 2 shows the nPAR10 scores of all algorithm selectors and the corresponding algo-
rithm selector selectors of form (8). Moreover, for the algorithm selector selectors, the val-
ues in brackets (a/b) indicate that the approach achieves a performance better or equal to a
base approaches and is worse than b base approaches.

Unsurprisingly, most algorithm selector selectors are able to consistently improve over
the SBS. However, moving to the meta level proves to be beneficial for only seven sce-
narios and these improvements are even distributed across different algorithm selector
selectors. To explain this moderate result, we speculate that the considered AS approaches
are not able to unleash their full potential on the meta level, although considerable SBAS/
AS-oracle gaps exist, as we have seen previously. However, the win/loss scores in brackets
indicate that moving to the meta level is beneficial in the sense that a more robust perfor-
mance across several scenarios can be achieved.

6.3 Voting ensembles

Figure 10 shows the average/median performance in terms of nPAR10 (over all scenarios)
of all possible voting ensemble compositions as violin plots grouped by the aggregation
strategy being used. The dashed line indicates the performance of the SBAS, the black dot
indicates the performance of the best composition w.r.t. the training performance, whereas
the red dot indicates the performance of the ensemble with all base algorithm selectors.

First of all, it is important to note that voting ensembles offer a lot of optimization
potential in terms of both mean and median performance in comparison to the SBAS.
While a concrete optimization of the ensemble composition (black dots) does not
seem to be beneficial, simply using all possible base algorithm selectors as ensemble

7 https:// github. com/ alexa ndert ornede/ as_ on_a_ meta_ level.

https://github.com/alexandertornede/as_on_a_meta_level

1271Machine Learning (2023) 112:1253–1286

1 3

Ta
bl

e
2

 PA
R

10
 s

co
re

s
of

 a
ll

ba
se

- a
nd

 a
lg

or
ith

m
 s

el
ec

to
r s

el
ec

to
rs

 n
or

m
al

iz
ed

 w
rt.

 th
e

st
an

da
rd

 o
ra

cl
e

an
d

SB
S.

 T
he

 re
su

lt
of

 th
e

be
st

ap
pr

oa
ch

 is
 m

ar
ke

d
in

 b
ol

d
fo

r e
ac

h
sc

en
ar

io
. M

or
eo

ve
r,

fo
r t

he
 m

et
a-

al
go

rit
hm

 s
el

ec
to

rs
 th

e
va

lu
es

 in
 b

ra
ck

et
s

(a
/b

) i
nd

ic
at

e
th

at
 th

at
 th

e
ap

pr
oa

ch
 a

ch
ie

ve
s

a
pe

rfo
rm

an
ce

 b
et

te
r o

r e
qu

al
 to

 a
 b

as
e-

ap
pr

oa
ch

es

an
d

is
 w

or
se

 th
an

 b
 b

as
e-

ap
pr

oa
ch

es

Le
ve

l
A

lg
or

ith
m

 S
el

ec
to

rs
A

lg
or

ith
m

 S
el

ec
to

r S
el

ec
to

rs
 (M

et
a)

A
pp

ro
ac

h
R

2S
Ex

p
R

2S
PA

R
10

IS
A

C
M

C
C

PA
Re

g
SA

Tz
ill

a’
11

SU
N

N
Y

R
2S

Ex
p

R
2S

PA
R

10
IS

A
C

M
C

C
PA

Re
g

SA
Tz

ill
a’

11
SU

N
N

Y

Sc
en

ar
io

A
SP

-
PO

TA
SS

CO
0.

30
0.

32
0.

60
0.

64
0.

34
0.

47
0.
17

0.
24

 (6
/1

)
0.

19
 (6

/1
)

0.
24

 (6
/1

)
0.

36
 (3

/4
)

0.
32

 (5
/2

)
0.

31
 (5

/2
)

0.
26

 (6
/1

)

B
N

SL
-2

01
6

0.
18

0.
21

0.
84

0.
31

0.
18

0.
18

0.
25

0.
22

 (3
/4

)
0.

21
 (4

/3
)

0.
19

 (4
/3

)
0.

28
 (2

/5
)

0.
22

 (3
/4

)
0.

28
 (2

/5
)

0.
27

 (2
/5

)
C

PM
P-

20
15

0.
76

0.
69

0.
90

0.
85

0.
78

0.
70

0.
94

0.
78

 (4
/3

)
0.

78
 (4

/3
)

0.
89

 (2
/5

)
0.

81
 (3

/4
)

0.
77

 (4
/3

)
0.

81
 (3

/4
)

0.
89

 (2
/5

)
C

SP
-2

01
0

0.
13

0.
15

0.
31

0.
80

0.
25

0.
13

0.
34

0.
05

 (7
/0

)
0.
04

 (7
/0

)
0.

19
 (4

/3
)

0.
13

 (7
/0

)
0.

46
 (1

/6
)

0.
18

 (4
/3

)
0.

09
 (7

/0
)

C
SP

-
M

ZN
-2

01
3

0.
11

0.
11

0.
35

0.
31

0.
13

0.
21

0.
13

0.
11

 (7
/0

)
0.
10

 (7
/0

)
0.

13
 (5

/2
)

0.
15

 (3
/4

)
0.

13
 (5

/2
)

0.
19

 (3
/4

)
0.

14
 (3

/4
)

C
SP

-M
in

iz
in

c-
Ti

m
e-

20
16

0.
43

0.
27

0.
83

0.
36

0.
67

0.
34

0.
37

0.
51

 (2
/5

)
0.

51
 (2

/5
)

0.
76

 (1
/6

)
0.

60
 (2

/5
)

0.
67

 (2
/5

)
0.

35
 (5

/2
)

0.
51

 (2
/5

)

G
LU

H
A

CK
-1

8
0.

43
0.

46
0.

69
0.

41
0.

46
0.

42
0.

51
0.
40

 (7
/0

)
0.

45
 (4

/3
)

0.
41

 (7
/0

)
0.

49
 (2

/5
)

0.
57

 (1
/6

)
0.

47
 (2

/5
)

0.
46

 (4
/3

)
M

A
X

SA
T-

PM
S-

20
16

0.
60

0.
36

0.
82

1.
06

0.
77

0.
62

0.
41

0.
64

 (3
/4

)
0.

65
 (3

/4
)

0.
60

 (5
/2

)
0.

71
 (3

/4
)

0.
82

 (2
/5

)
0.

98
 (1

/6
)

0.
75

 (3
/4

)

M
A

X
SA

T-
W

PM
S-

20
16

0.
44

0.
37

0.
76

0.
85

0.
52

0.
31

0.
16

0.
37

 (5
/2

)
0.

39
 (4

/3
)

0.
62

 (2
/5

)
0.

