
Vol.:(0123456789)

Machine Learning (2023) 112:4323–4349
https://doi.org/10.1007/s10994-022-06153-4

1 3

LatentOut : an unsupervised deep anomaly detection
approach exploiting latent space distribution

Fabrizio Angiulli1 · Fabio Fassetti1 · Luca Ferragina1

Received: 28 February 2021 / Revised: 28 December 2021 / Accepted: 19 February 2022 /
Published online: 24 May 2022
© The Author(s) 2022, corrected publication 2022

Abstract
Anomaly detection methods exploiting autoencoders (AE) have shown good perfor-
mances. Unfortunately, deep non-linear architectures are able to perform high dimension-
ality reduction while keeping reconstruction error low, thus worsening outlier detecting
performances of AEs. To alleviate the above problem, recently some authors have pro-
posed to exploit Variational autoencoders (VAE) and bidirectional Generative Adversarial
Networks (GAN), which arise as a variant of standard AEs designed for generative pur-
poses, both enforcing the organization of the latent space guaranteeing continuity. How-
ever, these architectures share with standard AEs the problem that they generalize so well
that they can also well reconstruct anomalies. In this work we argue that the approach of
selecting the worst reconstructed examples as anomalies is too simplistic if a continuous
latent space autoencoder-based architecture is employed. We show that outliers tend to lie
in the sparsest regions of the combined latent/error space and propose the VAEOut and
LatentOut unsupervised anomaly detection algorithms, identifying outliers by performing
density estimation in this augmented feature space. The proposed approach shows sensible
improvements in terms of detection performances over the standard approach based on the
reconstruction error.

Keywords Anomaly detection · Variational autoencoder · Nearest neighbor density
estimation.

Editors: Annalisa Appice, Grigorios Tsoumakas.

This paper is an extended version of the article “Improving Deep Unsupervised Anomaly Detection by
Exploiting VAE Latent Space Distribution”, by Fabrizio Angiulli, Fabio Fassetti, and Luca Ferragina,
which appeared in the Proceedings of the 23rd International Conference on Discovery Science,
Thessaloniki (Greece), 19-21 October 2020. Angiulli et al. (2020)

 * Fabrizio Angiulli
 f.angiulli@dimes.unical.it

 Fabio Fassetti
 f.fassetti@dimes.unical.it

 Luca Ferragina
 l.ferragina@dimes.unical.it

1 DIMES, University of Calabria, 87036 Rende, CS, Italy

http://orcid.org/0000-0002-9860-7569
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06153-4&domain=pdf

4324 Machine Learning (2023) 112:4323–4349

1 3

1 Introduction

Outlier detection is a fundamental and widely applicable discovery problem. Outliers can
arise due to many reasons like mechanical faults, fraudulent behavior, human errors, instru-
ment error or simply through natural deviations in populations. Generally speaking, the
problem of outlier detection consists in isolating samples suspected of not being generated
by the same mechanisms as the rest of the data. Approaches to outlier detection can be
classified in supervised, semi-supervised, and unsupervised (Chandola et al., 2009; Aggar-
wal, 2013). Supervised methods take in input data labeled as normal and abnormal and
build a classifier. The challenge there is posed by the fact that abnormal data form a rare
class. Semi-supervised methods, also called one-class classifiers or domain description
techniques, take in input only normal examples and use them to identify anomalies. Unsu-
pervised methods detect outliers in an input dataset by assigning a score or anomaly degree
to each object. Several statistical, data mining and machine learning approaches have
been proposed to detect outliers, namely, statistical-based (Davies & Gather, 1993; Bar-
nett & Lewis, 1994), distance-based (Knorr et al., 2000; Angiulli & Pizzuti, 2002, 2005;
Angiulli et al., 2006; Angiulli & Fassetti, 2009), density-based (Breunig et al., 2000; Jin
et al., 2001), reverse nearest neighbor-based (Hautamäki et al., 2004; Radovanović et al.,
2015; Angiulli, 2017, 2018, 2020), isolation-based (Liu et al., 2012), angle-based (Kriegel
et al. 2008), SVM-based (Schölkopf et al., 2001; Tax & Duin, 2004), deep learning-based
(Goodfellow et al., 2016; Chalapathy & Chawla, 2019), and many others (Chandola et al.,
2009; Aggarwal, 2013).

Deep learning anomaly detection approaches exploiting autoencoders (AE) have shown
good performances (Hawkins et al., 2002; An & Cho, 2015; Chalapathy & Chawla, 2019).
Autoencoder-based anomaly detection consists in training an autoencoder to reconstruct a
set of examples and then to detect as anomalies those inputs that show a sufficiently large
reconstruction error. This approach is justified by the observation that, since the recon-
struction process includes a dimensionality reduction step (the encoder) followed by a step
mapping back representations in the compressed space (also called the latent space) to
examples in the original space (the decoder), regularities should be better compressed and,
hopefully, better reconstructed (Hawkins et al., 2002).

Unfortunately, deep non-linear architectures are able to perform high dimensionality
reduction while keeping reconstruction error low. Ideally, an expressive enough architec-
ture could reduce arbitrarily large dimensional data to one dimensional data while per-
forming the reverse transformation with negligible loss. This problem is in part due to the
lack of regularity in the latent space. Variational autoencoders (VAE) arise as a variant of
standard autoencoders designed for generative purposes (Kingma & Welling, 2013). The
key idea of variational autoencoders is to regularize the standard loss function consisting
in the reconstruction error by including a regularization term constraining the organization
of the latent space. Basically, variational autoencoders encode each example as a normal
distribution over the latent space, instead of encoding them as single points, and regularize
the loss by maximizing similarity of these distributions with the standard normal distribu-
tion. This encoding is conducive to obtain a continuous latent space, namely a latent space
for which close points will lead to close decoded representation, thus avoiding the severe
overfitting problem affecting standard autoencoders, for which some points of the latent
space will give meaningless content once decoded.

As already pointed out, variational autoencoders were initially proposed as a tool for
generating novel realistic examples by sampling and then decoding points of the latent

4325Machine Learning (2023) 112:4323–4349

1 3

space. Due to similarities to standard autoencoders some authors also proposed their use
to detect anomalies. However, it has been noticed that variational autoencoders share with
standard autoencoders the problem that they generalize so well that they can also well
reconstruct anomalies (An & Cho, 2015; Kawachi et al. 2018; Sun et al., 2018; Chalapathy
& Chawla, 2019).

Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) are another tool for
generative purposes, aiming at learning an unknown distribution by means of an adver-
sarial process involving a discriminator, able to output the probability for an observation
to be generated by the unknown distribution, and a generator, mapping points coming from
a standard distribution to points belonging to the unknown one. Moreover, Bidirectional
GANs extend the above framework by including in their architecture an encoder learn-
ing the inverse transformation of the generator (Donahue et al., 2017). These architectures
share with variational autoencoders generative capabilities and the particular organization
of the latent space, and have also employed with success to the anomaly detection task
(Akcay et al., 2018; Schlegl et al., 2019; Zenati et al., 2019; Sánchez-Martín et al., 2020).

We generally refer to architectures equipped with an encoder and a decoder and enforc-
ing the organization of the latent space thus guaranteeing continuity, as continuous latent
space autoencoder-based neural architectures.

The main contribution of this work can be summarized as follows: we argue that the
approach of selecting the worst reconstructed examples as anomalies is too simplistic if a
continuous latent space autoencoder architecture is employed and, specifically, we show
that the anomaly detection process can greatly benefit from taking into account the con-
tinuos latent space distribution together with the associated reconstruction error. Indeed,
we show that outliers tend to lie in the sparsest regions of the combined latent and recon-
struction error space and propose the novel unsupervised anomaly detection algorithms
VAEOut and LatentOut , that identify outliers by performing density estimation by tak-
ing advantage of this augmented feature space. The proposed approach shows sensible
improvements in terms of detection performances over the standard approach based on the
reconstruction error.

The rest of the paper is organized as follows. Section 2 presents preliminary definitions
and discusses related work. Section 3 introduces the VAEOut and LatentOut unsupervised
anomaly detection algorithms. Section 4 illustrates experimental results. Finally, Section 5
concludes the work.

