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Abstract
Molecular gene-expression datasets consist of samples with tens of thousands of meas-
ured quantities (i.e., high dimensional data). However, lower-dimensional representations 
that retain the useful biological information do exist. We present a novel algorithm for 
such dimensionality reduction called Pathway Activity Score Learning (PASL). The major 
novelty of PASL is that the constructed features directly correspond to known molecular 
pathways (genesets in general) and can be interpreted as pathway activity scores. Hence, 
unlike PCA and similar methods, PASL’s latent space has a fairly straightforward biologi-
cal interpretation. PASL is shown to outperform in predictive performance the state-of-
the-art method (PLIER) on two collections of breast cancer and leukemia gene expres-
sion datasets. PASL is also trained on a large corpus of 50000 gene expression samples 
to construct a universal dictionary of features across different tissues and pathologies. The 
dictionary validated on 35643 held-out samples for reconstruction error. It is then applied 
on 165 held-out datasets spanning a diverse range of diseases. The AutoML tool JADBio 
is employed to show that the predictive information in the PASL-created feature space is 
retained after the transformation. The code is available at https://​github.​com/​mensx​machi​
na/​PASL.
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1  Introduction

Molecular data, such as gene expressions, are often very high dimensional, measuring 
tens of thousands molecular quantities. For example, the Affymetrix microarray platform 
GPL570 for humans measures the expression of 54675 probe-sets, corresponding to all 
known human genes. As such, visually inspecting the data, understanding the multivari-
ate gene correlations, and biologically interpreting the measurements is challenging. To 
address this problem, several methods have appeared that reduce the dimensionality of 
the data. Dimensionality reduction (a.k.a. latent representation learning) constructs new 
dimensions (features, quantities, variables) with the purpose of reducing the number of fea-
tures, making them amenable to inspection while maintaining all “useful” information. For 
example, consider the representation of music. The raw data (original measured quantities) 
correspond to the sound spectrum which is visually incomprehensible to humans. How-
ever, music at each time-point can be represented as a sum of prototypical states (notes) 
and musical scores, which are much more intuitive. Similarly, we can ask the questions: 
Are there prototypical cell states whose sum can represent any cell state (i.e., gene expres-
sion profile)? What are the “notes” of biology? How can we learn such representations 
automatically?

Numerous dimensionality reduction techniques have been proposed. Some of the most 
prevalent ones are arguably the PCA (Abdi and Williams, 2010), Kernel PCA (Schölkopf 
et al., 1998), t-SNE (Maaten and Hinton, 2008), and Neural Network autoencoders (Chicco 
et al., 2014; Danaee et al., 2017). All of these methods learn a lower dimensional space 
(latent space) of newly constructed features and represent the data as a linear or non-linear 
combination of those. The projection aims to retain the data variance and exhibit a low data 
reconstruction error. However, the data representation in the new feature space is biologi-
cally unintepretable. To improve interpretability, other methods introduce sparsity to the 
latent space in the sense that new features are constructed as a linear combination of only 
a few of the original molecular quantities. Such methods are the Sparse PCA (Zou et al., 
2006) and sparse variants of Non-negative Matrix Factorization (Lee and Seung, 1999) for 
molecular data (Carmona-Saez et al., 2006; Fertig et al., 2010). The new constructed fea-
tures are sometimes called meta-genes (Brunet et al., 2004). Any clustering method could 
also be defined as creating meta-genes and new features. However, the meta-genes are still 
hard to interpret biologically as they do not directly correspond to the known biological 
pathways or other known gene sets. In contrast, methods like Gene Set Variation Analysis 
(GSVA, (Hänzelmann et al., 2013)) employ enrichment statistics commonly used in gene 
set enrichment analysis (Subramanian et al., 2005) for constructing new features. Each new 
feature corresponds to a different, but known, biological pathway. While GSVA features 
are undoubtedly more intuitive than the ones derived through general-type dimensionality 
reduction, GSVA neither explicitly nor implicitly aims to retain the information contained 
in the original features within the derived features, and the derived features are strictly lim-
ited to the pathways specified a priori.

This work, which significantly extends (Karagiannaki et  al., 2020) both methodologi-
cally and experimentally, proposes a novel method for unsupervised feature construction 
and dimensionality reduction based on the availability of prior knowledge, called Pathway 
Activity Score Learning or PASL. PASL aims at a trade-off between biological interpret-
ability and retaining all information contained in the original features. PASL accepts as 
input a collection of predefined sets of genes, hereafter called genesets, such as molecular 
pathways or gene ontology groups. It has two phases, the inference phase and the discovery 
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phase. During the inference phase, PASL constructs new features that are constrained to 
directly correspond to the available genesets. Each new feature can be thought of express-
ing an activity score of its corresponding geneset, summarizing in a single value an aspect 
of the collective behavior of the geneset’s gene expressions. It is possible however, that sev-
eral new features correspond to the same geneset (many-to-one relation), expressing differ-
ent aspects of the collective activity of its genes. The order of insertions of genesets in the 
dictionary is determined by the amount of variance explained by each atom (i.e., each ele-
ment of the dictionary), while the estimation of the atom’s coefficients (a.k.a. loadings) is 
performed through PCA. PASL’s inference phase incorporates heuristics that greatly accel-
erate the estimation of the dictionary without compromising its representation capacity.

The inference phase ends when it has captured as much information as possible given 
only the provided genesets. However, a large percentage of the measured quantities is not 
mapped to any known geneset. In the discovery phase, PASL constructs features that are 
not constrained to correspond to the given genesets trying to capture the remaining infor-
mation (variance) in the data. Due to its efficiency, we employ Sparse PCA (Zou et  al., 
2006) for the estimation of the atoms of the discovery phase.

We evaluate PASL’s ability to represent data in a latent feature space in three aspects: 
(a) The out-of-sample percentage of explained variance (i.e., one minus the rela-
tive reconstruction error). Specifically, we measure the percentage of variance explained 
(maintained) when held-out test data are transformed to the latent space and back to the 
original gene expression space. However, obtaining a low reconstruction error does not 
necessarily mean that it is the “important” information that is captured and maintained. 
We define as important the information that helps us predict an outcome of biological or 
clinical interest, such as the disease status, the response to treatment, or some other quan-
tity of interest. This leads us to use a second metric for evaluating PASL: (b) the predic-
tive performance maintained for an outcome of interest in held out datasets. To measure 
the predictive performance in a gene expression dataset, we apply the automated machine 
learning (AutoML) tool JADBio (Tsamardinos et  al., 2020) (standing for Just Add Data 
Bio). We compare the predictive performance achieved by JADBio on the original gene 
expression data against the performance achieved by models trained on the transformed 
data. To ensure that a high-quality predictive model is built, JADBio searches thousands 
of machine learning pipelines (called configurations) to identify the optimally predictive 
ones and estimates the out-of-sample predictive performance of the final model in a con-
servative fashion. Finally, (c) since a PASL-constructed feature directly corresponds to 
known geneset, we can consider it as a geneset activity score. The geneset activity scores 
can be employed to perform differential activation analysis (DAA) and identify the gen-
esets that are statistically discriminative between two different classes or conditions (e.g., 
cases vs controls, or treatment vs controls). Conceptually, this is equivalent to gene differ-
ential expression analysis that identifies genes whose expression behaves differently in two 
classes. We evaluate the statistical power and the p-values produced by DAA and compare 
it with standard gene set enrichment analysis (GSEA).

We perform two main sets of computational experiments on real datasets:

•	 We evaluate PASL algorithm on two large collections of datasets, one employing 
datasets related to Breast Cancer and the other datasets related to Leukemia involving 
several types of outcomes such as mutation and hormone status, dietary restrictions, 
responder or non-responder to a specific treatment etc. For each collection 80% of the 
datasets are used for learning a dictionary (training data) and the rest are employed 
for testing. We contrast results against PLIER (Mao et  al., 2019), arguably the algo-
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rithm closer in spirit to PASL. The results here show that PASL outperforms PLIER 
in terms of predictive performance on the test sets. Quite importantly, PASL’s feature 
space maintains the predictive information. In addition, we show that DAA using the 
constructed features can complement standard GSEA, in the sense that it can identify 
genesets that are not identified by GSEA as statistically significant. Moreover, DAA 
has larger statistical power than GSEA and, in general, it identifies the affected genesets 
with lower p-values than GSEA.

•	 In the second large-scale experiment, we construct a universal latent space (dictionary) 
for gene expression data of GPL570 platform. We use 1736 datasets from the Bioda-
taome (Lakiotaki et  al., 2018) repository and a subset of 50000 samples, the largest 
we could fit in memory, to learn the dictionary. 10% of the datasets (165 are kept after 
excluding the ones without a defined discrete outcome) were held out for testing span-
ning 25 different disease categories. The universal dictionary is shown to maintain the 
predictive information across pathologies and phenotypes. In several cases, it leads to 
models easier to interpret biologically and visually.