60
 (2

/5
)

0.
54

 (2
/5

)
0.

43
 (4

/3
)

0.
44

 (4
/3

)

M
A

X
SA

T1
2-

PM
S

0.
22

0.
23

0.
47

0.
40

0.
28

0.
24

0.
29

0.
25

 (4
/3

)
0.

25
 (4

/3
)

0.
20

 (7
/0

)
0.

21
 (7

/0
)

0.
32

 (2
/5

)
0.

22
 (7

/0
)

0.
21

 (7
/0

)

M
A

X
SA

T1
5-

PM
S-

IN
D

U
0.

34
0.

44
0.

89
1.

06
0.

55
0.

39
0.
24

0.
36

 (5
/2

)
0.

57
 (2

/5
)

0.
33

 (6
/1

)
0.

39
 (5

/2
)

0.
40

 (4
/3

)
0.

51
 (3

/4
)

0.
26

 (6
/1

)

PR
O

-
TE

U
S-

20
14

0.
41

0.
41

0.
64

0.
84

0.
45

0.
58

0.
47

0.
47

 (4
/3

)
0.

47
 (4

/3
)

0.
48

 (3
/4

)
0.

48
 (3

/4
)

0.
53

 (3
/4

)
0.

62
 (2

/5
)

0.
53

 (3
/4

)

Q
B

F-
20

11
0.

21
0.

20
0.

37
0.

35
0.

18
0.
15

0.
22

0.
20

 (5
/2

)
0.

21
 (4

/3
)

0.
22

 (3
/4

)
0.

21
 (4

/3
)

0.
29

 (2
/5

)
0.

25
 (2

/5
)

0.
26

 (2
/5

)
Q

B
F-

20
14

0.
26

0.
28

0.
51

0.
59

0.
32

0.
31

0.
31

0.
31

 (5
/2

)
0.

30
 (5

/2
)

0.
32

 (3
/4

)
0.

36
 (2

/5
)

0.
41

 (2
/5

)
0.

39
 (2

/5
)

0.
36

 (2
/5

)
Q

B
F-

20
16

0.
52

0.
51

0.
65

0.
69

0.
61

0.
61

0.
49

0.
55

 (4
/3

)
0.

55
 (4

/3
)

0.
52

 (5
/2

)
0.

53
 (4

/3
)

0.
62

 (2
/5

)
0.

57
 (4

/3
)

0.
58

 (4
/3

)

1272 Machine Learning (2023) 112:1253–1286

1 3

Ta
bl

e
2

 (c
on

tin
ue

d)

Le
ve

l
A

lg
or

ith
m

 S
el

ec
to

rs
A

lg
or

ith
m

 S
el

ec
to

r S
el

ec
to

rs
 (M

et
a)

A
pp

ro
ac

h
R

2S
Ex

p
R

2S
PA

R
10

IS
A

C
M

C
C

PA
Re

g
SA

Tz
ill

a’
11

SU
N

N
Y

R
2S

Ex
p

R
2S

PA
R

10
IS

A
C

M
C

C
PA

Re
g

SA
Tz

ill
a’

11
SU

N
N

Y

Sc
en

ar
io

SA
T0

3-
16

-
IN

D
U

0.
71

0.
76

0.
98

0.
99

0.
77

0.
82

0.
82

0.
92

 (2
/5

)
0.

90
 (2

/5
)

0.
80

 (4
/3

)
0.

79
 (4

/3
)

0.
81

 (4
/3

)
0.

84
 (2

/5
)

0.
86

 (2
/5

)

SA
T1

1-
H

A
N

D
0.
34

0.
34

0.
65

0.
57

0.
46

0.
44

0.
60

0.
42

 (5
/2

)
0.

47
 (3

/4
)

0.
42

 (5
/2

)
0.

44
 (5

/2
)

0.
50

 (3
/4

)
0.

45
 (4

/3
)

0.
56

 (3
/4

)
SA

T1
1-

IN
D

U
0.

69
0.

69
1.

08
0.

71
0.

63
0.

79
0.

76
0.

78
 (2

/5
)

0.
89

 (1
/6

)
0.

84
 (1

/6
)

0.
61

 (7
/0

)
0.

79
 (2

/5
)

0.
73

 (3
/4

)
0.

85
 (1

/6
)

SA
T1

1-
R

A
N

D
0.

13
0.
06

0.
59

0.
17

0.
09

0.
39

0.
12

0.
15

 (3
/4

)
0.

12
 (5

/2
)

0.
17

 (3
/4

)
0.

18
 (2

/5
)

0.
18

 (2
/5

)
0.

30
 (2

/5
)

0.
20

 (2
/5

)
SA

T1
2-

A
LL

0.
36

0.
36

0.
67

0.
38

0.
37

0.
44

0.
38

0.
37

 (5
/2

)
0.

40
 (2

/5
)

0.
39

 (2
/5

)
0.

39
 (2

/5
)

0.
40

 (2
/5

)
0.

40
 (2

/5
)

0.
43

 (2
/5

)
SA

T1
2-

H
A

N
D

0.
34

0.
34

0.
64

0.
41

0.
37

0.
27

0.
43

0.
34

 (6
/1

)
0.

34
 (6

/1
)

0.
31

 (6
/1

)
0.

38
 (3

/4
)

0.
39

 (3
/4

)
0.

39
 (3

/4
)

0.
38

 (3
/4

)
SA

T1
2-

IN
D

U
0.

70
0.

73
1.

02
0.

94
0.

79
0.
59

0.
78

0.
62

 (6
/1

)
0.

63
 (6

/1
)

0.
75

 (4
/3

)
0.

73
 (5

/2
)

0.
65

 (6
/1

)
0.

65
 (6

/1
)

0.
66

 (6
/1

)
SA

T1
2-

R
A

N
D

0.
96

0.
86

0.
91

5.
20

1.
17

0.
93

1.
14

0.
92

 (5
/2

)
1.

02
 (3

/4
)

0.
94

 (4
/3

)
1.

00
 (3

/4
)

1.
25

 (1
/6

)
1.

23
 (1

/6
)

1.
05

 (3
/4

)
SA

T1
5-

IN
D

U
0.

95
0.

83
0.

76
0.

91
0.

74
0.

75
1.

00
0.

68
 (7

/0
)

0.
88

 (3
/4

)
1.

00
 (1

/6
)

0.
96

 (1
/6

)
0.
65

 (7
/0

)
0.

85
 (3

/4
)

0.
81

 (4
/3

)
SA

T1
8-

EX
P

0.
61

0.
68

0.
62

0.
65

0.
64

0.
59

0.
63

0.
66

 (1
/6

)
0.

67
 (1

/6
)

0.
61

 (6
/1

)
0.

58
 (7

/0
)

0.
61

 (6
/1

)
0.
54

 (7
/0

)
0.

