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Abstract
Outlier detection in process mining refers to aspects such as infrequent behavior in rela-
tion to the underlying business process models or to anomalous latencies of task execution, 
termed as temporal anomalies. In this work, we focus on the latter form of anomalies and 
we aim at investigating in depth the behavior of several proximity-based variants, which 
are shown to outperform simple statistical ones. We investigate multiple distance func-
tions and approaches to establishing the outlierness of traces or individual tasks, and we 
explain the superiority of our proposals over existing proximity and probability distribution 
fitting-based techniques yielding up to 2.05X higher F1 score. We also provide guidelines 
as to which variant to be chosen based on the type of anomalies targeted and the dataset 
characteristics.

Keywords  Outlier detection · Anomaly detection · Business processes · Process mining

1  Introduction

Nowadays a lot of businesses turn to Business Process Management (BPM) in order to 
improve their processes and become more efficient. BPM is the art and science of over-
seeing how work is performed in an organization to ensure consistent outcomes and to 
take advantage of improvement opportunities (Marlon et al. 2013). Thus the main focus of 
BPM is to improve the processes in a business. A business process is represented as a set 
of tasks and their flows, which are orchestrated to achieve a common business goal (Kueng 
and Kawalek 1997). Since BPM execution is supported by a breadth of software tools, 
automated log collection is typically enabled. The logs cover a variety of aspects of the 
execution of a business process instance at a fine level of granularity, e.g., when a specific 
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task of the process was triggered. Each logged event corresponds to a specific trace accord-
ing to the process instance from which it was generated and the logs contain events from a 
collection of traces.

These data can be processed using data mining techniques to provide more knowledge 
about the business than just monitoring (van der Aalst 2016).

In this work, we focus on the broader area of finding anomalies (or equivalently, out-
liers) in the monitored data of business processes. An outlier is “an observation which 
deviates so much from other observations as to arouse suspicions that it was generated by 
a different mechanism” (Hawkins 1980). The outlying data often contains useful informa-
tion about the abnormal behavior, which is the reason that is used in applications such as 
intrusion detection (Jiang et al. 2006), credit card fraud (Tom and Fawcett 2002), and so on 
Aggarwal (2017).

Detecting deviations from the normal execution of business process based on histori-
cal data in a event log is also termed as business process deviance mining (Francesco and 
Luigi 2018). The targeted abnormalities can be related to a variety of issues, such as delay 
in a task execution across several traces, or wrong sequences of tasks in a trace.

Most studies in the field focus on finding outlier patterns in the sequence of events in a 
trace, e.g.,  (Satyal et al. 2019; Conforti et al. 2017) are proposals that detect such struc-
tural anomalies. This is arguably useful as it reveals and gives rise to several issues, e.g., 
the fact that the process may be executed in multiple not fully aligned manners.

A complementary and less explored approach to performing meaningful outlier detec-
tion in the domain of business processes is to identify anomalies in the logged behavior 
of the activity latencies in terms of non-typical runtimes (durations). The detection can 
be applied to both individual activities and traces as a whole. More specifically, an outlier 
event refers to a logged instance of a specific activity, the execution time of which is non-
typical compared to other instances of the same activity. Similarly, an outlier trace com-
prises activity instances, which are characterized by an abnormal combination of execution 
times that differentiates it from the rest of the traces. These anomalies are termed here as 
temporal ones, as discussed in Rogge-Solti and Kasneci (2014).

In the literature, there are multiple approaches to detecting outliers, regardless of the 
application domain, such as probabilistic and statistical, linear modeling, proximity-based 
and clustering ones (Aggarwal 2017; Boukerche et al. 2020).

Proximity-based techniques heavily rely on the notion of k-nearest neighbors (Goldstein 
and Uchida 2016). The contribution of this work is that it systematically investigates the 
performance of several variants of such nearest-neighbor-based outlier detection techniques 
to deal with temporal anomalies in business processes. We experimentally show that small 
changes in the rationale of each technique may have a tangible impact on their effective-
ness. We also derive conclusions as to which variant to be selected under different settings.

More specifically, we build upon our recent work in Mavroudopoulos and Gounaris 
(2020), which showed the potential of distance-based outlier detection (Knorr and Ng 
1999, 1998) over the statistical approach in Rogge-Solti and Kasneci (2014). Distance-
based outlier detection is the most prominent representative of proximity-based methods 
(Aggarwal 2017) and its main function is the computation of the number of neighbors for 
each instance. To the contrary, statistical approaches rely on computations of values, such 
as mean execution times and standard deviations, whereas clustering-based methods first 
group points in clusters and then detect points not belonging to any cluster and/or post-
process the clusters formed using statistical techniques.

The main extension in this work compared to Mavroudopoulos and Gounaris (2020) is 
that we explore a wider range of alternatives to perform proximity-based outlier detection 
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that differ in their rationale, the criteria employed and the distance functions although they 
all leverage the computation of the k nearest neighbors.

Through thorough evaluation from scratch, we derive insightful conclusions regarding 
these dimensions when operating both at a trace and a task event level.

In our experiments, we mainly deal with performance in terms of precision and recall 
in a wide range of parameters and the results show that the proximity-based variants pre-
sented in this work are robust and perform significantly better than existing solutions for 
temporal outlier detection in business process logs.