Overall, the results show that PASL (i) enables compression of the gene expression data-
sets that lead to 1 order of magnitude speed up in modelling, (ii) maintains the predic-
tive information across pathologies, tissues, outcomes, and phenotypes while often leading 
to simpler models that are easier to interpret biologically, and (iii) complements standard 
GSEA in identifying differentially affected genesets across two conditions.

We envision that PASL can help in transitioning gene expression data analysis tech-
niques from a purely gene-centric perspective to a more systemic, pathway-centric 
approach. While current works focus on selecting relevant genes  (Kuang et al., 2021) or 
identifying gene regulatory networks (Mignone et al., 2020), applying PASL in combina-
tion with these methods may allow to identify relevant pathways and pathway regulatory 
networks instead.

2 � Pathway activity score learning algorithm

2.1 � Preliminaries

The PASL algorithm accepts as input two 2D matrices X and G. Matrix X ∈ ℝ
n×p contains 

the molecular measurements, where n is the number of samples and p the number of fea-
tures. Typically n ≪ p . For microarray gene expression data, the rows of X correspond to 
molecular profiles while the columns to probe-sets. Due to multiple technical factors spe-
cific to microarray technology, each probe-set can end up measuring the expression value 
of a single gene, no genes or even multiple genes, and the same gene can be measured by 
multiple probe-sets as well. For example, the microarray platform used in our experiments, 
namely the Affymetrix Human Genome U133 Plus 2.0 Array, measures 54675 probes, 
corresponding to 21299 unique genes. PASL also accepts a gene membership matrix 
G ∈ {0, 1}m×p with m being the number of predefined groups of genes. Each row of G, 
denoted by gi for the i-th row, corresponds to a molecular pathway, gene ontology set, or 
any other predefined gene collection of interest called geneset hereafter. We set Gij = 1 if at 
least one of the genes measured by probe-set j belongs to the i-th geneset, and 0 otherwise. 
In this way the G matrix can effectively represent cases where multiple genes are measured 
by the same probe-set. Finally, even though there is not perfect one-to-one correspondence 
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between probe-sets and genes, hereafter we will refer to probe-sets as genes for simplicity, 
unless otherwise noted.

PASL initially standardizes the data matrix with X =
(X−�)

�
 where � ∈ ℝ

p and � ∈ ℝ
p 

are the mean and standard deviation vectors of all features and the standardization opera-
tion is performed column-wise. Then, it assumes the standardized data X can be decom-
posed as:

where D ∈ ℝ
a×p is a sparse matrix corresponding to the dictionary with a denoting the 

number of dictionary atoms (i.e., the number of rows), while � is an i.i.d. additive noise 
term. In other words, each molecular profile at row j of X is a linear combination of rows 
of D with coefficients in the jth row of L with an isotropic noise added to it. Given training 
data X, PASL outputs the two matrices, D and L. It also outputs the means � and standard 
deviations � of each feature to allow standardization on future data. D is the concatena-
tion of two sub-dictionaries D1 and D2 ( D = [D1;D2] ) with dimensions a1 × p and a2 × p , 
respectively (hence, a = a1 + a2 ). D1 is a dictionary where each atom d is constrained to 
correspond to only one geneset of the matrix G, in the sense that the non-zero elements of 
d correspond to the genes in the particular geneset. Thus, D1 is the part of the dictionary 
that is biological interpretable. D2 is just a sparse dictionary meant to explain the remain-
ing variance of the data and suggests the existence of yet-to-be-discovered genesets. D1 is 
the outcome of the first phase of PASL, called the inference phase, while D2 is the outcome 
of the second phase, called the discovery phase. L ∈ ℝ

n×a is the representation of the data 
in the latent feature space (PASL scores). It provides the optimal projection of X on the row 
space of D and it is computed by minimizing the Frobenius norm between the normalized 
X and L ⋅ D giving raise to the formula:

where D+ is the pseudo-inverse of D. Before continuing with the detailed description of 
PASL algorithm, we provide a table (Table 1) with PASL’s variables and their explanation.

2.2 � The PASL algorithm

Inference Phase: The inference phase of PASL implements a greedy approach that con-
structs new atoms one at a time. Every next atom d to-be-constructed corresponds to a gen-
eset g so that d has non-zero coefficients only for the genes that belong in g. The algorithm 
needs to address two issues: 

1.	 What is the geneset g to be used for the construction of d? The heuristic we propose 
is to select the g that leads to the next atom d that explains the most of the data variance. 
To account for the different size of the genesets, the explained variance is normalized 
for the geneset size according to a Box-Cox normalization.

(1)X = L ⋅ D + �

(2)L = X ⋅ D+



4262	 Machine Learning (2023) 112:4257–4287

1 3

2.	 Given g, how is the next atom d constructed? This part is straightforward. Since we 
are only allowed to have non-zeros only at the genes of g, we perform a standard PCA 
restricted (i.e., reduced) to the genes of g, thus ignoring the rest. The non-zero coef-
ficients of d correspond to the respective elements of the first principal component of 
this reduced PCA. Once d is constructed, its contribution to the explained variance is 
removed from the data and the algorithm re-iterates.

Ordering the Genesets The heuristic idea, which is implemented in function 
OrderOfGeneSets() (Algorithm  1), is visually explained in Fig.  1. In Panel (a), the data 
matrix X has n = 4 samples (rows) and p = 7 gene expressions denoted with f1,… , f7 . The 
geneset matrix G is also shown having m = 3 genesets (rows). For each geneset gi , a full 
PCA is performed restricted to the genes in gi (Line 6 in Algorithm 1). By full PCA, we 
mean that all principal components (eigenvectors) and their variances (eigenvalues) are 
computed. The explained variance for geneset gi and principal component j are denoted 
with vi,j . In Panel (b), the variance values are normalized for geneset size using a Box-Cox 
normalization (Line 8 in Algorithm 1) and then sorted. The Box-Cox normalized variances 
are denoted with ṽi,j . In the running example, the function returns the top a1 = 5 normal-
ized variance values in the ordered set Ṽ and their corresponding geneset indexes in the 
ordered set I  (Panel (c)).

Table 1   List of PASL algorithm’s variables

Variable Description Dimension

X Data matrix n × p

� Mean (row) vector 1 × p

� Std (row) vector (per column/feature) 1 × p

G Gene membership matrix m × p

D Dictionary matrix a × p

L Score matrix n × a

� White noise matrix n × p

d Atom (i.e., element/row of D) 1 × p

u (1st) Principal component (eigenvector) |Geneset| × 1

g, gi, gk Geneset (set) Varying
vi,j Explained variance (unnormalized) 1 × 1

ṽi,j, v̂ Box-Cox norm. explained variance 1 × 1

I Ordered index set (i.e., a list) 1 × a1

Ṽ Ordered set with Box-Cox norm. variance values 1 × a1

t Static vs dynamic trade-off threshold 1 × 1

� Box-Cox transformation hyper-parameter 1 × 1

nz Number of non-zero elements in Sparse PCA 1 × 1
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Fig. 1   The OrderOfGeneSets function (Algorithm  1) returns a heuristically determined order of genesets 
in the ordered set I  . a The data matrix X is shown having n = 4 samples (rows) and p = 7 gene expres-
sions denoted with f1,… , f7 . For each geneset gi , a full PCA is performed restricted to the genes in gi . 
The explained variances for geneset gi and the j-th principal component are denoted with vi,j . b The vari-
ance values are normalized for geneset size using a Box-Cox normalization and then sorted. c The func-
tion returns the top a1 = 5 normalized variance values in the ordered set Ṽ and their corresponding geneset 
indexes in the ordered set I
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Algorithm 1 Order of genesets function
1: function OrderOfGenesets(X,G, a1, λ)
2: Ṽ ← ∅, I ← ∅
3: for i ← 1 to m do
4: gi ← G(i, :)
5: Xr ← X(:, gi)
6: [∼, vi] ← pca(Xr, #pc = min(n, ||gi||0))
7: l ← Length(vi)
8: ṽi ← λ·vi

(||gi||λ0−1)
//Box-Cox normalization

9: I ← [I | i · ones(1, l)]
10: Ṽ ← [Ṽ | ṽi]
11: end for
12: //Sort the variances in descending order and re-order indexes accordingly
13: [Ṽ, j] ← sort(Ṽ, “descend”))
14: I ← I(j)
15: I ← I(1 : a1), Ṽ ← Ṽ(1 : a1) //Trim the output
16: return 〈I, Ṽ〉 //Ordered genesets ids and their corresponding variance
17: end function

k-th (iterative) step: Given the “next best” geneset gk , PASL constructs the next atom d 
restricted to have non-zeros at the genes of gk as shown in Fig. 2. A single PCA restricted 
to the genes of gk is performed and the first principal component (denoted by u) is obtained 
(Fig.  2a). By single PCA, we mean that only the first principal component and its vari-
ance are computed. It corresponds to the non-zero coefficients of d. The coefficients for the 
genes not in gk are padded with zeros (Fig. 2b). The contribution of the newly constructed 
atom is removed from the data using X ← X ⋅ (I − dT ⋅ d).