59
 (7

/0
)

1273Machine Learning (2023) 112:1253–1286

1 3

members often comes close to the lower performance bound of the voting ensemble
strategy. Independent of the aggregation strategy, a voting ensemble with all base algo-
rithm selectors is always able to improve over the best single algorithm selector, some-
times even drastically (e.g., Borda aggregation in terms of median performance). Over-
all, the weighted majority and the Borda aggregation seem to be on a par in terms of
performance when considering the mean nPAR10 score, while Borda is superior in the
median case.

Fig. 10 Mean/median performance in terms of nPAR10 (over all scenarios) of all possible voting ensemble
compositions as violin plots grouped by the aggregation strategy being used. The dashed line indicates the
performance of the SBAS, the black dot indicates the performance of the best composition w.r.t. to the
training performance, whereas the red dot indicates the performance of the ensemble with all base algo-
rithm selectors

Fig. 11 Average/median nPAR10 performance over all scenarios of each bagging ensemble with 10 instan-
tiations of the corresponding base algorithm selector and different aggregation functions. Moreover, the
performance of the corresponding base algorithm selector is shown. Once again, the dashed line indicates
the performance of the SBAS

1274 Machine Learning (2023) 112:1253–1286

1 3

It is important to understand the scope of the improvement depicted here. Although
R2S-PAR10 already offers a remarkable performance and represents the state of the art in
algorithm selection, it is beaten by around 15% (mean) and 32% (median), which constitute
tremendous improvements.

6.4 Bagging ensembles

Figure 11 shows the average / median nPAR10 performance over all scenarios of each bag-
ging ensemble with 10 instantiations of the corresponding base algorithm selector and
different aggregation functions. Moreover, the performance of the corresponding base
algorithm selector is shown. Once again, the dashed line indicates the performance of the
SBAS.

While both ensemble variants equipped with ISAC or Multiclass as a base algorithm
selector deteriorate in terms of performance compared to the SBAS, SUNNY, SATzilla’11,
and PerAlgo are able to improve both in terms of mean and median performance if the
right aggregation is chosen. Surprisingly, none of the aggregation functions seems to be
dominating the others. Furthermore, it can be seen that bagging improves the performance
of SUNNY, SATzilla’11 and PerAlgo, but mostly worsens the performance for ISAC and
offers mixed results for Multiclass.

In light of the general experience with bagging in machine learning, the perfor-
mance deterioration of the ISAC ensemble in comparison to its base selector may
appear surprising. We conjecture that the negative effect of ensembling is due to the
specific characteristics of this method. ISAC applies a clustering technique in order to
form clusters over the training instances and computes a threshold t based on the aver-
age distances of all instances to their corresponding cluster centroid and the standard
deviation over these values. At prediction time, ISAC finds the centroid which is clos-
est to the new instance and returns the algorithm performing best on the cluster, if the

Fig. 12 Average/median nPAR10 performance over all scenarios of each boosting ensemble with 20 itera-
tions and different aggregation functions. Moreover, the performance of the corresponding base algorithm
selector is shown. Once again, the dashed line indicates the performance of the SBAS

1275Machine Learning (2023) 112:1253–1286

1 3

distance to the centroid is below the aforementioned threshold. If this is not the case,
the SBS is returned. Thus, the threshold can be seen as a fail-safe in case ISAC con-
siders the closest cluster to be too different to draw any reasonable conclusions. After
careful investigation, we found that the threshold t decreases for the ensemble mem-
bers trained on bootstrapped training instance sets as both the average distance and the
standard deviation decreases. As a result, the ensemble members mostly deteriorate to
the SBS and suggest the SBS on a majority of the instances. This explains the decrease
in performance and the similar results of the different aggregation strategies.

We note that Run2Survive was left out as a base algorithm selector for bagging as
it cannot easily be trained with bootstrapped instance training sets on scenarios with
many censored samples. In such cases, bootstrapping often leads to training data sets
consisting of censored samples only, which the approach cannot handle.

Fig. 13 Learning curves featuring training (orange) and testing (blue) nPAR10 scores of the SAMME
boosting algorithm with SUNNY (top two) and ISAC (bottom two) as a base selector on two instances

1276 Machine Learning (2023) 112:1253–1286

1 3

6.5 Boosting ensembles

Figure 12 shows the average / median nPAR10 performance over all scenarios of each
boosting ensemble with 20 iterations and different aggregation functions.

While the performance of the PerAlgo, Multiclass and SATzilla’11 algorithm selec-
tors improves through boosting, the performance of SUNNY and ISAC degrades. Once
again, the degradation of ISAC can be explained by the same phenomenon as in the case of
bagging: the instance weighting required by boosting was implemented through data sam-
pling, whence ISAC mostly degenerates to the SBS. We chose to do so, since not all of the
base algorithm selectors inherently support instance weights, but we wanted to investigate
boosting variants powered by as many base algorithm selectors as possible. The degrada-
tion of the performance of SUNNY can also be explained in a similar fashion. Recall that
SUNNY essentially is a similar k-nearest neighbor algorithm, which, given a new instance,
returns the algorithm which performs best in terms of PAR10 performance on the k near-
est instances in the training data. However, this training data mostly consists of instances
with a high weight as all others have a lower chance of being sampled. As a consequence,
SUNNY will return the algorithm performing best on average on exactly these instances,
while completely ignoring all other instances. This results in degenerate boosting learning
curves as depicted in Fig. 13. The problem is less dominant for selectors that generalize in
a more sophisticated way across the features, such as PerAlgo or Multiclass. For instance-
based approaches such as SUNNY or ISAC, different forms of boosting specialized for
k-NN approaches (García-Pedrajas & Ortiz-Boyer, 2009) or clustering (Frossyniotis et al.,
2004) might be more promising and should be investigated in future work.

6.6 Stacking

Figure 14 shows the average nPAR10 performance of stacking variants, where the meta-
learner hagg is instantiated through different algorithm selectors with and without a vari-
ance threshold feature selection approach. Each variant uses all base algorithm selectors to

Fig. 14 This figure shows the average nPAR10 performance of stacking variants where hagg , i.e. the meta-
learner, is instantiated through different algorithm selectors with and without a variance threshold feature
selection approaches

1277Machine Learning (2023) 112:1253–1286

1 3

generate additional features. The variance threshold method selects all features with a vari-
ance larger than a given threshold, which was set to 0.16 for these experiments. The dotted
line indicates the average performance of the SBAS.

