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Abstract
Anomaly detection methods exploiting autoencoders (AE) have shown good perfor-
mances. Unfortunately, deep non-linear architectures are able to perform high dimension-
ality reduction while keeping reconstruction error low, thus worsening outlier detecting 
performances of AEs. To alleviate the above problem, recently some authors have pro-
posed to exploit Variational autoencoders (VAE) and bidirectional Generative Adversarial 
Networks (GAN), which arise as a variant of standard AEs designed for generative pur-
poses, both enforcing the organization of the latent space guaranteeing continuity. How-
ever, these architectures share with standard AEs the problem that they generalize so well 
that they can also well reconstruct anomalies. In this work we argue that the approach of 
selecting the worst reconstructed examples as anomalies is too simplistic if a continuous 
latent space autoencoder-based architecture is employed. We show that outliers tend to lie 
in the sparsest regions of the combined latent/error space and propose the VAEOut and 
LatentOut unsupervised anomaly detection algorithms, identifying outliers by performing 
density estimation in this augmented feature space. The proposed approach shows sensible 
improvements in terms of detection performances over the standard approach based on the 
reconstruction error.

Keywords Anomaly detection · Variational autoencoder · Nearest neighbor density 
estimation.
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1 Introduction

Outlier detection is a fundamental and widely applicable discovery problem. Outliers can 
arise due to many reasons like mechanical faults, fraudulent behavior, human errors, instru-
ment error or simply through natural deviations in populations. Generally speaking, the 
problem of outlier detection consists in isolating samples suspected of not being generated 
by the same mechanisms as the rest of the data. Approaches to outlier detection can be 
classified in supervised, semi-supervised, and unsupervised (Chandola et al., 2009; Aggar-
wal, 2013). Supervised methods take in input data labeled as normal and abnormal and 
build a classifier. The challenge there is posed by the fact that abnormal data form a rare 
class. Semi-supervised methods, also called one-class classifiers or domain description 
techniques, take in input only normal examples and use them to identify anomalies. Unsu-
pervised methods detect outliers in an input dataset by assigning a score or anomaly degree 
to each object. Several statistical, data mining and machine learning approaches have 
been proposed to detect outliers, namely, statistical-based (Davies & Gather, 1993; Bar-
nett & Lewis, 1994), distance-based (Knorr et al., 2000; Angiulli & Pizzuti, 2002, 2005; 
Angiulli et al., 2006; Angiulli & Fassetti, 2009), density-based (Breunig et al., 2000; Jin 
et al., 2001), reverse nearest neighbor-based (Hautamäki et al., 2004; Radovanović et al., 
2015; Angiulli, 2017, 2018, 2020), isolation-based (Liu et al., 2012), angle-based (Kriegel 
et al. 2008), SVM-based (Schölkopf et al., 2001; Tax & Duin, 2004), deep learning-based 
(Goodfellow et al., 2016; Chalapathy & Chawla, 2019), and many others (Chandola et al., 
2009; Aggarwal, 2013).

Deep learning anomaly detection approaches exploiting autoencoders (AE) have shown 
good performances (Hawkins et al., 2002; An & Cho, 2015; Chalapathy & Chawla, 2019). 
Autoencoder-based anomaly detection consists in training an autoencoder to reconstruct a 
set of examples and then to detect as anomalies those inputs that show a sufficiently large 
reconstruction error. This approach is justified by the observation that, since the recon-
struction process includes a dimensionality reduction step (the encoder) followed by a step 
mapping back representations in the compressed space (also called the latent space) to 
examples in the original space (the decoder), regularities should be better compressed and, 
hopefully, better reconstructed (Hawkins et al., 2002).

Unfortunately, deep non-linear architectures are able to perform high dimensionality 
reduction while keeping reconstruction error low. Ideally, an expressive enough architec-
ture could reduce arbitrarily large dimensional data to one dimensional data while per-
forming the reverse transformation with negligible loss. This problem is in part due to the 
lack of regularity in the latent space. Variational autoencoders (VAE) arise as a variant of 
standard autoencoders designed for generative purposes (Kingma & Welling, 2013). The 
key idea of variational autoencoders is to regularize the standard loss function consisting 
in the reconstruction error by including a regularization term constraining the organization 
of the latent space. Basically, variational autoencoders encode each example as a normal 
distribution over the latent space, instead of encoding them as single points, and regularize 
the loss by maximizing similarity of these distributions with the standard normal distribu-
tion. This encoding is conducive to obtain a continuous latent space, namely a latent space 
for which close points will lead to close decoded representation, thus avoiding the severe 
overfitting problem affecting standard autoencoders, for which some points of the latent 
space will give meaningless content once decoded.

As already pointed out, variational autoencoders were initially proposed as a tool for 
generating novel realistic examples by sampling and then decoding points of the latent 
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space. Due to similarities to standard autoencoders some authors also proposed their use 
to detect anomalies. However, it has been noticed that variational autoencoders share with 
standard autoencoders the problem that they generalize so well that they can also well 
reconstruct anomalies (An & Cho, 2015; Kawachi et al. 2018; Sun et al., 2018; Chalapathy 
& Chawla, 2019).

Generative Adversarial Networks (GAN) (Goodfellow et al., 2014) are another tool for 
generative purposes, aiming at learning an unknown distribution by means of an adver-
sarial process involving a discriminator, able to output the probability for an observation 
to be generated by the unknown distribution, and a generator, mapping points coming from 
a standard distribution to points belonging to the unknown one. Moreover, Bidirectional 
GANs extend the above framework by including in their architecture an encoder learn-
ing the inverse transformation of the generator (Donahue et al., 2017). These architectures 
share with variational autoencoders generative capabilities and the particular organization 
of the latent space, and have also employed with success to the anomaly detection task 
(Akcay et al., 2018; Schlegl et al., 2019; Zenati et al., 2019; Sánchez-Martín et al., 2020).

We generally refer to architectures equipped with an encoder and a decoder and enforc-
ing the organization of the latent space thus guaranteeing continuity, as continuous latent 
space autoencoder-based neural architectures.

The main contribution of this work can be summarized as follows: we argue that the 
approach of selecting the worst reconstructed examples as anomalies is too simplistic if a 
continuous latent space autoencoder architecture is employed and, specifically, we show 
that the anomaly detection process can greatly benefit from taking into account the con-
tinuos latent space distribution together with the associated reconstruction error. Indeed, 
we show that outliers tend to lie in the sparsest regions of the combined latent and recon-
struction error space and propose the novel unsupervised anomaly detection algorithms 
VAEOut and LatentOut , that identify outliers by performing density estimation by tak-
ing advantage of this augmented feature space. The proposed approach shows sensible 
improvements in terms of detection performances over the standard approach based on the 
reconstruction error.

The rest of the paper is organized as follows. Section 2 presents preliminary definitions 
and discusses related work. Section 3 introduces the VAEOut and LatentOut unsupervised 
anomaly detection algorithms. Section 4 illustrates experimental results. Finally, Section 5 
concludes the work.