The proximity-based variants that we propose achieve a higher F1 score up to 1.84X 
over the proximity-based technique in Hsu et al. (2017) and up to 2.05X compared to the 
probability distribution fitting technique in Rogge-Solti and Kasneci (2014); the proposals 
in Hsu et al. (2017), Rogge-Solti and Kasneci (2014) are our direct competitors since they 
directly target temporal anomalies.

Based on the exact type of temporal anomalies and the amount of outliers in the dataset, 
we provide guidelines as to which variant to be chosen, since there is not a globally domi-
nant one, as we show in our evaluation results. The complete implementation is provided in 
open source and our experiments are reproducible; the implementation contains an exten-
sive re-engineering in a more efficient manner than in our previous work in Mavroudopou-
los and Gounaris (2020).1

The remainder of this work is structured as follows. In Sect 2 we give the formal defi-
nitions. In Sect.  3, we present the different methods for detecting trace and event outli-
ers, respectively. In Sect. 4, we present the experimental evaluation. We discuss additional 
issues in Sect. 5. Next, we present the related work and we conclude in Sect. 7.

2 � Preliminaries

We follow the same terminology and event log definition as in many other works in busi-
ness process mining, e.g., (Conforti et al. 2017; Rogge-Solti and Kasneci 2014). More spe-
cifically, we assume that businesses have a mechanism to record the corresponding event 
logs in place, in order to analyze their processes. An event log is composed of a set of 
traces. Each trace, or equivalently case, corresponds to a specific process instance execu-
tion and is identified by a unique case identifier. The instance execution is manifested as a 
recorded sequence of events. Each event records the execution of an activity in a particular 
trace (case).2

Definition 1  Event Log: let A = {a1, a2,… , am} be a finite set of activities (tasks) of 
size m and E = {e1, e2,… , en} be a finite set of events of size n. A log L is defined as 
L = (E,C, � , �, ts,⪯) where C is the finite set of Case (Trace) identifiers, � ∶ E → C is a 
surjective function assigning events to Cases, � ∶ E → A is a surjective function assigning 
events to activities, ts records the timestamp denoting the finish of task execution, and ⪯ is 
a strict total ordering over events, normally based on execution timestamps.

1  https://​github.​com/​mavro​udo/​Proxi​mity-​based_​Outli​erDet​ection_​BPM.
2  Note that we use the term event differently from standards in business processes such as BPMN2.0, where 
the notion of event has a different meaning.

https://github.com/mavroudo/Proximity-based_OutlierDetection_BPM
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From the definition above, it is straightforward to calculate the latency of each task 
based on the difference between its timestamp and the timestamp of its immediate prede-
cessor; process instance start and termination events are included in the logs. The latency 
includes both the task duration and any waiting time.3

In order to detect outlier traces, i.e, traces that deviate significantly from other traces in 
terms of the latency of their activities,

we first group the L entries by trace, i.e., case identifier and then convert every trace to a 
vector of size m, where each position to this vector corresponds to a distinct activity.

Definition 2  Trace Vector: given a trace t, the Trace Vector of this trace, is a vector 
(t1, ..., tm) where m is the number of different activities in the process to which L refers and 
ti is the mean execution time of all events of type ai in t.

In the definition above4, execution time should be interpreted as equivalent to task 
latency.

Given that we employ a nearest neighbor rationale to detect outliers, to avoid some 
activities dominating the distance computations, a common preprocessing step is to nor-
malize the data. Therefore, no attribute dominates the distance calculation during the out-
lier detection process. Overall, we create a trace matrix [t;t�;t��;...] , where each row is a trace 
vector and there are m columns. We then apply the z-score normalization Equation (1) to 
every attribute (column in the trace matrix), so that its mean value becomes equal to 0 and 
its standard deviation is equal to 1 Aggarwal (2017).

Any proximity-based outlier detection technique for log traces involves the computation of 
the distance between two trace vectors. To this end, in this work, we investigate four dis-
tance functions, as follows.

Definition 3  Trace Vectors Distance: given two trace vectors t1, t2 , where t1 = (t1
1
,… , t1

m
) 

and t2 = (t2
1
,… , t2

m
) , we investigate four different ways of calculating the distance dist(t1, t2) 

between two trace vectors: 

1.	

2.	

(1)Z =
X − mean(X)

std(X)
, X is a column of the trace matrix

(2)RMSE(t1, t2) =
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m∑

i=1

(t1
i
− t2

i
)2

m

(3)Euclidean(t1, t2) =

√√√√
m∑

i=1

(t1
i
− t2

i
)2

4  This definition differs from the one in our previous work in Mavroudopoulos and Gounaris (2020), since, 
in this work we exclusively focus on the temporal attributes of a trace and not on complementary structural 
aspects.

3  If the logs contain the start and end finish time of each task explicitly, then our approach to detecting 
latency anomalies can be applied to detecting anomalous task durations in a straightforward manner. Also, 
in that case, the events need not ordered in a strict order. These aspects do not affect out techniques.
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3.	

4.	
S is the covariance matrix.

All the distance functions above are broadly used for applications like proximity-based 
outlier detection and clustering. The first three ones are simple and easy to compute, 
whereas the last one can better capture the correlations between different activities. All 
functions can be used in the outlier detection methods described in Sect. 3 and we evaluate 
their performance in Sect. 4.1.1.