Firstly, we would like to note that no general recommendation on the use of feature
selection can be made, as the effect seems to depend very much on the meta-learner. How-
ever, while all stacking ensemble variants do not improve over the best single algorithm
selector, the variants deploying SATzilla’11 and Multiclass as a meta-learner can slightly
improve in performance. We find this quite disappointing, because the additional features
provided to the meta-learner seem to carry valuable information. This is confirmed by the
feature importance analysis portrayed in Fig. 15. It shows a ranking over the features w.r.t.
their feature importance values extracted from the multi-class classification meta-learner
(instantiated with a random forest classifier) for the QBF-2011 scenario. Clearly, the addi-
tional features in the form of the predictions of the ensemble members carry the biggest
part of the information contained in the data.

6.6.1 Overall comparison

Table 3 displays nPAR10 values of a subset of all evaluated ensemble variants and all base
algorithm selectors broken down to the different scenarios. The best result for each sce-
nario is marked in bold, and a line above a result of an ensemble approach indicates that it
is better than the result of the best base algorithm selector on the corresponding scenario.

Overall, ensembles of algorithm selectors achieve a performance superior to sin-
gle algorithm selectors. There are only two scenarios (ASP-POTASSCO, MAXSAT-
WPMS-2016) for which none of the selected ensemble variants was able to improve over
the base algorithm selector, performing best on that particular scenario, and another three
scenarios where a competitive performance was achieved (MAXSAT15-PMS-INDU,
SAT11-HAND, SAT12-HAND). For all other scenarios, at least one of the ensemble vari-
ants achieved a new state-of-the-art performance. While some of these improvements are
rather small (CSP-MNZ-2013, where an improvement from 0.11 to 0.10 is recorded), there

Fig. 15 This figure portrays a ranking over the features w.r.t. their feature importance values extracted from
the multi-class classification meta-learner (instantiated with a one-vs-all decomposition equipped with a
random forest classifier) for the QBF-2011 scenario

1278 Machine Learning (2023) 112:1253–1286

1 3

Ta
bl

e
3

 nP
AR

10
 v

al
ue

s
of

 th
e

be
st

en
se

m
bl

e
va

ria
nt

s
an

d
al

l b
as

e
al

go
rit

hm
 s

el
ec

to
rs

 b
ro

ke
n

do
w

n
to

 th
e

di
ffe

re
nt

 s
ce

na
rio

s.
Th

e
be

st
re

su
lt

fo
r e

ac
h

sc
en

ar
io

 is
 m

ar
ke

d
in

bo

ld
 a

nd
 a

 li
ne

 a
bo

ve
 a

 re
su

lt
in

di
ca

te
s b

ea
tin

g
al

l b
as

e
al

go
rit

hm
 se

le
ct

or
s

En
se

m
bl

e
Vo

tin
g

B
ag

gi
ng

St
ac

ki
ng

B
oo

sti
ng

A
gg

re
ga

tio
n

w
m

aj
bo

rd
a

w
m

aj
bo

rd
a

R
2S

-E
xp

SA
Tz

-
ill

a’
11

(V

T)

w
m

aj
w

m
aj

B
as

e
se

le
ct

or
A

ll
A

ll
SU

N
N

Y
Pe

rA
lg

o
A

ll
A

ll
M

ul
tic

la
ss

Pe
rA

lg
o

R
2S

-E
xp

R
2S

-P
A

R
10

IS
A

C
M

ul
tic

la
ss

Pe
rA

lg
o

SA
Tz

ill
a’

11
SU

N
N

Y

Sc
en

ar
io

A
SP

-
PO

TA
SS

CO
0.

26
0.

24
0.

21
0.

29
0.

31
0.

31
0.

44
0.

44
0.

3
0.

34
0.

64
0.

67
0.

34
0.

45
�
.�
�

B
N

SL
-2

01
6

0
.1
6

0
.1
7

0.
25

�
.�
�

0
.1
6

0.
18

0.
32

0.
3

0.
2

0.
22

0.
84

0.
31

0.
2

0.
18

0.
25

C
PM

P-
20

15
0.

81
0.

87
0.

83
0.

82
0.

88
0
.7
6

0
.5
1

�
.�
�

0.
97

0.
81

0.
98

0.
94

0.
9

0.
81

1.
05

C
SP

-2
01

0
0.

24
0.

24
0.

33
�
.�
�

�
.�
�

0.
24

0.
43

0.
42

0.
26

0.
26

0.
38

0.
78

0.
36

0.
24

0.
4

C
SP

-
M

ZN
-2

01
3

�
.�

0.
11

0.
12

�
.�

0.
14

0.
2

0.
39

0.
36

0.
11

0.
11

0.
34

0.
31

0.
13

0.
22

0.
13

C
SP

-M
in

iz
in

c-
Ti

m
e-

20
16

�
.�
�

0
.3
1

0.
51

0.
51

0.
46

0
.4

0
.3
9

0
.3
5

0.
46

0.
46

0.
7

0.
61

0.
61

0.
41

0.
52

G
LU

H
A

CK
-1

8
0.

44
0.

44
0.

47
0.

49
0.

45
0.

43
0.

4
�
.�
�

0.
47

0.
5

0.
6

0.
39

0.
44

0.
41

0.
52

M
A

X
SA

T-
PM

S-
20

16
0.

55
0.

58
0
.3
9

0.
47

0.
76

0.
7

0.
42

�
.�
�

0.
57

0.
41

1.
05

1.
18

0.
79

0.
6

0.
49

M
A

X
SA

T-
W

PM
S-

20
16

0.
34

0.
28

0.
26

0.
33

0.
43

0.
45

0.
41

0.
38

0.
46

0.
38

0.
76

0.
84

0.
49

0.
37

�
.�
�

M
A

X
SA

T1
2-

PM
S

0.
27

0.
27

�
.�
�

0
.2
1

0.
28

0.
33

0.
38

0.
36

0.
27

0.
29

0.
55

0.
37

0.
33

0.
24

0.
28

M
A

X
SA

T1
5-

PM
S-

IN
D

U
0.

36
�
.�
�

0.
31

0.
4

0.
34

0.
3

0.
37

0.
36

0.
39

0.
46

1.
0

1.
24

0.
58

0.
43

�
.�
�

PR
O

-
TE

U
S-

20
14

0.
42

0.
42

0.
43

0
.3
9

0.
41

0.
58

0.
41

�
.�
�

0.
41

0.
41

0.
62

0.
84

0.
45

0.
58

0.
47

Q
B

F-
20

11
0.

18
0.

17
0.