2  Preliminaries and related work

An autoencoder (AE) is a deep neural network trained with the aim of outputting a recon-
struction x̂ of an input sample x as close as possible to x (Kramer, 1991; Hecht-Nielsen, 
1995; Goodfellow et al., 2016). An autoencoder consists in two parts, an encoder f� and 
a decoder g� . An enconder f� is a mapping of a sample from the input feature space to a 
hidden representation in a latent space, and is univocally determined by parameters � . A 
decoder g� is a mapping of a hidden representation from the latent space to a reconstruc-
tion in the input feature space, and is univocally determined by parameters �.

Given an autoencoder ⟨f�, g�⟩ , let x be a sample and let z = f�(x) be the latent vari-
able where the sample x is mapped by the encoder, the reconstruction x̂ of x is given by 
x̂ = g𝜃(z) = g𝜃(f𝜙(x)) and the reconstruction error E(x) of the autoencoder is a measure 
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of dissimilarity of x with respect to x̂ . A common reconstruction error is the mean 
squared error (MSE), defined as

The autoencoder tries to minimize the reconstruction error.
Variational Autoencoders. A variational autoencoder (VAE) is a stochastic genera-

tive model aimed at outputting a reconstruction x̂ of a given input sample x (Kingma & 
Welling, 2013). To this aim, VAE are composed by an encoder f� which outputs param-
eters of q�(z|x) , that is the posterior distribution of observing the latent variable z given 
x, and a decoder g� computing parameters of p�(x|z) , that is the likelihood of x given the 
latent variable z. The prior distribution of the latent variable z is denoted by p�(z) . Thus, 
the actual values of z are sampled from q�(z|x) . Given the latent variable z, the recon-
struction x̂ is obtained as a realization of p�(x|z).

As for the distributions associated with the latent variable z, that are p�(z) and q�(z|x) , 
the common choice is the isotropic normal. The distribution of the likelihood p�(x|z) 
depends on the nature of the data: Bernoulli for binary data or multivariate Gaussian for 
continuous data. In these cases, g�(z) outputs the mean of the distribution and usually 
the reconstruction x̂ is given by g�(z).

Given a variational autoencoder ⟨f�, g�⟩ and a sample x, the reconstruction error is 
represented by the cross entropy of the distribution q�(z|x) relative to the distribution 
p�(x|z):

For example, given x and its reconstruction x̂ , the corresponding contribution e(x, x̂) to the 
above error is given by e(x, x̂) = − log x̂x(1 − x̂)(1−x) = −x log x̂ − (1 − x) log(1 − x̂) for Ber-
noulli data and e(x, x̂) ∝ − log exp−‖x − x̂‖2

2
= ‖x − x̂‖2

2
 for continuous data.

The reconstruction error can be computed through a Monte Carlo estimation. Thus, by 
letting L be the number of samples z(1), z(2),… , z(L) from q�(z|x),

The loss of the variational autoencoder is given by

where the second term represents the KL divergence between the distribution q�(z|x) , 
modelled as a multivariate normal distribution with independent components, and the prior 
p�(z) , modelled as a multivariate normal standard distribution, and plays the role of a regu-
larization term forcing the posterior distribution to be similar to the prior distribution. The 
hyper-parameter � can be used to balance the two terms of the loss (Higgins et al., 2017). 
In such a case, the variational autoencoder is also called a �-VAE.

Reconstruction error-based anomaly detection. The classic use of standard AE for 
anomaly detection is based on the idea that, after the training, these networks are able to 
better reproduce in output the inlier data than the outlier and, hence, the loss or the recon-
struction error of the network is used as an anomaly score (Hawkins et al. 2002). In An 
and Cho (2015) this idea is applied to VAEs, by using as anomaly score the reconstruction 
probability, corresponding to the negative cross entropy

E(x) = ‖x − g�(f�(x))‖
2
2
.

E(x) = −�q�(z|x)

[
log p�(x|z)

]
.

E(x) = −
1

L

L∑

l=1

log p�
(
x|z(l)

)
.

L�,�(x) = −�q�(z�x)

�
log p�(x�z)

�
+ � ⋅ DKL

�
q�(z�x) ‖ p�(z)

�
,
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The experimental results obtained in An and Cho (2015) show that VAE outperforms, in 
terms of AUC, standard AE and PCA for a semi-supervised anomaly detection setting.

A slightly different approach is pursued in Wiewel and Yang (2019), where it is consid-
ered the whole negative loss function

as anomaly score instead of the reconstruction probability, which is only a term of it. The 
authors justify this choice with the slightly better results they obtain in their experiments 
compared to reconstruction probability.

It has been observed that sometimes VAEs share with standard AE the problem that 
they generalize so well that they can also reconstruct anomalies, which leads to view some 
anomalies as normal data. Thus, in Kawachi et al. (2018) the authors try to overcome this 
problem by modifying the structure of VAEs in order to make them able to support super-
vised learning and to be trained with both anomalies and normal data. In particular it is 
adopted an a priori distribution in the latent space that encourages the separation between 
normal and anomalous data which leads to non-standard loss function and anomaly score.

Generative Adversarial Networks for anomaly detection. Among recent approaches 
for detecting anomalies, Generative Adversarial Networks (GANs) have been applied to 
address this problem and yielded results are noticeable.

Roughly speaking, a GAN (Goodfellow et  al., 2014) is a generative model which 
exploits an adversarial process where two models, a discriminator D and a generator G, 
are trained simultaneously. The aim of the generator G is to capture distribution of the data 
and, then, at producing samples as similar to training samples as possible, while the aim of 
the discriminator D is to distinguish a sample coming from the training data and a sample 
produced by G.

Among many existing variants, Bidirectional GAN (Donahue et al., 2017) extends the 
standard GAN model including an encoder learning the inverse of the generator, thus a 
mapping from latent space to data and vice versa are simultaneously learnt.

The first work approaching anomaly detection with GAN is AnoGAN (Schlegl et  al., 
2017), with its extensions GAN+ (Zenati et  al., 2019) and FastAnoGAN (Schlegl et  al., 
2019).

It uses a standard GAN and trains it only on positive samples. Given an instance x, a 
point z in the latent space is searched such that G(z) is as similar to x as possible. Since the 
generator learns how to generate normal samples, even if x is anomalous, G(z) is expected 
to be non anomalous and then the difference between x and G(z) highlights the anomalies.

AnoGAN has been successively improved. In Sánchez-Martín et al. (2020) a BiGAN-
based approach is proposed, it exploits the network architecture of BiGAN to jointly train 
the mapping from image to latent space and from latent space to image and then providing 
a trained model to get the latent representation of an input sample. GANomaly (Akcay 
et al., 2018) introduces a generator with three elements, an encoder and a decoder, namely 
an autoencoder, plus an additional encoder. Thus, given an instance x, the encoder pro-
duces a point z in the latent space which is provided as input to the decoder that outputs x′ 
which, in its turn, feds the succeeding encoder that produces z′ . Thus, the generator learns 
to encode normal data and learns to generate normal data starting from the encoded rep-
resentation. Since the generator produces normal data even if the input data is anomal, 

score(x) = recprob(x) = �q�(z|x)
[log p�(x|z)] =

1

L

L∑

l=1

log p�(x|z
(l)).

score(x) = −L�,�(x)
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its reconstruction will be normal. The difference between z and z′ represents the anomaly 
level.