Fig. 2   a A single PCA restricted to the genes of gk is performed and the principal component u (eigenvec-
tor) is obtained. b The coefficients for the genes not in gk are padded with zeros to create the new atom d. 
The contribution of the newly constructed atom is removed from the data. If the actual variance explained 
by the new atom v̂ does not match the expected variance Ṽ(k) , d is dropped and the order of genesets is rec-
omputed
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Algorithm 2 Pathway Activity Score Learning
1: function PASL(X,G, a1, a2, t, λ, nz)
2: Input: Training data Xn×p, Geneset Matrix Gm×p, number of atoms in the inference

phase a1, number of atoms in the discovery phase a2, threshold value t, Box-Cox normal-
ization parameter λ and nz the number of non-zero elements in each atom for the discovery
phase

3: Output: Dictionary Da×p, where a = a1 + a2, Latent representation of data Ln×a,
mean values µ, standard deviations σ

4: //Inference Phase
5: [X,µ, σ] ← zscore(X) //Normalize data column wise and return µ and σ

6: X0 ← X
7: k ← 1, l ← 1 //k: running geneset index, l: atom counter
8: D1 ← ∅
9: //Ṽ(k) stores the expected reduction in variance for the kth atom from this point on.
10: //I(k) contains the geneset to use for the kth atom from now.
11: [I, v] ← OrderOfGenesets(X,G, a1, λ)
12:
13: while l ≤ a1 do
14: //Next geneset to use for constructing the next atom
15: gk ← G(I(k), :)
16: //Construct next atom: perform a single PCA only on the genes (features) of gset.
17: [q, v̂] ← pca(X(:, gset), #pc = 1) //v̂ : actual reduction in variance
18: v̂ ← λ·v̂

(||gset||λ0−1)
//Box-Cox normalization of variance

19: //Is the actual vs expected variance explained too different?
20: if v̂

Ṽ(k)
≤ t then

21: //If so, drop the current atom, and recompute the heuristic
22: k ← 1 //Reset counter
23: [i, v] ← OrderOfGenesets(X,G, a1, λ)
24: break //I.e., go to line 14
25: end if
26:
27: //Otherwise, add the atom and remove its contribution
28: //The coefficients of the new atom for the genes in the geneset are in d; the rest are zero
29: d ← zeros(1, p)
30: d(gk) ← qT

31: D1 ← [D1; d] //Add to dictionary
32: X ← X I − dT · d

)
//Remove its contribution

33: k ← k + 1, l ← l + 1
34: end while
35:
36: //Discovery Phase
37: X ← zscore(X)
38: D2 ← spca(X, #pc = a2, #nz = nz)
39:
40: D ← [D1;D2] //Merge the dictionaries
41: L ← X0D+ //Project data onto the constructed feature space
42: return 〈D,L, µ, σ〉
43: end function

On explained variance In Fig. 1c, it is determined to create atoms with an order given 
by the index set I = ⟨g1, g2, g3, g2, g3⟩ in this order. Let us assume that the first atom d1 is 
created by using the next best geneset I(1) = g1 . PASL will then attempt to construct the 
second atom d2 using I(2) = g2 . The OrderOfGenesets() calculated an expected reduction 
in the (Box-Cox normalized) unexplained variance given by Ṽ(2) = ṽ2,1 (i.e., the second 
element in Fig. 1c). However, once the first atom d1 is created, its contribution is removed 
from the data. Let us call the (Box-Cox normalized) actual variance reduction by the 
current atom d2 as v̂ (lines 17–18 in Algorithm 2). If g1 and g2 have no intersection (no 
common genes), then removing the contribution of d1 from the data does not affect the con-
struction of d2 . In that case, Ṽ(2) = v̂ . Otherwise, Ṽ(2) > v̂ , which implies that the actual 
variance reduction is less than expected.

Static vs. Dynamic heuristic strategy When the discrepancy between the expected 
and the actual variance explained by the next atom is larger than a threshold, the atom is 
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dropped and the OrderOfGeneSets() is reevaluated (we refer to lines 20–25 in Algo-
rithm 2 and to Fig. 2b). The specific condition for reevaluation is that the ratio of actual 
over expected variance explained is smaller than a threshold t, or v̂

Ṽ(2)
≤ t . When t = 0 

the condition always holds. OrderOfGeneSets() is called just once in the beginning lead-
ing to a static heuristic strategy. The time complexity of OrderOfGeneSets() is to per-
form m (the number of genesets) full PCAs. When t = 1 the OrderOfGeneSets() will be 
called with each new atom, selecting the atom that will reduce the variance the most, 
leading to a dynamic heuristic strategy. Its time complexity is to call a1 times the 
OrderOfGeneSets() . The static strategy is the most time efficient, but sacrifices quality, 
while the opposite is true for the dynamic strategy. For intermediate values of t, small 
deviations from the optimal order are tolerated and achieve a trade-off between time 
complexity and learning quality (see Fig. 3a). The dynamic and static strategies coin-
cide when the genesets are mutually exclusive and do not have common genes. The 
inference phase of PASL is shown in Algorithm 2 (lines 4–34).

Discovery Phase The inference phase explains the data variance with atoms that 
employ genes in known genesets. Unfortunately, not all genes belong in some geneset 
and not all genesets have been discovered. To capture the remaining data variance, in 
the discovery phase we create atoms without the restriction that they need to correspond 
to known genesets. The discovery phase aims to point to new and potentially useful 
genesets. Based on its generality and efficiency, we employ in our experiments Sparse 
Principal Component Analysis (SPCA) Zou et al. (2006), Sjöstrand et al. (2012) (line 38 
in Algorithm 2). We note though that any other sparse dimensionality reduction tech-
nique can be employed. SPCA applies both l1 and l2 penalties in order to regularize and 
enforce sparsity. We require the SPCA algorithm to return a fixed number of non-zero 
elements per atom denoted with nz. SPCA returns a dictionary D2 ∈ ℝ

a2×p and the com-
plete dictionary is the concatenation of D1 and D2 , D = [D1;D2] . The discovery phase is 
at Lines 36–38 of Algorithm 2.
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Fig. 3   a The explained variance (y-axis) as a function of the execution time (x-axis) is shown for different 
values of t. For 0.4 ≤ t ≤ 0.9 , the execution time is reduced by a percentage between 65% and 85% with 
minimal impact on the explained variance. b The simulated dictionary (ground truth; left bar) consists of 
genesets with uniform distribution in terms of sizes to 30, 50, 100, 200 genes. The middle bar shows the 
distribution of selected pathways when PASL is applied without normalization while the right bar shows 
the selected pathways when Box-Cox normalization is applied with � = 1∕3 . Apparently, the normalization 
of the variance is necessary for PASL in order to avoid being biased towards selecting genesets with a larger 
number of genes
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3 � Setup of evaluation on real gene expression data

We perform two large scale experiments on gene expression data that share a common 
setup explained below.

Datasets All data employed were measured using the Affymetrix Human Genome U133 
Plus 2.0 (GPL570 platform) microarray. They were downloaded from the Biodataome 
repository Lakiotaki et al. (2018). Biodataome1 is a collection of uniformly preprocessed 
datasets, specifically devised for enabling large scale evaluations of data analysis algo-
rithms on biological data. Having the raw measurements uniformly preprocessed makes 
them comparable across studies and allows them to be pooled together. The datasets are 
also automatically annotated regarding the disease they pertain to.

Genesets Employed: In all experiments the gene membership matrix G includes 1974 
pathways (genesets) from KEGG Kanehisa and Goto (2000), Reactome Croft et al. (2014) 
and Biocarta Nishimura (2001), which were downloaded from the Broad Institute Molecu-
lar Signatures Database (MSigDB) Subramanian et al. (2005).