2 Preliminaries and related work

An autoencoder (AE) is a deep neural network trained with the aim of outputting a recon-
struction x̂ of an input sample x as close as possible to x (Kramer, 1991; Hecht-Nielsen,
1995; Goodfellow et al., 2016). An autoencoder consists in two parts, an encoder f� and
a decoder g� . An enconder f� is a mapping of a sample from the input feature space to a
hidden representation in a latent space, and is univocally determined by parameters � . A
decoder g� is a mapping of a hidden representation from the latent space to a reconstruc-
tion in the input feature space, and is univocally determined by parameters �.

Given an autoencoder ⟨f�, g�⟩ , let x be a sample and let z = f�(x) be the latent vari-
able where the sample x is mapped by the encoder, the reconstruction x̂ of x is given by
x̂ = g𝜃(z) = g𝜃(f𝜙(x)) and the reconstruction error E(x) of the autoencoder is a measure

4326 Machine Learning (2023) 112:4323–4349

1 3

of dissimilarity of x with respect to x̂ . A common reconstruction error is the mean
squared error (MSE), defined as

The autoencoder tries to minimize the reconstruction error.
Variational Autoencoders. A variational autoencoder (VAE) is a stochastic genera-

tive model aimed at outputting a reconstruction x̂ of a given input sample x (Kingma &
Welling, 2013). To this aim, VAE are composed by an encoder f� which outputs param-
eters of q�(z|x) , that is the posterior distribution of observing the latent variable z given
x, and a decoder g� computing parameters of p�(x|z) , that is the likelihood of x given the
latent variable z. The prior distribution of the latent variable z is denoted by p�(z) . Thus,
the actual values of z are sampled from q�(z|x) . Given the latent variable z, the recon-
struction x̂ is obtained as a realization of p�(x|z).

As for the distributions associated with the latent variable z, that are p�(z) and q�(z|x) ,
the common choice is the isotropic normal. The distribution of the likelihood p�(x|z)
depends on the nature of the data: Bernoulli for binary data or multivariate Gaussian for
continuous data. In these cases, g�(z) outputs the mean of the distribution and usually
the reconstruction x̂ is given by g�(z).

Given a variational autoencoder ⟨f�, g�⟩ and a sample x, the reconstruction error is
represented by the cross entropy of the distribution q�(z|x) relative to the distribution
p�(x|z):

For example, given x and its reconstruction x̂ , the corresponding contribution e(x, x̂) to the
above error is given by e(x, x̂) = − log x̂x(1 − x̂)(1−x) = −x log x̂ − (1 − x) log(1 − x̂) for Ber-
noulli data and e(x, x̂) ∝ − log exp−‖x − x̂‖2

2
= ‖x − x̂‖2

2
 for continuous data.

The reconstruction error can be computed through a Monte Carlo estimation. Thus, by
letting L be the number of samples z(1), z(2),… , z(L) from q�(z|x),

The loss of the variational autoencoder is given by

where the second term represents the KL divergence between the distribution q�(z|x) ,
modelled as a multivariate normal distribution with independent components, and the prior
p�(z) , modelled as a multivariate normal standard distribution, and plays the role of a regu-
larization term forcing the posterior distribution to be similar to the prior distribution. The
hyper-parameter � can be used to balance the two terms of the loss (Higgins et al., 2017).
In such a case, the variational autoencoder is also called a �-VAE.

Reconstruction error-based anomaly detection. The classic use of standard AE for
anomaly detection is based on the idea that, after the training, these networks are able to
better reproduce in output the inlier data than the outlier and, hence, the loss or the recon-
struction error of the network is used as an anomaly score (Hawkins et al. 2002). In An
and Cho (2015) this idea is applied to VAEs, by using as anomaly score the reconstruction
probability, corresponding to the negative cross entropy

E(x) = ‖x − g�(f�(x))‖
2
2
.

E(x) = −�q�(z|x)

[
log p�(x|z)

]
.

E(x) = −
1

L

L∑

l=1

log p�
(
x|z(l)

)
.

L�,�(x) = −�q�(z�x)

�
log p�(x�z)

�
+ � ⋅ DKL

�
q�(z�x) ‖ p�(z)

�
,

4327Machine Learning (2023) 112:4323–4349

1 3

The experimental results obtained in An and Cho (2015) show that VAE outperforms, in
terms of AUC, standard AE and PCA for a semi-supervised anomaly detection setting.

A slightly different approach is pursued in Wiewel and Yang (2019), where it is consid-
ered the whole negative loss function

as anomaly score instead of the reconstruction probability, which is only a term of it. The
authors justify this choice with the slightly better results they obtain in their experiments
compared to reconstruction probability.

It has been observed that sometimes VAEs share with standard AE the problem that
they generalize so well that they can also reconstruct anomalies, which leads to view some
anomalies as normal data. Thus, in Kawachi et al. (2018) the authors try to overcome this
problem by modifying the structure of VAEs in order to make them able to support super-
vised learning and to be trained with both anomalies and normal data. In particular it is
adopted an a priori distribution in the latent space that encourages the separation between
normal and anomalous data which leads to non-standard loss function and anomaly score.

Generative Adversarial Networks for anomaly detection. Among recent approaches
for detecting anomalies, Generative Adversarial Networks (GANs) have been applied to
address this problem and yielded results are noticeable.

Roughly speaking, a GAN (Goodfellow et al., 2014) is a generative model which
exploits an adversarial process where two models, a discriminator D and a generator G,
are trained simultaneously. The aim of the generator G is to capture distribution of the data
and, then, at producing samples as similar to training samples as possible, while the aim of
the discriminator D is to distinguish a sample coming from the training data and a sample
produced by G.

Among many existing variants, Bidirectional GAN (Donahue et al., 2017) extends the
standard GAN model including an encoder learning the inverse of the generator, thus a
mapping from latent space to data and vice versa are simultaneously learnt.

The first work approaching anomaly detection with GAN is AnoGAN (Schlegl et al.,
2017), with its extensions GAN+ (Zenati et al., 2019) and FastAnoGAN (Schlegl et al.,
2019).

It uses a standard GAN and trains it only on positive samples. Given an instance x, a
point z in the latent space is searched such that G(z) is as similar to x as possible. Since the
generator learns how to generate normal samples, even if x is anomalous, G(z) is expected
to be non anomalous and then the difference between x and G(z) highlights the anomalies.

AnoGAN has been successively improved. In Sánchez-Martín et al. (2020) a BiGAN-
based approach is proposed, it exploits the network architecture of BiGAN to jointly train
the mapping from image to latent space and from latent space to image and then providing
a trained model to get the latent representation of an input sample. GANomaly (Akcay
et al., 2018) introduces a generator with three elements, an encoder and a decoder, namely
an autoencoder, plus an additional encoder. Thus, given an instance x, the encoder pro-
duces a point z in the latent space which is provided as input to the decoder that outputs x′
which, in its turn, feds the succeeding encoder that produces z′ . Thus, the generator learns
to encode normal data and learns to generate normal data starting from the encoded rep-
resentation. Since the generator produces normal data even if the input data is anomal,

score(x) = recprob(x) = �q�(z|x)
[log p�(x|z)] =

1

L

L∑

l=1

log p�(x|z
(l)).

score(x) = −L�,�(x)

4328 Machine Learning (2023) 112:4323–4349

1 3

its reconstruction will be normal. The difference between z and z′ represents the anomaly
level.

Latent space-based anomaly detection. There are autoencoder-based anomaly detection
approaches in the literature that address this task solely relying on the embedding space
and not on reconstruction error (Guo et al., 2018; Zhang et al., 2018; Corizzo et al., 2019).
Specifically, the framework described in Zhang et al. (2018) is tailored for nonlinear pro-
cess monitoring, while that described in Corizzo et al. (2019) supports predictive modeling
tasks from streaming data coming from multiple geo-referenced sensors.

All the three above approaches map points to their latent representation and then assign
them a score on the basis of the distances from their k-nearest neighbors in the latent space.
In particular, in Guo et al. (2018) the score is given by the distance to the k-th nearest
neighbor, while in Zhang et al. (2018); Corizzo et al. (2019) the score is given by the sum
of the distances to the k-nearest neighbors. Additionally, Zhang et al. (2018) takes into
account also the there called residual space, consisting of the difference between each point
and its reconstruction. Thus, a second score is obtained as the sum of the distances between
the image of each point in the residual space and its k-nearest neighbors in the residual
space. If both the above two scores are below suitable thresholds then the point is recog-
nized as an anomaly.