16
�
.�

0.
16

0
.1
5

0.
39

0.
34

0.
19

0.
19

0.
33

0.
33

0.
2

0.
16

0.
22

Q
B

F-
20

14
0
.2
8

0
.2
6

0.
36

�
.�
�

0
.2
8

0.
36

0.
4

0.
32

0.
3

0.
31

0.
51

0.
63

0.
31

0.
36

0.
4

1279Machine Learning (2023) 112:1253–1286

1 3

Ta
bl

e
3

 (c
on

tin
ue

d)

En
se

m
bl

e
Vo

tin
g

B
ag

gi
ng

St
ac

ki
ng

B
oo

sti
ng

A
gg

re
ga

tio
n

w
m

aj
bo

rd
a

w
m

aj
bo

rd
a

R
2S

-E
xp

SA
Tz

-
ill

a’
11

(V

T)

w
m

aj
w

m
aj

B
as

e
se

le
ct

or
A

ll
A

ll
SU

N
N

Y
Pe

rA
lg

o
A

ll
A

ll
M

ul
tic

la
ss

Pe
rA

lg
o

R
2S

-E
xp

R
2S

-P
A

R
10

IS
A

C
M

ul
tic

la
ss

Pe
rA

lg
o

SA
Tz

ill
a’

11
SU

N
N

Y

Sc
en

ar
io

Q
B

F-
20

16
0
.4
2

0
.4
1

0
.4
4

0
.4
2

0.
56

0.
63

0
.4
1

�
.�
�

0.
47

0.
49

0.
59

0.
68

0.
65

0.
62

0.
51

SA
T0

3-
16

_
IN

D
U

0.
73

0
.7
1

0
.7

0.
75

0
.6
6

0.
81

0
.4
4

�
.�
�

0.
72

0.
76

0.
94

0.
99

0.
89

0.
84

0.
85

SA
T1

1-
H

A
N

D
0.

37
�
.�
�

0.
45

0.
45

0.
46

0.
44

0.
43

�
.�
�

0.
51

�
.�
�

0.
69

0.
57

0.
48

0.
49

0.
7

SA
T1

1-
IN

D
U

0.
66

0.
65

0.
97

0.
66

0.
71

0.
69

0
.4
5

�
.�
�

0.
66

0.
74

0.
98

0.
76

0.
62

0.
83

0.
85

SA
T1

1-
R

A
N

D
0.

1
0.

1
0.

1
�
.�
�

0.
11

0.
29

0.
44

0.
37

0.
14

0.
08

0.
61

0.
17

0.
11

0.
36

0.
13

SA
T1

2-
A

LL
0
.3

0
.3

0.
36

�
.�
�

0.
36

0.
38

0.
43

0.
36

0.
37

0.
35

0.
67

0.
37

0.
37

0.
44

0.
4

SA
T1

2-
H

A
N

D
0.

28
�
.�
�

0.
34

0.
3

0.
29

0.
28

0.
43

0.
35

0.
35

0.
34

0.
64

0.
41

0.
38

�
.�
�

0.
42

SA
T1

2-
IN

D
U

0.
61

0
.5
8

0.
71

0.
73

0.
73

0.
61

0
.4
5

�
.�
�

0.
73

0.
75

0.
97

0.
94

0.
81

0.
61

0.
81

SA
T1

2-
R

A
N

D
0
.8
7

0
.8
9

0.
91

1.
06

0
.8
7

0.
9

0
.4
8

�
.�
�

1.
0

0.
9

1.
01

5.
32

1.
18

0.
99

1.
11

SA
T1

5-
IN

D
U

0
.6
5

0
.7

0.
79

0.
85

0.
9

0
.6
8

0
.5

�
.�
�

1.
01

0.
79

0.
72

0.
86

0.
72

0.
72

1.
04

SA
T1

8-
EX

P
0
.4
7

0
.5
2

0
.5
7

�
.�
�

0
.5
2

0
.5
9

0
.5

0
.4

0.
6

0.
67

0.
61

0.
65

0.
62

0.
6

0.
63

M
ea

n
0
.4

0
.4

0
.4
5

0
.4
3

0.
46

0.
47

0
.4
2

�
.�
�

0.
48

0.
46

0.
71

0.
85

0.
52

0.
49

0.
51

M
ed

ia
n

0
.3
6

�
.�
�

0
.3
9

0
.3
9

0.
43

0.
43

0.
43

0
.3
6

0.
46

0.
41

0.
67

0.
67

0.
48

0.
44

0.
47

A
vg

. R
an

k
4
.3
2

�
.�

6
.9
2

5
.2
8

6
.9
6

7
.5
6

7.
72

5
.8

8.
2

7.
72

13
.4

8
12

.8
8

10
.1

6
8.

44
10

.3
2

1280 Machine Learning (2023) 112:1253–1286

1 3

are also various scenarios with a > 1.5 fold improvement (e.g., CSP-Minizinc-Time-2016,
SAT03_16_INDU, QBF-2011). This is especially remarkable as only very few improve-
ments have been made in the last two years.

In terms of median, and average rank performance across all scenarios, the Borda vot-
ing ensemble variant achieves the best result and improves over the previous state of the
art by more than 32% (median performance). Thus, it demonstrates a very robust perfor-
mance across all scenarios. The voting ensemble with a Borda aggregation (13), the bag-
ging ensemble with the PerAlgo base selector and a Borda aggregation (11), and the boost-
ing ensemble with the PerAlgo base selector and a weighted majority aggregation (13) all
consistently outperform the best single algorithm selector on 11 to 13 of 25 scenarios and,
thus, achieve an impressive performance.

6.7 Discussion of results

We end the experimental evaluation by discussing both the scope of the presented results
and the hardness of meta learning.

6.7.1 Scope of results

As the composition of the ASlib benchmark and existing literature show, most of the algo-
rithm selection research is centered around constraint satisfaction problems, where the
measure to optimize is algorithm runtime or a penalized version thereof such as the PAR10.
This has several reasons: First, constraint satisfaction problems play a very important role
in industry while, despite the large amount of research committed to these kinds of prob-
lems over the last century, they remain hard to solve in general. Second, the phenomenon
of performance complementarity among algorithms, which is the main motivation for the
AS problem as discussed earlier, is very present for these problems. More precisely, algo-
rithms for solving constraint satisfaction problems are known to exhibit heavy-tailed runt-
ime distributions (Gomes et al., 1997), i.e., they need very long to solve some instances
while other algorithms might solve the same much faster. Overall, the potential for algo-
rithm selection is very large on these kinds of problems, while sometimes lower for other
problems such as selecting machine learning algorithms for a dataset. For that particular
example, both random forests and gradient boosting often show strong performance and,
thus, constitute strong SBS, which in principle can be improved upon as for example shown
in Thornton et al. (2013), but often to a smaller degree.

Correspondingly, as common in the AS literature, the results presented so far focus on
scenarios optimizing algorithm runtime. However, in order to at least give an idea about the
applicability of the proposed framework for other algorithmic problem classes, we would
also like to present results on two other scenarios from ASlib, which focus on optimiz-
ing solution quality instead of algorithm runtime. In particular, we present results on the
OPENML-WEKA-2017 and the TTP-2016 scenarios. While the former is concerned with
the selection of machine learning algorithms for different datasets, the latter deals with
selecting algorithms for instances of the traveling thief problem (Bonyadi et al., 2013).
As the Run2Survive models are specifically tailored towards AS wrt. algorithm runtime
instead of performance, we leave them out of the comparison here.