Selection of the Threshold Value t The most time-consuming part of PASL is the execu-
tion of the function OrderOfGenesets() (Algorithm 1) due to the large number of full PCA 
calculations (one for each geneset). Hyper-parameter t controls how often the function 
OrderOfGenesets() will be called and the trade-off between learning quality of the diction-
ary, expressed in percentage of explained variance for a given number of atoms and the 
execution time. As already presented, it is called at every iteration (every new atom to con-
struct) when t = 1 while it is called only once at the beginning and never again when t = 0 . 
In order to determine the optimal value for t, we perform an experiment with a merged 
collection of microarray datasets (Breast Cancer datasets in Sect. 4) where the total num-
ber of samples is n = 4235 , the number of genes p = 54675 and a fixed number of atoms 
a1 = 200 . Fig. 3(a) demonstrates the explained variance as a function of the execution time 
for different values of t. Based on this plot, we set t to be equal to 0.9 (cyan star symbol in 
Fig. 3(a)).

Selection of the box-cox normalization parameter � The number of genes, i.e., the num-
ber of non-zero elements in each row of the gene membership matrix G, varies from few 
dozens to several thousands. Obviously, the atoms that correspond to larger genesets will 
have more non-zero coefficients to adjust, therefore those atoms will tend to explain a 
larger percentage of the variance, everything else being equal. Hence, the larger genesets 
will tend to dominate the construction of atoms. Indeed, we experimentally observe this 
phenomenon (see the middle bar of Fig. 3b). Consequently, it is of paramount importance 
to normalize the variance of each geneset relative to the number of genes it contains. We 
propose to normalize the variance using the Box-Cox transformation (Box and Cox, 1964) 
on the number of genes (i.e., on y = ‖g‖0 ) which is given by

where � is a tunable hyper-parameter which controls the power scaling on y.
The value of � is determined through a targeted experiment using simulated data gener-

ated using genesets with both small and large numbers of genes. Simulated data are gener-
ated by first creating a randomly-generated geneset matrix G consisting of genesets with 

(3)y� =

{
(y� − 1)∕� if � ≠ 0

log(y) if � = 0

1  http://​datao​me.​mensx​machi​na.​org/.

http://dataome.mensxmachina.org/
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sizes uniformly-distributed among the values 30, 50, 100, and 200. Then, we construct a 
dictionary D using randomly-selected genesets from G. The non-zero elements of D are 
i.i.d. drawn from uniform distribution [−1.5,−0.5] ∪ [0.5, 1.5] . Finally, n = 400 samples 
with p = 500 features are generated from D and the activation scores matrix L. In order to 
avoid spurious effects from scores close to zero, the elements of L are uniformly distributed 
in [−1.5,−0.5] ∪ [0.5, 1.5].

After extensive tests with a wide range of values for the Box-Cox transformation hyper-
parameter, we set � = 1∕3 . The geneset selection results obtained with PASL are presented 
in Fig. 3(b). Evidently, the use of Box-Cox transformation with  � = 1∕3 (right bar) pro-
duced results similar to the ground truth (left bar) while PASL without normalization failed 
to correctly infer the true dictionary (middle bar).

Remaining Hyper-parameter Values We set the number of non-zero elements at the dis-
covery phase (i.e., nz in SPCA) to be equal to 2000. However, we have to mention that we 
do not tune this hyper-parameter due to the lack of a clear criterion to optimize for. Finally, 
the number of atoms in the dictionary is specified in each experiment separately.

Construction of the PASL Latent Feature Spaces When samples are split between train-
ing Xtrain and test Xtest sets, PASL(Xtrain,G, a1, a2, 0.9, 1∕3, 2000) (Algorithm  2) is called 
with input Xtrain to obtain a dictionary D, mean values �train , and standard deviations �train.

Then, TransformByPASL(Xtest,�train, �train) (Algorithm 3) transforms the Xtest data to a 
latent representation Ltest . The first a1 columns of Ltest correspond to pathway activation 
scores for known genesets and the remaining a2 columns to scores of discovered genesets. 
The use of �train and �train to standardize test data ensures that the test data do not bias their 
transformation and the estimation of metrics such as reconstruction error or predictive per-
formance. It also implies that no quantities are estimated from the test data to transform 
them, hence one could transform even a single test sample.

Algorithm 3 Transform by PASL
1: function TransformByPASL(Xtest, D, µtrain, σtrain)

2: Xtest ←
Xtest−µtrain

σtrain
//z-scoring using the training data statistics

3: Ltest ← Xtest ·D+ //Projection of the test data onto the latent feature space
4: return Ltest

5: end function

AutoML analysis with JADBio: We used JADBio for all predictive modelling tasks (ver-
sion 1.1.21, www.​jadbio.​com). JADBio has been developed specifically for small-sample, 
high-dimensional data, such as multi-omics data. JADBio uses the SES  (Lagani et  al., 
2016) and LASSO feature selection algorithms, combined with ridge logistic regression, 
decision trees, random forests, and SVMs for modelling. It automatically tries thousands 
of combinations of algorithms, simultaneously tuning their hyper-parameters. The exact 
hyper-parameter values tried depend on the size and type of the data and are determined 
by JADBio’s AI system. JADBio outputs include the final winning model produced by 
the best configuration (pipeline of algorithms and hyper-parameter values), the set(s) of 
features selected within the winning model, and a conservative estimate of the model’s 
performance based on the BBC-CV protocol (Tsamardinos et al., 2018). The latter is a ver-
sion of cross-validation that adjusts performance estimates of the winning model for try-
ing multiple configurations. Without this adjustment, the cross-validation performance of 
the winning combination is optimistic. A detailed description of the platform along with a 
massive evaluation on hundreds of omics datasets is included in Tsamardinos et al. (2020). 

http://www.jadbio.com
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JADBio has produced novel scientific results in nanomaterial prediction (Tsamardinos 
et al., 2020), suicide prediction  (Adamou et al., 2018) and others. The use of JADBio is 
meant to ensure that (a) performance estimates are accurate, and (b) results do not depend 
on a single ML algorithm tried with just the default hyper-parameters. Predictive perfor-
mances are reported in terms of Receiver Operating Characteristic Area Under the Curve 
(AUC), a metric that is insensitive to the proportions between different classes and that 
has a simple interpretation, with 1 representing perfect classification, 0.5 random guessing 
and 0 perfectly inverted classification. For multi-class problems, an AUC is constructed for 
each class serving as the “Positive" class. The reported AUC is the average over all classes. 
A visualization of the experimental setup and evaluation protocol is shown in Fig. 4.

4 � Comparing PASL against PLIER on breast cancer and leukemia 
studies

For this first set of experiments we downloaded all the available (as of May 2020) datasets 
in Biodataome related to Breast cancer and Leukemia, each having at least 20 samples. The 
datasets form the Breast Cancer collection and Leukemia collection. For each collection 
we select 80% of the datasets to pool together and use them as training data. The remaining 
20% of the available datasets are employed as test dataset and are not seen by any dimen-
sionality reduction method during training. Hence, samples from the same dataset either 
belong in the train data or the test data but not both. The selection of datasets used for the 
train or the test set is random, with the restriction that test datasets have to be accompanied 
by a discrete binary or multi-class outcome. The outcomes are clinically interesting quanti-
ties provided in the original studies, such as the disease status, the response (rapid/slow) to 
a specific treatment,mutation status, hormone status, dietary restrictions etc. The annota-
tion of each sample with an outcome was performed manually by the authors. The train-
ing set for the Breast cancer and the Leukemia collection contains 4235 and 5694 unique 

Fig. 4   Evaluation protocol. The datasets are split into train and test datasets. The train datasets are merged 
creating a large dataset. PASL is applied on the train set and the final evaluation in terms of predictive 
performance is performed on new test datasets. The initial test datasets are compared against the lower-
dimensional transformed datasets in terms of predictive performance
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gene-expression profiles, respectively. For this set of experiments, the geneset matrix G 
was built by using the annotation provided by the vendor of the microarray chip2.