We note that these approaches are very different from the one here introduced, since
they do not combine the latent space and the reconstruction error in order to detect points
that have suspicious reconstruction errors as compared to their latent neighbors. Although
the framework (Zhang et al., 2018) considers also the residual space, this differs from the
reconstruction error. Indeed, while the latter is a scalar value, the former is an other point
of the original feature space. Morever, the latent space and the residual space are taken into
account separately, thus in Zhang et al. (2018) a point is declared as an anomaly if both its
latent representation and its residual representation are anomalous independently of each
other.

3 The VAEOut and LatentOut algorithms

Let I denote the input space (usually I ⊆ ℝ
d), let L denote the latent space (usually

L ⊆ ℝ
k with k ≪ d), and let E denote the reconstruction error space (usually E ⊆ ℝ). As

above pointed out, the traditional approach pursued to detect anomalies using (variational)
autoencoders is to compare the input to its reconstruction by means of the reconstruction
error, thus it is based on exploiting only the input and reconstruction error spaces. We
argue that the approach of selecting the worst reconstructed examples as anomalies is too
simplistic if a variational autoencoder architecture is employed. Specifically, we show that
the anomaly detection process can greatly benefit of taking into account the latent space
distribution together with the associated reconstruction error.

To illustrate this, we considered the MNIST dataset of handwritten digits and created
a training-set consisting of the 6000 digits from the class 0 (the inliers) plus 90 randomly
picked digits from the classes 1-9 (the outliers). Figure 1(a) reports the two-dimensional
latent space of a variational autoencoder trained on the above set of examples (details on
the architecture are provided in Section 4). In particular, we reported the means of the dis-
tributions associated with training examples (standard deviations are not shown for the
ease of visualization): inliers are the (blue) dots and outliers are the (red) asterisks.

4329Machine Learning (2023) 112:4323–4349

1 3

First of all we note that, since regular examples (the inliers) form the majority of the
data, they will be encoded as distributions better complying with the standard normal one.
In other words, the associated latent distributions will tend to distribute around the origin
of the latent space and, more importantly, means tend to be closer and supports will over-
lap more.

Nonetheless, not all the normal data complies with the above behavior and, thus, a non-
negligible fraction of inliers spreads also over more peripheral regions. As for the abnor-
mal examples, typically they spread over a wide portion of the latent space, including both
boundary regions and the central region of the space, their location depending on the simi-
larities they share with normal examples. This means that neither the location of the distri-
butions in the latent space nor their degree of overlapping alone are sufficient to separate
inliers from outliers. Indeed, in Fig. 1(a) the sparsest regions of the latent space contain
both normal and abnormal examples.

Consider now Fig. 1(b) where the reconstruction error is associated with each latent
distribution. It can be seen that even in this case the reconstruction error alone is not suf-
ficient to guarantee a good separation between inliers and outliers. Indeed, though some
clear anomalies can be recognized by means of a very high reconstruction error, most of
the outliers have relatively low reconstruction errors. However, Figure 1(b) also suggests
that outliers tend to lie in the sparsest regions of the latent/reconstruction error feature

-6 -4 -2 0 2 4
x1

-4

-3

-2

-1

0

1

2

3

4

5
x 2

inlier
outlier

(a)

0

0.1

0.2

0.3

5

0.4

0.5

0.6

R
ec

on
st

ru
ct

io
n

er
ro

r [
ex

p(
re

cp
ro

b)
]

0.7

0

x 1

-5 -6-4

x 2

-202-10 46

inliers
outliers

(b)

420 5-2-4

70

60

-6

50

x 1

40

VA
EO

ut
 a

no
m

al
y

sc
or

e

30

20

10

0 0

x 2

-5

inliers
outliers

(c)

0 0.2 0.4 0.6 0.8 1
False Positive Rate [FPR]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

De
te

ct
io

n
Ra

te
 [D

R]

VAEOut
recprob

(d)

Fig. 1 Comparing VAEOut and recprob anomaly scores

4330 Machine Learning (2023) 112:4323–4349

1 3

space. This can be understood since outliers have two properties: (1) they are few, and
(2) their reconstruction error, even when it is not exceptionally large, is still significantly
larger than that of their most similar inliers. All this tends to move away in the augmented
feature space the outliers from the other points.

3.1 VAEOut algorithm

In light of these observations, the key idea of the proposed approach, called VAEOut , is
to simultaneously exploit information from the two above highlighted aspects, namely
the latent space distribution and the reconstruction error distribution, by constructing the
novel feature space F = L × E , consisting of the juxtaposition of the latent space and of
the reconstruction error space, and then by measuring the degree of overlapping of the
examples in this novel feature space F , namely the density of the distribution of examples.
Outliers will be the points lying in the sparsest regions of the feature space F .

Specifically, given a dataset S = {x1, x2,… , xn} our goal is to detect the outliers con-
tained in S. With this aim we first train a variational autoencoder ⟨f�, g�⟩ to reconstruct
examples in S. Given an example xi , let zxi denote the point

where zi ∼ q�(z|xi) is a latent space point sampled from the posterior distribution q�(z|xi)
and ê(xi, x̂i) is a measure related to the reconstruction error e(xi, x̂i) associated with the
reconstruction x̂i of xi obtained by means of zi . Specifically, if e(xi, x̂i) is a log-likelihood we
can take the exponential ê(xi, x̂i) = exp e(xi, x̂i) since all the other features are on a non-log
scale, otherwise ê(xi, x̂i) could be equal to e(xi, x̂i).

Given a dataset S = {x1,… , xn} , by zS we denote the transformed dataset
zS = {zx1 ,… , zxn} and by zS = {zx1 ,… , zxn} we denote the standardized versions of zS , that
is the dataset obtained by normalizing each feature according to its mean and standard
deviation. Standardization is needed here to handle non-homogeneous features.

To measure the density of a point xi in a set of points S we use nearest neighbor density
estimation and specifically the average k-nearest neighbor distance of point xi from points
in S, denoted as k-NN S(xi) . However, instead of employing the distance defined in the
original feature space, we employ as distance dist(xi, xi) between xi and xj the distance sep-
arating their images zxi and zxj in the transformed dataset.

Thus, the VAEOut anomaly score of xi in the dataset S consists of a k-nearest neighbor
estimate of the density of zxi in the dataset zS . To take into account Monte Carlo estimation,
L samples z(l)

xi
 (l ∈ {1,… , L}) can be used for each example xi and the distance dist(xi, xj) is

obtained as the average distance between pair of samples z(l)
xi

 and z(l)
xi

.
Figure 1(c) shows the latent samples and their associated anomaly score. It can be seen

that now there is a marked separation between inliers and outliers in terms of the anomaly
score. Inliers tend to have low scores, while almost all the outliers are associated with the
largest anomaly scores of the population as a consequence of their inherent sparsity. Fig-
ure 1(d) compares the ROC curves obtained by our method (VAEOut , the solid red line),
with the ROC curve obtained by exploiting the reconstruction error of a variational autoen-
coder (recprob (An & Cho, 2015), the dashed blue line). Note that the AUC = 0.9063 of
the standard VAE increases to the value AUC = 0.9908 if VAEOut is employed.

zxi = (zi, ê(xi, x̂i)) ∈ F

4331Machine Learning (2023) 112:4323–4349

1 3

Algorithm 1 details the steps of the proposed technique. First of all, a variational
autoencoder VAE is trained by exploiting input examples in S . This allows the encoder
f� and the decoder g� to output parameters of q� and p� . Next, each example xi ∈ S can
be mapped to the novel feature space F = L × E . In particular, L mappings of xi to F are
built. The mappings z(l)

i
 of xi to L , with l ∈ {1,… , L} , are obtained by sampling values

from q�(z|xi) while the mapping of xi to E are obtained by considering the reconstruction
x̂
(l)

i
= g𝜃(z

(l)

i
) of xi provided by the decoder, and, then, by computing the measure ê(xi, x̂

(l)

i
)

related to reconstruction error.
Once the L mappings z(l)

xi
 of xi to F have been generated, they are normalized by stand-

ardizing each feature with respect to its mean and standard deviation. Next, the distance
between all pairs of examples xi and xj can be computed by averaging the Euclidean dis-
tances between mappings of xi and xj to F . Finally, the k nearest neighbors of xi according
to the above illustrated distance are detected and the outlier score is computed as the mean
distance between xi and such neighbors.