Table 4 shows the results for the ensemble methods and the base algorithm selectors
including both the SBS and the oracle as reference points. These reference points are
included as this table does not show nPAR10 scores, but a performance score in the unit

1281Machine Learning (2023) 112:1253–1286

1 3

Ta
bl

e
4

 P
er

fo
rm

an
ce

 v
al

ue
s

(O
PE

N
M

L-
W

EK
A

-2
01

7:
 a

cc
ur

ac
y,

 T
TP

-2
01

6:
 T

TP
 o

bj
ec

tiv
e

fu
nc

tio
n

W
ag

ne
r e

t a
l.,

 2
01

8)
 o

f t
he

 b
es

t e
ns

em
bl

e
va

ria
nt

s
an

d
al

l b
as

e
al

go
rit

hm

se
le

ct
or

s b
ro

ke
n

do
w

n
to

 th
e

re
sp

ec
tiv

e
sc

en
ar

io
s.

Th
e

be
st

re
su

lt
fo

r e
ac

h
sc

en
ar

io
 is

 m
ar

ke
d

in
 b

ol
d

an
d

a
lin

e
ab

ov
e

a
re

su
lt

in
di

ca
te

s b
ea

tin
g

al
l b

as
e

al
go

rit
hm

 se
le

ct
or

s

En
se

m
bl

e
Vo

tin
g

B
ag

gi
ng

St
ac

ki
ng

B
oo

sti
ng

A
gg

re
ga

tio
n

w
m

aj
bo

rd
a

w
m

aj
bo

rd
a

R
2S

-E
xp

SA
Tz

-
ill

a’
11

(V

T)

w
m

aj
w

m
aj

B
as

e
se

le
ct

or
A

ll
A

ll
SU

N
N

Y
Pe

rA
lg

o
A

ll
A

ll
M

ul
tic

la
ss

Pe
rA

lg
o

Pe
rA

lg
o

SU
N

N
Y

IS
A

C
SA

Tz
ill

a’
11

M
ul

tic
la

ss
sb

s
O

ra
cl

e

Sc
en

ar
io

O
PE

N
M

L-
W

EK
A

-2
01

7
0.

85
0.

85
0.

85
0.

85
0.

85
0.

85
0.

85
�
.�
�

0.
85

0.
84

0.
85

�
.�
�

0.
85

�
.�
�

0.
88

TT
P-

20
16

�
.�
�

�
.�
�

�
.�
�

�
.�
�

�
.�
�

�
.�
�

�
.�
�

�
.�
�

�
.�
�

�
.�
�

�
.�
�

�
.�
�

�
.�
�

0.
96

1.
0

1282 Machine Learning (2023) 112:1253–1286

1 3

interval where 1 is the optimum since the scenarios are concerned with solution quality
optimization as noted earlier. While the base algorithm selectors are able to achieve a slight
improvement over the SBS on the TTP-2016 scenario, none of them can beat the SBS on
the OPENML-WEKA-2017 scenario. Similarly, none of the ensemble approaches is able
to improve over a base selector on the two scenarios. Hence, the empirical results corrobo-
rate the essence of the discussion above: On both scenarios the SBS is a strong baseline,
which is quite close to the oracle in terms of performance and hence, there exists hardly
any potential for algorithm selection in general let alone the meta level.8

Overall, algorithm selection on the meta level is only sensible in cases where (a) a con-
siderable gap between the performances of standard algorithm selection approaches and
the oracle exists and (b) performance complementarity among the algorithm selectors can
be exploited. In contrast to the scenarios concerned with runtime, at least the first condition
is not met for the two additional scenarios here, making an application not worthwhile for
these cases.

6.7.2 Is meta learning harder than learning?

Recall our taxonomy of the approaches presented in Fig. 8, regarding which kind of map-
ping they model, how this mapping is constructed, and how the required aggregation func-
tion is obtained. Drawing an overall conclusion from the results presented in this work,
we cautiously conclude that the presumably simpler problem of learning a mapping (8)
from the instances to the set of algorithm selectors yields worse results than solving the
presumably more complicated problem of finding both a mapping from instances to a set
of selectors and a corresponding aggregation function. While we observed remarkable per-
formance improvements for all ensemble approaches, the meta learning approach could
essentially achieve no improvement. Although ensembles are known to often yield better
results than single approaches and thus an improvement is to be expected, we believe that
the degree of improvement in a well-researched field such as algorithm selection is truly
remarkable. Moreover, it is surprising that the meta learning essentially fails and hence,
classic AS approaches cannot exploit performance complementarity on the meta level.

As a possible reason, note that the meta learning approach heavily relies on the instance
features, which are required for learning on the meta level. On the contrary, ensembles of
algorithm selectors do not use these features on the meta level directly (except for stack-
ing), but only aggregate the predictions of multiple selectors. Thus, we speculate that the
information contained in the features does not allow for an improvement in performance
through moving to the meta level, while the predictions of the selectors do carry enough
information to do so. This hypothesis is corroborated by the feature analysis conducted
as part of the experiments around stacking (cf. Fig. 15), which indicate that much more
information is present in the predictions of the base selectors than in the original instance
features. We attribute stacking’s ability to perform successful learning on the meta level
(aggregation) to the same reason. While stacking was able to achieve improvements, the
arguably most simple ensemble approach in the form of voting, which involves no learning
on the meta level at all, achieved by far the best results. Overall, learning on the meta level
appears to be a very hard problem.

8 As the ensemble approaches performed much better than the direct meta learning approach in the runtime
experiments, we focused on the ensemble variants here.

1283Machine Learning (2023) 112:1253–1286

1 3

7 Related work

In the following, we give an overview of the most related work regarding the use of ensem-
ble methods in algorithm selection. As mentioned earlier, this work is surprisingly sparse.
For a general overview of work on algorithm selection, we refer to Kerschke et al. (2019).

We presented a preliminary version of the meta AS problem in a preprint (Tornede
et al., 2020b), which aimed at constructing a more effective algorithm selector by leverag-
ing multiple existing selectors. The idea presented there is identical to the idea presented
here in Sect. 4. In this work, we define the problem in a more general fashion, present
a framework for solving this problem and show several instantiations of this framework.
Accordingly, the work presented in the preprint is subsumed by this work.