Outliers regarding the duration of individual activities of the same event type are referred 
to as temporal outliers at the event level, as opposed to the outliers at the trace level men-
tioned above. At the event level, each event type is examined separately i.e., log entries in 
L are grouped by the activity they refer to through the function � . Given that the dataset 
comprises single-dimensional points denoting the execution time of activity instances, we 
employ the Manhattan distance as the distance metric for two points, since RMSE, Euclid-
ean and Chebyshev have the same formula as Manhattan when used in 1-dimension objects 
and Mahalanobis distance in 1-dimension is equal to Manhattan distance divided by stand-
ard deviation, which is a constant value for the events in the same activity and therefore does 
not impact on the outcome of proximity-based outlier detection. Hence, when looking for 
temporal outliers at the event level, it is not required to investigate multiple distance func-
tions. Moreover, normalization in the execution latencies is not needed because distances are 
calculated between event instances of the same type exclusively. The aim of temporal event 
outlier detection is to identify the event log entries, for which the corresponding execution 
latency is highly dissimilar compared to the rest of the executions of the same activity type.

Our high-level approach is depicted in Figure 1 and is detailed in the next section.

3 � Temporal outlier detection based on proximity methods

In this section, we introduce four different variants of outlier detection that can be applied 
at both the trace and event level. The first three have been introduced in our previous work 
(Mavroudopoulos and Gounaris 2020), however they were evaluated using only the Euclid-
ean distance. The common feature of all these variants is that, for each trace or event, they 
perform range queries and examine its neighborhood. Another common feature is that they 

(4)Chebyshev(t1, t2) = maxm
i=1

|t1
i
− t2

i
|

(5)Mahalanobis(t1, t2) =

√
(t1 − t2)S

−1(t1 − t2)

Fig. 1   High-level approach
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heavily rely on user-defined parameters, the sensitivity to which needs to be evaluated. In 
all variants, the traces are represented as normalized vectors, as discussed in the previous 
section, forming a trace matrix. We also employ the same variants to detect isolated outlier 
events. We conclude this section with the discussion of existing techniques for temporal 
outliers in business process logs.

3.1 � Proximity‑based variants for trace and event outlier detection

When targeting trace outliers, each trace is treated as a multi-dimensional point, whereas, 
for event outliers, the points are single-dimensional ones. According to the first variant, 
each point is assigned an outlier factor, which is equal to the sum of distances from the 
k-nearest neighbors, where k is a user-defined tuning parameter. As such, the points that, 
when depicted in a euclidean space, are located in areas with low density, will be reported 
as outliers. Once we have calculated the outlier factor for every point, we report the top � 
values as outliers. Formally, in this variant, the temporal outliers are defined as follows.

Definition 4  Temporal outlier (Top-� ): given a set of points, a point p is an outlier if the 
sum of the distances dist(p, p�) from the closest k other points p′ is in the top � values, 
where k and � are parameters defined by the user.

Alternatively, after we compute the outlying factor exactly as previously (i.e., as the 
sum of the distances from the k-closest neighbors), we can report the points that their fac-
tor deviates more than n times the standard deviation from the mean value. This method 
assigns a binary label to each point, depending on whether it is an outlier or inlier, in con-
trast to the previous variant, which assigns an outlying score and therefore, a threshold is 
required to distinguish the anomaly points. This variant is better tailored to settings where 
the number of outliers is unknown, since no � threshold is defined. We formally define it in 
Definition 5 and refer to this method as Probabilistic.

Definition 5  Temporal outlier (Probabilistic): given a set of points, a point p is an out-
lier if the sum of the distances dist(p, p�) from the closest k other points p′ is greater than 
meanof + n ∗ stdof  , where meanof  and stdof  are the mean value and standard deviation of all 
the outlier factors, respectively; k and n are parameters defined by the user.

In the third variant, we employ the most common form of proximity-based outlier 
detection, which is also known as binary distance-based, and is proposed in Knorr and Ng 
(1998), Knorr and Ng (1999). This method is more sensitive to the user defined parameters 
than the previous methods.

Definition 6  Temporal outlier (Distance-based): given a set of points, a point p is an out-
lier if it has less than k neighbors in a radius R, where k and R are parameters defined by 
the user.

To better understand the above definitions, consider the example in Figure 2, where 10 
traces of a process containing two activities are mapped to a 2d space. We focus on the 
two red points, A and B, as shown in the left-most figure. In the middle figure, assum-
ing that we set k = 3 , we depict the neighbors of these two points in line with the Top-� 
and Probabilistic definitions using the Euclidean distance. It is obvious that the sum of the 



4107Machine Learning (2023) 112:4101–4128	

1 3

distances to the neighbors is greater for point A than for point B, but reporting A as an out-
lier depends on the � and n parameters. Figure 2(c) shows an application of the Distance-
based variant, where, with k =3, A is reported as an outlier and B as an inlier. In general, 
different results are expected from the different variants.

LOF (Local Outlier Factor) is a (local) density-based outlier detection method, proposed 
in Breunig et al. (2000). It accounts for varying point densities within the same dataset and 
aims to address the limitations of the techniques in Knorr and Ng (1998), Knorr and Ng 
(1999), which can be deemed as global density ones. All variants till now consider a global 
view of the dataset, since they rely on parameters that are constant for all points on the 
dataset exclusively. By contrast, LOF compares its neighbourhood against the neighbour-
hood of its k closest neighbors. It works similar to the Top-� variant, as it assigns a LOF 
degree of abnormality, denoted as LOFk , for each point (Breunig et al. 2000). When the 
value of LOF increases, this indicates that fewer points are in close distance from the ref-
erence point and thus this point should be reported as an outlier. In order to derive binary 
decisions as to whether a trace or an event is outlier or not rather than a ranking of traces, 
we report the top � points.