We comparatively evaluate PASL against a recently introduced algorithm called PLIER 
(Mao et  al., 2019). Like PASL, PLIER learns a latent feature space that corresponds to 
known genesets. PLIER also accepts as input data X and a geneset matrix G. Similarly to 
PASL, it returns the scores L and the dictionary D, such that X ≈ L ⋅ D . PLIER accepts 
several hyper-parameters. The maxpath hyper-parameter indicates how many genesets an 
atom of D is supposed to correspond to. We set maxpath = 1 requesting that each atom in 
D corresponds to one and only geneset, so that the output is comparable to PASL. Unfor-
tunately, PLIER treats maxpath as indicative; atoms in D may correspond to the union of 
several genesets, even when maxpath = 1. In that sense, the atoms in D are not as easy to 
interpret as the ones returned by PASL. PLIER also ignores genesets with fewer features 
than minGenes. We set minGenes = 1 so that no genesets are ignored. Finally, we note that 
in PLIER the scores L are computed as X ⋅ DT

⋅ (DDT + �2I)
−1 , where �2 is a regularization 

parameter learned by the algorithm.
PASL and PLIER dimensionality reduction are both applied on the training sets of both 

Breast Cancer and Leukemia collections and learn the dictionaries of atoms. The atoms of 
PLIER are not as sparse as the ones output by PASL. For example, for the Breast Cancer 
collection analysis, the mean number of non-zero coefficients in each atom of PLIER is 
25833 (almost half of the original feature size), while for PASL it is 1329. For the same 
number of atoms, PLIER uses more degrees of freedom (non-zero coefficients) to find a 
suitable transformation to a latent space. For a fair comparison in the subsequent experi-
ments, we impose the restriction that the learned dictionaries D P LIER and D P ASL have 
approximately the same number of non-zero elements. To this end, we first run PLIER 
allowing it to construct a large number of atoms and estimate the number of atoms a 
required to reach approximately the same number of non-zeros as PASL. Then, we re-run 
PLIER constrained to produce only a atoms. Specifically, when PASL is restricted to 500 
atoms, its dictionary contains 664965 and 700020 non-zeros for the Breast Cancer and the 
Leukemia collections, respectively. PLIER is limited to 29 and 30 atoms instead, producing 
dictionaries with 699976 and 782114 non-zeros, respectively. The D P LIER and D P ASL were 
then used for projecting each test set on their respective latent feature spaces.

4.1 � Predictive performance in latent feature space

We performed classification analysis using JADBio on 13 and 15 test datasets for Breast 
Cancer and Leukemia, respectively. The analysis uses the original feature space, as well as 
the PLIER and PASL feature spaces, for different dimensionalities. For PASL, the number 
of atoms to learn take the values 250, 400, and 500. The number of atoms with approxi-
mately the same number of non-zeros in the dictionary of PLIER is 20, 25, and 30. Thus, 
there are 7 analyses for each dataset, and 91 + 105 analyses in total. For the Breast Cancer 
(resp., Leukemia) datasets 860002 (resp., 983425) classification models were trained in 
total by JADBio with different combinations of algorithms and hyper-parameter values on 
different subsets of the input data (cross-validation).

Regarding execution time, the analysis in the space of PASL or PLIER takes about 
1 order of magnitude less time than in the original space. The exact execution time in 

2  http://​www.​affym​etrix.​com/​suppo​rt/​techn​ical/​bypro​duct.​affx?​produ​ct=​hg-​u133-​plus.

http://www.affymetrix.com/support/technical/byproduct.affx?product=hg-u133-plus
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JADBio depends on several factors, such as the load of the Amazon servers on which the 
platform runs, and thus exact timing results are meaningless. Indicatively, we mention a 
typical case: the analysis of GSE61804 for the original space took 1.15 hour, while it took 
9 minutes and 5 minutes for PASL and PLIER, respectively. Figure 5a and b show the aver-
age AUC over all test datasets for each disease for increasing number of non-zeros. PASL 
outperforms PLIER and it is on par with analyses on the original space. Thus, the learned 
dictionary by PASL generalizes to new test data and captures the important information 
to perform classification with various disease-related outcomes. At the same time, PASL 
achieves 2-orders of magnitude dimensionality reduction by a sparse matrix whose atoms 
directly correspond to known genesets (pathways).

We now focus on the experiments for the largest dimension of PASL and PLIER. The 
number of atoms in PASL is set to 500 (664965 non-zeros for Breast Cancer, 700020 
non-zeros for Leukemia). PLIER’s latent space consists of 29 (699976 non zeros) and 30 
(782114 non-zeros) atoms for Breast Cancer and Leukemia respectively. Table 2 contains 
the detailed results for each dataset and method. The worst case (best case) for PASL is 
dataset with ID 27562 (14924) where it achieves 8 AUC points (8 AUC points) lower 
(higher) performance vs no dimensionality reduction. In contrast, there are several data-
sets (IDs 66161, 66159, 27562, 15434, 21029, 7440, 66006, 28460, 28460, 49695, 61804) 
where PLIER’s performance is lower than 10 or more AUC points.

Table 2   AUC of the test datasets for PASL, PLIER and Original space (initial test datasets). PASL and 
PLIER are tested for approximately equal number of non-zero entries in the dictionary matrix. For Breast 
cancer data PASL’s latent space consists of 500 dimensions-664965 non-zeros. PLIER’s latent space con-
sists of 29 dimensions of 699976 non-zeros. For Leukemia, PASL’s latent space consists of 500 dimensions 
of 700020 non-zeros. PLIER’s latent space consists of 30 dimensions of 782114 non-zeros

The values in bold are the mean and median AUC for the previous rows of each different case (PASL, 
PLIER, Original Space)

Breast Cancer Leukemia

Data ID PASL PLIER Original Data ID PASL PLIER Original

54002 0.999 1 0.995 15434 0.985 0.747 0.987
5460 0.952 0.958 0.96 14924 0.996 0.987 0.91
36771 0.935 0.933 0.963 23025 0.762 0.766 0.741
66161 0.664 0.486 0.579 21029 0.95 0.694 0.966
76124 0.976 0.98 0.97 28654 0.767 0.616 0.762
66159 0.759 0.506 0.776 14671 0.59 0.674 0.625
66305 0.513 0.569 0.535 7440 0.73 0.52 0.736
10780 0.976 0.995 0.962 66006 0.926 0.792 0.952
27562 0.835 0.776 0.914 28460 0.719 0.542 0.697
27830 0.725 0.671 0.759 26713 0.998 0.997 0.952
36769 0.953 0.963 0.96 31048 0.984 0.981 0.99
29431 0.997 0.982 0.991 39411 0.997 0.956 0.985
42568 0.991 0.975 0.927 49695 1 0.612 0.998

50006 0.979 0.994 0.983
61804 0.823 0.744 0.869

Mean 0.8673  0.830 0.868 Mean 0.8804 0.7748 0.876
Median 0.952 0.958 0.96 Median 0.95 0.747 0.952
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In the lower row of Fig. 5 we visually demonstrate the ability of PASL to lead to highly 
predictive models. Each panel corresponds to a different test dataset. Specifically, we chose 
to present the visualizations from datasets that lead to the “best” visual differences for 
PASL vs the original space, PASL vs PLIER, and PLIER vs PASL, in Fig. 5(c)–(e), respec-
tively. Each panel shows the box-plots of the out-of-sample probability of each molecular 
profile to belong to the positive class for the models produced in the original, PASL, and 
PLIER feature space. The out-of-sample predictions are calculated by JADBio during the 
cross-validation of the winning configuration (ML pipeline) and thus, they do not contrib-
ute to the fitting of the samples used for training. The larger the separation of the distribu-
tion of the predicted probabilities, the larger the AUC.

4.2 � From gene set enrichment analysis to differential activation analysis

We performed a computational experiment assessing the biological interpretability of 
PASL’s feature space. Since the constructed features correspond to known or discov-
ered genesets (atoms of D), we can use their values (stored in the columns of L) to 
find which genesets behave differently under two conditions, i.e., disease vs. healthy or 
treatment vs. control. In other words, we can perform Differential Activation Analysis 
(DAA). DAA is to genesets what standard differential expression analysis is to genes. A 
current standard alternative method that provides insight into the underlying biology is 
to use Gene Set Enrichment Analysis (GSEA). GSEA first summarizes the probe-sets 
that correspond to the same gene e.g. by taking the minimum, maximum or average 

Fig. 5   Upper row Mean AUC of a Breast Cancer and b Leukemia test datasets Lower row: Out-of-sample 
probability distributions (calculated during cross-validation) of the predicted probabilities by JADBio for 
different datasets and data representations (original, PASL, PLIER). We visualize the datataset that favors 
the most a specific algorithm. The larger the separation of the predicted probabilities for each class, the bet-
ter AUC is achieved by the predictive model. c dataset favoring PASL over original representation (outcome 
is disease status), d dataset favoring PASL over PLIER (outcome is the mutation status of immunoglobulin 
heavy chain (IGHV) gene), e dataset favoring PLIER over PASL (outcome is the status of the ER receptor)
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expression value. Inherently, GSEA loses information by applying this summarization 
and by not taking into account the covariances of the gene expressions. Subsequently, 
the null hypothesis is that the p-values of the genes in a pathway have the same distribu-
tion as the p-values of the genes that do not belong to the pathway.