Latent space-based anomaly detection. There are autoencoder-based anomaly detection 
approaches in the literature that address this task solely relying on the embedding space 
and not on reconstruction error (Guo et al., 2018; Zhang et al., 2018; Corizzo et al., 2019). 
Specifically, the framework described in Zhang et al. (2018) is tailored for nonlinear pro-
cess monitoring, while that described in Corizzo et al. (2019) supports predictive modeling 
tasks from streaming data coming from multiple geo-referenced sensors.

All the three above approaches map points to their latent representation and then assign 
them a score on the basis of the distances from their k-nearest neighbors in the latent space. 
In particular, in Guo et  al. (2018) the score is given by the distance to the k-th nearest 
neighbor, while in Zhang et al. (2018); Corizzo et al. (2019) the score is given by the sum 
of the distances to the k-nearest neighbors. Additionally, Zhang et  al. (2018) takes into 
account also the there called residual space, consisting of the difference between each point 
and its reconstruction. Thus, a second score is obtained as the sum of the distances between 
the image of each point in the residual space and its k-nearest neighbors in the residual 
space. If both the above two scores are below suitable thresholds then the point is recog-
nized as an anomaly.

We note that these approaches are very different from the one here introduced, since 
they do not combine the latent space and the reconstruction error in order to detect points 
that have suspicious reconstruction errors as compared to their latent neighbors. Although 
the framework (Zhang et al., 2018) considers also the residual space, this differs from the 
reconstruction error. Indeed, while the latter is a scalar value, the former is an other point 
of the original feature space. Morever, the latent space and the residual space are taken into 
account separately, thus in Zhang et al. (2018) a point is declared as an anomaly if both its 
latent representation and its residual representation are anomalous independently of each 
other.

3  The VAEOut and LatentOut algorithms

Let I  denote the input space (usually I ⊆ ℝ
d ), let L denote the latent space (usually 

L ⊆ ℝ
k with k ≪ d ), and let E denote the reconstruction error space (usually E ⊆ ℝ ). As 

above pointed out, the traditional approach pursued to detect anomalies using (variational) 
autoencoders is to compare the input to its reconstruction by means of the reconstruction 
error, thus it is based on exploiting only the input and reconstruction error spaces. We 
argue that the approach of selecting the worst reconstructed examples as anomalies is too 
simplistic if a variational autoencoder architecture is employed. Specifically, we show that 
the anomaly detection process can greatly benefit of taking into account the latent space 
distribution together with the associated reconstruction error.

To illustrate this, we considered the MNIST dataset of handwritten digits and created 
a training-set consisting of the 6000 digits from the class 0 (the inliers) plus 90 randomly 
picked digits from the classes 1-9 (the outliers). Figure 1(a) reports the two-dimensional 
latent space of a variational autoencoder trained on the above set of examples (details on 
the architecture are provided in Section 4). In particular, we reported the means of the dis-
tributions associated with training examples (standard deviations are not shown for the 
ease of visualization): inliers are the (blue) dots and outliers are the (red) asterisks.
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First of all we note that, since regular examples (the inliers) form the majority of the 
data, they will be encoded as distributions better complying with the standard normal one. 
In other words, the associated latent distributions will tend to distribute around the origin 
of the latent space and, more importantly, means tend to be closer and supports will over-
lap more.

Nonetheless, not all the normal data complies with the above behavior and, thus, a non-
negligible fraction of inliers spreads also over more peripheral regions. As for the abnor-
mal examples, typically they spread over a wide portion of the latent space, including both 
boundary regions and the central region of the space, their location depending on the simi-
larities they share with normal examples. This means that neither the location of the distri-
butions in the latent space nor their degree of overlapping alone are sufficient to separate 
inliers from outliers. Indeed, in Fig. 1(a) the sparsest regions of the latent space contain 
both normal and abnormal examples.

Consider now Fig.  1(b) where the reconstruction error is associated with each latent 
distribution. It can be seen that even in this case the reconstruction error alone is not suf-
ficient to guarantee a good separation between inliers and outliers. Indeed, though some 
clear anomalies can be recognized by means of a very high reconstruction error, most of 
the outliers have relatively low reconstruction errors. However, Figure 1(b) also suggests 
that outliers tend to lie in the sparsest regions of the latent/reconstruction error feature 
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Fig. 1  Comparing VAEOut and recprob anomaly scores
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space. This can be understood since outliers have two properties: (1) they are few, and 
(2) their reconstruction error, even when it is not exceptionally large, is still significantly 
larger than that of their most similar inliers. All this tends to move away in the augmented 
feature space the outliers from the other points.

3.1  VAEOut algorithm

In light of these observations, the key idea of the proposed approach, called VAEOut , is 
to simultaneously exploit information from the two above highlighted aspects, namely 
the latent space distribution and the reconstruction error distribution, by constructing the 
novel feature space F = L × E , consisting of the juxtaposition of the latent space and of 
the reconstruction error space, and then by measuring the degree of overlapping of the 
examples in this novel feature space F  , namely the density of the distribution of examples. 
Outliers will be the points lying in the sparsest regions of the feature space F .

Specifically, given a dataset S = {x1, x2,… , xn} our goal is to detect the outliers con-
tained in S. With this aim we first train a variational autoencoder ⟨f�, g�⟩ to reconstruct 
examples in S. Given an example xi , let zxi denote the point

where zi ∼ q�(z|xi) is a latent space point sampled from the posterior distribution q�(z|xi) 
and ê(xi, x̂i) is a measure related to the reconstruction error e(xi, x̂i) associated with the 
reconstruction x̂i of xi obtained by means of zi . Specifically, if e(xi, x̂i) is a log-likelihood we 
can take the exponential ê(xi, x̂i) = exp e(xi, x̂i) since all the other features are on a non-log 
scale, otherwise ê(xi, x̂i) could be equal to e(xi, x̂i).

Given a dataset S = {x1,… , xn} , by zS we denote the transformed dataset 
zS = {zx1 ,… , zxn} and by zS = {zx1 ,… , zxn} we denote the standardized versions of zS , that 
is the dataset obtained by normalizing each feature according to its mean and standard 
deviation. Standardization is needed here to handle non-homogeneous features.

To measure the density of a point xi in a set of points S we use nearest neighbor density 
estimation and specifically the average k-nearest neighbor distance of point xi from points 
in S, denoted as k-NN S(xi) . However, instead of employing the distance defined in the 
original feature space, we employ as distance dist(xi, xi) between xi and xj the distance sep-
arating their images zxi and zxj in the transformed dataset.

