
Vol.:(0123456789)

Machine Learning (2023) 112:1171–1199
https://doi.org/10.1007/s10994-022-06154-3

1 3

Data‑aware process discovery for malware detection:
an empirical study

Mario Luca Bernardi1 · Marta Cimitile2 · Fabrizio Maria Maggi3

Received: 1 March 2021 / Revised: 11 November 2021 / Accepted: 19 February 2022 /
Published online: 31 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
Mobile devices are undeniably becoming essential in our lives and our daily activities. The
adoption of mobile applications increases the human computing experience and the capa-
bility to access and exchange data. However, mobile devices are also the target of sev-
eral malware attacks, usually obtained by evolving existing malicious code. This allows
researchers and practitioners to recognize malware applications based on their similarities
with existing infected applications. This study uses a multi-perspective declarative lan-
guage to model the behavior of infected and trusted applications by discovering it from
their system call traces. The obtained models are used to classify malware applications and
evaluate if they belong to a known malware family. The approach has been evaluated on a
dataset obtained by capturing system call traces from more than 160K trusted and infected
applications, the latter gathered from 27 known malware families. The empirical study
shows the good performance of the approach in the identification of the infected applica-
tions and their membership to a specific malware family. In addition, the approach exhibits
a high level of robustness to code transformations and major evasion techniques.

Keywords Malware detection · Declarative process mining · Data-aware process mining ·
Deep neural network.

Editors: Annalisa Appice, Grigorios Tsoumakas.

 * Marta Cimitile
 marta.cimitile@unitelmasapienza.it

 Mario Luca Bernardi
 bernardi@unisannio.it

 Fabrizio Maria Maggi
 maggi@inf.unibz.it

1 University of Sannio, Benevento, Italy
2 Unitelma Sapienza University, Rome, Italy
3 Free University of Bozen-Bolzano, Bolzano, Italy

http://orcid.org/0000-0003-2403-8313
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06154-3&domain=pdf

1172 Machine Learning (2023) 112:1171–1199

1 3

1 Introduction

Mobile applications are becoming the main means to access and transfer information
including personal and sensitive data. This causes an increasingly higher number of mal-
ware attacks finalized to steal information and money, promote fraudulent websites, or gen-
erate disruption. For this reason, in the last years, many research studies have focused on
the detection of malware attacks. Existing approaches for malware detection are, in gen-
eral, always aimed at discovering new malware on the basis of its derivation from existing
malware families. This choice is motivated by the fact that the majority of these attacks
are performed by using known infected code opportunely changed by automatic tools to
become more unexpected and aggressive (Jang et al., 2011).

This paper starts from the idea that mobile application system calls can be modeled
similarly to process activities in business process logs and business process models can be
used as an abstraction of the behavior of an application. More precisely, the event-driven
nature of mobile operating systems implies that applications participate in the system
based on responses to specific activating events in a similar way process actors partici-
pate in a business process. As a consequence, process mining (van der Aalst, 2016) can be
effectively used to analyze the behavior of trusted/infected applications from a set of sys-
tem call traces obtained in response to these triggering activating events. Based on this
idea, in (Bernardi et al., 2019), an approach is introduced to detect malware applications
and their deriving families on the basis of similarities among process models mined from
system call traces. However, the limit of that study concerns the mined models since they
are expressed as constraints on the sequences of events and do not take into account data
attributes attached to them. In contrast, in this paper, we analyze the system call traces
also considering their data payloads making the classification more precise. Our hypothesis
is that using the data payloads of events recorded in the system call traces gives further
information about the malware behavior so that the malware is better characterized and,
therefore, easier to detect. This concept is new also with respect to the similar studies (Ala-
zab, 2015; Wu et al., 2012) that are also based on the analysis of syscall sequences to mine
a fingerprint of the malware behavior but do not use the data perspective to represent the
malware behavior captured from the syscall traces.

In particular, we represent the mobile application behavior as process models expressed
using MP-Declare (Leno et al., 2020), a multi-perspective version of the declarative con-
straint-based process modeling language Declare (Pesic et al., 2007). It is the first time that
MP-Declare is adopted in a malware detection context. The mobile application behavior
is expressed as a set of constraints over system calls and their data payloads that we call
Data-aware System Calls Execution Fingerprint (DSEF). The obtained models are then
used to identify malware applications and evaluate their similarities with known malware
families. To this aim, a Deep Neural Network (DNN) classifier is used and compared with
other alternative classifiers.

The proposed empirical validation is performed on a new dataset obtained by captur-
ing system call traces from more than 160K trusted and infected applications and aims at
evaluating different aspects of the proposed approach. Since, in our approach, it is possible
to adopt different types of classifiers, we test the level of accuracy that they can guaran-
tee. In particular, we compute the F1-score of different types of neural networks and tree-
based binary classifiers (i.e., DNN, CNN, J48, and RF) when detecting if an application is
infected. Since the size of the datasets has an impact on the classification performance, in
the evaluation, we also investigate the relation between the number of infected applications

1173Machine Learning (2023) 112:1171–1199

1 3

used to build the DSEF models and the final F1-score of the classifiers. In malware devel-
opment, different code obfuscation approaches are used as evasion techniques to hide the
malware. Therefore, our empirical validation also investigates to what extent such obfusca-
tion techniques negatively affect the accuracy of the proposed malware detection approach.
Finally, we investigate the accuracy of a different type of classification task that can be car-
ried out with our approach, i.e., multinomial classification, aiming at detecting a specific
malware family among a set of known malware families.

This work extends our previous work (Ardimento et al., 2020) by introducing several
novelties:

• A significantly larger number of malware families are modeled and included in our
approach (we consider 19 additional malware families with respect to the 8 families
considered in our former study (Ardimento et al., 2020);

• Different classifiers are used and compared in the classification step;
• The performance of the classifier is evaluated also when different obfuscation tech-

niques are used in the malware source code;
• The impact of the number of infected applications used to build the DSEF models on

the classifier performance is evaluated (considering both binary and multinomial clas-
sification).

The approach is relevant for all kinds of mobile platforms, but this study regards the
Android platforms since they are the favorite target of malware attacks (Mobile threat
report, 2016).

It is important to point out that this approach cannot be used to detect unknown malware
families since the DSEF models of the malware families need to be known beforehand.
Furthermore, the approach is not suitable to be used as an antivirus tool as it requires the
execution of malicious code on users’ devices and the acquisition of post-infection traces to
generate the models (two things that users would do quite reluctantly). On the other hand,
this approach, being completely automatic, can be used very effectively at the application
store level (e.g., Android Play Store, iOS App Store, or even third party store like APKMir-
ror or Aptoide) where the new applications contributed by developers can be executed on a
sandbox, their traces analyzed and, finally, approved only if no malicious behaviors similar
to the ones of known malware families are found. This also includes zero-day malware
derived from existing families and sharing significant parts of their behavior.

The paper is organized as follows. Section 2 introduces some background notions use-
ful to understand the rest of the paper. Section 3 discusses the related work. In Sect. 4, the
proposed approach is described. Section 5 reports the evaluation carried out using a dataset
containing system call traces generated by trusted and malicious applications derived from
different malware families. Section 6 discusses the threats to validity of the evaluation.
Finally, Sect. 7 provides some conclusive remarks and future work discussion.

2 Background

In this section, we introduce the concepts needed to understand the rest of the paper. In
particular, in Sect. 2.1, we introduce malware families and the corresponding events that
trigger their malicious behavior. In Sect. 2.2, we introduce the obfuscation techniques that
can be used by the malware developers to hide the malicious behavior. In Sect. 2.3, we

1174 Machine Learning (2023) 112:1171–1199

1 3

present the process modeling language that we use as a basis of our malware detection
approach to representing malware behavior.

2.1 Mobile malware families

We start by presenting the objective of our detection approach, i.e., the malware families.
The presented technique has been developed to characterize the behavior of malware fami-
lies and distinguish it from the behavior of trusted applications. Malware is any software
intentionally designed to disrupt, damage, or gain unauthorized access to data. Malware
families are defined as sets of malware with similar behavior and properties. Malware
detection can benefit from the study and formalization of malware families’ behavior since
new malware is often obtained by evolving existing ones (Karim et al., 2005). According
to (Fedler and Schütte, 2013), there are several installation techniques (ITs) for installing
a malicious payload. A very common technique is repackaging (R), consisting of decom-
piling an application to get its source code and add the malicious payload. Further ITs are
standalone (S) and update attacks (U) (Zhou and Jiang, 2012). The standalone IT consists
of installing the malicious payload in a standalone application. In the update attack, the
malicious payload is included in an update component allowing to fetch or download the
malware at runtime. When the malicious payload is installed, the malicious behavior can
be activated by an event. The activity events (AEs) are the events that are supposed to trig-
ger the malicious behavior and that are sent to the mobile application during its execution
to test its behavior (the behavior of the application after receiving the AE is recorded and
used to detect the malware). AEs can be grouped into several broad classes, for Android
OS these are: BOOT, BATT , SMS, SYS, NET, CALL. The BOOT class contains only the
BOOT_COMPLETED event meaning that the operating system boot process has been com-
pleted. Concerning the CALL class, the possible AEs include incoming calls (PHONE_
STATE) and outgoing calls (NEW_OUTGOING_CALL). The SYS class includes several
AEs. INPUT_METHOD_CHANGED means that the operating system detects a change in
any of the active input methods. The USER_PRESENT event occurs when the user unlocks
the device while SIG_STR occurs when the signal strength changes. Another AE of this
class is SIM_FULL meaning that the message storage is full. The AEs of the SMS class are
the reception of an SMS message (SMS_RECEIVED) or of a WAP PUSH (WAP_PUSH_
RECEIVED). The BATT class includes several AEs related to the possible battery status:
in charge (POWER_CONNECTED), discharging (POWER_DISCONNECTED), fully charged
(BATTERY_OKAY), at 50% (BATTERY_LOW), empty (BATTERY_EMPTY) or battery sta-
tus changed (BATTERY_CHANGED). Finally, the NET class includes two possible AEs
occurring when the wifi is started (PICK_WIFI_WORK) or when the connection state is
changed (CONNECTIVITY_CHANGE).