4332 Machine Learning (2023) 112:4323–4349

1 3

3.2 LatentOut algorithm

In this section we present the LatentOut algorithm, which generalizes the strategy of the
VAEOut algorithm to any other autoencoder-based neural architecture A and also to other
ways of combining the latent space location and the reconstruction error associated with
observations in order to improve detection, namely different notions of score. We also call
LatentOutA,score the variant of the LatentOut algorithm employing the architecture A and
the score score. Algorithm 2 reports the pseudo-code of LatentOut.

As far as the allowed neural architectures, we consider autoencoder-based ones, namely
architectures equipped with an encoder f� , associated with the posterior distribution q(z|x)
of observing the latent variable z given x, and a decoder g� . Note that the above model
encompass all kind of architectures described in Section 2, thus VAEs, but also bidirec-
tional GANs and also standard AEs.

As for the scores, we distinguish between those that estimate the density in the latent
space augmented with the reconstruction error and those that determine neighbors by
taking into account only the original latent space. The former scores require the trans-
formed dataset zS to be standardized by normalizing each feature according to its mean and
standard deviation. Differently, when scores of the latter family are employed, the trans-
formed dataset zS does not require to be standardized (�h = 0 and �h = 1 are used to leave
unchanged the h-th feature distribution).

Before determining final scores, the algorithm computes the sets Nk(xi) consisting of the
k-nearest neighbors of xi according to the distance dist(xi, xj) calculated on their associated
transformed points zxi and zxj.

To perform nearest neighbor density estimation, the kNN-density score can be
employed, also referred to as �-score in the following:

This score requires latent space augmentation and, thus, is related to the density of
transformed points in the augmented feature space. Note that LatentOutVAE�−score , or
LatentOutVAE,� for short, is the instance of the LatentOut algorithm corresponding to the
VAEOut algorithm already described in Sect. 3.1. Hence, when the score specification is
omitted, as in LatentOutVAE , we assume the employed score is by default the �−score.

�−score
(
Nk(xi)

)
=

1

k

∑

xj∈Nk(xi)

dist(xi, xj).

4333Machine Learning (2023) 112:4323–4349

1 3

Here we introduce an alternative way of injecting spatial information concerning the
latent space in the process of outlier detection by comparing the reconstruction error of
each latent point with that of its neighbors. The reconstruction error Z-score , denoted as
�−score in the following, does not require augmentation of the latent space and represents
the deviation of the reconstruction error ê(xi, x̂i) from the mean reconstruction error of
its k-nearest neighbors 𝜇ê

(
Nk(xi)

)
 , expressed in terms of number of standard deviations

𝜎ê
(
Nk(xi)

)
:

4334 Machine Learning (2023) 112:4323–4349

1 3

where

and

The idea is that if the reconstruction error of an observation presents large deviations from
the reconstruction errors within its neighborhood, this may indicate an anomalous behav-
ior even if the reconstruction error of the observation is not itself suspiciously large. This
way of perceiving abnormality has clearly connections with those underlying the �−score ,
but gives different results. In order to more precisely characterize the behavior of this score
with respect to the standard density score, we will compare the two scores in different
scenarios.

By LatentOutVAE,� we denote the variant of the LatentOut algorithm employing Vari-
ational AutoEncoder architectures with the �−score . Figure 2(a) shows the score com-
puted by LatentOutVAE,� (for k = 100) on the variant of the MNIST dataset illustrated at
the beginning of this section, while 2(b) reports the AUCs obtained by LatentOutVAE,�
and recprob. The AUC of LatentOutVAE,� is 0.9363, thus smaller than those obtained by
LatentOutVAE , though better than the AUC = 0.9063 of the standard VAE.

In the sequel we will consider the LatentOut also in combination with different
other autoencoder-based architectures, specifically GAN-based, such as GANomaly and
Fast– AnoGAN , and also with classic AutoEncoders.

Before concluding the section, we discuss on the type of anomalies identified by our
method. In order to try to characterize the kind of anomalies singled out by LatentOut ,

𝜁−score
(
Nk(xi)

)
=

ê(xi, x̂i) − 𝜇ê

(
Nk(xi)

)

𝜎ê
(
Nk(xi)

) ,

𝜇ê

(
Nk(xi)

)
=

1

k

∑

xj∈Nk(xi)

ê(xj, x̂j)

𝜎2
ê

(
Nk(xi)

)
=

1

k

∑

xj∈Nk(xi)

(
ê(xj, x̂j) − 𝜇ê

(
Nk(xi)

))2

.

(a) (b)

Fig. 2 Comparing �−score and recprob anomaly scores

4335Machine Learning (2023) 112:4323–4349

1 3

we refer to well-established classifications of anomaly detection approaches and of type
of anomalies of interest, as those reported in Ruff et al. (2021).

As for the approach we adopt to isolate anomalies, we can say that it couples those
based on the reconstruction error with density estimation based approaches (see also Fig. 5
at page 765 of Ruff et al. (2021)). The general behavior of reconstruction error approaches
is to learn the encoder-decoder pair that minimizes the reconstruction error once applied
to the data at hand. The other two main families of anomaly detection approaches are one-
class classification based or distribution-free, whose objective is to partition the space in an
accepting region containing inliers and a rejecting region containing outliers, and proba-
bilistic based or density estimation, which aim at reconstructing the density generating the
normal data. We exploit both the first kind of approaches, to associate a reconstruction
error and a latent space representation with each example, and the third kind of approaches
to compute an anomaly score.

As for the kind of anomalies, the literature distinguishes between point anomalies and
group anomalies, and also between non-contextual and contextual anomalies (e.g., see
Fig. 2 at page 760 of Ruff et al. (2021)). We note that the anomalies singled out by our
method are better characterized as point anomalies, since the scores we use are designed
to be evaluated on single observations. Our score exhibits large values when some features
associated with the examined point deviate from the features associated with its neighbor-
hood. This confirms that the anomalies we detect are point anomalies, since if they were
immersed in a group of similar observations, i.e. in a group of anomalies, they would not
probably be pointed out as anomalous. Moreover, since the score compares the observation
with its neighborhood, we believe our approach shares similarities with contextual point
anomaly methods. In our case, however, the context is not an homogeneous sub-population
containing the point or the spatial neighborhood in the original feature space of the point,
but, being represented by the spatial neighborhood in the latent space, it can be conceived
as the semantic neighborhood of the point.

Summarizing, we can characterize the kind of anomalies detected by our approach as
follows: LatentOut couples reconstruction error approaches with density estimation ones
in order to detect point anomalies according to the semantic context associated with each
data observation.

4 Experimental results

We start by describing settings which are common to all the experiments reported in this
section.

In order to generate an unsupervised setup, we considered some labelled dataset and,
for each class label, we created a novel dataset having as inliers all the examples of the
considered class and as outliers some randomly picked examples from the other classes.
Precisely, we selected s examples (s = 10 or s = 100 have been used) from each different
dataset class label, so that the total number of outliers is s × (m − 1) , where m denotes the
number of classes.

In the following we consider the MNIST1 and Fashion-MNIST2 datasets. Both data-
sets consist of 60,000 grayscale 28 × 28 pixels images partitioned in 10 classes: MNIST

1 http://yann.lecun.com/exdb/mnist/
2 https://github.com/zalandoresearch/fashion-mnist

4336 Machine Learning (2023) 112:4323–4349

1 3

contains handwritten digits, while Fashion-MNIST contains Zalando’s article images. The
number of outliers within each dataset is also called its (absolute) contamination c. Since
both the above datasets consist of 10 classes, their contamination corresponds to c = 9s.

As for the autoencoder architecture employed on MNIST and Fashion-MNIST , the
encoding part is composed by an initial sequence of convolutional layers that reduce the
size of the data to 14 × 14 , a flattening layer that transforms the data into a vectorial form
and two dense layers that brings the data to the latent space having dimension d. The
decoder consist in a layer that reshapes the data into a bi-dimensional form and a sequence
of convolutional layers that transform the data back into the original 28 × 28 shape.

As for the parameter L, we verified that it has a limited impact on the accuracy and,
hence, in the following we report results for L = 1 . All the experimental results are
obtained by averaging over ten runs, thus we report both the mean and the standard devia-
tion of performance measures. In the following, tables reporting experimental results high-
light the best performance in bold.

4.1 Experiments with the VAEOut algorithm

If not otherwise stated, during experiments described in this section the parameter k is held
fixed to 0.25c, thus k = 15 for s = 10 and k = 150 for s = 100 . Later, we will study the
effect of the parameter k on the accuracy. According to the literature (Higgins et al., 2017),
we employ large values for the parameter � in order to allow the variational autoencoder to
properly organize the latent space, and specifically � = 104.