Definition 7  Temporal outlier (LOF): given a set of points, a point p is an outlier if its 
LOFk is in the top � values, where k and � are parameters defined by the user.

A small note regarding the Top-� and LOF variants when applied on individual events 
is that it might be the case that we want to report � outliers across all activities rather than 
a single one. In that case, we employ the following procedure. We apply 0-1 normalization 
to the outlying factors reported for each activity; transforming the factors into a common 
range allows us to report the � most outlying events from all the activities rather than the 
top-� of every single activity.

3.2 � Competitors

Our work is not the first one that proposes nearest-neighbor-based techniques to detect 
temporal outliers in the field of business processes. Also, there is another technique in the 
literature that deals with temporal outliers using probability distribution fitting. We briefly 
describe these two existing relevant techniques below.

(a) (b) (c)

Fig. 2   a An example of 10 traces with two activities. b The 3 closest neighbors of traces A and B. c Exam-
ple application of the Distance-based variant over traces
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ODAL is an earlier proximity-based method proposed in Hsu et  al. (2017) to detect 
anomaly business process instances (traces) using a set of activity-level durations, namely 
execution, transmission, queue and procrastination. ODAL also uses fuzzy values to pre-
sent contextual information, such as agents experience, that may have impact on the pro-
cess. First, all the traces with the same activities are grouped together, and then, for each 
trace, the distance from the k-th neighbor in the group is calculated and reported as out-
lier, if this distance is greater than n times the standard deviation from the mean value of 
the other k-distances in this group. In order to calculate the distance between two traces, 
ODAL employs the Euclidean distance for every activity in the trace and sums the results. 
The main differences from the Probabilistic variant is that (i) it uses the distance from the 
k-th neighbor instead of the sum of distances from the k-neighbors, making it less robust 
and (ii) operates on non-normalized trace vectors. We directly compare ODAL against our 
proposals for proximity-based variants over traces and the experimental results show that 
the differences mentioned above have a significant impact.

Temporal event outlier detection is first addressed in Rogge-Solti and Kasneci (2014), 
where Rogge-Solti et al presented a method to find temporal anomalies, i.e. anomalies con-
cerning the running time of an activity in a process, using probability distribution fitting. 
The key point is that, most commonly in real cases, the distribution of the task execution 
latencies does not follow a normal distribution; so the proposal in Rogge-Solti and Kasneci 
(2014) leverages a more robust distribution fitting method, which relies on the work in 
Yeung and Chow (2002). We directly compare the proximity-based variants against this 
distribution fitting technique as well.

Finally, since there is a trend to employ deep learning for anomaly detection (Pang et al. 
2021), we compare the nearest-neighbor-based techniques against autoencoders, which are 
neural networks that try to recreate the input into their output and have been used in several 
state-of-the-art solutions for outlier detection. The distance between the input and the out-
put vector can be used as the outlierness score. Two different implementations of autoen-
coders are used. The first one is a Deep-Learning Autoencoder. Such autoencoders contain 
more than one hidden layers and they are trained using normal input only Sakurada and 
Yairi (2014). We use a similar approach to the one in Zong et al. (2018) without the Gauss-
ian mixture and we will describe its structure in detail in the evaluation section. The second 
one employs Denoising Autoencoders, which are neural networks that consist of one hid-
den layer. Their advantage is that they are trained in the whole dataset, which is aligned 
with the methods proposed in this work. In Nolle et al. (2016), the authors use this type of 
autoencoders to detect structural anomalies in business process logs; however, there is no 
work to date that employs them for temporal anomalies.

4 � Evaluation

In our experiments, we have used both real-world and synthetic datasets to evaluate the 
performance of the proposed methods. We start by presenting the datasets, followed by 
the evaluation of the different proximity-based trace outlier detection methods, along with 
the ODAL Hsu et al. (2017). Then, we adapt the proximity-based methods and apply them 
to the event outlier detection case, while comparing them against the proposal in Rogge-
Solti and Kasneci (2014). All tests were conducted in a machine with 16GB of RAM and a 
3.2GHz CPU with 8 cores. The source code for all of the proposed proximity-based outlier 
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detection methods is implemented in Scala-Spark to allow for scalability and is publicly 
available on GitHub, as already stated.

The real-world datasets are taken from the Business Process Intelligence (BPI) Chal-
lenges, and more specifically from the 2011, 2012, 2015 and 2017 ones.

–	 BPI_20115 is an event log file from an academic hospital.
–	 BPI_20126 is an event log of a loan application process.
–	 BPI_20157 is a log file that contains traces from a Dutch municipality.
–	 BPI_20178 is an event log, which also corresponds to a loan application of an Dutch 

financial institute.

More information for each of these datasets are presented in Table 1.

In order to generate a synthetic dataset with ground truth data, we use the PLG2 tool to 
create a dataset with 10,000 traces, which contain events from 30 different activities. Then, 
following a similar approach to de Lima Bezerra and Wainer (2013), Nolle et al. (2019), 
Böhmer and Rinderle-Ma (2016) we inject artificial anomalies that deviate from 3 to 3.5 
times the standard deviation from the mean duration time of the activity, affecting a portion 
of the traces ranging from 0.5% to 10%. The anomalies types are either Delay anomalies, 
where the completion of an activity is delayed, or Acceleration, where the completion of an 
activity is accelerated.