The list of malware families considered in this study is shown in Table 1. The table
reports, for each family, its description (second column), the installation types (ITs) in the
third column, the classes of activating events (AEs) in the fourth column, and the number
of infected applications contained in the dataset used in our experiments (fifth column).

2.2 Obfuscation techinques

The effectiveness of malware attacks can be improved by using obfuscation techniques.
These techniques are aimed at hiding the presence of malware thus preventing malware
detection instruments from detecting it. We introduce these techniques because, in our

1175Machine Learning (2023) 112:1171–1199

1 3

Ta
bl

e
1

 M
al

w
ar

e
fa

m
ili

es
 in

ve
sti

ga
te

d
in

 th
is

 st
ud

y

Fa
m

ili
es

D
es

cr
ip

tio
n

IT
s

C
la

ss
 o

f A
Es

#A
pp

A
irp

us
h

U
nw

an
te

d
ad

s a
re

 d
is

pl
ay

ed
 w

ith
ou

t a
ny

 c
on

se
nt

R
BO

O
T,

BA
TT

,S
M

S
15

 6
90

D
ro

id
K

un
gF

u
It

in
st

al
ls

 a
 b

ac
kd

oo
r a

llo
w

in
g

th
e

ac
ce

ss
 o

f a
tta

ck
er

s t
o

th
e

de
vi

ce
R

BO
O

T,
BA

TT
,S

Y
S

78
86

D
ow

gi
n

It
di

sp
la

ys
 th

ird
-p

ar
ty

 a
dv

er
tis

in
g

th
at

 si
le

nt
ly

 c
ap

tu
re

s s
en

si
tiv

e
in

fo
rm

at
io

n
R

BO
O

T,
SM

S,
SY

S
77

88
Fu

so
b

It
en

cr
yp

ts
 d

at
a

an
d

th
en

 fo
rc

es
 v

ic
tim

s t
o

pa
y

to
 u

nl
oc

k
th

e
de

vi
ce

R
,U

BO
O

T,
SM

S,
N

ET
,B

A
TT

44

10
Fa

ke
In

st
It

se
nd

s S
M

S
m

es
sa

ge
s t

o
pr

em
iu

m
-r

at
e

nu
m

be
rs

 o
r s

er
vi

ce
s

R
,U

BO
O

T,
CA

LL
43

56
M

ec
or

It
is

 a
 T

ro
ja

n-
Sp

y
S

BO
O

T
38

48
Yo

um
i

It
m

on
ito

rs
 a

nd
 c

ap
tu

re
s u

se
r b

eh
av

io
r a

nd
 fl

oo
ds

 th
e

de
vi

ce
 w

ith
 u

ns
ol

ic
ite

d
po

p-
up

 a
dv

er
tis

em
en

ts
R

,U
BO

O
T,

SM
S,

CA
LL

28
38

K
ug

uo
It

re
di

re
ct

s t
he

 v
ic

tim
 to

 m
al

ic
io

us
 w

eb
si

te
s a

nd
 c

on
tin

ua
lly

 d
is

pl
ay

 p
op

up
 a

ds
R

BO
O

T,
SM

S,
N

ET
,B

A
TT

26

60
Fa

ke
D

oc
It

ste
al

s i
nf

or
m

at
io

n
an

d
se

nd
s t

he
m

 to
 a

 re
m

ot
e

se
rv

er
R

BO
O

T,
 S

M
S,

 B
A

TT

25
62

Fa
ke

Ti
m

er
It

in
st

al
ls

 a
 se

rv
ic

e
on

 th
e

de
vi

ce
 th

at
 p

ro
vi

de
s a

cc
es

s t
o

an
 a

du
lt

w
eb

si
te

 a
nd

 fo
rw

ar
ds

 in
fo

rm
at

io
n

fro
m

th

e
de

vi
ce

 to
 a

 re
m

ot
e

se
rv

er
R

,U
BO

O
T,

SY
S,

SM
S

22
62

Fa
ke

Pl
ay

er
It

pr
et

en
ds

 to
 b

e
a

m
ed

ia
 p

la
ye

r b
ut

 in
ste

ad
 se

nd
s S

M
S

R
,U

BO
O

T,
 S

Y
S,

 B
A

TT

22
56

Fa
ke

U
pd

at
es

It
m

ak
es

 p
er

so
na

l i
nf

or
m

at
io

n
on

 a
 d

ev
ic

e
vu

ln
er

ab
le

 to
 a

 w
id

e
va

rie
ty

 o
f a

dd
iti

on
al

 se
cu

rit
y

th
re

at
s

R
,U

BO
O

T,
CA

LL
22

26
Fi

ns
py

It
ste

al
s s

en
si

tiv
e

in
fo

rm
at

io
n

R
BO

O
T,

CA
LL

20
54

Fj
co

n
It

se
nd

s S
M

S
m

es
sa

ge
s t

o
th

e
de

vi
ce

 a
nd

 in
st

al
ls

 p
ac

ka
ge

s w
ith

ou
t t

he
 u

se
r c

on
se

nt
R

BO
O

T
19

82
Fo

bu
s

It
se

nd
s p

re
m

iu
m

 S
M

S
m

es
sa

ge
s,

m
ak

es
 c

al
ls

 w
ith

ou
t t

he
 u

se
r c

on
se

nt
 a

nd
 st

ea
ls

 p
riv

at
e

in
fo

rm
at

io
n

R
BO

O
T,

 S
M

S,
N

ET
,B

A
TT

19

66
G

in
ge

rM
as

te
r

It
pr

ov
id

es
 th

e
at

ta
ck

er
s w

ith
 ro

ot
-le

ve
l a

cc
es

s t
o

th
e

de
vi

ce
R

BO
O

T
19

56
G

ol
dD

re
am

It
m

on
ito

rs
 a

ll
in

/o
ut

bo
un

d
SM

S
an

d
ca

lls
 o

n
th

e
in

fe
ct

ed
 m

ob
ile

 d
ev

ic
e

R
,U

BO
O

T,
BA

TT
,S

M
S

17
52

K
sa

pp
It

is
 a

 b
ot

-n
et

 u
se

d
to

 d
ow

nl
oa

d
ne

w
 p

ro
gr

am
s o

r l
au

nc
h

D
D

O
S

at
ta

ck
s

R
,U

BO
O

T,
SM

S,
SY

S
17

24
G

op
ro

It
is

 a
 sm

al
l T

ro
ja

n
us

ed
 to

 d
ow

nl
oa

d
ot

he
r m

al
w

ar
e

R
BO

O
T,

BA
TT

,S
Y

S
16

98
Le

ec
h

It
ga

in
s d

ev
ic

e
ro

ot
 p

riv
ile

ge
s

S
BO

O
T,

CA
LL

16
88

K
yv

ie
w

It
is

 a
 fi

le
 in

fe
ct

or
R

BO
O

T,
SM

S,
N

ET
,B

A
TT

16

52
Ln

k
It

is
 a

 sh
or

tc
ut

 fi
le

 u
se

d
to

 p
oi

nt
 to

 a
n

ex
ec

ut
ab

le
 fi

le
R

BO
O

T
15

70
Lo

to
or

It
in

st
al

ls
 o

th
er

 m
al

w
ar

e
or

 u
nw

an
te

d
so

ftw
ar

e
in

 th
e

de
vi

ce
R

,U
BO

O
T,

SM
S,

BA
TT

15

56
M

in
im

ob
It

ex
pl

oi
ts

 d
ev

ic
e

vu
ln

er
ab

ili
tie

s g
iv

in
g

ac
ce

ss
 to

 o
th

er
 m

al
w

ar
e

R
BO

O
T

15
10

W
in

ge
It

is
 a

 T
ro

ja
n

C
lic

ke
r

S
BO

O
T,

 S
M

S,
BA

TT

15
00

Zi
tm

o
It

is
 a

 k
ey

lo
gg

in
g

m
al

w
ar

e
ste

al
in

g
th

e
de

vi
ce

 u
se

r b
an

ki
ng

 c
re

de
nt

ia
ls

R
BO

O
T,

SY
S,

BA
TT

14

60

1176 Machine Learning (2023) 112:1171–1199

1 3

Ta
bl

e
1

 (c
on

tin
ue

d)

Fa
m

ili
es

D
es

cr
ip

tio
n

IT
s

C
la

ss
 o

f A
Es

#A
pp

Zt
or

g
It

ga
in

s r
oo

t r
ig

ht
s o

n
th

e
in

fe
ct

ed
 d

ev
ic

e
R

,U
BO

O
T,

SY
S,

SM
S

14
28

1177Machine Learning (2023) 112:1171–1199

1 3

study, we want to show that the malware detection approach we propose is effective even
when obfuscation techniques are used.