VAEOut versus recprob. First of all, we investigated the impact of the proposed strat-
egy on the accuracy of the variational autoencoder-based outlier detection approach, by
comparing the Area Under the ROC Curve (AUC) of VAEOut with that of recprob, that
is the standard strategy based on exploiting the VAE reconstruction error. Comparisons
are conducted by considering the influence of the latent space dimension on the quality of
the detection. Figure 3 reports the AUCs of VAEOut (red circle-marked lines) and recprob
(blue square-marked lines) for the latent space dimension d ranging in the interval [2, 32]
and s = 10 . Due to the lack of space, results for s = 100 are summarized in Table 1.

The results highlight that the proposed strategy is able to improve accuracy of VAE-
based outlier detection. Indeed, in many runs VAEOut improves over recprob, and for
almost all the digits the achieved improvement is sensible. The experiments also show that
accuracy of VAEOut is positively affected by the latent space dimension, while this does
not seem to be the case for the standard VAE. We explain this behavior since lower dimen-
sions constrain distributions within the latent space to overlap more, thus worsening the
separation induced by the density associated with latent points. From these experiments,
we conclude that a good choice for the latent space dimension d is in the order of a few
tens, namely d ∈ [16, 32].

Note that intervals of AUC values reported on the vertical axis of the plots are not iden-
tical. As for digit 1, it must be pointed out that the variational autoencoder is very able
to reconstruct it, probably since it is the easiest digit in the set, and this explains why the
recprob AUC is very close to 1. VAEOut shows a slightly smaller AUC for low latent
dimensions, but reaches a similar AUC for sufficiently large dimensions.

Precision. Another measure employed to evaluate outlier detection approaches is the
Precision. Specifically, since the goal is to isolate the most deviating dataset examples, we
used the Prec@n measure, representing the percentage of true outliers among the examples

4337Machine Learning (2023) 112:4323–4349

1 3

Fig. 3 MNIST dataset (s = 10): AUCs of VAEOut and recprob

Table 1 AUC for the MNIST datasets (s = 100).

c d = 8 d = 16 d = 32

VAEOut recprob VAEOut recprob VAEOut recprob

0 0.928±0.016 0.767±0.015 0.945±0.017 0.743±0.033 0.954±0.010 0.603±0.044
1 0.990±0.003 0.995±0.001 0.993±0.001 0.995±0.001 0.995±0.001 0.995±0.001
2 0.808±0.037 0.690±0.016 0.863±0.021 0.691±0.015 0.826±0.035 0.609±0.100
3 0.866±0.017 0.726±0.012 0.898±0.024 0.708±0.021 0.887±0.024 0.663±0.073
4 0.905±0.013 0.832±0.008 0.910±0.015 0.820±0.011 0.910±0.010 0.779±0.023
5 0.896±0.019 0.722±0.020 0.906±0.043 0.717±0.025 0.895±0.016 0.654±0.070
6 0.934±0.018 0.830±0.011 0.944±0.013 0.817±0.021 0.941±0.009 0.735±0.054
7 0.926±0.021 0.883±0.007 0.934±0.014 0.878±0.004 0.933±0.006 0.863±0.008
8 0.864±0.017 0.679±0.012 0.888±0.018 0.660±0.020 0.889±0.020 0.600±0.086
9 0.921±0.012 0.850±0.010 0.940±0.010 0.841±0.016 0.936±0.008 0.747±0.056

4338 Machine Learning (2023) 112:4323–4349

1 3

associated with the top n anomaly scores. We set n to the absolute contamination n = c .
Table 2 compares the Prec@n achieved by VAEOut and recprob on MNIST (d = 32). The
results point out that VAEOut is able to significantly increase the percentage of true anom-
alies among the examples ranked in the very first positions. Moreover, in different cases the
precision is doubled.

Note that despite the case s = 10 shows slightly larger AUCs, the Prec@n is higher
for the case s = 100 . We explain this behavior by noticing that while the inliers of the
two datasets are the same, the outliers for the case s = 100 have increased tenfold and this
means that the probability that largest scores are assigned to outliers is increased, although
overall the outliers are ranked slightly worse according to the AUC.

Sensitivity analysis for the parameter k. Experiments reported in Figure 4 are aimed
at determining the optimal value for the parameter k, by performing a sensitivity analysis
with respect to this parameter. With this aim, we took into account log-spaced values k
in the interval [2, 1024] and determined the AUC of VAEOut on the MNIST dataset for
s = 10 and s = 100 . In these experiments, the latent space dimension d is held fixed to
d = 32.

To help understand the effect of k on the accuracy, on the horizontal axis we reported
the value k∕c = k∕(9s) of k normalized on the absolute contamination c of the dataset, also
called normalized neighborhood. Each plot reports also the AUC achieved by recprob. It
can be seen that for a wide range of values of the parameter k the AUC of VAEOut is sensi-
bly larger than that of recprob. In most cases the above property is valid for all the reported
values of k.

This experiment witnesses that, although VAEOut requires an additional parameter with
respect to a standard VAE, the selection of the right value for this parameter is not criti-
cal, being almost always guaranteed an improvement. Moreover, the optimal value for the
normalized neighborhood appears to be located within the interval [10−1, 100] . Thus, the
normalized neighborhood provides a tool for selecting a reasonable value for k. As a rule
of thumb, we recommend to use k ≈ N∕3 , where N is the user-specified expected absolute
contamination or, vice versa, to return N ∈ [3k, 5k] anomalies when k is user-specified.

Impact on the neural architecture. In this experiment we compare the detection per-
formances of Auto-Encoder based anomaly detection (AE), Variational Auto-Encoder
based anomaly detection (VAE), and VAEOut based anomaly detection. The aim of this

Table 2 MNIST dataset Prec@n
for n set to the contamination
c = 9s

c s = 10 s = 100

VAEOut recprob VAEOut recprob

0 0.462±0.044 0.227±0.026 0.654±0.033 0.295±0.048
1 0.762±0.045 0.744±0.028 0.904±0.005 0.898±0.008
2 0.388±0.042 0.204±0.039 0.429±0.050 0.239±0.083
3 0.377±0.036 0.160±0.036 0.519±0.037 0.272±0.087
4 0.497±0.071 0.453±0.041 0.598±0.019 0.516±0.040
5 0.371±0.032 0.210±0.044 0.524±0.027 0.281±0.080
6 0.490±0.051 0.357±0.046 0.632±0.024 0.393±0.074
7 0.528±0.048 0.493±0.042 0.647±0.026 0.624±0.021
8 0.276±0.049 0.109±0.045 0.494±0.051 0.230±0.080
9 0.470±0.040 0.333±0.048 0.628±0.022 0.390±0.145

4339Machine Learning (2023) 112:4323–4349

1 3

experiment is not to determine the best configuration for each approach, but instead to
compare the performances of these three autoencoder based approaches when the architec-
ture is held fixed. Thus, all the results are relative to the equivalent network architectures
and for the same common hyper-parameters. Specifically, the AE has the same structure of
the VAE, except for employing a deterministic latent space and for the loss consisting only
of the reconstruction error, while VAEOut builds on the same VAE architecture described
at the beginning of this section.

Tables 3 and 4 report the AUC of the three methods on the MNIST and Fashion-MNIST
datasets with s = 10 , respectively, for d = 32 and k set to 30, that is to one third of the
dataset contamination. While on the MNIST dataset VAE performs better than AE, on the
Fashion-MNIST dataset with the same loss hyper-parameter � , VAE perform worse than the
corresponding deterministic architecture.

Importantly, VAEOut always shows clear improvements over the corresponding VAE
architecture. On MNIST, for some critical classes, see for example digit 8 of MNIST, the
performance are resolutely winning. On Fashion-MNIST , despite the sometimes poor

Fig. 4 MNIST dataset: AUC of VAEOut for varying k values

4340 Machine Learning (2023) 112:4323–4349

1 3

performances of the VAE reconstruction error, by exploiting the latent space information
VAEOut is able to achieve excellent detecting performances, almost always filling the gap
between the AE and VAE results and going even further.

4.2 Experiments with the LatentOut algorithm

In the previous section we have experimented the VAEOut algorithm. In this section we
complete experimental results by considering the general LatentOut algorithm. Since
VAEOut can be regarded as an instance of LatentOut , in order to make clear comparison
among the considered instances, in the following we will refer to the former algorithm as
LatentOutVAE,�.