Thus, the VAEOut anomaly score of xi in the dataset S consists of a k-nearest neighbor 
estimate of the density of zxi in the dataset zS . To take into account Monte Carlo estimation, 
L samples z(l)

xi
 ( l ∈ {1,… , L} ) can be used for each example xi and the distance dist(xi, xj) is 

obtained as the average distance between pair of samples z(l)
xi

 and z(l)
xi

.
Figure 1(c) shows the latent samples and their associated anomaly score. It can be seen 

that now there is a marked separation between inliers and outliers in terms of the anomaly 
score. Inliers tend to have low scores, while almost all the outliers are associated with the 
largest anomaly scores of the population as a consequence of their inherent sparsity. Fig-
ure 1(d) compares the ROC curves obtained by our method ( VAEOut , the solid red line), 
with the ROC curve obtained by exploiting the reconstruction error of a variational autoen-
coder (recprob (An & Cho, 2015), the dashed blue line). Note that the AUC = 0.9063 of 
the standard VAE increases to the value AUC = 0.9908 if VAEOut is employed.

zxi = (zi, ê(xi, x̂i)) ∈ F
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Algorithm  1 details the steps of the proposed technique. First of all, a variational 
autoencoder VAE is trained by exploiting input examples in S . This allows the encoder 
f� and the decoder g� to output parameters of q� and p� . Next, each example xi ∈ S can 
be mapped to the novel feature space F = L × E . In particular, L mappings of xi to F  are 
built. The mappings z(l)

i
 of xi to L , with l ∈ {1,… , L} , are obtained by sampling values 

from q�(z|xi) while the mapping of xi to E are obtained by considering the reconstruction 
x̂
(l)

i
= g𝜃(z

(l)

i
) of xi provided by the decoder, and, then, by computing the measure ê(xi, x̂

(l)

i
) 

related to reconstruction error.
Once the L mappings z(l)

xi
 of xi to F  have been generated, they are normalized by stand-

ardizing each feature with respect to its mean and standard deviation. Next, the distance 
between all pairs of examples xi and xj can be computed by averaging the Euclidean dis-
tances between mappings of xi and xj to F  . Finally, the k nearest neighbors of xi according 
to the above illustrated distance are detected and the outlier score is computed as the mean 
distance between xi and such neighbors.
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3.2  LatentOut algorithm

In this section we present the LatentOut algorithm, which generalizes the strategy of the 
VAEOut algorithm to any other autoencoder-based neural architecture A and also to other 
ways of combining the latent space location and the reconstruction error associated with 
observations in order to improve detection, namely different notions of score. We also call 
LatentOutA,score the variant of the LatentOut algorithm employing the architecture A and 
the score score. Algorithm 2 reports the pseudo-code of LatentOut.

As far as the allowed neural architectures, we consider autoencoder-based ones, namely 
architectures equipped with an encoder f� , associated with the posterior distribution q(z|x) 
of observing the latent variable z given x, and a decoder g� . Note that the above model 
encompass all kind of architectures described in Section 2, thus VAEs, but also bidirec-
tional GANs and also standard AEs.

As for the scores, we distinguish between those that estimate the density in the latent 
space augmented with the reconstruction error and those that determine neighbors by 
taking into account only the original latent space. The former scores require the trans-
formed dataset zS to be standardized by normalizing each feature according to its mean and 
standard deviation. Differently, when scores of the latter family are employed, the trans-
formed dataset zS does not require to be standardized ( �h = 0 and �h = 1 are used to leave 
unchanged the h-th feature distribution).

Before determining final scores, the algorithm computes the sets Nk(xi) consisting of the 
k-nearest neighbors of xi according to the distance dist(xi, xj) calculated on their associated 
transformed points zxi and zxj.

To perform nearest neighbor density estimation, the kNN-density score can be 
employed, also referred to as �-score in the following:

This score requires latent space augmentation and, thus, is related to the density of 
transformed points in the augmented feature space. Note that LatentOutVAE�−score , or 
LatentOutVAE,� for short, is the instance of the LatentOut algorithm corresponding to the 
VAEOut algorithm already described in Sect. 3.1. Hence, when the score specification is 
omitted, as in LatentOutVAE , we assume the employed score is by default the �−score.

�−score
(
Nk(xi)

)
=

1

k

∑

xj∈Nk(xi)

dist(xi, xj).
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Here we introduce an alternative way of injecting spatial information concerning the 
latent space in the process of outlier detection by comparing the reconstruction error of 
each latent point with that of its neighbors. The reconstruction error Z-score , denoted as 
�−score in the following, does not require augmentation of the latent space and represents 
the deviation of the reconstruction error ê(xi, x̂i) from the mean reconstruction error of 
its k-nearest neighbors 𝜇ê

(
Nk(xi)

)
 , expressed in terms of number of standard deviations 

𝜎ê
(
Nk(xi)

)
:
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where

and

The idea is that if the reconstruction error of an observation presents large deviations from 
the reconstruction errors within its neighborhood, this may indicate an anomalous behav-
ior even if the reconstruction error of the observation is not itself suspiciously large. This 
way of perceiving abnormality has clearly connections with those underlying the �−score , 
but gives different results. In order to more precisely characterize the behavior of this score 
with respect to the standard density score, we will compare the two scores in different 
scenarios.

By LatentOutVAE,� we denote the variant of the LatentOut algorithm employing Vari-
ational AutoEncoder architectures with the �−score . Figure 2(a) shows the score com-
puted by LatentOutVAE,� (for k = 100 ) on the variant of the MNIST dataset illustrated at 
the beginning of this section, while 2(b) reports the AUCs obtained by LatentOutVAE,� 
and recprob. The AUC of LatentOutVAE,� is 0.9363, thus smaller than those obtained by 
LatentOutVAE , though better than the AUC = 0.9063 of the standard VAE.

In the sequel we will consider the LatentOut also in combination with different 
other autoencoder-based architectures, specifically GAN-based, such as GANomaly and 
Fast– AnoGAN , and also with classic AutoEncoders.

Before concluding the section, we discuss on the type of anomalies identified by our 
method. In order to try to characterize the kind of anomalies singled out by LatentOut , 

𝜁−score
(
Nk(xi)

)
=

ê(xi, x̂i) − 𝜇ê

(
Nk(xi)

)

𝜎ê
(
Nk(xi)

) ,

𝜇ê

(
Nk(xi)

)
=

1

k

∑

xj∈Nk(xi)

ê(xj, x̂j)

𝜎2
ê

(
Nk(xi)

)
=

1

k

∑

xj∈Nk(xi)

(
ê(xj, x̂j) − 𝜇ê

(
Nk(xi)

))2

.

(a) (b)

Fig. 2  Comparing �−score and recprob anomaly scores
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we refer to well-established classifications of anomaly detection approaches and of type 
of anomalies of interest, as those reported in Ruff et al. (2021).

As for the approach we adopt to isolate anomalies, we can say that it couples those 
based on the reconstruction error with density estimation based approaches (see also Fig. 5 
at page 765 of Ruff et al. (2021)). The general behavior of reconstruction error approaches 
is to learn the encoder-decoder pair that minimizes the reconstruction error once applied 
to the data at hand. The other two main families of anomaly detection approaches are one-
class classification based or distribution-free, whose objective is to partition the space in an 
accepting region containing inliers and a rejecting region containing outliers, and proba-
bilistic based or density estimation, which aim at reconstructing the density generating the 
normal data. We exploit both the first kind of approaches, to associate a reconstruction 
error and a latent space representation with each example, and the third kind of approaches 
to compute an anomaly score.