There is a wide literature on how malware exploits well-known code transformation
approaches (Zheng et al., 2012; Rastogi et al., 2014) as evasion techniques to avoid being
identified.

The most used obfuscation approaches are the following:

 1. Disassembling & Reassembling The compilation process of the application package
may alter the structure and the representation of the resources including binary code
files. This reduces the effectiveness of the approaches relying on these elements for
malware detection (e.g., static signature-based approaches).

 2. Repacking Every Android application has a developer signature key that can be
removed during disassembling and reassembling the application. Using tools like
signapk1, it is possible to embed a new signature key in the reassembled application
to avoid malware identification based on blacklisted keys.

 3. Package rename Android applications are identified by a unique package name.
Renaming the application package name in both the Android Manifest file and all the
classes of the application avoids malware detection based on this identifier.

 4. Identifier renaming This transformation renames symbols in the binary code files and
metadata (e.g., the manifest and UI schemas) by using a random string generator. This
negatively affects the performances of signature-based approaches that exploit string
matching to identify malware.

 5. Data Encoding Statically encoded strings are another common method used to create
detection signatures to identify malware. This code transformation applies different
encoding schemas to strings, to elude these signatures.

 6. Call indirections Detection signatures often include a linearization of a portion of
the application call graph. Behavior-preserving Graph-based transformations can be
exploited to alter the original call graph of the application by modifying method invo-
cations via indirection addition.

 7. Code Reordering Using this transformation the order of the instructions in methods
can be altered. Behavior-preserving random reordering of instructions can be effec-
tively exploited using goto instructions leading to a different binary code that, when
executed, generate the original run-time execution trace.

 8. Defunct Methods This transformation adds dead code segments that do nothing but
alter the structure of the binary code. Detection approaches that exploit checksum
calculated on binary chunks are strongly impacted by this approach.

 9. Junk Code Insertion With this transformation, code that does nothing useful is injected.
Detection techniques that rely on opcodes sequences may be affected by this kind of
alteration. There are three distinct junk code injections: (i) introduction of nop instruc-
tions within individual methods, (ii) injection of unconditional jumps into all methods,
and (iii) allocation of additional registers on which useless operations are executed.

 10. Encrypting Payloads and Native Exploits Native code is usually made available as
libraries accessed via interfaces towards the underlying operating system (e.g., JNI on
Android). Several malware families use this chance to pack native code exploits that
can be executed from the command line and non-standard locations in the application

1 https:// code. google. com/p/ signa pk/.

https://code.google.com/p/signapk/

1178 Machine Learning (2023) 112:1171–1199

1 3

package. Such files are often encrypted in the application package and decrypted at
run-time. In other cases, the additional native payload could even be downloaded after
the malware is installed leaving the application package almost clean (except for the
code that connects to the malicious command and control server). These techniques
are easy to be implemented and have been recognized to be used frequently.

 11. Function Outlining and Inlining Function outlining means splitting a function into
many smaller functions. Conversely, function inlining means substituting a function
call with the complete invoked function code (hence removing the call itself). These
techniques can be effectively implemented to transform code thus making it not rec-
ognizable by a static detector.

 12. Reflection This transformation changes any method call from static to dynamic thus
exploiting the reflection language features. This makes the malicious code extremely
difficult to be detected by statically analyzing the code.

Since malware writers in recent years have started to aggressively use the above obfus-
cation techniques, it becomes crucial, when evaluating a malware detection approach, to
assess the robustness of the approach with respect to these techniques.

2.3 Multi‑perspective process models

Here, we introduce the process modeling language at the basis of our malware detection
approach. We use this language to represent the behavior of malware families (and trusted
applications) as process models thus distinguishing malware behavior from trusted behav-
ior by comparing these models.

This study proposes an approach that characterizes malware behaviors using data-aware
rules. The language used to express these rules is Multi-Perspective Declare (MP-Declare)
(Leno et al., 2020). This language is an evolution of the process modeling language Declare
(Pesic et al., 2007) that models a process as a set of constraints to be satisfied throughout
the process execution (Bernardi et al., 2012). All the sequences of events that do not vio-
late the constraints are allowed. These constraints can be seen as concrete instantiations of
parameterized constraint types called templates. Constraints inherit from templates both
graphical representations and semantics based on LTL on finite traces (Pnueli, 1977) that
ensure that the processes are verifiable and executable. The semantics of MP-Declare is
based on Metric First-Order Linear Temporal Logic (MFOTL) (Chomicki, 1995). Using
this logic, it is possible to enrich the standard control flow-based Declare language with
the time and the data perspective. The parameters defined for MP-Declare constraints are
an activation and a target. In particular, an activation is an event that triggers the constraint
and its occurrence imposes some obligations on another event (the target) in the same pro-
cess execution. MP-Declare constraints also specify conditions over data. An activation
condition is a condition on the attributes of the activation payload and the constraint is
activated only if, when the activation occurs, the activation condition holds. A correlation
condition is a condition that correlates attributes of the activation payload and attributes of
the target payload. The constraint is fulfilled only if, when the target occurs, the correlation
condition holds.

We can give now a formal definition of an MP-Declare model.

Definition 1 (MP-Declare model) An MP-Declare model (MPD) is defined as:

1179Machine Learning (2023) 112:1171–1199

1 3

where C1...Cm are the constraints. Each constraint is a tuple (T , S0, St,Pac
,Pcc

) of type T
(e.g., precedence) specifying an activation condition Pac

 , a correlation condition Pcc
 , and

having S0 and St as activation and target syscall, respectively.

The MP-Declare model in Fig. 1b is composed of 4 constraints MPD = {C1,C3,C3,C4} .
One of these constrant is of type precedence, with activation writev, target open and a cor-
relation condition indicating that open must occur before writev with the same file id and
mode containing ‘w’.

In this study, MP-Declare is used to model the application behavior. The syscalls of the
applications can be considered as events and their relationships can be modeled as a set
of constraints specified over events and their payloads. Consider, for example, the syscall
sequence (syscall execution trace) described in Fig. 1a representing the trivial application
that opens a file, writes some data into it, and finally, closes the file.

Each syscall corresponds to an event, which is associated with an event payload struc-
ture (attributes and types). For event open a file, the associated attributes are flags, path-
name, mode, fd (file id). After the file opening, there is the file writing (writev) associ-
ated with another set of attributes (fd, count, and buffer). Finally, the file is closed (close).
Note that the file id correlates all the events corresponding to the same file (fd=88 in the
example).

The process execution represented in Fig. 1a can be characterized using MP-Declare
rules as reported in Fig. 1b. The syscalls open and writev are related by a precedence con-
straint meaning that if writev occurs, then open occurs before with the same file id and
mode containing ‘w’. Note that the precedence constraint does not force open to be neces-
sarily followed by writev. The syscalls open and close are also related by a precedence
constraint. This means that if close occurs, then open occurs before with the same file id.
Also, in this case, the precedence constraint does not force open to be necessarily followed
by close. Finally, the close event should occur only once as the last event. Note that these
MP-Declare rules model the behavior where the same file can be opened and written sev-
eral times and closed at the end.

In our study, we will take into consideration two approaches for the discovery of
Declare constraints from logs: the approach presented in (Maggi et al., 2018) used in our
baseline approach (Bernardi et al., 2019) for the discovery of control flow constraints and
the approach introduced in (Leno et al., 2020) used in the approach presented in this paper
for the discovery of MP-Declare models.

In the approach proposed in (Maggi et al., 2018), to extract a Declare model from an
event log, first, a list of candidate constraints is generated by instantiating all possible

MPD = {C1,… ,Cm},

(b)(a)

Fig. 1 A syscall execution trace (a) conformant with an MP-Declare process model (b)

1180 Machine Learning (2023) 112:1171–1199

1 3

constraint types over a selection of frequent activities. Then, the list of candidate con-
straints is pruned by checking their validity on the input event log and by considering only
the ones that are valid in the majority of traces in the log. The approach presented in (Leno
et al., 2020) starts from these control flow constraints and, in a second phase, enriches
them with data conditions derived using classification techniques and redescription mining
(Leno et al., 2020).

Note that, both the approaches for malware detection presented in (Bernardi et al., 2019)
and the one presented in the current contribution use a declarative approach for the repre-
sentation of the behaviors derived from syscall logs because this behavior is unpredictable
and is characterized by high variability as it is common in all the so-called knowledge-
intensive processes (Di Ciccio et al., 2015). Knowledge-intensive processes are not suit-
able to be represented using procedural process modeling languages since the process rep-
resentation would become complex to understand for humans and difficult to process by
machines. This is the reason why, for analyzing syscall logs, in (Bernardi et al., 2019) and
in this paper, we use a declarative approach.

3 Related work

Mobile malware detection is becoming an important topic given the increasingly diffused
adoption of mobile applications to access and transfer critical data. For this reason, several
malware detection approaches have been proposed in the last few years. These approaches
are mainly categorized as signature-based (Christodorescu et al., 2005) or behavioral (Arp
et al., 2014; Bernardi et al., 2019) (according to the type of check they perform on the
applications), and dynamic or static (based on whether the checks are performed at runtime
or on the source code) (Bernardi et al., 2019).