4.1 � Evaluation of trace outlier detection

We divide this part of the evaluation in two parts for the synthetic and the real datasets, 
respectively. The synthetic datasets are accompanied by ground truth data, so that we can 
accurately report precision and recall values. On the other hand, the real datasets enable us 
to demonstrate the effectiveness of our proposals in practice.

Table 1   Real world dataset characteristics

Dataset #Traces #Activities #Events Min. 
events/
trace

Max. events/trace Mean events/trace

BPI_2011 1199 624 52.217 2 101 43.5
BPI_2012 13,087 24 262,200 3 175 20.3
BPI_2015 1143 398 150.291 1 1814 131.4
BPI_2017 31,509 26 1,202,267 10 180 38.1

5  http://​doi.​org/​10.​4121/​uuid:​d9769​f3d-​0ab0-​4fb8-​803b-​0d112​0ffcf​54.
6  http://​doi.​org/​10.​4121/​uuid:​3926d​b30-​f712-​4394-​aebc-​75976​070e9​1f.
7  http://​doi.​org/​10.​4121/​uuid:​a0add​fda-​2044-​4541-​a450-​fdcc9​fe16d​17.
8  https://​doi.​org/​10.​4121/​uuid:​5f306​7df-​f10b-​45da-​b98b-​86ae4​c7a31​0b.

http://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
http://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://doi.org/10.4121/uuid:a0addfda-2044-4541-a450-fdcc9fe16d17
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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4.1.1 � Synthetic datasets

We have conducted experiments for the 5 different proximity-based methods in order to 
find outlier traces. We use 4 synthetic datasets. Each one contains 10,000/,traces with 
injected artificial temporal anomalies affecting a portion of the traces (from 0.5 to 10%) 
as stated above. Each experiment has been executed for a range of different values of 
parameters depending on the exact method employed. All methods employ the param-
eter k, which defines the number of closest neighbors that will be taken into account; 
we vary k in a range from 1 to 200. For Top-� and LOF, we first keep k equal to 50 
while varying � between 1 and 2000 and then we set � equal to the number of outliers in 
the dataset, to test the parameter k. Regarding the Probabilistic variant and the ODAL 
method, we first test the parameter n taking values from 0.5 up to 4.5 with k = 50 and 
then we keep n = 2 while varying the k. Similarly, for the Distance-based variant, first 
we vary R with k = 50 and then we vary k with R = 0.05 . Except for the different input 
parameters, each experiment has been executed using the 4 different distance functions. 
The results are shown in Figs. 3, 4, 5, the main role of which is to provide strong evi-
dence regarding the suitability of the Mahalanobis distance and shed light on the sensi-
tivity of the variants. We summarize our main observations as follows:

–	 From all the experiments, we can see that Mahalanobis distance yields either the 
best results or performs equivalently to the other techniques, and as such is regarded 
as the dominant choice for the distance metric. Specifically, in LOF (bottom part of 
Fig.  4), and Top-� (top part in Fig.  3), the Mahalanobis distance performs signifi-
cantly better, e.g., exhibiting 20% higher precision and 20% higher recall at the same 
time. The second best distance metric is Chebyshev for all variants apart from the 
Distance-based one.

–	 We can observe that LOF and the Top-� have similar results and type of plots with 
regards to precision and recall. Both methods perform better when the percentage of 
outliers is small (i.e., in the first two datasets where outliers are up to 1%). The pre-
cision and recall decreases as the k value increases in both methods, which is attrib-
uted to the fact that large k values in these methods correspond to the examination of 
a particularly extended neighborhood that is typically quite different from the close 
region.

–	 Distance-based outlier detection can achieve precision and recall close to 1 across all 
datasets, for small number of R and k. As R increases, while keeping k constant, pre-
cision increases but recall decreases, since less outliers are reported. The same phe-
nomenon happens while decreasing the k parameter. Both parameters k and R heav-
ily impact on the performance; we discuss tuning later when examining real datasets.

–	 The Probabilistic variant is evaluated for different values of n, ranging from 0.5 to 
4.5 and even though it can achieve some good combinations of precision and recall, 
in the generic case (i) the performance is better for the datasets that contain less out-
liers, and (ii) on average, it is an inferior variant.

–	 The ODAL method is best suited for large real-world datasets, where the number of 
neighbors for each trace is sufficiently large so that the statistic threshold is meaning-
ful. In order to make the technique applicable to the synthetic datasets, we consider 
as neighbors of a trace t, all the traces that share the same activities with t, regardless 
of the order or the number of activity executions. This modification created neigh-
borhoods with approximately 400 traces. We present the results in Figure 5, where 
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Fig. 3   Precision and recall for the 4 datasets and the different distance metrics using the Top-� (first two 
rows) and Probabilistic variant (bottom two rows)
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Fig. 4   Precision and recall for the 4 datasets and the different distance metrics using the Distance-based 
variant (first two rows) and LOF (bottom two rows)
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we test a wide range of values for n, ranging from 0.5 to 4.5 and as expected the pre-
cision increases as the recall decreases. For different values of k while keeping the n 
parameter constant and equal to 2, we can see that precision is 1 in most of the cases, 
but reduces significantly for k = 10 and k = 50. The k parameter has a large impact 
on the performance of this method and a fine-tuning is required.