As for the kind of anomalies, the literature distinguishes between point anomalies and 
group anomalies, and also between non-contextual and contextual anomalies (e.g., see 
Fig. 2 at page 760 of Ruff et al. (2021)). We note that the anomalies singled out by our 
method are better characterized as point anomalies, since the scores we use are designed 
to be evaluated on single observations. Our score exhibits large values when some features 
associated with the examined point deviate from the features associated with its neighbor-
hood. This confirms that the anomalies we detect are point anomalies, since if they were 
immersed in a group of similar observations, i.e. in a group of anomalies, they would not 
probably be pointed out as anomalous. Moreover, since the score compares the observation 
with its neighborhood, we believe our approach shares similarities with contextual point 
anomaly methods. In our case, however, the context is not an homogeneous sub-population 
containing the point or the spatial neighborhood in the original feature space of the point, 
but, being represented by the spatial neighborhood in the latent space, it can be conceived 
as the semantic neighborhood of the point.

Summarizing, we can characterize the kind of anomalies detected by our approach as 
follows: LatentOut couples reconstruction error approaches with density estimation ones 
in order to detect point anomalies according to the semantic context associated with each 
data observation.

4  Experimental results

We start by describing settings which are common to all the experiments reported in this 
section.

In order to generate an unsupervised setup, we considered some labelled dataset and, 
for each class label, we created a novel dataset having as inliers all the examples of the 
considered class and as outliers some randomly picked examples from the other classes. 
Precisely, we selected s examples ( s = 10 or s = 100 have been used) from each different 
dataset class label, so that the total number of outliers is s × (m − 1) , where m denotes the 
number of classes.

In the following we consider the MNIST1 and Fashion-MNIST2 datasets. Both data-
sets consist of 60,000 grayscale 28 × 28 pixels images partitioned in 10 classes: MNIST 

1 http://yann.lecun.com/exdb/mnist/
2 https://github.com/zalandoresearch/fashion-mnist



4336 Machine Learning (2023) 112:4323–4349

1 3

contains handwritten digits, while Fashion-MNIST contains Zalando’s article images. The 
number of outliers within each dataset is also called its (absolute) contamination c. Since 
both the above datasets consist of 10 classes, their contamination corresponds to c = 9s.

As for the autoencoder architecture employed on MNIST and Fashion-MNIST  , the 
encoding part is composed by an initial sequence of convolutional layers that reduce the 
size of the data to 14 × 14 , a flattening layer that transforms the data into a vectorial form 
and two dense layers that brings the data to the latent space having dimension d. The 
decoder consist in a layer that reshapes the data into a bi-dimensional form and a sequence 
of convolutional layers that transform the data back into the original 28 × 28 shape.

As for the parameter L, we verified that it has a limited impact on the accuracy and, 
hence, in the following we report results for L = 1 . All the experimental results are 
obtained by averaging over ten runs, thus we report both the mean and the standard devia-
tion of performance measures. In the following, tables reporting experimental results high-
light the best performance in bold.

4.1  Experiments with the VAEOut algorithm

If not otherwise stated, during experiments described in this section the parameter k is held 
fixed to 0.25c, thus k = 15 for s = 10 and k = 150 for s = 100 . Later, we will study the 
effect of the parameter k on the accuracy. According to the literature (Higgins et al., 2017), 
we employ large values for the parameter � in order to allow the variational autoencoder to 
properly organize the latent space, and specifically � = 104.

VAEOut versus recprob. First of all, we investigated the impact of the proposed strat-
egy on the accuracy of the variational autoencoder-based outlier detection approach, by 
comparing the Area Under the ROC Curve (AUC) of VAEOut with that of recprob, that 
is the standard strategy based on exploiting the VAE reconstruction error. Comparisons 
are conducted by considering the influence of the latent space dimension on the quality of 
the detection. Figure 3 reports the AUCs of VAEOut (red circle-marked lines) and recprob 
(blue square-marked lines) for the latent space dimension d ranging in the interval [2, 32] 
and s = 10 . Due to the lack of space, results for s = 100 are summarized in Table 1.

The results highlight that the proposed strategy is able to improve accuracy of VAE-
based outlier detection. Indeed, in many runs VAEOut improves over recprob, and for 
almost all the digits the achieved improvement is sensible. The experiments also show that 
accuracy of VAEOut is positively affected by the latent space dimension, while this does 
not seem to be the case for the standard VAE. We explain this behavior since lower dimen-
sions constrain distributions within the latent space to overlap more, thus worsening the 
separation induced by the density associated with latent points. From these experiments, 
we conclude that a good choice for the latent space dimension d is in the order of a few 
tens, namely d ∈ [16, 32].

Note that intervals of AUC values reported on the vertical axis of the plots are not iden-
tical. As for digit 1, it must be pointed out that the variational autoencoder is very able 
to reconstruct it, probably since it is the easiest digit in the set, and this explains why the 
recprob AUC is very close to 1. VAEOut shows a slightly smaller AUC for low latent 
dimensions, but reaches a similar AUC for sufficiently large dimensions.

Precision. Another measure employed to evaluate outlier detection approaches is the 
Precision. Specifically, since the goal is to isolate the most deviating dataset examples, we 
used the Prec@n measure, representing the percentage of true outliers among the examples 
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Fig. 3  MNIST dataset ( s = 10 ): AUCs of VAEOut and recprob 

Table 1  AUC for the MNIST datasets ( s = 100).

c d = 8 d = 16 d = 32

VAEOut recprob VAEOut recprob VAEOut recprob

0 0.928±0.016 0.767±0.015 0.945±0.017 0.743±0.033 0.954±0.010 0.603±0.044
1 0.990±0.003 0.995±0.001 0.993±0.001 0.995±0.001 0.995±0.001 0.995±0.001
2 0.808±0.037 0.690±0.016 0.863±0.021 0.691±0.015 0.826±0.035 0.609±0.100
3 0.866±0.017 0.726±0.012 0.898±0.024 0.708±0.021 0.887±0.024 0.663±0.073
4 0.905±0.013 0.832±0.008 0.910±0.015 0.820±0.011 0.910±0.010 0.779±0.023
5 0.896±0.019 0.722±0.020 0.906±0.043 0.717±0.025 0.895±0.016 0.654±0.070
6 0.934±0.018 0.830±0.011 0.944±0.013 0.817±0.021 0.941±0.009 0.735±0.054
7 0.926±0.021 0.883±0.007 0.934±0.014 0.878±0.004 0.933±0.006 0.863±0.008
8 0.864±0.017 0.679±0.012 0.888±0.018 0.660±0.020 0.889±0.020 0.600±0.086
9 0.921±0.012 0.850±0.010 0.940±0.010 0.841±0.016 0.936±0.008 0.747±0.056
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associated with the top n anomaly scores. We set n to the absolute contamination n = c . 
Table 2 compares the Prec@n achieved by VAEOut and recprob on MNIST ( d = 32 ). The 
results point out that VAEOut is able to significantly increase the percentage of true anom-
alies among the examples ranked in the very first positions. Moreover, in different cases the 
precision is doubled.