Signature-based approaches classify an application as malicious if it contains in its
instructions some predefined patterns (Feng et al., 2014). In the context of static signature-
based approaches, DREBIN (Arp et al., 2014) and the approach proposed in (Talha et al.,
2015) use authorization requests as input of machine learning algorithms to classify appli-
cations. Other useful sources for detection properties are control flow and data flow. In (Li
and Li, 2015), the authors propose the use of a structured tree generated from data proper-
ties and use tree similarity to perform malware detection.

Contrary to the signature-based approaches, the behavioral approaches are focused
on the behavior of the monitored application. Static behavioral approaches are presented
in (Austin et al., 2013; Xu et al., 2016; Ding et al., 2014). In particular, in (Austin et al.,
2013), a method using HMM (Hidden Markov Model) is proposed to analyze sequences
of opcodes extracted from the .apk package for malware detection. The HMM model is
trained with many malware applications and new incoming opcode sequences are classified
according to their generative probabilities. ICCDetector (Xu et al., 2016) also extracts com-
munication models called ICC (Inter Component Communication) from the source code to
detect malware. Control flow analysis (Ding et al. 2014) was recently used to identify mali-
cious payloads. The main disadvantage of such approaches is that they are very sensitive
to obfuscation techniques that alter the structure and order of the source code instructions.

Dynamic behavioral methods (Jeong et al., 2014; Oak et al., 2019; Karbab et al.,
2018; Su et al., 2016; Wei et al., 2012; Arora et al., 2014; Zhang et al., 2018; Can-
fora et al., 2015) analyze a possible infected application during its execution on a real
or real-like device (our proposed approach belongs to this category). The approach

1181Machine Learning (2023) 112:1171–1199

1 3

described in (Jeong et al., 2014) detects malicious code by mining read/write operations
from a real device having a customized kernel. Differently from this work, our proposed
approach does not require devices to have a customized kernel, thus ensuring larger
applicability. A dynamic analysis is also performed in (Oak et al., 2019), where deep
learning techniques are used for malware detection. Similarly, in (Karbab et al., 2018),
a deep learning malware detection framework using API call sequences as input, called
MalDozerare, is introduced. Deep learning is also adopted in (Su et al., 2016), where
a framework called DroidDeep is presented. This framework uses neural networks for
feature extraction, and SVM to perform the classification. Several static and dynamic
features are considered for characterizing the behavioral pattern of the applications.

Other approaches based on neural networks are proposed in (Wei et al., 2012; Arora
et al., 2014). They mainly perform malware detection by analyzing data leakages. These
approaches require more effort (in terms of time and resources) with respect to our
approach since they need to recompile the kernel. Another recent study (Zhang et al.,
2018) also puts together static and dynamic features to discover malware behavior.
The approach is based on a procedure for the Android Application Package (APK) file
decompiling. Also, in this case, the limit of the approach is that it is very time and
resource-consuming. Another contribution to Android malware detection is presented in
(Canfora et al., 2015). This study is based on the analysis of syscall sequences to mine
a fingerprint of the malware. This approach is similar o the one proposed in (Bernardi
et al., 2019) that uses process mining techniques to discover a model representing the
malware behavior from a set of traces captured from trusted and infected running appli-
cations—the obtained model is called System Calls Execution Fingerprint (SEF). The
SEF models are used to evaluate the similarities among malware families and are at the
base of the classification derived from them.

The approach proposed in this paper can be seen as an evolution of the one reported
in (Bernardi et al., 2019). In particular, the definition of SEF is now updated into the
Data-aware System Calls Execution Fingerprint (DSEF). DSEF differs from SEF for the
addition of data attributes as input for the analysis. This addition aims at improving
the process mining step in terms of malware detection performance since the malicious
behavior is often activated and conditioned by the data values associated with the sys-
calls. Moreover, with respect to (Bernardi et al., 2019), the classification is performed
by using an approach based on neural networks and the obtained results are discussed
and compared with other alternative classifiers. In our evaluation, we compare our find-
ings with the results obtained in (Bernardi et al., 2019). This allows us to verify if the
malware detection performance is influenced by the use of the data attributes.

The approach presented in this paper falls under the umbrella of the approaches that
in the process mining field are called variant analysis approaches. As shown in (Tay-
mouri et al., 2021), several mechanisms can be used for the analysis of process variants,
and the comparison of process models derived from logs each including the behavior of
a different variant is only one of the mechanisms that can be used to compare process
behaviors. We are currently planning to provide benchmarks showing how the different
variant analysis mechanisms presented in (Taymouri et al., 2021) can be applied in the
context of malware detection. Finally, other approaches in the context of process mining
that goes beyond variant analysis can be used for malware detection. For example, tech-
niques for concept drift detection (Ostovar et al., 2020) or anomaly detection (Bezerra
et al., 2009) can be used to distinguish different behaviors in syscall logs.

1182 Machine Learning (2023) 112:1171–1199

1 3

4 The malware detection approach

In this section, our malware detection approach is described. The approach aims at veri-
fying if a given malware infected an Android Application Package (APK). The approach
is divided into two phases. In the first phase, a classifier is trained to be able to dis-
criminate between trusted and infected applications. In the malware detection phase,
the classifier is used to classify a new application as trusted or infected (and with which
malware family). In both phases, we need to evaluate the distance between the behavior
of an APK application and the behavior of a malware family.

To this aim, we use Data-aware System Calls Execution Fingerprint (DSEF) models
to represent the behavior of an APK application and the behavior of a malware family.
Then, we define a notion of distance between DSEF models and use this notion to char-
acterize the distances between the behaviors of trusted and infected APK applications
and the behaviors of the malware families. These distances are, in turn, used to train a
classifier able to distinguish between trusted and infected applications.

In the following, we first describe how to build a DSEF model of an APK application
and of a malware family, and then how to use these models to train a classifier and use it
to classify a new application as trusted or infected with a certain malware family.

4.1 How to build a DSEF model

To build a DSEF model either of an APK application or of a malware family, we need to
follow two steps: the syscall traces extraction and the MP-Declare mining.

4.1.1 Syscall traces extraction

Capturing traces in the Android platform can be achieved by using the Linux system
trace utility called strace. It takes as arguments a command and runs it making use of a
specialized kernel system call, called ptrace, to intercept all the system calls called by
that command. The strace command prints the name of each intercepted system call,
followed by its arguments and its return values, into a file provided as an option. More
interesting, strace includes a verbose option which allows dumping all the arguments
and the return values of the executed system calls. This approach is sufficient to retrieve
the information needed to syscall traces from the Android platform in a very concise
and parsing-friendly output format.

Figure 2 shows an example of strace output. Each line represents a recorded system
call. In the first place, the id of the process in which the system call was executed is
given. Then the name of the system call is dumped along with its arguments enclosed
within brackets. Finally, the result of the system call is given right after the equal sign.
In this example, an open system call is first recorded. This system call takes as argu-
ments the string “fparam.txt” which is the path of the file to open, and the RDONLY
flag telling that the file needs to be opened only for reading. The system call succeeds
and returns a file descriptor (namely 3), pointing to the file just opened. In line 2, a read
system call is issued on this file descriptor, and the text “data” is read from “fparam.
txt”. Our parser can understand the trace files and exploits parsing specifications related
to the specific android platform in use and information from the environment state in

1183Machine Learning (2023) 112:1171–1199

1 3

which the application was executed so that it can accurately capture the right system
call flow.

The syscall traces extraction uses an Android device emulator2. to generate the syscall
traces from an APK. Figure 3 (upper side) describes the steps of the syscall traces extrac-
tion for an APK and a single AE (ej). With this procedure, we capture, for an APK, the
syscall traces obtained in response to all the AEs described in the background section. The
process starts when the APK is installed and launched on a cleaned device (the disk is
cleaned before the process starts). The trace capturing starts when the event ej is sent to the
device and stops when the APK state becomes stable. For this reason, each captured trace

Fig. 2 Syscall traces extraction example

Fig. 3 Syscall traces generation and DSEF building process

2 https:// devel oper. andro id. com/ studio/ run/ emula tor. html.

https://developer.android.com/studio/run/emulator.html

1184 Machine Learning (2023) 112:1171–1199

1 3

is always related to a single AE according to several studies (Jiang and Zhou, 2013) show-
ing that the malicious behavior is usually activated by a single system event.

When we need to build a DSEF model of an APK application, for each AE, we gen-
erate n traces by executing n runs of the application. Instead, when we need to build a
DSEF model of a malware family, for each AE, we run a total number n of different APKs
infected with the malware family. In all cases, when a trace is captured, the device is
stopped, the disk is cleaned and the APK is newly installed to ensure that each run is not
influenced by the previous one and that the initial conditions are always the same. Both for
an APK and for a malware family, we obtain a log for each AE. From each of these logs,
we mine an MP-Declare model representing their behavior when stimulated with the cor-
responding AE. Each of these models represents a component (a sub-model) of the DSEF
model of the APK or of the malware family. Notice that the traces can continuously be
generated to include running changes of APK and malware families.