Applying LatentOut to VAE architectures. We start by experimenting LatentOut on Var-
iational AutoEncoder architectures. The number of outlying examples s coming from each
different class label is set to s = 10 . Experimental results are reported in Table 5, showing
the AUC obtained by LatentOut on MNIST (table on the top) and Fashion-MNIST (table
on the bottom). In each table, the first column reports the class label, the second the AUC
of the basic VAE architecture, while the last two columns show the AUC of LatentOutVAE,�
and LatentOutVAE,� , respectively.

Table 3 MNIST (s = 10) AUC
for d = 32 (k = 30)

Class AE VAE VAEOut

0 0.7053 ± 0.0525 0.8147 ± 0.0443 0.9825 ± 0.0056
1 0.9913 ± 0.0031 0.9973 ± 0.0007 0.9978 ± 0.0005
2 0.6407 ± 0.0534 0.7780 ± 0.0152 0.9504 ± 0.0143
3 0.6844 ± 0.0354 0.7535 ± 0.0133 0.9415 ± 0.0092
4 0.7743 ± 0.0278 0.8415 ± 0.0133 0.9477 ± 0.0106
5 0.6776 ± 0.0323 0.7811 ± 0.0208 0.9523 ± 0.0111
6 0.7651 ± 0.0282 0.8819 ± 0.0133 0.9758 ± 0.0083
7 0.8635 ± 0.0120 0.8970 ± 0.0172 0.9645 ± 0.0052
8 0.5993 ± 0.0328 0.7363 ± 0.0237 0.9277 ± 0.0185
9 0.7781 ± 0.0449 0.8698 ± 0.0287 0.9649 ± 0.0079

Table 4 Fashion-MNIST (s = 10)
AUC for d = 32 (k = 30)

Class AE VAE VAEOut

T-shirt/top 0.8388 ± 0.0146 0.4701 ± 0.0369 0.8946 ± 0.0117
Trouser 0.9792 ± 0.0048 0.9520 ± 0.0102 0.9599 ± 0.0111

Pullover 0.8288 ± 0.0240 0.3472 ± 0.0278 0.8757 ± 0.0138
Dress 0.6857 ± 0.0101 0.7867 ± 0.0242 0.8883 ± 0.0132
Coat 0.8420 ± 0.0232 0.4805 ± 0.0452 0.8752 ± 0.0153
Sandal 0.7740 ± 0.0210 0.8738 ± 0.0152 0.9094 ± 0.0165
Shirt 0.7490 ± 0.0270 0.3208 ± 0.0190 0.8419 ± 0.0153
Sneaker 0.9587 ± 0.0129 0.9322 ± 0.0178 0.9729 ± 0.0125
Bag 0.6763 ± 0.0503 0.4269 ± 0.0308 0.8866 ± 0.0288
Ankle boot 0.8905 ± 0.0189 0.6860 ± 0.0363 0.9260 ± 0.0183

4341Machine Learning (2023) 112:4323–4349

1 3

In these experiments, we varied d in [2, 32] and k in [2, 1000] and reported the opti-
mal AUC scored by each method. While for LatentOutVAE,� the optimal AUC value was
found in the intervals d ∈ [8, 32] and k ∈ [30, 100] on both datasets, and this agrees with
the analysis already performed in Sect. 4.1, LatentOutVAE,� behaved differently in terms
of the optival values for the parameters. Indeed, LatentOutVAE,� seems to perform better
for smaller latent space dimensionalities, namely d ∈ [2, 8] , and for larger neighborhood
parameters, namely k > 200.

As for the algorithm performances, in these experiments LatentOutVAE,� guaranteed
always the best accuracy. As for LatentOutVAE,� , it exhibits improvements over the stand-
ard VAE in many cases.

Applying LatentOut to GAN architectures. Here we discuss experiments concern-
ing LatentOut on GAN autoencoder-based architectures. To better exploit the power of
GANs, we considered the richer CIFAR-10 dataset3, a labeled subsets of the 80 million
tiny images dataset. This dataset consists of 60,000 32 × 32 colour images partitioned in
10 classes, with 6,000 images per class. We employed the architectures of GANomaly and
Fast– AnoGAN described in the respective papers.

We set s = 10 , d = 2 , and k = 30 for LatentOutGANomaly,� and k = 500 for
LatentOutGANomaly,� . We observed that the accuracy of GANomaly is rather unstable and

Table 5 Comparison of LatentOutVAE on MNIST (above) and Fashion-MNIST (below)

class VAE LatentOutVAE,� LatentOutVAE,�

0 0.9243±0.0217 0.9835±0.0050 0.9462±0.0114
1 0.9971±0.0006 0.9978±0.0005 0.9818±0.0023
2 0.8590±0.0211 0.9633±0.0124 0.9043±0.0153
3 0.8452±0.0231 0.9423±0.0095 0.9191±0.0202
4 0.8840±0.0187 0.9521±0.0125 0.9031±0.0132
5 0.9003±0.0295 0.9560±0.0121 0.9411±0.0191
6 0.9411±0.0118 0.9766±0.0082 0.9204±0.0100
7 0.9309±0.0203 0.9669±0.0093 0.9242±0.0192
8 0.7935±0.0224 0.9277±0.0192 0.8315±0.0160
9 0.9165±0.0116 0.9664±0.0074 0.9200±0.0150

class VAE LatentOutVAE,� LatentOutVAE,�

T-shirt/top 0.5944±0.0351 0.9194±0.0116 0.6526±0.0119
Trouser 0.9584±0.0074 0.9616±0.0017 0.9120±0.0168
Pullover 0.5341±0.0238 0.8997±0.0306 0.6462±0.0515
Dress 0.8642±0.0096 0.9166±0.0079 0.8626±0.0531
Coat 0.6729±0.0527 0.8752±0.0153 0.7062±0.0854
Sandal 0.8867±0.0172 0.9207±0.0178 0.8650±0.0651
Shirt 0.4714±0.0462 0.8675±0.0099 0.5001±0.0108
Sneaker 0.9515±0.0077 0.9770±0.0024 0.9265±0.0115
Bag 0.5398±0.0723 0.9111±0.0026 0.7492±0.0206
Ankle boot 0.7725±0.0380 0.9543±0.0114 0.7972±0.0668

3 https://www.cs.toronto.edu/∼kriz/cifar.html

4342 Machine Learning (2023) 112:4323–4349

1 3

to better understand its behavior we measured the AUC of the methods as a function of
the number of training epochs (see Figure 5 reports these values for some classes and a
specific run; missing classes showed the same behavior). Interestingly, LatentOut shows
large improvements on the AUC of GANomaly , even when the latter value is quite poor.
Notably, LatentOutGANomaly,� is always able to reach very large AUC values in the very first
iterations and maintains its accuracy throughout the training procedure. Table 6 reports the
AUC of the methods after 200 epochs.

Fig. 5 AUC of GANomaly , LatentOutGANomaly,� and LatentOutGANomaly,� on CIFAR-10 varying the epochs

Table 6 AUC of LatentOutGANomaly on CIFAR-10

class GANomaly LatentOutGANomaly,� LatentOutGANomaly,�

airplane 0.8351±0.0410 0.9147±0.0344 0.9931±0.0118
automobile 0.5461±0.1178 0.8470±0.0373 0.9957±0.0036
bird 0.8442±0.1110 0.7939±0.0395 0.9933±0.0056
cat 0.6887±0.1180 0.7844±0.0341 0.9834±0.0114
deer 0.5948±0.0836 0.9001±0.0261 0.9884±0.0100
dog 0.6312±0.0874 0.7782±0.0512 0.9797±0.0160
frog 0.8511±0.0860 0.8317±0.0357 0.9915±0.0054
horse 0.6318±0.0867 0.8954±0.0294 0.9933±0.0086
ship 0.6794±0.0934 0.9055±0.0283 0.9911±0.0053
truck 0.6558±0.0800 0.9351±0.0299 0.9906±0.0084

4343Machine Learning (2023) 112:4323–4349

1 3

In order to visualize the most difficult examples for each method, we collected the
example scoring the top absolute difference between the ranking of GANomaly and the
ranking of LatentOut . We verified that in these experiment all the above examples cor-
respond to true anomalies showing a small GANomaly score and a large LatentOut score.
Figures 6 (for LatentOutGANomaly,�) and 7 (for LatentOutGANomaly,�) report thest most devi-
ating anomalies (on the first row). Under each image there are the relative ranking accord-
ing to GANomaly (above) and according to LatentOut (below), where 1.0 (0.0, resp.)
stands for top ranked (bottom ranked, resp.). The subsequent three rows represent the 1st,
2nd and 3rd nearest neighbors in the latent space of the anomalous example. As expected,
in most cases anomalies share similarities with their neighbors in the latent space, but the
different reconstruction error allows LatentOut to subvert the ranking for these anomalous
examples.