Note that despite the case s = 10 shows slightly larger AUCs, the Prec@n is higher 
for the case s = 100 . We explain this behavior by noticing that while the inliers of the 
two datasets are the same, the outliers for the case s = 100 have increased tenfold and this 
means that the probability that largest scores are assigned to outliers is increased, although 
overall the outliers are ranked slightly worse according to the AUC.

Sensitivity analysis for the parameter k. Experiments reported in Figure  4 are aimed 
at determining the optimal value for the parameter k, by performing a sensitivity analysis 
with respect to this parameter. With this aim, we took into account log-spaced values k 
in the interval [2, 1024] and determined the AUC of VAEOut on the MNIST dataset for 
s = 10 and s = 100 . In these experiments, the latent space dimension d is held fixed to 
d = 32.

To help understand the effect of k on the accuracy, on the horizontal axis we reported 
the value k∕c = k∕(9s) of k normalized on the absolute contamination c of the dataset, also 
called normalized neighborhood. Each plot reports also the AUC achieved by recprob. It 
can be seen that for a wide range of values of the parameter k the AUC of VAEOut is sensi-
bly larger than that of recprob. In most cases the above property is valid for all the reported 
values of k.

This experiment witnesses that, although VAEOut requires an additional parameter with 
respect to a standard VAE, the selection of the right value for this parameter is not criti-
cal, being almost always guaranteed an improvement. Moreover, the optimal value for the 
normalized neighborhood appears to be located within the interval [10−1, 100] . Thus, the 
normalized neighborhood provides a tool for selecting a reasonable value for k. As a rule 
of thumb, we recommend to use k ≈ N∕3 , where N is the user-specified expected absolute 
contamination or, vice versa, to return N ∈ [3k, 5k] anomalies when k is user-specified.

Impact on the neural architecture. In this experiment we compare the detection per-
formances of Auto-Encoder based anomaly detection (AE), Variational Auto-Encoder 
based anomaly detection (VAE), and VAEOut based anomaly detection. The aim of this 

Table 2  MNIST dataset Prec@n 
for n set to the contamination 
c = 9s

c s = 10 s = 100

VAEOut recprob VAEOut recprob

0 0.462±0.044 0.227±0.026 0.654±0.033 0.295±0.048
1 0.762±0.045 0.744±0.028 0.904±0.005 0.898±0.008
2 0.388±0.042 0.204±0.039 0.429±0.050 0.239±0.083
3 0.377±0.036 0.160±0.036 0.519±0.037 0.272±0.087
4 0.497±0.071 0.453±0.041 0.598±0.019 0.516±0.040
5 0.371±0.032 0.210±0.044 0.524±0.027 0.281±0.080
6 0.490±0.051 0.357±0.046 0.632±0.024 0.393±0.074
7 0.528±0.048 0.493±0.042 0.647±0.026 0.624±0.021
8 0.276±0.049 0.109±0.045 0.494±0.051 0.230±0.080
9 0.470±0.040 0.333±0.048 0.628±0.022 0.390±0.145
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experiment is not to determine the best configuration for each approach, but instead to 
compare the performances of these three autoencoder based approaches when the architec-
ture is held fixed. Thus, all the results are relative to the equivalent network architectures 
and for the same common hyper-parameters. Specifically, the AE has the same structure of 
the VAE, except for employing a deterministic latent space and for the loss consisting only 
of the reconstruction error, while VAEOut builds on the same VAE architecture described 
at the beginning of this section.

Tables 3 and 4 report the AUC of the three methods on the MNIST and Fashion-MNIST 
datasets with s = 10 , respectively, for d = 32 and k set to 30, that is to one third of the 
dataset contamination. While on the MNIST dataset VAE performs better than AE, on the 
Fashion-MNIST dataset with the same loss hyper-parameter � , VAE perform worse than the 
corresponding deterministic architecture.

Importantly, VAEOut always shows clear improvements over the corresponding VAE 
architecture. On MNIST, for some critical classes, see for example digit 8 of MNIST, the 
performance are resolutely winning. On Fashion-MNIST  , despite the sometimes poor 

Fig. 4  MNIST dataset: AUC of VAEOut for varying k values
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performances of the VAE reconstruction error, by exploiting the latent space information 
VAEOut is able to achieve excellent detecting performances, almost always filling the gap 
between the AE and VAE results and going even further.

4.2  Experiments with the LatentOut algorithm

In the previous section we have experimented the VAEOut algorithm. In this section we 
complete experimental results by considering the general LatentOut algorithm. Since 
VAEOut can be regarded as an instance of LatentOut , in order to make clear comparison 
among the considered instances, in the following we will refer to the former algorithm as 
LatentOutVAE,�.

Applying LatentOut to VAE architectures. We start by experimenting LatentOut on Var-
iational AutoEncoder architectures. The number of outlying examples s coming from each 
different class label is set to s = 10 . Experimental results are reported in Table 5, showing 
the AUC obtained by LatentOut on MNIST (table on the top) and Fashion-MNIST (table 
on the bottom). In each table, the first column reports the class label, the second the AUC 
of the basic VAE architecture, while the last two columns show the AUC of LatentOutVAE,� 
and LatentOutVAE,� , respectively.

Table 3  MNIST ( s = 10 ) AUC 
for d = 32 ( k = 30)

Class AE VAE VAEOut

0 0.7053 ± 0.0525 0.8147 ± 0.0443 0.9825 ± 0.0056
1 0.9913 ± 0.0031 0.9973 ± 0.0007 0.9978 ± 0.0005
2 0.6407 ± 0.0534 0.7780 ± 0.0152 0.9504 ± 0.0143
3 0.6844 ± 0.0354 0.7535 ± 0.0133 0.9415 ± 0.0092
4 0.7743 ± 0.0278 0.8415 ± 0.0133 0.9477 ± 0.0106
5 0.6776 ± 0.0323 0.7811 ± 0.0208 0.9523 ± 0.0111
6 0.7651 ± 0.0282 0.8819 ± 0.0133 0.9758 ± 0.0083
7 0.8635 ± 0.0120 0.8970 ± 0.0172 0.9645 ± 0.0052
8 0.5993 ± 0.0328 0.7363 ± 0.0237 0.9277 ± 0.0185
9 0.7781 ± 0.0449 0.8698 ± 0.0287 0.9649 ± 0.0079

Table 4  Fashion-MNIST ( s = 10 ) 
AUC for d = 32 ( k = 30)

Class AE VAE VAEOut

T-shirt/top 0.8388 ± 0.0146 0.4701 ± 0.0369 0.8946 ± 0.0117
Trouser 0.9792 ± 0.0048 0.9520 ± 0.0102 0.9599 ± 0.0111