4.1.2 MP‑Declare mining

The MP-Declare mining task is performed to obtain the DSEF model of an APK and of a
malware family. As already mentioned, each DSEF model is composed of DSEF compo-
nents and each component is obtained for a specific AE. Figure 3 (lower side) describes
the process for the extraction of an APK DSEF component. The input log contains the
syscall traces captured, in the previous step, from the APK for a specific AE. The log is
mined using the MP-Declare mining presented in (Leno et al., 2020). The so discovered
models contain MP-Declare rules that describe the typical behavior of the considered APK
in response to a given AE. Similarly, referring to the DSEF of a malware family, the input
log is composed of the traces obtained by several applications infected with a given mal-
ware when each AE occurs. The main idea is that several applications infected with a given
malware have a common part corresponding to the malware payload. It is worth noting
that, when mining a log generated by the APKs infected with a malware family, the mined
model is able to isolate only the behavior (common to all traces) corresponding to the mal-
ware action of that family (since the input traces refer to different APKs, the parts specific
to each application are discarded).

Before starting the mining phase, the unuseful information (i.e., formatting characters,
delimiters, redundant log entries) is filtered out, while some of the attributes associated
with the session (e.g., the application run ID and UUID) are attached to the syscall occur-
rences together with attributes characteristic of the syscall (e.g., its name and timestamp,
its ordered list of arguments and the identifier of its requesting process). This information
generates the payload for each log event and is used in the process mining step to obtain
the data (activation and correlation) conditions. Successively, the traces are filtered using
the Gaussian distribution: all the traces with a size outside the 80th percentiles are removed
since there is a high probability that, in these cases, the AE triggered a premature termina-
tion of the APK by the operating system and the generated trace is trivial.

Specifically, the 80th percentile threshold was determined to filter out the majority of
traces generated by abnormal events or circumstances (e.g., application shutdown due to
errors or illegal access, out of stack or heap memory, segmentation faults, or other sit-
uations leading to unrepresentative traces). We investigated the log size distributions of
a sample of 10 APKs for each family analyzed (i.e., 270 APKs in total). This analysis
revealed that most of the unrepresentative traces concentrate at the extremes of the dis-
tribution of the log sizes. The conservative choice of the 80th percentile implies filtering

1185Machine Learning (2023) 112:1171–1199

1 3

out a small percentage of correct traces thus favoring correctness over dataset size (which,
however, can still be increased by adding more application executions).

We can give now a formal definition of a DSEF (of an APK and of a malware family).

Definition 2 (DSEF model of an APK a) The DSEFa of an APK a is defined as:

where:

• MPDaj
 is the MP-Declare model mined from traces {tj1 ,… , tjn} of a when stimulated

with the j-th AE;
• tji is the execution trace captured from the i-th execution of a when stimulated by the

j-th AE, with i ∈ [1, n], j ∈ [1, k];
• n is the number of traces captured from a per AE;
• k is the number of the AEs sent to a (k = |E|);
• E is the set of the k AEs sent to each application.

Definition 3 (DSEF model of a malware family M) The DSEF of M is defined as:

where:

• MPDMj
 is the MP-Declare model representing the behavior of M when stimulated with

the j-th AE, mined from traces {tj1 ,… , tjn};
• AM is a set of applications infected by a malware belonging to the malware family M;
• tji is the execution trace captured from the i-th application in AM when stimulated by the

j-th AE, with i ∈ [1, n], j ∈ [1, k] and n = |AM|;
• k is the number of the AEs sent to the applications in AM (k = |E|).

Looking at the above definitions, we can observe that the DSEF model of an APK is
computed, for each AE, using n traces obtained by executing that APK several times. Dif-
ferently, the DSEF model of a malware family is computed by executing a single run for
each application since the malicious behavior is the part shared by all the applications
infected with that malware. Notice that when we generate the model of an APK, the k
activating events are sent to the same application (executed n times). Conversely, to mine
the model of a malware family M, the k events are sent to a set of different applications
infected with the malware family M.

4.2 Classifier training

We can evaluate whether an APK application is infected with a certain malware, by query-
ing a classifier trained with information about the distances between the DSEF models of
trusted and infected APK applications and the DSEF models of the malware families.

To this aim, we need a notion of distance between DSEF models and, therefore, a notion
of distance �(MPDl,MPDs) between two MP-Declare models MPDl and MPDs.

DSEFa = {MPDa1
,… ,MPDak

},

DSEF(M) = {MPDM1
,… ,MPDMk

},

1186 Machine Learning (2023) 112:1171–1199

1 3

Definition 4 (Distance between MP-Declare models) The distance between two MP-
Declare models MPDl and MPDs is defined as:

where:

• Clh
 and Csh

 , h ∈ [1,m] are the m constraints of the same type, with the same activa-
tion and the same target present in both models and �(Clh

,Csh
) represents the tree edit

distance between the expression trees of the conjunction of activation and correlation
conditions of constraints Clh

 and Csh
;

• El and Es are the sets of constraints present, respectively, only in model MPDl and in
model MPDs.

Note that the tree edit distance between expression trees has been evaluated as shown in
(Pawlik and Augsten, 2016) and normalized as described in (Li, 2011). According to the
above definition, similar MP-Declare models have a distance close to zero (meaning that
the models have the same constraints and data conditions), while a higher distance (close
to one) means that the MP-Declare models are very different (they have different data con-
ditions and constraints).

Definition 5 (Distance between DSEF models) The distance between two DSEF models
DSEFA and DSEFB is defined as:

where k is the number of the AEs used to build the two DSEF models.

The above notion of distance is used to build, for a given APK and for a malware fam-
ily, a distance matrix having in the columns all the DSEF components (one for each AE)
of the APK and in the rows the corresponding DSEF components of the malware family.
The cells of the matrix contain the distances between corresponding DSEF components.
The distance matrices are used to build a classifier able to discriminate between trusted and
infected applications and to indicate, for the infected ones, the type of infection. Two types
of classifications are considered in this study: binary classification and multinomial classi-
fication. The binary classification builds a classifier for each malware family able to evalu-
ate if an application is infected or not with it. To train the binary classifier, for a given mal-
ware family M, we need the following inputs: (i) the DSEF model of malware M; (ii) the
DSEF models of a certain number of applications infected with M (for compactness, we
indicate this number as d in the following); (iii) the DSEF models of d trusted applications.
The samples used to train the classifier are all the distances belonging to all the distance
matrices obtained comparing the DSEF model of malware M with all the DSEF models
of all trusted and infected applications (we have 2 ∗ d matrices), labeled as “trusted” and
“infected”, respectively.

Concerning the multinomial classification, a single classifier is trained for all families.
The procedure is similar to the one described in the binary case. In this case, if we have

�(MPDl,MPDs) = 1 −

∑m

h=1
�(Clh

,Csh
)

�El� + �Es� +
∑m

h=1
�(Clh

,Csh
)
,

�(DSEFA,DSEFB) =

∑k

i=1
�(MPDAi

,MPDBi
)

k
,

1187Machine Learning (2023) 112:1171–1199

1 3

r malware families, we have to build 2 ∗ d ∗ r distance matrices, and the labeling is not
boolean anymore, but it specifies if the application is trusted or infected with a certain
malware.

In this study, we use different types of classifiers: Decision Tree (J48), Random Forest
(RF), Convolutional Neural Network (CNN), and Dense Neural Network (DNN). In Fig. 4,
we show the multinomial classification with DNN. The overall DNN architecture we use is
composed of:

• Input layer: The entry point of the network, with one node for each considered sample
(labeled distance);

• Batch Normalization layer: Improves the training of deep feed-forward neural net-
works;

• a variable number of Hidden layers: Composed of artificial perceptrons, having as out-
put the weighted sum of their inputs;

• a variable number of Dropout layers: Aiming at reducing over-fitting by including a
regularization technique (one dropout layer always follows each hidden layer);

• Output layer: Composed of a fully connected layer and a softmax function and produc-
ing the final classification outcome.

4.3 Malware detection

When the classifier has been trained, it can be queried with new applications to determine
if they are trusted or infected. Fig. 4 shows the following main steps of the proposed mal-
ware detection approach:3

• In Fig. 4a the DSEF model of the APK application to be checked is built. During this
step, the syscall logs of the application to be checked are captured and the captured logs
are mined to extract the DSEF model of the APK;

Fig. 4 The malware detection approach (multinomial classification)

3 The malware detection is described for the multinomial case. In the binary case, the approach is the same
with the difference that we have one classifier per malware family and we have to query each classifier sepa-
rately.

1188 Machine Learning (2023) 112:1171–1199

1 3

• In Fig. 4b, the DSEF models of the malware families built during the training step (by
mining the syscall traces logs captured from infected APKs) are collected and sent to
the subsequent distance computation step;

• The distance matrices are built in the step depicted in Fig. 4c, by evaluating the dis-
tance among the DSEF models. Specifically, the distances matrices between the DSEF
model of the input APK application and the DSEF models of all known malware fami-
lies are computed and sent to the trained classifier;

• The last step, depicted in Fig. 4d, performs the actual malware detection. The classi-
fier is queried using the distance matrices to evaluate if the APK under examination is
infected with one of the malware families used to train the classifier.

5 Experimental evaluation

In this section, we discuss the experiments carried out to evaluate the effectiveness and the
robustness of the proposed approach.

5.1 Research questions

To evaluate the approach, the following four research questions (RQs) need to be answered
to support the common goal of validating the performance and the robustness of our mal-
ware detection approach:

RQ1 What is the F1-score of different types of binary classifiers in detecting each
considered malware family?

RQ2 To what extent we can decrease the number of infected applications used to
build the DSEF models of the malware families still guaranteeing a reasonable
F1-score of the binary classifiers?