Fig. 5   Precision and recall for the 4 datasets and the different distance metrics using the ODAL method 
(Hsu et al. 2017)

(a) (b)

(c) (d)

Fig. 6   Critical difference between the different distance metrics for the 4 proposed trace outlier detection 
methods
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In order to further investigate our observation that Mahalanobis distance has the best per-
formance in terms of F1 score, we conducted critical difference calculations, as described 
in Demšar (2006), with the use of the autorank tool (Herbold 2020). The significance level 
was set to 0.01 across all tests and we present the results in Fig.  6. In the first 3 meth-
ods, the populations proved to be normal and homoscedastic and thus a repeated-measures 
ANOVA test is used with a post-hoc Tukey HSD (Honest Significant Difference) to gener-
ate the diagrams. In the Distance-based method, the populations are also normal but het-
eroscedastic, which requires a Friedman test to determine if there is significance difference 
between the metrics, followed by a Nemenyi test for the Critical Difference Diagram. The 
results from all 4 experiments clearly show that Mahalanobis exhibits a significant differ-
ence from the others. The second best distance metric is Chebyshev, that yields significant 
difference from the other two distance metrics only for the Top-� method. Finally, there is a 
trade-off between performance and execution time. In Fig. 7, we show the response time of 
calculating the sum of the distances to the k closest neighbor, while changing the parameter 
k and the number of traces in the logfile. Mahalanobis incurs the highest response time, 
followed by the Chebyshev. It also worth mentioning that both methods, presented in the 
figure, have similar response times, despite the fact that LOF is more complex to calculate. 
That is due to difficulties in the parallelization in the Scala-Spark framework.

Additionally, from Figs.  3, 4, 5, it can be deduced that, in general, Top-� , Distance-
based and LOF are capable of achieving better combinations of precision and recall in gen-
eral, but it is hard to extract a clear picture. Table 2 shows the best F1 score achieved by all 

Fig. 7   Response time for different distance types when calculating the sum of distance from the k-nearest 
neighbors as outlying factor (left) and LOF (right)

Table 2   Best F1 scores produced 
by each technique for each 
dataset

Outlier percentage

Technique 0.5% 1% 5% 10%

Top-� 1 1 0.98 0.957
Propabilistic 1 0.97 0.93 0.78
Distance-Based 1 0.99 0.94 0.92
LOF 1 1 0.976 0.926
ODAL 0.75 0.81 0.62 0.52
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variants examined. From the above experiments, we can draw the following conclusions: 
(i) the proposed variants significantly outperform ODAL and they can yield up to 1.84X 
higher F1 score; (ii) Top-� is the dominant variant in terms of the best F1 score achieved, 
followed by LOF and Distance-based; and (iii) the performance of the Probabilistic vari-
ant degrades significantly with increased number of outliers. These conclusions are further 
supported by the AUC-Precision/Recall curves in Fig. 8.

To assess the statistical significance of the conclusions above, a T-test is performed to 
assess the significance of the difference between ODAL and the Top-� variant. To this end, 
we repeated each experiment 10 times using a random sample of 50% of all synthetic data 
in each iteration. At a confidence level of 0.01, the t-value was 32.1 with the significance 
threshold being 3.25. Moreover, for the four proposed variants, we show the Critical Dif-
ference Diagrams in Fig. 9, where the Mahalanobis distance is employed. On the left side, 
where the number of outlier is small (1%), there is no significant difference between the 
variants as also evidenced in Table 2; this is because the small number of outliers, which 
make it easier to distinguish them from the normal ones in all variants, and consequently, 
there is no significant difference between them. On the other hand, when the number of 
outliers is increased to 10% of the total number of traces, we can observe that Top-� has the 
highest performance, followed by Distance-based and LOF, with no significant difference 
between them; the Probabilistic variant is inferior to all other tree techniques.

Comparison against autoencoders.
We compare Top-� and LOF against the two different implementations of autoencoders.
Since the input vector has length equal to 30, the neural network that implements 

the deep learning autoencoder runs with FC(30,16,tanh)-FC(16,8,tanh)-FC(8,4,none)-
FC(4,8,tanh)-FC(8,16,tanh)-FC(16,30,none), where FC(x, y, z) means fully-connected 

Fig. 8   The AUC curves when there are 1% outliers for the best k for each technique (left) and for k fixed to 
50 (right)

(a) (b)

Fig. 9   Critical difference between the different methods using Mahalanobis distance for different portion of 
outliers



4116	 Machine Learning (2023) 112:4101–4128

1 3

layer with x number of input neurons, y number of output neurons and activation func-
tion z (where none means that there is no activation function. For the evaluation, we 
split the dataset into 2 sets of equal size: we train the model with the normal traces 
in the first set and use the second set to evaluate its performance. On the other hand, 
in order to evaluate the Denoising Autoencoders, we used the whole dataset with the 
injected Gaussian noise to train the model and then we tested its performance in the 
original dataset. For the implementation we used the default parameters (e.g. learning 
rate = 0.01).

The AUC-ROC curves for different number of outliers are presented in Fig. 10. We 
can observe that Deep-learning autoencoders have better performance than the Denois-
ing ones, but Top-� and LOF perform significantly better than both of them. Because 
of this, we do not further employ autoencoders in our experiments.

(a) (b)

Fig. 10   AUC-ROC curves for different number of outliers

Fig. 11   Execution time for real 
world datasets, using Top-� and 
different distances
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4.1.2 � Real‑world datasets

In this section, we first aim to test the efficiency of the different distances in real world 
datasets and then verify the effectiveness of our proximity-based outlier detection in the 
same datasets. Since, as shown in Fig. 7, LOF and Top-� have similar execution time, we 
only use Top-� to evaluate the different distances and we present the results in Fig. 11. As 
we can see the response is increasing as the number of traces in the event log increases. 
Mahalanobis is the distance with the incurs the highest response time, followed by Che-
byshev, across all datasets. An interesting observation is that in BPI_2011 and BPI_2015, 
Mahalanobis distance calculation reaches 12 times higher response time than the second 
slowest distance function. These are two datasets that contain a large number of different 
activities (624 and 398 respectively), which causes the high overhead when computing the 
covariance matrix.