Pullover 0.8288 ± 0.0240 0.3472 ± 0.0278 0.8757 ± 0.0138
Dress 0.6857 ± 0.0101 0.7867 ± 0.0242 0.8883 ± 0.0132
Coat 0.8420 ± 0.0232 0.4805 ± 0.0452 0.8752 ± 0.0153
Sandal 0.7740 ± 0.0210 0.8738 ± 0.0152 0.9094 ± 0.0165
Shirt 0.7490 ± 0.0270 0.3208 ± 0.0190 0.8419 ± 0.0153
Sneaker 0.9587 ± 0.0129 0.9322 ± 0.0178 0.9729 ± 0.0125
Bag 0.6763 ± 0.0503 0.4269 ± 0.0308 0.8866 ± 0.0288
Ankle boot 0.8905 ± 0.0189 0.6860 ± 0.0363 0.9260 ± 0.0183
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In these experiments, we varied d in [2, 32] and k in [2, 1000] and reported the opti-
mal AUC scored by each method. While for LatentOutVAE,� the optimal AUC value was 
found in the intervals d ∈ [8, 32] and k ∈ [30, 100] on both datasets, and this agrees with 
the analysis already performed in Sect.  4.1, LatentOutVAE,� behaved differently in terms 
of the optival values for the parameters. Indeed, LatentOutVAE,� seems to perform better 
for smaller latent space dimensionalities, namely d ∈ [2, 8] , and for larger neighborhood 
parameters, namely k > 200.

As for the algorithm performances, in these experiments LatentOutVAE,� guaranteed 
always the best accuracy. As for LatentOutVAE,� , it exhibits improvements over the stand-
ard VAE in many cases.

Applying LatentOut to GAN architectures. Here we discuss experiments concern-
ing LatentOut on GAN autoencoder-based architectures. To better exploit the power of 
GANs, we considered the richer CIFAR-10 dataset3, a labeled subsets of the 80 million 
tiny images dataset. This dataset consists of 60,000 32 × 32 colour images partitioned in 
10 classes, with 6,000 images per class. We employed the architectures of GANomaly and 
Fast– AnoGAN described in the respective papers.

We set s = 10 , d = 2 , and k = 30 for LatentOutGANomaly,� and k = 500 for 
LatentOutGANomaly,� . We observed that the accuracy of GANomaly is rather unstable and 

Table 5  Comparison of LatentOutVAE on MNIST (above) and Fashion-MNIST (below)

class VAE LatentOutVAE,� LatentOutVAE,�

0 0.9243±0.0217 0.9835±0.0050 0.9462±0.0114
1 0.9971±0.0006 0.9978±0.0005 0.9818±0.0023
2 0.8590±0.0211 0.9633±0.0124 0.9043±0.0153
3 0.8452±0.0231 0.9423±0.0095 0.9191±0.0202
4 0.8840±0.0187 0.9521±0.0125 0.9031±0.0132
5 0.9003±0.0295 0.9560±0.0121 0.9411±0.0191
6 0.9411±0.0118 0.9766±0.0082 0.9204±0.0100
7 0.9309±0.0203 0.9669±0.0093 0.9242±0.0192
8 0.7935±0.0224 0.9277±0.0192 0.8315±0.0160
9 0.9165±0.0116 0.9664±0.0074 0.9200±0.0150

class VAE LatentOutVAE,� LatentOutVAE,�

T-shirt/top 0.5944±0.0351 0.9194±0.0116 0.6526±0.0119
Trouser 0.9584±0.0074 0.9616±0.0017 0.9120±0.0168
Pullover 0.5341±0.0238 0.8997±0.0306 0.6462±0.0515
Dress 0.8642±0.0096 0.9166±0.0079 0.8626±0.0531
Coat 0.6729±0.0527 0.8752±0.0153 0.7062±0.0854
Sandal 0.8867±0.0172 0.9207±0.0178 0.8650±0.0651
Shirt 0.4714±0.0462 0.8675±0.0099 0.5001±0.0108
Sneaker 0.9515±0.0077 0.9770±0.0024 0.9265±0.0115
Bag 0.5398±0.0723 0.9111±0.0026 0.7492±0.0206
Ankle boot 0.7725±0.0380 0.9543±0.0114 0.7972±0.0668

3 https://www.cs.toronto.edu/∼kriz/cifar.html
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to better understand its behavior we measured the AUC of the methods as a function of 
the number of training epochs (see Figure 5 reports these values for some classes and a 
specific run; missing classes showed the same behavior). Interestingly, LatentOut shows 
large improvements on the AUC of GANomaly , even when the latter value is quite poor. 
Notably, LatentOutGANomaly,� is always able to reach very large AUC values in the very first 
iterations and maintains its accuracy throughout the training procedure. Table 6 reports the 
AUC of the methods after 200 epochs.

Fig. 5  AUC of GANomaly , LatentOutGANomaly,� and LatentOutGANomaly,� on CIFAR-10 varying the epochs

Table 6  AUC of LatentOutGANomaly on CIFAR-10 

class GANomaly LatentOutGANomaly,� LatentOutGANomaly,�

airplane 0.8351±0.0410 0.9147±0.0344 0.9931±0.0118
automobile 0.5461±0.1178 0.8470±0.0373 0.9957±0.0036
bird 0.8442±0.1110 0.7939±0.0395 0.9933±0.0056
cat 0.6887±0.1180 0.7844±0.0341 0.9834±0.0114
deer 0.5948±0.0836 0.9001±0.0261 0.9884±0.0100
dog 0.6312±0.0874 0.7782±0.0512 0.9797±0.0160
frog 0.8511±0.0860 0.8317±0.0357 0.9915±0.0054
horse 0.6318±0.0867 0.8954±0.0294 0.9933±0.0086
ship 0.6794±0.0934 0.9055±0.0283 0.9911±0.0053
truck 0.6558±0.0800 0.9351±0.0299 0.9906±0.0084



4343Machine Learning (2023) 112:4323–4349 

1 3

In order to visualize the most difficult examples for each method, we collected the 
example scoring the top absolute difference between the ranking of GANomaly and the 
ranking of LatentOut . We verified that in these experiment all the above examples cor-
respond to true anomalies showing a small GANomaly score and a large LatentOut score. 
Figures 6 (for LatentOutGANomaly,� ) and 7 (for LatentOutGANomaly,� ) report thest most devi-
ating anomalies (on the first row). Under each image there are the relative ranking accord-
ing to GANomaly (above) and according to LatentOut (below), where 1.0 (0.0, resp.) 
stands for top ranked (bottom ranked, resp.). The subsequent three rows represent the 1st, 
2nd and 3rd nearest neighbors in the latent space of the anomalous example. As expected, 
in most cases anomalies share similarities with their neighbors in the latent space, but the 
different reconstruction error allows LatentOut to subvert the ranking for these anomalous 
examples.

Due to the large performances of LatentOut� , we also tested LatentOutFast– AnoGAN,� on 
CIFAR-10. The AUC values are reported in Table 7 without standard deviations, since we 
executed a reduced number of runs.