RQ3 What is the F1-score of the binary classifiers when using different obfuscation
techniques on the malware source code?

RQ4 What is the F1-score of multinomial classification in detecting each considered
malware family?

5.2 Dataset description

The experiments are performed on a new dataset built according to the process described
in Sect. 4.1.1.

The dataset is composed of a number of applications infected with the malware families
reported and described in Table 1 (the table reports, in the last column, for each malware
family (M), the number of considered infected applications). The dataset also includes a set
of trusted applications balanced with the number of infected applications. This is in line
with the existing literature (He and Garcia, 2009; Shimizu et al., 2018) suggesting that,
when the minority classes are too underrepresented, to train a neural network effectively is
necessary to perform balancing to have a more uniform representation of all classes. There-
fore, we used 42 139 infected and 42 139 trusted applications for both the DSEF model
generation of the malware families and training, reserving the remaining 42 139 infected
and 42 139 trusted applications as a test set for the assessment.

1189Machine Learning (2023) 112:1171–1199

1 3

The malware applications were downloaded from known datasets like Genoma (Zhou
and Jiang, 2012; Drebin Arp et al., 2014) and ADM (Wei et al., 2017). The trusted applica-
tions were collected from the most downloaded applications of Google Play. We selected
applications referring to different domains (i.e., health, productivity education, internet,
news, traveling, business, communication, lifestyle) in order to generalize our findings.

All the applications were labeled as trusted or infected on the basis of the dataset pro-
ducers’ indications. Moreover, we further checked the application label correctness: (i) for
trusted applications, the label correctness was verified by checking that both Google and
all the anti-malware tools running on the VirusTotal service.4 agreed that the application
was not infected by any known malware family (if this was not the case, the application
was filtered out); (ii) for malware applications, the label correctness was verified by run-
ning all the anti-malware tools on VirusTotal and all the applications that were labeled as
not infected by at least five anti-malware were filtered out. As already mentioned, the size
of the dataset, after filtering, is 168 556 trusted and infected applications.

5.3 Evaluation settings

The classification performance is evaluated by using the F1-score measure. To compare the
F1-score of different experimental configurations, we use the Mann-Whitney and Kolmog-
orov-Smirnov tests with � fixed to 0.05 to check if the difference in the results obtained
with different configurations is statistically significant. The adoption of two types of tests
allowed us to gain a stronger internal validity.

RQ1 evaluates the F1-score of the binary classifiers. This means that for each malware
family, there is a single classifier able to check if an application is infected with that mal-
ware or not. Different types of classification algorithms (J48, RF, DNN, CNN) are evalu-
ated and compared to answer this question. Moreover, we compare the obtained F1-score
with the results obtained in (Bernardi et al., 2019) using the SEF approach that does not
consider data.

To answer RQ2, we need to compute the F1-score measure of the binary classifiers
trained by creating the DSEF models of the malware families with an increasing number
of infected applications. To accomplish this goal, we look at the boxplots of the F1-score
distributions for different values of the cardinality of the set of infected applications.

RQ3 investigates the impact of the obfuscation techniques (Dong et al., 2018) on the
binary classifiers’ F1-score. To this aim, several obfuscation techniques are considered
and, for each technique, the F1-score is computed. We compare the F1-score median value
obtained with the obfuscation techniques with the one obtained by using plain malware
applications.

Finally, RQ4 evaluates the F1-score of a multinomial classifier jointly trained on appli-
cations infected with all the malware families. To this aim, the F1-score measures were
computed for each class (i.e., for each malware family) to verify if the approach is suitable
to be adopted for multinomial classification. The classifiers used for answering RQ2, RQ3,
and RQ4 are built using the best classification algorithm derived from RQ1.

4 https:// www. virus total. com/ gui/ home/ upload

https://www.virustotal.com/gui/home/upload

1190 Machine Learning (2023) 112:1171–1199

1 3

5.4 Evaluation results

Here, we report and discuss, for each considered RQ, the obtained results.

5.4.1 RQ1: What is the F1‑score of different types of binary classifiers in detecting each
considered malware family?

The table on the left side of Fig. 5 shows the F1-score of different binary classifiers in
detecting each considered malware family. In particular, in the table, we report, for each
malware family, the F1-score obtained by using different classification algorithms (J48,
RF, DNN, CNN). Moreover, the table shows (last column) the baseline results obtained
using the approach proposed in (Bernardi et al., 2019) that exploits a simpler model
based only on control flow and ignores data payloads. For this comparison, we repli-
cated the experiments using the SEF distance as defined in (Bernardi et al., 2019) and
performed the classification using the DNN classifier, which has been proven to yield
the best results.

For all families (with the exception of Finspy, Gopro, Kyview, and Leech) the DSEF-
based approach has a higher F1-score (highlighted in bold) with respect to SEF. The
table shows that for all the classification algorithms, we obtained similar results, but
DNN generally gives the best results. The best F1-score is obtained for the malware
family DroidKungFu with DSEF and DNN. In this case, the F1-score is equal to 0.972.
The improvement obtained by using DSEF is confirmed by looking at the F1-score
distribution shown in Fig. 5 (right side): the best classifiers for almost all families are
based on DSEF and DNN. The results also highlight that DSEF-DNN has a statistically
significant difference with respect to DSEF-J48, DSEF-RF, and SEF-DNN (both tests
have a p − value lower than � = 0.05).

Fig. 5 F1-score of the binary classifiers (left) and F1-score distribution with respect to the classification
method with Mann–Whitney and Kolmogorov–Smirnov tests against the best classifier (right)

1191Machine Learning (2023) 112:1171–1199

1 3

5.4.2 RQ2: To what extent we can decrease the number of infected applications used
to build the DSEF models of the malware families still guaranteeing a reasonable
F1‑score of the binary classifiers?

The F1-score of the DNN binary classifier is further investigated by evaluating the F1-score
obtained by decreasing the number of samples used to build the DSEF models of the mal-
ware families before training the classifier. The table in Fig. 6 (on top) reports the obtained
results for each considered family. In the table, the columns describe the F1-score obtained
with an increasing number of samples from 10 to all the ones available (see Table 1).

As expected, the results show for all families a higher F1-score when the number of
infected applications used to build the DSEF models of the malware families increases.
The best assessment is obtained when the full dataset is considered. The table also shows
that, for the F1-score to be acceptable and stable across all families, at least 200 applica-
tions are needed for the definition of the DSEF models. The boxplots at the bottom of the
figure confirm this trend: up to 200 applications the median value of the F1-score is always
under 0.85. Over that threshold, irrespective of the malware family, the F1-score settles
on a value of around 0.9. With respect to the best results (when using the full dataset), the

Fig. 6 Impact of the number of infected applications (DSEF sample sizes) used to build the DSEF models
of the malware families on the F1-score of the DNN binary classifier

1192 Machine Learning (2023) 112:1171–1199

1 3

Mann-Whitney and Kolmogorov-Smirnov tests applied to the F1-score distributions over
the number of infected applications exhibit a statistically significant difference for a num-
ber of samples lower than 400 meaning that for a number of samples higher than 400 the
classifier performance is very close to the best one. The provided results are useful to size
appropriately the dataset and to identify the right trade-off between the effort of building
the models and the effectiveness of final end-to-end detection.

5.4.3 RQ3: What is the F1‑score of the binary classifiers when using different
obfuscation techniques on the malware source code?

RQ3 investigates the impact of obfuscation techniques on the F1-score of the binary clas-
sifiers. This is a very critical aspect due to the habit of several hackers of using obfuscation
techniques to make malicious code harder to detect. Therefore, we evaluate the capability
of the DNN binary classifier to discover an application infected with a given malware and
transformed by a given obfuscation technique.

We applied a set of common transformation techniques (listed in Fig. 7 on the right-
hand side) to our samples by using several obfuscation tools (e.g., ADAM (Zheng et al.,
2012) and Droidchameleon (Rastogi et al., 2013) and used an open-source obfuscation
engine5 to inject and repackage the obfuscated source code in the APKs.

The table in Fig. 7 reports the F1-score obtained for each malware family for all the
considered transformations. The second column (RAW) of the table reports the results
obtained when no transformations are applied. We can observe that the score is never lower
than 0.71 (obtained for the LnK malware family and the JCI transformation). With respect
to the best results (RAW), the Mann-Whitney and Kolmogorov-Smirnov tests exhibit a
p-value greater than 0.05 for almost all the source code transformations (no statistically

Fig. 7 DNN binary classifier F1-score in the presence of obfuscation

5 https:// github. com/ faber 03/ Andro idMal wareE valua tingT ools.

https://github.com/faber03/AndroidMalwareEvaluatingTools

1193Machine Learning (2023) 112:1171–1199

1 3

significant difference) except for CIT, CR, CT, DA and, in the worst case, for JCI (see box-
plot distributions at the bottom of Fig. 7).

Some transformations like CIT and JCI are harder to deal with since they inject addi-
tional behavior that is not malicious and could alter the relationships mined in the training
phase. These techniques are very sophisticated since they alter the syscall sequences, which
is difficult to obtain with an automatic process and requires complex malware dissection
and manual transformations. However, even in these worst cases, the proposed approach
exhibits good levels of robustness achieving a median F1-score value of 0.82 for CIT and
0.78 for JCI.