Next, to showcase the effectiveness of the approach, we use BPI_2012 and BPI_2017, 
which have the highest ratio of number of traces to different activities. For brevity, we 
show the traditional Distance-based variant only, because it directly returns the outliers 
(after setting R and k) and not a ranked list of points, like LOF and Top-� and performs 
significantly better than the Probabilistic variant and the ODAL method.

(a)

(b)

Fig. 12   Distance from the k-nearest neighbor for different values of k for BPI_2012 (a) and BPI_2017 (b) 
and for 2 different distances
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As a first step, we need to take an informed decision regarding R and k and to this 
end, we adopt the technique that is used for DBSCAN tuning (Ester et al. 1996; Schu-
bert et al. 2017). Fig. 12 shows the ordered distances from the k-nearest neighbor for 
every trace for different values of k. The most suitable value for parameter k is the 
one that corresponds to the plot that is initially as parallel to the horizontal axis as 
possible, and then, after a sharp change, becomes parallel to the vertical axis. After 
identifying the k to which such a plot corresponds, we determine the most suitable R 
value by detecting the point where the sharp change occurs. The intuition behind this 
process is to find the values for parameters k and R that best separate the dataset into 
clusters. In both datasets, RMSE is more suitable than Mahalanobis with regards to 
specifying the parameters. Most of the lowest values of k have similar behavior, which 
implies that some traces are so isolated that parameter k does not have much impact. 
We executed the trace outlier detection using the distance-based definition for k = 10 
and R = 1 for the BPI_2012 and k = 15 and R = 0.8 for the BPI_2017 dataset, and we 
give 2 examples for each dataset, explaining why this trace is reported as an outlier.

For BPI_2012 : 

1.	 Trace with id 7905 is reported as an outlier mostly because the mean execution time of 
its activity “W_Nabellen offertes” is 340869.5 seconds, while this activity has mean 
execution time 119704.7 seconds.

2.	 Trace with id 2099 is reported as an outlier mostly because the mean execution time of 
its activity “A_APPROVED” is 19555 secs, while this activity has mean execution time 
222.8 secs in the complete log.

For BPI_2017 : 

1.	 Trace with id 2462 is reported as an outlier mostly because the mean execution time of 
its activity “W Personal Loan collection” is 128702 secs, while this activity has mean 
execution time 21333.3 secs in the complete log.

2.	 Trace with id 23193 is reported as an outlier mostly because the mean execution time 
of its activity “A_DENIED” is 0.7 secs. This activity has mean execution time 88042.4 
secs in the complete log.

In most cases, reported outlying traces are those violating a correlation between activi-
ties. For example, if it is common in a log file that a delay in Activity A is followed by 
a delay in Activity B, the traces that follow this pattern will have enough neighbors not 
to be considered as outliers. On the other hand, in the same scenario, if a trace contains 
a delayed Activity A followed by an accelerated Activity B, this will be a pattern that 
will render the trace an outlier.

Finally, the configuration procedure described above does not pre-determine the 
number of outliers reported. A similar approach can be followed when using the Top-� 
and LOF, but then, the configuration setting of the � parameter would define the num-
ber of reported outliers.

4.2 � Evaluation of event outlier detection

The experiments above regarding the real data sets reveal the value of assessing the behav-
ior of individual activities. Here, we evaluate the same proximity-based techniques for 
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Fig. 13   Precision and recall results for several configurations for the variants Top-� , Probabilistic, Distance-
based and LOF (from top to bottom)
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detecting temporal anomalies in events in business process logs systematically. We com-
pare these techniques against the probability distribution-based technique in Rogge-Solti 
and Kasneci (2014) using the synthetic datasets.

The behavior of the proposed variants is presented in Figure 13 for several configura-
tions. For Top-� , we first keep � equal to the number of outliers in the dataset and then, 
in the right plot, we set k equal to 50. Regarding the Probabilistic variant, we first test the 
behavior with varying k and n = 2 , and then we vary n while k is set to 50. Similarly, for 
the Distance-based case, first, we vary k with R = 0.05 , and then we vary R with k = 50 . 
Finally, for LOF we follow exactly the same approach as for Top-� . We aim to report out-
liers across all activities, after examining each activity one-by-one. Therefore, we also 
run the normalization step described at the end of Sect. 2. A normalization is also needed 
regarding the Distance-based variant, in order to use a common R parameter across differ-
ent activities that have varying mean execution times.

We summarize some main observations below:

–	 LOF and Top-� perform similarly, as in the trace case. Their precision and recall is 
much higher when the number of outliers is increased, where they reach a value of 
approx. 0.8 (when keeping � equal to the number of outliers).

–	 The Probabilistic variant also exhibits higher performance when the number of outliers 
is higher, whereas n has more impact than k.

–	 The distance-based outlier detection variant is more sensitive to R than k and in general, 
achieves the best average performance.

–	 Overall, there is not a clear winner, but in general, the Probabilistic and the Distance-
based variants are superior to the other two. As previously, there is at least one configu-
ration that can yield very high F1 scores for each dataset.