In algorithm selection, it is normally assumed that the set of algorithms A to choose
from is predefined, although the composition of this set can have an influence on the selec-
tors. Therefore, Kordík et al. (2018) propose to not simply use all available algorithms as a
basis to choose from, but to employ ensemble techniques in order to construct algorithms
constituting this set. Thus, Kordík et al. (2018) build ensembles on the level of algorithms,
whereas we ensemble on the level of selectors with the goal to create a better combined
algorithm selector.

Last but not least, and perhaps indeed most related, both Malone et al. (2017) and Kot-
thoff (2012) suggest a stacking approach: First, a regression model is learned per algorithm
to estimate the performance on a given instance, and second, the estimated performances
are used as input for a multi-class classification model that eventually selects the algorithm.
While Kotthoff (2012) only uses the outputs of the performance estimators as input of the
meta-learner, Malone et al. (2017) use these in addition to the original features. Moreover,
Malone et al. (2017) suggest to also include uncertainty information obtained from the per-
formance estimators as input for the meta-learner. Both variants are very specific instan-
tiations of the general idea presented in this paper, using stacking as an ensemble tech-
nique and a specific selector as a base algorithm selector. While the approach presented by
Malone et al. (2017) resulted in the last spot in the open algorithm selection competition of
2017 (Lindauer et al., 2019), Kotthoff (2012) considered a setting, where the goal was to
select the best machine learning algorithm for a dataset. He showed that stacking a classi-
fier on top of the pure performance estimation does yield indeed an improvement in most
cases over choosing the algorithm based on the performance estimates only.

8 Conclusion

In this paper, we revisited the problem of algorithm selection from a meta perspective. We
defined the problem of meta algorithm selection and proposed a general methodological
framework for this problem. Moreover, we considered several concrete learning methods
as instantiations of this framework and compared them conceptually and empirically. In an
extensive experimental study on an established benchmark for algorithm selection, we have
shown that the meta algorithm selection problem can be solved efficiently, and that solu-
tions can provide remarkable improvements in performance, often significantly better than
the hitherto state of the art. Finally, we set the results into a broader context, concluding
that learning algorithm selector selectors seems to be harder and less promising than defin-
ing them through well-established concepts from ensemble learning.

1284 Machine Learning (2023) 112:1253–1286

1 3

In future work, more effort should be invested in understanding why learning algo-
rithm selector selectors appears to be a hard problem, while manually defined algorithm
selection ensembles can achieve good performance. In particular, investigations of this
phenomenon on a theoretical level would be of interest. Another possible direction for
future work might be to focus more on learning instance-specific aggregation functions
(Melnikov & Hüllermeier, 2016) to be used inside the ensembles, because this would
allow one to leverage the information of which algorithm did indeed perform best on
a given instance, instead of using an a priori fixed aggregation function. As seen with
stacking, this works at least in principle. Yet another direction for future work is to
adapt the idea of ensembles to the field of algorithm scheduling, where the recommen-
dation target is no longer a single algorithm, but a complete algorithm schedule. One of
the main challenges here is the aggregation of schedules.

Acknowledgements This work was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Center “On-The-Fly Computing” (SFB 901/3 project no. 160364472) and the
German Federal Ministry of Education and Research (ITS.ML project no. 01IS18041D). The authors grate-
fully acknowledge support of this project through computing time provided by the Paderborn Center for
Parallel Computing (PC2).

Author Contributions AT motivated this work and took the lead in writing. All authors contributed to the
content and the writing. The implementation and experiments were conducted by AT and LG.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was partially supported
by the German Research Foundation (DFG) within the Collaborative Research Center “On-The-Fly Com-
puting” (SFB 901/3 project no. 160364472) and the German Federal Ministry of Education and Research
(ITS.ML project no. 01IS18041D).

Availability of data and material All experiments are based on an existing public benchmark, which can be
found at https:// github. com/ coseal/ aslib_ data.

Availability of code All code used for the experiments presented in this manuscript is available at https://
github. com/ alexa ndert ornede/ as_ on_a_ meta_ level.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Fréchette, A., Hoos, H. H., Hutter, F.,
Leyton-Brown, K., Tierney, K., & Vanschoren, J. (2016). Aslib: A benchmark library for algorithm
selection. Artificial Intelligence, 237, 41–58.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

https://github.com/coseal/aslib_data
https://github.com/alexandertornede/as_on_a_meta_level
https://github.com/alexandertornede/as_on_a_meta_level
http://creativecommons.org/licenses/by/4.0/

1285Machine Learning (2023) 112:1253–1286

1 3

Frossyniotis, D., Likas, A., & Stafylopatis, A. (2004). A clustering method based on boosting. Pattern
Recognition Letters, 25(6), 641–654.

García-Pedrajas, N., & Ortiz-Boyer, D. (2009). Boosting k-nearest neighbor classifier by means of input
space projection. Expert Systems with Applications, 36(7), 10570–10582.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine
Learning Research, 3, 1157–1182.

Hastie, T., Rosset, S., Zhu, J., & Zou, H. (2009). Multi-class adaboost. Statistics and its Interface, 2(3),
349–360.

Hernández-Lobato, D., Martínez-Muñoz, G., & Suárez, A. (2009). Statistical instance-based pruning in
ensembles of independent classifiers. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 31(2), 364–369.

Kerschke, P., Hoos, H. H., Neumann, F., & Trautmann, H. (2019). Automated algorithm selection: Survey
and perspectives. Evolutionary Computation, 27(1), 3–45.

Kordík, P., Cerný, J., & Frýda, T. (2018). Discovering predictive ensembles for transfer learning and meta-
learning. Machine Learning, 107(1), 177–207.

Lindauer, M., van Rijn, J. N., & Kotthoff, L. (2019). The algorithm selection competitions 2015 and 2017.
Artificial Intelligence, 272, 86–100.

Rokach, L. (2009). Collective-agreement-based pruning of ensembles. Computational Statistics & Data
Analysis, 53(4), 1015–1026.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197–227.
Wagner, M., Lindauer, M., Misir, M., Nallaperuma, S., & Hutter, F. (2018). A case study of algorithm selec-

tion for the traveling thief problem. Journal of Heuristics, 24(3), 295–320. https:// doi. org/ 10. 1007/
s10732- 017- 9328-y

Wever, M., Tornede, A., Mohr, F., & Hüllermeier, E. (2021). Automl for multi-label classification: Over-
view and empirical evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
43(9), 3037–3054.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
Amadini, R., Gabbrielli, M., & Mauro, J. (2014). SUNNY: A lazy portfolio approach for constraint solving.

Theory and Practice of Logic Programming, 14(4–5).
Bonyadi, M. R., Michalewicz, Z., & Barone, L. (2013). The travelling thief problem: The first step in the

transition from theoretical problems to realistic problems. In Proceedings of the IEEE Congress on
Evolutionary Computation, CEC 2013, Cancun, Mexico, June 20–23, 2013 (pp. 1037–1044). https://
doi. org/ 10. 1109/ CEC. 2013. 65576 81.