Figure 8 shows the box plots of the F1-score values for all the considered transforma-
tions obtained by using the DSEF models and two alternative approaches respectively
called DroidApiMiner (DAPI) (Aafer et al., 2013) and MaMaDroid (MMD) (Onwuzurike
et al., 2019). Both DAPI and MMD exploit syscalls to identify malicious behaviors but
while DAPI is based on the analysis of system call sequences, MMD is based on Markov
chains of behavioral models. The figure reports, for both untransformed and transformed
applications, the boxplots of the F1-score over the analyzed families.

The figure shows that, in general, all the approaches have similar F1-scores for samples
when no transformations are applied (’RAW’ columns), with DAPI performing slightly

Fig. 8 Comparison, including KS Test, of F1-scores of different classifiers using alternative obfuscation
techniques

1194 Machine Learning (2023) 112:1171–1199

1 3

worse and DSEF-DNN slightly better than MMD. This is probably due to the simpler
underlying model of DAPI that is based only on system call sequences. However, when
the code transformations are taken into account, the DSEF-DNN model exhibits signifi-
cantly greater robustness with respect to both DAPI and MMD that obtain worse perfor-
mances for several transformations (CPN,CI,CR,CT,DE,DA,EP,IR,JCR). MMD is still able
to perform better than DAPI, confirming that its underlying model is able to better capture
behavioral aspects that characterize the malicious payload even when the source code is (to
some extent) transformed. As a matter of fact, DSEF-DNN is more resistant, in the major-
ity of cases, to source code transformations with respect to both DAPI and MMD. It is also
interesting to note that all the approaches are sensitive, with different degrees, to JCI trans-
formations where junk code snippets are manually crafted to inject useless system calls in
the malicious behavior. This highlights that the more the model is capable of intercepting
complex relationships among the syscalls, the less it will be sensitive to trivial alterations
of the system calls executed by the malicious payload.

Figure 8 also reports a quantitative analysis using the KS test to investigate the F1-scores
of DSEF, DAPI, and MMD for transformed applications. This analysis confirms that:

• For plain infected applications, when no evasion techniques are applied, all approaches
exhibit similar F1-scores with DSEF and MMD providing slightly better performance
than DAPI;

• DSEF has better F1-scores for most of the transformations (in 15 out of 18 cases for
DAPI and in 9 out of 18 cases for MMD) performing similarly in the remaining cases.

5.4.4 RQ4: what is the F1‑score of multinomial classification in detecting each
considered malware family?

The performance of the multinomial DNN classifier for each malware family is reported in
Table 2 and Fig. 9. The results show that the best F1-score of the classifier is obtained for
families containing the highest number of training samples. In particular, the F1-score is
never lower than 0.844 (this value is obtained for the Lootor and Winge malware families).

Table 2 Multinomial classifier confusion matrix

1195Machine Learning (2023) 112:1171–1199

1 3

The best F1-score is obtained for Airpush. In Fig. 9, we show the trend of the F1-score for
different training sample sizes: with more than 2000 samples, the F1-score is always above
0.9 and its value decreases when the number of available training samples decreases.

6 Threats to validity

Construct validity
The process of syscall traces extraction could be affected by some imprecision since it

starts to capture the syscall traces when an AE is sent to the application, which could cause
the application to crash. For this reason, the dataset construction requires filtering of both
applications and traces. In particular, applications that have inherent problems, e.g., appli-
cations that do not run correctly, generate segmentation faults or are unstable need to be fil-
tered out. In addition, since traces are obtained for a given run of an application in response
to a given event, in some cases, they can be empty, incomplete, or incorrect if the applica-
tion exhibits a failure related to unexpected situations. These traces, as already pointed out
in Sect. 4.1.2, are eliminated. Both these filtering procedures aim at improving the quality
of the dataset and never lead to filtering malicious behavior.

Another issue related to construct validity is the authenticity of the adopted malware
family labels. As explained in Sect. 4, the labels are assigned to the applications by the
producers. However, this classification could be incorrect. To reduce this risk, a large set of
antimalware tools was used to check the applications’ labels. In particular, applications that
were not classified as infected by at least 5 antimalware tools were excluded. This step is
important to ensure high-quality datasets where malware family labels are reliable.

Another threat to construct validity is connected to how traces were generated from
the infected applications. It could happen that none of the system events is able to
unleash the malware logic encoded in the payload. In this case, the proposed approach
cannot be applied to detect such a family. However, this circumstance is revealed during

Fig. 9 F1-score by number of training samples

1196 Machine Learning (2023) 112:1171–1199

1 3

the training phase by studying the distances between trusted and infected applications:
when they are not significantly different, for all the system events, the malware should
be considered as not detectable.

External validity To make the obtained results generalizable, we used a large set of
malware families. Moreover, the malware families considered in this study are quite dif-
ferent in terms of goals and producers. However, a larger number of families could be
useful to make the results more generalizable.

Internal validity The obtained results are dependent on the classification algorithm
adopted and, to investigate this dependence, we have studied four different classification
algorithms using both decision tree-based approaches (J48, RF) and neural networks
(CNN and DNN).

7 Conclusion

This study proposes and tests an approach based on data-aware process discovery able to
identify infected applications and the type of infection. To this aim, a behavioral model
called DSEF is mined from a set of syscall traces coming from trusted applications and
applications infected with a given malware. The classification is performed using binary
and multinomial classifiers. The evaluation has been performed by considering 27 mal-
ware families and a dataset containing more than 160 000 trusted and infected appli-
cations. The obtained results clearly show an improved performance over the baseline
(Bernardi et al., 2019) of both binary and multinomial classifiers (with the best results
obtained using DNN) and very good robustness to basic obfuscation techniques. Even in
the worst case of manually transformed source code, the approach exhibits good levels
of robustness to behavior-preserving code transformations.

In future work, we will investigate the use of behavioral models specified using both
procedural and declarative patterns. These richer representations could improve their
capability of characterizing malicious behavioral fingerprints. The idea of modeling
malware behavior as a process can be extended to the entire malware analysis domain.
To this aim, we would need to generalize the concepts of AE and DSEF that are quite
specific to the mobile context. More complex and larger neural-based classifiers based
on transformers and Graph Neural Networks will be experimented with to learn the
characteristics of trusted and infected applications directly from the MP-Declare mod-
els’ structure. This will allow us to identify complex relations that cannot be pinpointed
by the metric approach based on the distance between models.

Author Contributions All authors contributed to the study conception and design. Material preparation, data
collection were performed by Mario Luca Bernardi whereas the analysis were performed by Marta Cimtile
and Fabrizio Maria Maggi. The first draft of the manuscript was written by Mario Luca Bernardi and Marta
Cimtile and all authors commented on previous versions of the manuscript. All authors read and approved
the final manuscript.

Funding The authors did not receive support from any organization for the submitted work.

Availability of data and material Not applicable.

1197Machine Learning (2023) 112:1171–1199

1 3

Declarations

Conflict of interest The authors have no conflict of interest to declare that are relevant to the content of this
article.

Ethical approval The authors declare that they are compliant with the ethical standards of Machine Learning
journal, have no conflicts of interest and give their informed consent.

Consent to participate The authors give their consent to partecipate.

Consent for publication The authors give their consent for publication.

Code availability Not applicable.

References

Aalst van der, W. M. P. (2016). Process Mining - Data Science in Action, Second Edition. Springer 2016,
ISBN 978-3-662-49850-7, pp. 3-452.

Aafer, Y., Du, W., Hin, Y. (2013). Droidapiminer: Mining api-level features for robust malware detection in
android. In T. Zia, A. Zomaya, V. Varadharajan, & M. Mao (Eds.), Security and privacy in communi-
cation networks (pp. 86–103). Springer International Publishing.

Alazab, M. (2015). Profiling and classifying the behavior of malicious codes. Journal of Systems and Soft-
ware, 100, 91–102.

Ardimento, P., Aversano, L., Bernardi, M. L., Cimitile, M. (2020). Data-aware declarative process min-
ing for malware detection. In 2020 International Joint Conference on Neural Networks, IJCNN 2020,
Glasgow, United Kingdom, July 19-24, 2020, pages 1–8. IEEE, 2020.

Arora, A., Garg, S., Peddoju, S. K. (2014). Malware detection using network traffic analysis in android
based mobile devices. In Next Generation Mobile Apps, Services and Technologies (NGMAST), 2014
Eighth International Conference on, pages 66–71.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieckand, K. (2014). Drebin: Efficient and explain-
able detection of android malware in your pocket. In Proceedings of 21th Annual Network and Distrib-
uted System Security Symposium (NDSS).

Austin, T. H., Filiol, E., Josse, S., Stamp, M. (2013). Exploring hidden markov models for virus analy-
sis: A semantic approach. In 2013 46th Hawaii International Conference on System Sciences, pages
5039–5048.

Bernardi, M. L., Cimitile , M., Di Lucca, G. A., Maggi, F. M. (2012). Using declarative workflow languages
to develop process-centric web applications. In 16th IEEE International Enterprise Distributed Object
Computing Conference Workshops, EDOC Workshops, Beijing, China, September 10-14, 2012, pages
56–65.

Bernardi, M. L., Cimitile, M., Distante, D., Martinelli, F., Mercaldo, F. (2019). Dynamic malware detection
and phylogeny analysis using process mining. International Journal of Information Security, 18(3),
257–284.

Bezerra, F., Wainer, J., van der Aalst, W. M. P. (2009). Anomaly detection using process mining. In Enter-
prise, Business-Process and Information Systems Modeling (pp. 149–161). Springer.