We next examine the ability of PASL to identify genesets (pathways) that behave differ-
ently between two classes and compare it against GSEA. We employ the GSEA v4.0.3 tool 
from https://​www.​gsea-​msigdb.​org/​gsea/​index.​jsp Mootha et al. (2003), Subramanian et al. 
(2005). We run GSEA on the test datasets in the original feature space using 10000 pheno-
type permutations for the permutation-based statistical test employed in the package. The 
input genesets are the same as the ones provided to PASL in the geneset matrix G. We also 
perform DAA on the test datasets projected to the latent space of PASL (activity scores) 
using the Matlab’s t-test function mattest with 10000 permutations. The list of p-values 
from DAA and GSEA can then be used to identify the affected pathways.

Figure 6 (upper row) shows the number of genesets identified by each method (y-axis) 
in the top k (lowest p-value) genesets, for each k (x-axis). Each panel corresponds to a dif-
ferent test dataset. We observe that the genesets identified by PASL have lower p-values 
and are encountered first on the list; PASL has higher statistical power in identifying some 
genesets that behave differently. PASL’s features correspond to genesets. The statistically 
significant ones are referred as differentially activated. Figure  6 (bottom row) visualizes 
why the PASL features are identified as differentially activated. Each panel shows the box-
plots for the activation scores corresponding to the first, second, and third most statistically 
significant PASL feature/geneset (denoted with names 1DA, 2DA, and 3DA, respectively).
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Fig. 6   Upper row: Comparing DAA (differential activation analysis in PASL space) and GSEA (standard 
geneset enrichment analysis). For a given x (e.g. 100) in the x-axis, and for the blue line corresponding 
to PASL, the value y (e.g., 95) in the y-axis is the number of genesets within the top x most statistically 
significant genesets that are identified by PASL’s DAA. Similarly, for the orange line for GSEA. The gen-
esets identified with DAA in PASL space have in general smaller p-values (higher statistical power) and are 
encountered first in the sorted list of genesets. DAA and GSEA are complementary in identifying genesets 
that are differently affected in two experimental conditions. Lower row: Box-plots of the activation scores 
that correspond to the first, second, third differentially activated PASL feature/pathway denoted by 1DA, 
2DA, and 3DA, respectively. It is visually verified that the differentially activated pathways indeed behave 
differently between the two classes. The outcomes for GSE10780, GSE14924, and GSE15434 stands for 
Invasive Ductal Carcinoma/Unremarkable breast ducts, healthy-controls/leukemia-cases, the mutation sta-
tus of Nucleophosmin 1 (NPM1), respectively (Color figure online)

https://www.gsea-msigdb.org/gsea/index.jsp
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Specifically, the top 3 differentially activated genesets of GSE10780 are the “Reac-
tome signaling by GPCR", “Reactome Fructoce Catabolism" and “Reactome Hemosta-
sis". The top 3 differentially activated genesets of GSE14924 is the “Reactome metabo-
lism of Lipids", “Reactome Chromatin Organization" and “Reactome Gene Expression 
Transcription". The top 3 differentially genesets pathways of GSE15434 are the “Reac-
tome Transport of Small Molecules", “Reactome Developmental Biology", “Reactome 
Post Translational Protein Modification". It is visually verified that the distribution of 
the activation scores of these genesets are different between the two classes in an easy to 
understand and intuitive plot.

While DAA using PASL seems to offer several advantages (lower p-values, intuitive 
visualization), it also has a major limitation. PASL requires a training set that is related to 
the application (test) set. It learns atoms that only pertain to capturing information regard-
ing the train data. We consider DAA and GSEA complementary and synergistic since, for 
instance, DAA using PASL cannot be applied to a schizophrenia dataset, before we con-
struct a sufficiently large training dataset for the disease. To alleviate this data-stemmed 
limitation, a full-scale experiment where datasets from a wide range of diseases and 
pathologies are merged is presented next.

5 � Construction of a universal dictionary for the GPL570 gene 
expression platform

In this experiment we aim to build a universal dictionary for the Affymetrix Human 
Genome U133 Plus 2.0 platform (GPL570). “Universal” in this context means that the 
latent representation should be (a) applicable to any dataset measured through the GPL570 
platform, and (b) able to retain all relevant information from the 54675 original probe-sets 
in a much lower dimensional space. Such representation would enable faster computational 
analysis and enhanced interpretability of the results.

We downloaded all available GPL570 datasets with at least 20 samples, for a total of 
1736 datasets. We randomly selected 173 (10%) of these studies to hold out for testing 
purposes, leaving 1563 datasets with 85643 samples for dictionary training and valida-
tion. Out of the 173 tests datasets, 8 were discarded for not having a suitable binary or 
multi-class outcome, leaving a total of 165 test datasets with a total of 16286 samples. On 
the dataset level, we manually annotated each dataset for the studying purpose of the cor-
responding project and the disease it pertains to. On the sample level, we manually labeled 
each sample with every possible information available such as disease, treatment, sex, eth-
nicity etc. We then chose to define as a classification outcome the most biologically impor-
tant quantity in the study. In the top pie chart of Fig. 7 we show the distribution of the types 
of diseases of the test datasets. Specifically the test datasets refer to 25 different disease 
types. 46% of them refer to 22 different types of cancer, whose distribution is shown in the 
bottom pie chart of Fig. 7. The gene membership matrix G reporting the correspondance 
between probe-sets and genesets was built using the GSEA tool (https://​www.​gsea-​msigdb.​
org/​gsea/​index.​jsp).

We note that the construction of a universal dimensionality reduction transformation has 
been presented by the authors in prior work (Pantazis et al., 2020). In the latter, the authors 
apply PCA, Kernel PCA and Autoencoders on a large corpus of microarray and RNAseq 
data. The projection to the estimated universal dictionary outperforms the original space 

https://www.gsea-msigdb.org/gsea/index.jsp
https://www.gsea-msigdb.org/gsea/index.jsp
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Fig. 7   Top: Disease distribution of the test datasets. The test datasets refer to 25 different diseases. Bottom: 
Distribution of the cancer types along the cancerous test datasets. The cancerous test datasets refer to 22 
different types of cancer
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in terms of predictive information. However, all methods tried lead to biologically unin-
terepretable transformations.

5.1 � Learning a universal dictionary with PASL on large sample datasets

Applying PASL on 85643 samples presented numerous technical challenges that had to 
be overcome. The dataset does not fit in main memory; intermediate calculations also 
require memory that reduces the total number of samples that can be loaded. Loading 
only portions of the data for the different PCAs performed by the algorithm is an option 
to reduce memory requirements, but it results in excessive I/O of data.

We performed numerous optimizations to PASL to reduce memory requirements. 
First, the data were represented with single instead of double precision, reducing mem-
ory requirements to half. Extensive experiments with single precision on sub-samples 
verified that there is no loss of explained variance by the learned dictionary (not shown 
for brevity). PASL computations that are memory hungry were also optimized; surpris-
ingly, this includes the zscore built-in function of matlab that does not run with such 
large datasets. The dictionary D is now represented in a sparser form to reduce memory 
requirements. After these optimizations in place, we managed to run the inference phase 
of PASL with a randomly chosen sub-sample of 50000 samples to learn 5000 atoms, 
and the discovery phase (Sparse PCA) with 15000 samples to learn 1000 atoms with 
2000 non-zero elements each. The two phases required about 3 days to run. The com-
puter that we used to run PASL has the following specs: CPU: Intel Core i7-8700K @ 
3.7GHz (6 Cores / 12 Threads), RAM: 32GB DDR4-2666MHz. The experiments ran on 
Matlab 2017a.