Fig. 6  Most deviating anomalies recognized by LatentOutGANomaly,�

Fig. 7  Most deviating anomalies recognized by LatentOutGANomaly,�
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Table 7  AUC of 
LatentOutFast– AnoGAN,� on 
CIFAR-10 

class Fast-AnoGAN LatentOutFast−AnoGAN,�

airplane 0.680 0.950
automobile 0.950 0.981
bird 0.680 0.940
cat 0.610 0.771
deer 0.750 0.986
dog 0.670 0.860
frog 0.720 0.940
horse 0.650 0.807
ship 0.676 0.843
truck 0.735 0.995

Fig. 8  AUC of LatentOutVAE,� on MNIST and of LatentOutGANomaly,� on CIFAR-10 for different k values 
( d = 2)
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Sensitivity of LatentOut� to the parameter k. In order to study the impact of the 
parameter k on LatentOut� , we considered log-spaced values k and determined its AUC 
of LatentOutVAE,� on MNIST and of LatentOutGANomaly,� on CIFAR-10, in both cases 
for s = 10 . Since, accordingly to the previous experiments, we verified that LatentOut� 
behaves better for smaller latent space dimensionalities, we held fixed d to 2.

Figure  8 reports the results of this experiment. The abscissa reports the value of the 
parameter k, ranging from 50 to 800, an interval including the optimal performances 
obtained in the other experiments.

The results highlight that LatentOutGANomaly,� is practically insensitive to the parameter 
k, while it has a certain impact on the quality of LatentOutVAE,� . In the latter case, some 
classes benefit from enlarging the value of k. An intermediate value seems good enough in 
all cases. We can conclude that the �−score requires values of k different from the �−score 
to reach its best performances. We can relate k to the contamination by k = 3c ( c = 90 in 
these experiments) and suggest k ≈ 3N as a rule of thumb to select an initial value for k.

Comparison with baseline methods. We compared our method with three baseline meth-
ods: k-Nearest Neighbour (KNN), Isolation Forest (IF) and Local Outlier Factor (LOF). In 
particular we considered the tabular datasets in Rayana (2016) whose statistics are reported 
in Table 8, as well as the Smartphone-Based Recognition of Human Activities and Postural 
Transitions Data Set4. The former are a family of binary datasets created specifically for 
outlier detection, the latter is a multiclass dataset that we treated in the same way as the 
other multiclass images datasets, it consists in a collection of real attributes obtained by 
sensor signals with the aim of recognizing 12 different human movements; we choose this 
dataset because among the tabular datasets avaliable it is one with the largest dimension 
( d = 561 ) and size ( n = 10929 ) and therefore more suitable to our analysis.

Table 8  Statistics of the datasets Dataset Points Dim. Anomalies Anomalies%

Letter 1600 32 100 6.3
Musk 3062 166 97 3.2
Satimage-2 5803 36 71 1.2
Speech 3686 400 61 1.7
Wbc 278 30 21 5.6

Table 9  AUC of LatentOutAE on tabular datasets

dataset AE LatentOutAE,� LatentOutAE,� KNN IF LOF

Letter 0.7225 0.7467 0.7241 0.8950 0.6672 0.8872
Musk 0.9572 0.9966 0.9488 0.3726 0.9993 0.4157
satimage-2 0.9823 0.9953 0.9685 0.6400 0.6900 0.5400
speech 0.4708 0.5626 0.4685 0.5200 0.4600 0.5000
Wbc 0.9446 0.8944 0.9626 0.9492 0.9472 0.9313

4 h t t p s : / / a r c h i v e . i c s . u c i . e d u / m l / d a t a s e t s / S m a r t p h o n e -
Based+Recognition+of +Human+Activities+and+Postural+Transitions
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Among all the versions of our method we selected the ones based on standard Autoen-
coders, i.e. LatentOutAE,� and LatentOutAE,� , because other architectures are specific for 
images datasets. Results are reported in Tables 9 and 10.

These datasets consist of few attributes if compared with image dataset and have a 
flat nature. In some cases the baseline methods are able to behave better than the more 
complex neural architecture. However, importantly LatentOutAE,� and LatentOutAE,� 
almost always improve over standard Autoencoders and perform better then the base-
lines in different cases.

As the dimension and the complexity of the datasets grow, our method can perform 
far better than the baselines; indeed, we considered also CIFAR as a more complex sce-
nario. As we can see in Table 11, on CIFAR the AUC values obtained by KNN, IF and 
LOF are always much smaller than the ones obtained by LatentOutGANomaly,�.

This set of experiments highlights that our method is very effective with large dimen-
sionality datasets. This is due to the fact that using the feature space F  instead of the 

Table 10  AUC of LatentOutAE on Smartphone-Based Recognition of Human Activities and Postural Tran-
sitions Data Set 

class AE LatentOutAE,� LatentOutAE,� KNN IF LOF

0 0.7491 0.9438 0.7737 0.9891 0.9625 0.7886
1 0.8797 0.9192 0.8445 0.9919 0.9411 0.8897
2 0.6362 0.8824 0.7111 0.8430 0.9140 0.6927
3 0.9426 0.9441 0.7462 0.9585 0.9346 0.5191
4 0.9373 0.9609 0.7515 0.9694 0.9503 0.5371
5 0.9310 0.9681 0.6420 0.9651 0.9291 0.4894
6 0.5925 0.6443 0.5925 0.7364 0.8333 0.7046
7 0.5751 0.6180 0.5751 0.7059 0.7636 0.6731
8 0.3539 0.8753 0.3901 0.5492 0.7348 0.5742
9 0.4282 0.8721 0.4126 0.6454 0.7922 0.5914
10 0.3069 0.8117 0.3578 0.3431 0.7105 0.4471
11 0.3309 0.8087 0.3284 0.4072 0.6281 0.4134

Table 11  AUC of LatentOutAE 
on CIFAR-10 

class LatentOutGANomaly,� KNN IF LOF

airplane 0.9931 0.6789 0.6643 0.6771
automobile 0.9957 0.3989 0.4354 0.4181
bird 0.9933 0.7206 0.6814 0.6979
cat 0.9834 0.4875 0.4939 0.4907
deer 0.9884 0.7248 0.7209 0.6722
dog 0.9797 0.4579 0.4952 0.4508
frog 0.9915 0.7674 0.7579 0.6658
horse 0.9933 0.5051 0.5390 0.5413
ship 0.9911 0.6822 0.6956 0.6697
truck 0.9906 0.4100 0.5446 0.3872
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original space of the data, maintains the semantic distribution of inliers and outliers, but 
the smaller dimension of the feature space allows to avoid issues related to the curse of 
dimensionality.

5  Conclusions

The main goal of this work is to show that, within the context of autoencoder neural 
networks architectures, the outlier detection process can greatly benefit of taking into 
account the latent space distribution together with the associated reconstruction error. 
Specifically, we observed that outliers tend to lie in the sparsest regions of the combined 
latent/error space and proposed the novel unsupervised anomaly detection algorithm, 
called LatentOut , that exploits this property to identify outliers. The novel approach 
always showed sensible improvements in terms of detection performances over the basic 
autoencoder-based architecture to which it is applied, especially as the dimension of the 
dataset increases. The comparison with baseline methods has shown that it has compa-
rable performances on less complex datasets.
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