Canfora, G., Medved, E., Mercaldo, F., Visaggio, C. A. (2015). Detecting android malware using sequences
of system calls. In Proceedings of the 3rd International Workshop on Software Development Lifecycle
for Mobile, DeMobile 2015, pages 13–20, New York, NY, USA. ACM.

Chomicki, J. (1995). Efficient checking of temporal integrity constraints using bounded history encoding.
ACM Transaction Database Systems, 20(2), 149–186.

Christodorescu, M., Jha, S., Seshia, S. A., Song, D., Bryant, R. E. (2005). Semantics-aware malware detec-
tion. In 2005 IEEE Symposium on Security and Privacy (S P’05), pages 32–46.

Di Ciccio, C., Marrella, A., Russo, A. (2015). Knowledge-intensive processes: Characteristics, requirements
and analysis of contemporary approaches. Journal of Data Semantics, 4(1), 29–57.

Ding, Y., Dai, W., Zhang, Y. (2014). Control flow-based opcode behavior analysis for malware detection.
Computers & Security, 44, 65–74.

Dong, S., Li, M., Diao, W., Liu, X., Liu, J., Li, Z., Xu, F., Chen, K., Wang, X., Zhang, K. (2018). Under-
standing android obfuscation techniques: A large-scale investigation in the wild. In Raheem Beyah,

1198 Machine Learning (2023) 112:1171–1199

1 3

Bing Chang, Yingjiu Li, & Sencun Zhu (Eds.), Security and privacy in communication networks (pp.
172–192). Springer International Publishing.

Fedler, R., Schütte, J. (2013). On the effectiveness of malware protection on android an evaluation of
android antivirus.

Feng, Y., Anand, S., Dilling, I., Aiken, A. (2014). Apposcopy: Semantics-based detection of android mal-
ware through static analysis. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014, pages 576–587, New York, NY, USA. ACM.

He, H., Garcia, E. A. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data
Engineering, 21, 1263–1284.

Jang, J., Brumley, D., Venkataraman, S. (2011). Bitshred: Feature hashing malware for scalable triage and
semantic analysis. In Proceedings of the 18th ACM Conference on Computer and Communications
Security, CCS ’11, pages 309–320, New York, NY, USA. ACM.

Jeong, Y., Lee, H., Cho, S., Han, S., Park, M. (2014). A kernel-based monitoring approach for analyzing
malicious behavior on android. In Proceedings of the 29th Annual ACM Symposium on Applied Com-
puting, SAC ’14, pages 1737–1738, New York, NY, USA. ACM.

Jiang, X., Zhou. Y. (2013). Android malware. Springer Briefs in Computer Science.
Karbab, E. B., Debbabi, M, Derhab, A., Mouheb, D. (2018). Maldozer: Automatic framework for android

malware detection using deep learning. Digital Investigation, 24, S48–S59.
Karim, Md. E., Walenstein, A., Lakhotia, A., Parida, L. (2005). Malware phylogeny generation using per-

mutations of code. Journal in Computer Virology, 1(1–2), 13–23.
Leno, V., Dumas, M, Maggi, F. M., La Rosa, M., Polyvyanyy, A. (2020). Automated discovery of declara-

tive process models with correlated data conditions. Information Systems, 89, 101482.
Li, Q., Li, X. (2015). Android malware detection based on static analysis of characteristic tree. In 2015

International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pages
84–91, 2015.

Maggi, F. M., Di Ciccio, C., Di Francescomarino, C., Taavi, K. (2018). Parallel algorithms for the auto-
mated discovery of declarative process models. Information Systems, 74(Part):136–152.

Marioconti, E. , Onwuzurike, L., Andriotis P., De Cristofaro, E., Ross, G., Stringhini, G. (2019). Mama-
droid: Detecting android malware by building markov chains of behavioral models (extended version).
ACM Trans. Priv. Secur., 22(2).

Mobile threat report (2016). https:// www.f- secure. com/ docum ents/ 996508/ 10307 43/ Threat_ Report_ H1_
2014. pdf, last visit 26 February 2016.

Oak, R., Du, M., Yan, D., Takawale, H. C., Amit, I. (2019). Malware detection on highly imbalanced data
through sequence modeling. In Proceedings of the 12th ACM Workshop on Artificial Intelligence and
Security, AISec’19, page 37–48, New York, NY, USA. Association for Computing Machinery.

Ostovar, A., Leemans, S., La Rosa, M. (2020). Robust drift characterization from event streams of business
processes. ACM Transaction Knowledge Discovery Data, 14(3), 30.

Pawlik, M., Augsten, N. (2016). Tree edit distance: Robust and memory-efficient. Information System, 56,
157–173.

Pesic, M., Schonenberg, H., van der Aalst, W. M. P. (2007). Declare: Full support for loosely-structured
processes. In EDOC, 2007, 287–300.

Pnueli, A. (1977). The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer
Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages 46–57. IEEE Com-
puter Society.

Rastogi, V., Chen, Y., Jiang, X. (2014). Catch me if you can: Evaluating android anti-malware against trans-
formation attacks. Information Forensics and Security, IEEE Transactions on, 9(1), 99–108.

Rastogi, V., Chen, Y., Jiang, X. (2013). Droidchameleon: Evaluating android anti-malware against trans-
formation attacks. In Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS ’13, pages 329–334, New York, NY, USA. ACM.

Shimizu, R., Asako, K., Ojima, H., Morinaga, S., Hamada, M., Kuroda, T. (2018). Balanced mini-batch
training for imbalanced image data classification with neural network. In 2018 First International Con-
ference on Artificial Intelligence for Industries (AI4I), pages 27–30.

Su, X., Zhang, D., Li, W., Zhao, K. (2016). A deep learning approach to android malware feature learning
and detection. In 2016 IEEE Trustcom/BigDataSE/ISPA, pages 244–251.

Talha, K. A., Alper, D. I., Aydin, C. (2015). Apk auditor: Permission-based android malware detection sys-
tem. Digital Investigation, 13, 1–14.

Taymouri, F., La Rosa, M., Dumas, M., Maggi, F. M. (2021). Business process variant analysis: Survey and
classification. Knowledge Based System, 211, 106557.

Wei, T., Mao, C., Jeng, A. B., Lee, H., Wang, H., Wu, D. (2012). Android malware detection via a latent
network behavior analysis. In Proceedings of the 2012 IEEE 11th International Conference on Trust,

https://www.f-secure.com/documents/996508/1030743/Threat_Report_H1_2014.pdf
https://www.f-secure.com/documents/996508/1030743/Threat_Report_H1_2014.pdf

1199Machine Learning (2023) 112:1171–1199

1 3

Security and Privacy in Computing and Communications, TRUSTCOM ’12, pages 1251–1258, Wash-
ington, DC, USA. IEEE Computer Society.

Wei, F., Yuping, L., Sankardas, R., Xinming, O., Wu, Z. (2017). Deep ground truth analysis of current
android malware. In International Conference on Detection of Intrusions and Malware, and Vulner-
ability Assessment (DIMVA’17), pages 252–276, Bonn, Germany. Springer.

Wu, D., Mao, C., Wei, T., Lee, H., Wu, K. (2012). Droidmat: Android malware detection through manifest
and api calls tracing. In 2012 Seventh Asia Joint Conference on Information Security, pages 62–69.

Xu, K., Li, Y., Deng, R. H. (2016). Iccdetector: Icc-based malware detection on android. IEEE Transactions
on Information Forensics and Security, 11(6), 1252–1264.

Yujian, L., Chenguang, Z. (2011). A metric normalization of tree edit distance. Frontiers of Computer Sci-
ence, 5(1), 119.

Zhang, J., Zou, F., Zhu, J. (2018). Android malware detection based on deep learning. In 2018 IEEE 4th
International Conference on Computer and Communications (ICCC), pages 2190–2194.

Zheng, M., Lee, P. P. C., Lui J. C. S. (2012). Adam: an automatic and extensible platform to stress test
android anti-virus systems. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 82–101. Springer.

Zhou, Y., Jiang, X. (2012). Dissecting android malware: Characterization and evolution. In Proceedings of
the 2012 IEEE Symposium on Security and Privacy, SP ’12, pages 95–109, Washington, DC, USA.
IEEE Computer Society.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Data-aware process discovery for malware detection: an empirical study
	Abstract
	1 Introduction
	2 Background
	2.1 Mobile malware families
	2.2 Obfuscation techinques
	2.3 Multi-perspective process models

	3 Related work
	4 The malware detection approach
	4.1 How to build a DSEF model
	4.1.1 Syscall traces extraction
	4.1.2 MP-Declare mining

	4.2 Classifier training
	4.3 Malware detection

	5 Experimental evaluation
	5.1 Research questions
	5.2 Dataset description
	5.3 Evaluation settings
	5.4 Evaluation results
	5.4.1 RQ1: What is the F1-score of different types of binary classifiers in detecting each considered malware family?
	5.4.2 RQ2: To what extent we can decrease the number of infected applications used to build the DSEF models of the malware families still guaranteeing a reasonable F1-score of the binary classifiers?
	5.4.3 RQ3: What is the F1-score of the binary classifiers when using different obfuscation techniques on the malware source code?
	5.4.4 RQ4: what is the F1-score of multinomial classification in detecting each considered malware family?

	6 Threats to validity
	7 Conclusion
	References