Borda, J. D. (1784). Mémoire sur les élections au scrutin. Histoire de l’Academie Royale des Sciences pour
1781.

Brazdil, P., Carrier, C. G., Soares, C., & Vilalta, R. (2008). Metalearning: Applications to data mining.
Springer Science & Business Media.

Coppersmith, D., Fleischer, L., & Rudra A. (2006). Ordering by weighted number of wins gives a good
ranking for weighted tournaments. In ACM-SIAM symposium on discrete algorithms (SODA) (pp.
776–782).

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Proceedings of multiple classifier sys-
tems, first international workshop, MCS 2000, Cagliari, Italy, June 21–23, 2000 (pp. 1–15).

Drucker, H. (1997). Improving regressors using boosting techniques. In ICML (Vol. 97, pp. 107–
115). Citeseer

Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for the web. In Pro-
ceedings of the tenth international world wide web conference, WWW 10, Hong Kong, China, May
1–5, 2001 (pp. 613–622).

Gomes, C. P., Selman, B., & Crato, N. (1997). Heavy-tailed distributions in combinatorial search. In Pro-
ceedings of Principles and practice of constraint programming—CP97, third international conference,
Linz, Austria, October 29–November 1, 1997 (pp. 121–135).

Hanselle, J., Tornede, A., Wever, M., & Hüllermeier, E. (2020). Hybrid ranking and regression for algo-
rithm selection. In KI 2020: Advances in artificial intelligence.

Hanselle, J., Tornede, A., Wever, M., & Hüllermeier, E. (2021). Algorithm selection as superset learning:
Constructing algorithm selectors from imprecise performance data. In The 25th Pacific-Asia confer-
ence on knowledge discovery and data mining (PAKDD-2021), May 11–14, 2021.

Hüllermeier, E. (2014). Learning from imprecise and fuzzy observations: Data disambiguation through gen-
eralized loss minimization. International Journal of Approximate Reasoning, 55(7), 1519–1534 (spe-
cial issue: Harnessing the information contained in low-quality data sources).

Kadioglu, S., Malitsky, Y., Sellmann, M., & Tierney, K. (2010). ISAC—instance-specific algorithm con-
figuration. In ECAI.

https://doi.org/10.1007/s10732-017-9328-y
https://doi.org/10.1007/s10732-017-9328-y
https://doi.org/10.1109/CEC.2013.6557681
https://doi.org/10.1109/CEC.2013.6557681

1286 Machine Learning (2023) 112:1253–1286

1 3

Kotthoff, L. (2012). Hybrid regression-classification models for algorithm selection. In ECAI 2012—20th
European conference on artificial intelligence.

Lazarevic, A., & Obradovic, Z. (2001). Effective pruning of neural network classifier ensembles. In Pro-
ceedings of IJCNN’01. International joint conference on neural networks (Vol. 2, pp. 796–801).
IEEE (Cat. No. 01CH37222).

Lobjois, L., & Lemaître, M. (1998). Branch and bound algorithm selection by performance prediction. In
AAAI/IAAI (pp. 353–358).

Malone, B., Kangas, K., Järvisalo, M., Koivisto, M., & Myllymäki, P. (2017). as-asl: Algorithm selection
with auto-sklearn. In Open algorithm selection challenge 2017, PMLR (pp. 19–22).

Melnikov, V., & Hüllermeier, E. (2016). Learning to aggregate using uninorms. In Joint European confer-
ence on machine learning and knowledge discovery in databases (pp. 756–771). Springer.

Pihera, J., & Musliu, N. (2014). Application of machine learning to algorithm selection for TSP. In 26th
IEEE international conference on tools with artificial intelligence, ICTAI 2014, Limassol, Cyprus,
November 10–12, 2014 (pp. 47–54). IEEE Computer Society.

Rice, J. R. (1976). The algorithm selection problem. In Advances in computers (Vol. 15, pp. 65–118).
Elsevier.

Saari, D. G. (2000). The mathematics of voting: Democratic symmetry. Economist, 83.
Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). Auto-weka: Combined selection and

hyperparameter optimization of classification algorithms. In The 19th ACM SIGKDD international
conference on knowledge discovery and data mining, KDD 2013, Chicago, IL, USA, August 11–14,
2013 (pp. 847–855).

Tornede, A., Wever, M., & Hüllermeier, E. (2019). Algorithm selection as recommendation: From collabo-
rative filtering to dyad ranking. In CI Workshop.

Tornede, A., Wever, M., & Hüllermeier, E. (2020a). Extreme algorithm selection with dyadic feature repre-
sentation. In Discovery science.

Tornede, A., Wever, M., & Hüllermeier, E. (2020b). Towards meta-algorithm selection. In Workshop on
meta-learning (MetaLearn 2020) @ NeurIPS 2020.

Tornede, A., Wever, M., Werner, S., Mohr, F., & Hüllermeier, E. (2020c). Run2survive: A decision-theo-
retic approach to algorithm selection based on survival analysis. In ACML.

Vanschoren, J. (2018). Meta-learning: A survey. CoRR arxiv: 1810. 03548.
Vilalta, R., Giraud-Carrier, C., & Brazdil, P. (2009). Meta-learning-concepts and techniques. In Data min-

ing and knowledge discovery handbook (pp. 717–731). Springer.
Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. Evolutionary Compu-

tation, 1(1).
Xu, L., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2007). Satzilla-07: the design and analysis of an algo-

rithm portfolio for sat. In CP. Springer.
Xu, L., Hutter, F., Hoos, H., & Leyton-Brown, K. (2011). Hydra-mip: Automated algorithm configuration

and selection for mixed integer programming. In RCRA workshop @ IJCAI.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1810.03548

	Algorithm selection on a meta level
	Abstract
	1 Introduction
	2 Algorithm selection
	2.1 Algorithm selection methods
	2.2 Loss functions

	3 Meta algorithm selection
	4 Selecting single algorithm selectors through meta learning
	4.1 Limits of learned algorithm selector selection

	5 Constructing ensembles of algorithm selectors
	5.1 Aggregation strategies
	5.2 Voting
	5.3 Bagging
	5.4 Boosting
	5.5 Stacking
	5.6 Comparison of the approaches

	6 Experimental evaluation
	6.1 Experiment setup
	6.2 Meta learning for selecting an algorithm selector
	6.3 Voting ensembles
	6.4 Bagging ensembles
	6.5 Boosting ensembles
	6.6 Stacking
	6.6.1 Overall comparison

	6.7 Discussion of results
	6.7.1 Scope of results
	6.7.2 Is meta learning harder than learning?

	7 Related work
	8 Conclusion
	Acknowledgements
	References