5.2 � Description of the constructed dictionary

The 5000 atoms of the inference phase correspond to 1174 unique known genesets out 
of the available 1974. In the top panel of Fig. 8 we show the distribution of the num-
ber of atoms that correspond to the same geneset, i.e., how many times a geneset was 
selected to create an atom. More than 250 genesets correspond to a single atom. In the 
bottom panel of Fig. 8 we present the top 10 selected genesets and the number of atoms 
that correspond to them. For a geneset to correspond to numerous atoms, it means that 
its behavior cannot be captured with a single score. The genes that participate in such a 
geneset could correlate differently depending on the biological context (treatment con-
dition, pathology, tissue). This observation explains why the genesets with the largest 
number of atoms are quite general. The universality of PASL GPL570 latent represen-
tation lies in the large number of included genesets and their diversity. The dictionary 
includes atoms from a wide spectrum of genesets that correspond to both foundational 
biological processes, such as Gene Expression Transcription (Fig. 8), as well as more 
specific biological pathways that are currently associated only with a handful of dis-
eases, such as “RUNX3 regulates CDKN1A transcription”, “NTRK2 activates RAC1” 
and “ATF6 (ATF6-alpha) activates chaperone genes”. This variety of included genesets 
enables the GPL570 PASL dictionary to represent datasets corresponding to different 
diseases with high precision.
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5.3 � Predictive performance of the universal dictionary

In Table  3 we present the mean and median AUC for the out-of-sample estimate of 
the predictive performance achieved by JADBio models for the original and the PASL 
feature space. In total, JADBio created 18,576,046 classification models in its effort 
to identify the configuration that leads to the most predictive model and to estimate 
its performance (cross-validation). All JADBio analyses on the 165 test datasets were 
performed on the ARIS high-performance computing system provided by the national 
Greek GRNET initiative. In the left panel of Fig. 9 we present a per-dataset compari-
son of predictive AUC in the PASL and the original gene expression space. Each point 

Fig. 8   Top: Distribution of the number of atoms that correspond to the same geneset. Most genesets corre-
spond to a single atom in the dictionary. Bottom: 10 most frequently selected genesets of the dictionary. A 
geneset that corresponds to several atoms behaves differently under different conditions. This explains why 
these genesets correspond to general and fundamental biological pathways

Table 3   Mean and median AUC achieved on the 165 test datasets by JADBio in original gene expression 
and PASL space, respectively. The mean and median execution time is also reported. There is no loss of 
predictive performance on average across all tissues, pathologies, and outcomes in the test sets; predictive 
analysis is sped up by about a factor of 5 on average

Mean Median Mean Median
AUC​ AUC​ Exec. time Exec. time

PASL space 0.914 0.972 8800 sec 3833 sec
Original space 0.916 0.969 45962 sec 22791 sec
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represents a test dataset. Points above the diagonal achieve higher predictive perfor-
mance in PASL space than the original space and vice versa. As the figure suggests, 
there is a high correlation (0.95) between the AUC values obtained using the origi-
nal and the PASL features. Furthermore, no statistically significance difference exist 
between the means of two sets of AUC values (paired t-test p-value: 0.54), while the 
execution time is significantly smaller with the constructed features (p value:2.7e-8). 
The results in Table  3 and Fig.  9 (left panel) indicate that the transformed space is 
indeed able to retain all information needed for predicting relevant outcomes contained 
in the original features, and that predictive analyses can be performed more efficiently 
in the lower dimensional space.

Since only 50000 samples out of the 85643 total available samples were used to train 
the dictionary, we used the remaining samples as a validation set. In the right panel of 
Fig. 9 we present the percentage of explained variance of the train set, the validation set 
and the validation set with a random permutation of the columns (features). The percentage 
of explained variance is computed by the following formula:

where Xz is the standardized data matrix, D1 is the dictionary of the inference phase and L 
is the projection of the data to the dictionary D1 . We note that we have removed the genes 
that do not appear in any geneset for this calculation to focus on the part of the variance 
that is feasible to explain with the D1 dictionary. By permuting the features in the valida-
tion set, we compare the explained variance achieved by D1 with a random projection of 
the data to a sub-space of the same sparsity level as D1 . We note that (a) the variance 
explained by D1 on the validation data coincides with the variance explained on the train-
ing data; the two lines fall onto each other and are indistinguishable in the figure. (b) the 
variance explained by D1 exceeds that of random projections. However, notice that a 

(4)% ExplainedVariance = 1 −
||Xz − L ⋅ D1||

2
F

||Xz||
2
F

Fig. 9   Left: Out-of-sample AUC estimates of JADBio models achieved in PASL and the original gene 
expression space for the 165 test datasets. The estimates correlation is 0.95 . Some datasets are better pre-
dicted in PASL space (points above the diagonal), while the opposite is true for the points below the diago-
nal. Right: Percentage of explained variance of the inference phase; only genes that belong in at least one 
geneset are included. By permuting the columns (features) in the validation set we get the explained vari-
ance by a random sub-space projection with the same sparsity level as PASL. PASL’s explained variance on 
the training and validation sets coincide showing no overfitting of the dictionary. The explained variance is 
significantly higher than the random projection



4279Machine Learning (2023) 112:4257–4287	

1 3

random projection to a subspace still captures a portion of the variance. This behavior is 
consistent with linear projection theory since a random projection given sufficiently many 
atoms is capable of maintaining the distance between the samples in the projected space 
and thus be capable of reconstructing the samples when mapped back to the original space. 
More specifically, Johnson–Lindenstrauss lemma Johnson and Lindenstrauss (1984) states 
that a set of points in a high-dimensional space can be linearly embedded into a space of 
much lower dimension in such a way that distances between the points are nearly pre-
served. The relative error is controlled by the number of atoms and samples but not by the 
samples’ dimension. Moreover, the random projection’s relative error is on average of 
order 1 −�

�√
8 log(n)∕a1

�

 which qualitatively is very similar with the percentage of 
explained variance in the right panel of Fig. 9.

6 � Illustrative case‑studies of predictive modeling with JADBio in PASL 
space

Out of the 165 test datasets that were analysed by JADBio, we select to focus on two of 
them that illustrate the potential advantages of predictive modeling in PASL space. More 
details about the datasets and the JADBio analyses can be found in Sects.   6.1 and 6.2. 
JADBio can share results to the community in interactive web pages with unique urls. The 
urls to interactively explore the results are in the respective subsections.

6.1 � Classification of Acute Lymphoblastic Leukemia (ALL) patients 
with and without Down Syndrome

The work in Loudin et al. (2011) is a study of the differences between biological mecha-
nisms in patients with pediatric Acute Lymphoblastic Leukemia (ALL) that have Down 
Syndrome (DS-ALL) against ALL patients without Down syndrome (NDS-ALL). This 
defines a binary outcome and corresponding classification problem. To our understand-
ing, the original study attempted to find a diagnostic signature but failed. Specifically, they 
report “As expected, unsupervised hierarchical clustering analysis demonstrated cluster-
ing of NDS-ALL cases belonging to some known cytogenetic subgroups such as E2A-
PBX1 and MLL rearrangement (Fig. 3a). In contrast, neither DS-ALL cases overall nor the 
JAK2-mutated, histone deletion or high CRLF2 expressing DS-ALL cases formed a cohe-
sive cluster." Given that they DS-ALL cases did not cluster, they proceed with supervised 
analysis of other outcomes.

The data are reported in dataset GSE21094 contain 49 total samples, 23 DS-ALL and 
26 NDS-ALL. The analysis in the original space led to a single signature3 (a signature is 
defined as the subset of selected features) with 25 mRNA predictors, achieving an AUC 
of 0.865 (0.778, 0.945) using a Support Vector Machine as best model. The analysis in 
the PASL space led to a Random Forest type of model (Fig. 10a and a sizable increase in 
predictive performance with an AUC 0.961 (0.877, 1.000) (Fig. 10b. There was a single 
signature containing 23 features. Figure 10c shows the cumulative contribution of the first 
3 selected features, i.e., the percentage of AUC achieved when features are added one at a 

3  JADBio is often able to discover and return multiple signatures leading to model of statistically indistin-
guishable performance (Lagani et al., 2016)
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(a)

(b)

(c)

(d)

Fig. 10   Predictive modeling with JADBio of Down Syndrome vs Non Down Syndrome in ALL cases (data-
set GSE21094). Panels a, b and c (left) were produced in the PASL space (https://​app.​jadbio.​com/​share/​
81be7​92e-​3ba8-​43e0-​ace0-​b8a4f​e9657​f0), panel c (right) in the original space (https://​app.​jadbio.​com/​
share/​32892​dc1-​739d-​4b37-​b6b5-​50802​587fb​1b)

https://app.jadbio.com/share/81be792e-3ba8-43e0-ace0-b8a4fe9657f0
https://app.jadbio.com/share/81be792e-3ba8-43e0-ace0-b8a4fe9657f0
https://app.jadbio.com/share/32892dc1-739d-4b37-b6b5-50802587fb1b
https://app.jadbio.com/share/32892dc1-739d-4b37-b6b5-50802587fb1b
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time. Fig. 10d shows the ROC curves of the PASL space (left panel) and the Original space 
(right panel).