Due to the large performances of LatentOut� , we also tested LatentOutFast– AnoGAN,� on
CIFAR-10. The AUC values are reported in Table 7 without standard deviations, since we
executed a reduced number of runs.

Fig. 6 Most deviating anomalies recognized by LatentOutGANomaly,�

Fig. 7 Most deviating anomalies recognized by LatentOutGANomaly,�

4344 Machine Learning (2023) 112:4323–4349

1 3

Table 7 AUC of
LatentOutFast– AnoGAN,� on
CIFAR-10

class Fast-AnoGAN LatentOutFast−AnoGAN,�

airplane 0.680 0.950
automobile 0.950 0.981
bird 0.680 0.940
cat 0.610 0.771
deer 0.750 0.986
dog 0.670 0.860
frog 0.720 0.940
horse 0.650 0.807
ship 0.676 0.843
truck 0.735 0.995

Fig. 8 AUC of LatentOutVAE,� on MNIST and of LatentOutGANomaly,� on CIFAR-10 for different k values
(d = 2)

4345Machine Learning (2023) 112:4323–4349

1 3

Sensitivity of LatentOut� to the parameter k. In order to study the impact of the
parameter k on LatentOut� , we considered log-spaced values k and determined its AUC
of LatentOutVAE,� on MNIST and of LatentOutGANomaly,� on CIFAR-10, in both cases
for s = 10 . Since, accordingly to the previous experiments, we verified that LatentOut�
behaves better for smaller latent space dimensionalities, we held fixed d to 2.

Figure 8 reports the results of this experiment. The abscissa reports the value of the
parameter k, ranging from 50 to 800, an interval including the optimal performances
obtained in the other experiments.

The results highlight that LatentOutGANomaly,� is practically insensitive to the parameter
k, while it has a certain impact on the quality of LatentOutVAE,� . In the latter case, some
classes benefit from enlarging the value of k. An intermediate value seems good enough in
all cases. We can conclude that the �−score requires values of k different from the �−score
to reach its best performances. We can relate k to the contamination by k = 3c (c = 90 in
these experiments) and suggest k ≈ 3N as a rule of thumb to select an initial value for k.

Comparison with baseline methods. We compared our method with three baseline meth-
ods: k-Nearest Neighbour (KNN), Isolation Forest (IF) and Local Outlier Factor (LOF). In
particular we considered the tabular datasets in Rayana (2016) whose statistics are reported
in Table 8, as well as the Smartphone-Based Recognition of Human Activities and Postural
Transitions Data Set4. The former are a family of binary datasets created specifically for
outlier detection, the latter is a multiclass dataset that we treated in the same way as the
other multiclass images datasets, it consists in a collection of real attributes obtained by
sensor signals with the aim of recognizing 12 different human movements; we choose this
dataset because among the tabular datasets avaliable it is one with the largest dimension
(d = 561) and size (n = 10929) and therefore more suitable to our analysis.

Table 8 Statistics of the datasets Dataset Points Dim. Anomalies Anomalies%

Letter 1600 32 100 6.3
Musk 3062 166 97 3.2
Satimage-2 5803 36 71 1.2
Speech 3686 400 61 1.7
Wbc 278 30 21 5.6

Table 9 AUC of LatentOutAE on tabular datasets

dataset AE LatentOutAE,� LatentOutAE,� KNN IF LOF

Letter 0.7225 0.7467 0.7241 0.8950 0.6672 0.8872
Musk 0.9572 0.9966 0.9488 0.3726 0.9993 0.4157
satimage-2 0.9823 0.9953 0.9685 0.6400 0.6900 0.5400
speech 0.4708 0.5626 0.4685 0.5200 0.4600 0.5000
Wbc 0.9446 0.8944 0.9626 0.9492 0.9472 0.9313

4 h t t p s : / / a r c h i v e . i c s . u c i . e d u / m l / d a t a s e t s / S m a r t p h o n e -
Based+Recognition+of +Human+Activities+and+Postural+Transitions

4346 Machine Learning (2023) 112:4323–4349

1 3

Among all the versions of our method we selected the ones based on standard Autoen-
coders, i.e. LatentOutAE,� and LatentOutAE,� , because other architectures are specific for
images datasets. Results are reported in Tables 9 and 10.

These datasets consist of few attributes if compared with image dataset and have a
flat nature. In some cases the baseline methods are able to behave better than the more
complex neural architecture. However, importantly LatentOutAE,� and LatentOutAE,�
almost always improve over standard Autoencoders and perform better then the base-
lines in different cases.

As the dimension and the complexity of the datasets grow, our method can perform
far better than the baselines; indeed, we considered also CIFAR as a more complex sce-
nario. As we can see in Table 11, on CIFAR the AUC values obtained by KNN, IF and
LOF are always much smaller than the ones obtained by LatentOutGANomaly,�.

This set of experiments highlights that our method is very effective with large dimen-
sionality datasets. This is due to the fact that using the feature space F instead of the

Table 10 AUC of LatentOutAE on Smartphone-Based Recognition of Human Activities and Postural Tran-
sitions Data Set

class AE LatentOutAE,� LatentOutAE,� KNN IF LOF

0 0.7491 0.9438 0.7737 0.9891 0.9625 0.7886
1 0.8797 0.9192 0.8445 0.9919 0.9411 0.8897
2 0.6362 0.8824 0.7111 0.8430 0.9140 0.6927
3 0.9426 0.9441 0.7462 0.9585 0.9346 0.5191
4 0.9373 0.9609 0.7515 0.9694 0.9503 0.5371
5 0.9310 0.9681 0.6420 0.9651 0.9291 0.4894
6 0.5925 0.6443 0.5925 0.7364 0.8333 0.7046
7 0.5751 0.6180 0.5751 0.7059 0.7636 0.6731
8 0.3539 0.8753 0.3901 0.5492 0.7348 0.5742
9 0.4282 0.8721 0.4126 0.6454 0.7922 0.5914
10 0.3069 0.8117 0.3578 0.3431 0.7105 0.4471
11 0.3309 0.8087 0.3284 0.4072 0.6281 0.4134

Table 11 AUC of LatentOutAE
on CIFAR-10

class LatentOutGANomaly,� KNN IF LOF

airplane 0.9931 0.6789 0.6643 0.6771
automobile 0.9957 0.3989 0.4354 0.4181
bird 0.9933 0.7206 0.6814 0.6979
cat 0.9834 0.4875 0.4939 0.4907
deer 0.9884 0.7248 0.7209 0.6722
dog 0.9797 0.4579 0.4952 0.4508
frog 0.9915 0.7674 0.7579 0.6658
horse 0.9933 0.5051 0.5390 0.5413
ship 0.9911 0.6822 0.6956 0.6697
truck 0.9906 0.4100 0.5446 0.3872

4347Machine Learning (2023) 112:4323–4349

1 3

original space of the data, maintains the semantic distribution of inliers and outliers, but
the smaller dimension of the feature space allows to avoid issues related to the curse of
dimensionality.

5 Conclusions

The main goal of this work is to show that, within the context of autoencoder neural
networks architectures, the outlier detection process can greatly benefit of taking into
account the latent space distribution together with the associated reconstruction error.
Specifically, we observed that outliers tend to lie in the sparsest regions of the combined
latent/error space and proposed the novel unsupervised anomaly detection algorithm,
called LatentOut , that exploits this property to identify outliers. The novel approach
always showed sensible improvements in terms of detection performances over the basic
autoencoder-based architecture to which it is applied, especially as the dimension of the
dataset increases. The comparison with baseline methods has shown that it has compa-
rable performances on less complex datasets.

Author Contributions Fabrizio Angiulli, Fabio Fassetti, and Luca Ferragina contributed to the study con-
ception and design. Material preparation, data collection and analysis were performed by all the authors.
The first draft of the manuscript was written by all the authors. All authors commented on previous versions
of the manuscript. All authors read and approved the final manuscript.

Funding Open access funding provided by Università della Calabria within the CRUI-CARE Agreement.

Data Availability Statement Not Applicable.

Code availability The current version of the code is available at https:// siloe. dimes. unical. it/ angiu lli/ Laten
tOut. zip

Declarations

Conflict of interest No conflicts to declare.

Ethics approval Not Applicable.

Consent to participate Not Applicable.

Consent for publication Not Applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

https://siloe.dimes.unical.it/angiulli/LatentOut.zip
https://siloe.dimes.unical.it/angiulli/LatentOut.zip
http://creativecommons.org/licenses/by/4.0/

4348 Machine Learning (2023) 112:4323–4349

1 3

References

Aggarwal, C.C. (2013) Outlier Analysis. Springer
Akcay, S., Atapour-Abarghouei, A., Breckon, T.P. (2018) Ganomaly: Semi-supervised anomaly detec-

tion via adversarial training
An, J., Cho, S. (2015) Variational autoencoder based anomaly detection using reconstruction probability.

Tech. Rep. 3, SNU Data Mining Center
Angiulli, F. (2017). Concentration free outlier detection. In: European Conference on Machine Learning

and Knowledge Discovery in Databases, (ECMLPKDD), Skopje, Macedonia. pp. 3–19
Angiulli, F. (2018). On the behavior of intrinsically high-dimensional spaces Distances, direct and

reverse nearest neighbors, and hubness. Journal of Machine Learning Research, 18, 1–170.
Angiulli, F. (2020). CFOF: A concentration free measure for anomaly detection. ACM Transactions on

Knowledge Discovery from Data (TKDD), 14(1), 1–53.
Angiulli, F., Basta, S., & Pizzuti, C. (2006). Distance-based detection and prediction of outliers. IEEE

Transaction on Knowledge and Data Engineering, 2(18), 145–160.
Angiulli, F., Fassetti, F. (2009). DOLPHIN: an efficient algorithm for mining distance-based outliers in

very large datasets. ACM Trans. Knowl. Disc. Data (TKDD) 3(1), Article 4
Angiulli, F., Fassetti, F., Ferragina, L. (2020). Improving deep unsupervised anomaly detection by

exploiting VAE latent space distribution. In: Discovery Science - 23rd International Conference,
DS 2020, Thessaloniki, Greece, October 19-21, 2020, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 12323, pp. 596–611. Springer

Angiulli, F., Pizzuti, C. (2002). Fast outlier detection in large high-dimensional data sets. In: Proc. Int.
Conf. on Principles of Data Mining and Knowledge Discovery (PKDD). pp. 15–26

Angiulli, F., & Pizzuti, C. (2005). Outlier mining in large high-dimensional data sets. IEEE Transaction
Knowledge Data Engineering, 2(17), 203–215.

Barnett, V., Lewis, T. (1994). Outliers in Statistical Data. John Wiley & Sons
Breunig, M.M., Kriegel, H., Ng, R., Sander, J. (2000). Lof: Identifying density-based local outliers. In:

Proceeding International Conference on Managment of Data (SIGMOD)
Chalapathy, R., Chawla, S. (2019). Deep learning for anomaly detection: A survey
Chandola, V., Banerjee, A., Kumar, V. (2009). Anomaly detection: A survey. ACM Comput. Surv. 41(3).
Corizzo, R., Ceci, M., & Japkowicz, N. (2019). Anomaly detection and repair for accurate predictions in

geo-distributed big data. Big Data Research, 16, 18–35.
Davies, L., & Gather, U. (1993). The identification of multiple outliers. Journal of the American Statisti-

cal Association, 88, 782–792.
Donahue, J., Krähenbühl, P., Darrell, T. (2017). Adversarial feature learning.
Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep Learning. MIT Press.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio,

Y. (2014). Generative adversarial nets. In: Advances in Neural Information Processing Systems.
vol. 27.

Guo, J., Liu, G., Zuo, Y., Wu, J. (2018). An anomaly detection framework based on autoencoder and
nearest neighbor. In: 15th International Conference on Service Systems and Service Management
(ICSSSM). pp. 1–6

Hautamäki, V., Kärkkäinen, I., Fränti, P. (2004). Outlier detection using k-nearest neighbour graph. In:
International Conference on Pattern Recognition (ICPR), Cambridge, UK, 23-26. pp. 430–433

Hawkins, S., He, H., Williams, G., Baxter, R. (2002). Outlier detection using replicator neural networks. In:
International Conference on Data Warehousing and Knowledge Discovery (DAWAK). pp. 170–180

Hecht-Nielsen, R. (1995). Replicator neural networks for universal optimal source coding. Science,
269(5232), 1860–1863.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., Lerchner, A.
(2017). �-vae: Learning basic visual concepts with a constrained variational framework. In: Inter-
national Conference on Learning Representations (ICLR)

Jin, W., Tung, A., Han, J. (2001). Mining top-n local outliers in large databases. In: Proc. ACM SIG-
KDD International Conference on Knowledge Discovery and Data Mining (KDD)

Kawachi, Y., Koizumi, Y., Harada, N. (2018). Complementary set variational autoencoder for supervised
anomaly detection. In: IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). pp. 2366–2370

Kingma, D.P., Welling, M. (2013). Auto-encoding variational bayes
Knorr, E., Ng, R., & Tucakov, V. (2000). Distance-based outlier: algorithms and applications. VLDB

Journal, 8(3–4), 237–253.

4349Machine Learning (2023) 112:4323–4349

1 3

Kramer, M. A. (1991). Nonlinear principal component analysis using autoassociative neural networks.
AIChE Journal, 37(2), 233–243.

Kriegel, H.P., Schubert, M., Zimek, A. (2008). Angle-based outlier detection in high-dimensional data.
In: Proc. Int. Conf. on Knowledge Discovery and Data Mining (KDD). pp. 444–452.

Liu, F., Ting, K., Zhou, Z.H. (2012). Isolation-based anomaly detection. TKDD 6(1).
Radovanović, M., Nanopoulos, A., & Ivanović, M. (2015). Reverse nearest neighbors in unsupervised

distance-based outlier detection. IEEE Transactions on Knowledge and Data Engineering, 27(5),
1369–1382.

Rayana, S.(2016). Odds library , http:// odds. cs. stony brook. edu
Ruff, L., Kauffmann, J. R., Vandermeulen, R. A., Montavon, G., Samek, W., Kloft, M., et al. (2021). A

unifying review of deep and shallow anomaly detection. Proc. IEEE, 109(5), 756–795. https:// doi.
org/ 10. 1109/ JPROC. 2021. 30524 49

Schlegl, T., Seeböck, P., Waldstein, S., Langs, G., Schmidt-Erfurth, U. (2019). f-anogan: Fast unsuper-
vised anomaly detection with generative adversarial networks. Medical Image Analysis 54.

Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G. (2017). Unsupervised anomaly
detection with generative adversarial networks to guide marker discovery.

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., & Williamson, R. C. (2001). Estimating the sup-
port of a high-dimensional distribution. Neural Computation, 13(7), 1443–1471.

Sun, J., Wang, X., Xiong, N., & Shao, J. (2018). Learning sparse representation with variational auto-
encoder for anomaly detection. IEEE Access, 6, 33353–33361.

Sánchez-Martín, P., Olmos, P.M., Perez-Cruz, F. (2020). Improved bigan training with marginal likelihood
equalization.

Tax, D. M. J., & Duin, R. P. W. (2004). Support vector data description. Mach. Learn., 54(1), 45–66.
Wiewel, F., Yang, B. (2019). Continual learning for anomaly detection with variational autoencoder. In:

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 3837–3841.
Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R. (2019). Efficient gan-based anomaly

detection.
Zhang, Z., Jiang, T., Li, S., & Yang, Y. (2018). Automated feature learning for nonlinear process monitor-

ing - an approach using stacked denoising autoencoder and k-nearest neighbor rule. Journal of Process
Control, 64, 49–61.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://odds.cs.stonybrook.edu
https://doi.org/10.1109/JPROC.2021.3052449
https://doi.org/10.1109/JPROC.2021.3052449

	 : an unsupervised deep anomaly detection approach exploiting latent space distribution
	Abstract
	1 Introduction
	2 Preliminaries and related work
	3 The and algorithms
	3.1 algorithm
	3.2 algorithm

	4 Experimental results
	4.1 Experiments with the algorithm
	4.2 Experiments with the algorithm

	5 Conclusions
	References