Regarding the biological interpretation of the selected PASL features, the top two 
directly correspond to the genesets “Reactome TYSND1 cleaves peroxisomal proteins” and 
“KEGG parkinsons disease”. The third feature originates from PASL’s discovery phase. It 
does not have a direct match to a known pathway, but could be pointing to a novel pathway. 
The TYSND1 gene encodes a protease that removes the N-terminal peroxisomal targeting 
signal from proteins PTS2 in the cytosol and facilitates their import into the peroxisome. 
In the peroxisomal matrix, it removes the C-terminal peroxisomal targeting signal PTS1 
which leads to peptide degradation Kurochkin et al. (2007). Peroxisomal defiency is com-
mon in Zellweger Syndrome, a Down syndrome’s mimic (Khadpe et  al., 2019) and in a 
variety of neurological diseases such as Alzheimer’s, Parkinson’s disease and Down syn-
drome (Berger et al., 2016). From a clinical perspective, discovering a geneset related to 
Parkinson’s disease as predictor is expected in this context, as early-Onset Parkinsonism is 
prevalent in Down Syndrome (Hestnes et al., 1997). The 25 mRNA expression in the sig-
nature in the original space encode a variety of proteins with different biological roles such 
as binding membrane protein, proteins involved in cilium biogenesis and small nuclear 
RNA factor. Interestingly, one of them, Ephrin type-A receptor 7, is involved in the brain 
development pathway. Arguably however, it is easier to interpret biologically the PASL 
features that correspond to pathways, than the individual gene expressions. The JADBio 
analyses both for the PASL space and the Original space are available at https://​app.​jad-
bio.​com/​share/​81be7​92e-​3ba8-​43e0-​ace0-​b8a4f​e9657​f0 and https://​app.​jadbio.​com/​share/​
32892​dc1-​739d-​4b37-​b6b5-​50802​587fb​1b respectively.

6.2 � Identification of T cells subjected to different stimuli

Dataset GSE30674 contains the transcriptomics profile of 56 samples from an immortal-
ized cell line of human T lymphocyte cells, namely Jurkat T cells. Samples were subjected 
to various stimuli and pathway inhibitors, with the aim of studying their effect on differen-
tiation into Th1, Th2, Th17 or Treg phenotypes. The original study (Smeets et al., 2012) 
focused on studying how the differentiation of naive T cells is affected by the combination 
of stimuli and kinase inhibitors. The study did not attempt reporting molecular signatures. 
Particularly, their results underlined that three out of five kinase inhibitors had large effects 
on gene regulation and T cell differentiation, focusing particularly on the CCL1 and IL-2 
mRNA induction. These results show that kinase activation is crucial for T cell differentia-
tion. Consequently, for the present analysis we aim at identifying transcriptomics features 
that differentiate between the 12 samples (treatment control) subjected to differentiation 
stimuli (CD3, CD28, and PMA in various combination) in the presence of dimethyl sul-
foxide (DMSO) and the 44 samples treated with combinations of the same differentiation 
stimuli in the presence of kinase inhibitors (treatment).

The analysis in the original feature space uses all the 54675 available mRNA values and 
achieves an AUC of 0.803 (0.589, 1.000) with Random Forest as best model. The analysis 
in the PASL space led to a higher predictive performance, AUC 0.941 (0.863, 1.000), with 
a more parsimonious Random Forest best model that uses only 3 features (outcomes are 
shown in Fig. 11a–c). Furthermore, 153 equivalent signatures were identified. This means 
that different features (pathway activation scores) could substitute for others in the selected 
features and still obtain an equally predictive model giving rising to different signatures. 
PASL’s selected features include “Reactome Gluthanione synthesis and recycling” in all 

https://app.jadbio.com/share/81be792e-3ba8-43e0-ace0-b8a4fe9657f0
https://app.jadbio.com/share/81be792e-3ba8-43e0-ace0-b8a4fe9657f0
https://app.jadbio.com/share/32892dc1-739d-4b37-b6b5-50802587fb1b
https://app.jadbio.com/share/32892dc1-739d-4b37-b6b5-50802587fb1b
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signatures and “Reactome FGFR3B ligand biding and activation” in at least 5 of the equiv-
alent signatures. Both pathways are associated with T cell activation. More specifically, 
gluthanione synthesis and recycling pathway is already correlated with T cell differentia-
tion in mice (Lian et al., 2018). Furthermore, FGFR receptors’ family are associated with T 

(a)

(b)

(c)

(d)

Fig. 11   Predictive modeling with JADBio of of kinase inhibitor treatment vs treatment control of stimuli 
activated Jurkat T cells (dataset GSE30674). Panels a, b and c (left) were produced in the PASL space 
(https://​app.​jadbio.​com/​share/​9463e​28b-​736c-​4476-​8d5f-​b92d7​364c6​aa), panel c (right) in the original 
space (https://​app.​jadbio.​com/​share/​fe02e​291-​7d35-​4286-​bdbe-​2e600​b1412​a3)

https://app.jadbio.com/share/9463e28b-736c-4476-8d5f-b92d7364c6aa
https://app.jadbio.com/share/fe02e291-7d35-4286-bdbe-2e600b1412a3
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Cell receptor signaling pathway  (Byrd et al., 2003). These two pathways are not reported 
in the original publication but it is known that both of them interact with the MAPK, Lck/
Cn and PKC� pathways, which are found affected in the original study. These findings can 
be of interest regarding the selectivity of kinase inhibitors for future controlled differen-
tiation of Jurkat T cells or even human blood. Figure 11d shows the ROC curves of the 
PASL space (left panel) and the Original space (right panel). The JADBio analyses both for 
the PASL space and the Original space are available in https://​app.​jadbio.​com/​share/​9463e​
28b-​736c-​4476-​8d5f-​b92d7​364c6​aa and https://​app.​jadbio.​com/​share/​fe02e​291-​7d35-​
4286-​bdbe-​2e600​b1412​a3 respectively.

7 � Discussion and conclusions

Molecular -omics and multi-omics data are notoriously high-dimensional. Their high-
dimensionality impedes computational analysis as well as biological interpretation. To 
enable biological interpretation, biologists typically examine results at the level of known 
pathways, or genesets in general, not at the level of single gene expressions or other bio-
markers. Several dimensionality reduction methodologies have been applied, or even have 
been specifically developed for -omics datasets. They have shown that -omics datasets can 
be indeed successfully compressed. However, general-type dimensionality reduction tech-
niques end up with unintepretable feature spaces. The constructed features do not directly 
correspond to the well-organized biological knowledge in terms pathways and gene ontolo-
gies; they do not match the way biologists are used to examine results.

The Pathway Activity Score Learning or PASL algorithm is a dimensionality reduction 
technique that constructs features that directly correspond to known pathways (genesets) 
and they can be interpreted as pathway activity scores. It also constructs features that point 
to unknown pathways (genesets). PASL is relatively efficient and employs a greedy heu-
ristic to create the next atom in its dictionary. In the paper, we compare PASL against a 
related technique, called PLIER, and show that PASL maintains more predictive informa-
tion in the data. We also compare differential activation analysis to identify pathways that 
behave differently between two conditions against the standard gene set enrichment analy-
sis. We show that PASL identifies affected pathways with higher statistical power (smaller 
p values) and is synergistic to GSEA.

Using a large collection of 50000 uniformly preprocessed samples spanning dozens of 
different diseases and PASL, we create a universal dictionary for the Affymetrix platform 
GPL570 to map any new dataset to constructed features of lower dimensionality (6000 
vs 54675 features). We evaluate the power of the dictionary to maintain the predictive 
information across different tissues, organs, pathologies, and outcomes such as disease sta-
tus, disease subtype, and response to treatment. The evaluation is performed on 165 test 
datasets of a total of 16286 samples. We use the AutoML platform JADBio that tunes the 
analysis pipelines in terms of algorithms and their hyper-parameters to deliver the best pre-
dicting model and conservative estimates of its out-of-sample performance. The models 
produced in PASL space are on average on par with the ones created on the original mRNA 
expressions space. In some cases however, they offer higher predictive performance and 
straightforward biological interpretation. The results suggest that analysis in PASL space 
could complement analysis in the original space.

Lastly, we would like to state few limitations of this work. The results in the test data-
sets have not been biologically examined in depth. A comparison against GSEA using the 

https://app.jadbio.com/share/9463e28b-736c-4476-8d5f-b92d7364c6aa
https://app.jadbio.com/share/9463e28b-736c-4476-8d5f-b92d7364c6aa
https://app.jadbio.com/share/fe02e291-7d35-4286-bdbe-2e600b1412a3
https://app.jadbio.com/share/fe02e291-7d35-4286-bdbe-2e600b1412a3
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universal dictionary is also left as future work. The behavior of the algorithm with respect 
to available sample and its learning curve is not studied. The PASL algorithm does not 
have data-driven termination criteria for the construction of atoms. It does not produce 
statistical guarantees (i.e., p values) on the hypothesis that a given dictionary atom is not 
a random projection. The algorithm naively performs PCAs from scratch without cash-
ing intermediate computations between iterations. Several other optimizations on the time 
complexity are also possible. Finally, PASL requires prior biological knowledge for its 
inference phase limiting the application of PASL on other collections of datasets. However, 
it is applicable in other domains, as long as there is available prior knowledge that can be 
expressed as a membership matrix.
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