Fig. 14   Precision and recall values using distribution fitting from Rogge-Solti and Kasneci (2014) for vary-
ing thresholds
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For completeness, in Fig. 14, we present the results of the technique in Rogge-Solti and 
Kasneci (2014), which is shown to have poor performance. More specifically, the precision 
never exceeds 0.2, even for small values of threshold when there are 1% outliers or less. 
For the other two datasets that have more outliers, recall is close to 1, but it decreases sig-
nificantly while the threshold increases.

Fig. 15   Distribution of time duration for 9 different activities in BPI 2012

Fig. 16   Distribution of task 
execution latencies for the first 
activity in the synthetic dataset 
with different distributions
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4.2.1 � Synthetic dataset with different distributions

In the previous datasets, the duration times for all of the activities follow a (different) nor-
mal distribution and this can be considered as an convenient scenario for all methods. Nev-
ertheless, as we show in Figure 15, in real datasets, the distribution of the task latencies 
in the real-world follow are described by different distributions. In order to better evalu-
ate the methods, we created an additional synthetic dataset, the activities of which do not 
follow the normal distribution. This additional dataset contains 4 activities with different 
distributions, namely (i) a combination of two normal distributions (see Figure 16), (ii) a 
combination of two alpha distributions, (iii) a combination of two exponential distributions 
and (iv) a power lognormal distribution. It includes 526 traces of 8K events overall, where 

Fig. 17   Experiments for the 
synthetic dataset with differ-
ent distributions for different k 
or threshold (top) and fixed k 
(bottom)
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every trace contains between 5 to 25 events. The synthetic dataset is provided along with 
the source code.

We test the effectiveness of each method in this synthetic dataset. Each event is classi-
fied as outlier or normal based on whether the probability density function is below 0.01. 
The precision and recall results appear in Fig. 17.

In the top part of the figure, we set � = 157 for Top-� and LOF, which is equal to the 
number of outliers. n is set to 2 for the Probabilistic variant and R = 0.05 for the Distance-
based one. We can observe that LOF has rather poor performance with precision and 
recall not exceeding 0.5 for all k values. Both the Probabilistic and Distance-based variants 
achieve precision and recall close to 0.6 for k = 15. Top-� exhibits the best performance for 
� being equal to the number of outliers and k = 15 , where both metrics are above 0.8. On 
the other hand, the distribution fitting technique from Rogge-Solti and Kasneci (2014) best 
combinations are inferior to any of our proposals.

Increasing value of k, while maintaining the other parameter constant in general leads to 
an increase in the events identified as outliers; therefore in all techniques apart from Top-� 
the recall is improved. This is accompanied by a negative impact on precision in the vari-
ants except LOF. In this dataset, LOF and Top-� behave differently, as the performance of 
Top-� degrades with larger k values.

Considering the other parameters apart from k (bottom part of Figure 17), an increase in 
the value of � is shown to have a positive impact in the recall at the expense of lower preci-
sion. The opposite impact has the parameter n for the Probabilistic variant, since increasing 
the value of n, a smaller portion of events exceed the threshold. Finally, an increase in the 
radius R, where we are looking for neighbors leads to a decrease in the number of reported 
outlier events and so yields lower recall values.

Overall, despite their sensitivity to their tuning parameters, we can see that proximity-
based methods can be adjusted to perform well in datasets where events follow different 
distributions in a straightforward manner. In this scenario, the best F1 scores achieved for 
Top-� , Probabilistic, Distance-based, LOF and distribution fitting from Rogge-Solti and 
Kasneci (2014) are 0.8, 0.61, 0.62, 0.44 and 0.39, respectively. In other words, the pro-
posed proximity-based variants can achieve up to 2.05X higher F1 than the technique in 
Rogge-Solti and Kasneci (2014).

4.3 � Summary of lessons learned

In each of the previous sections, we have provided our conclusions and key observations. 
We complement such conclusions with the three main lessons learned:

–	 In temporal trace outlier detection, the best nearest-neighbor-based methods are Top-
� and LOF, combined with Mahalanobis distance. However, the overhead incurred by 
this distance function is negatively affected by the number of different activities in the 
event log. Also, all techniques exhibit better performance in datasets with small amount 
of outliers.

–	 In temporal event outlier detection, we observe a different behavior. The best variants 
with respect to precision and recall are the Probabilistic and Distance-based and the 
performance of all the variants is increasing as the number of outliers increases. How-
ever, when looking for event outliers in activities, the latencies of which follow com-
plex distributions, Top-� and LOF are a safer choice.
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–	 The above statements hold in general, but the amount of outliers also plays a role. More 
specifically, our distance-based variant should be preferred when searching for event 
outliers or trace outliers with a few outlier instances. The Distance-based variant is 
more sensitive to its parameters than the other 3 variants though and thus requires a 
finer tuning (like the one shown in Sect. 4.1.2) to determine the best values for a given 
dataset.

–	 The proximity-based variants that we propose achieve significantly higher F1 score 
compared to the existing proximity-based approach of ODAL and the distribution fit-
ting technique in Rogge-Solti and Kasneci (2014), 1.84X and 2.05X, respectively. 
Overall, performing proximity-based outlier detection without first performing nor-
malization yields poor results. Similarly, taking into account only the distance from the 
k-closest neighbor and not of the sum of distances from the k-closest neighbors is sub-
optimal. Finally, our proposals are shown to be superior to existing autoencoder-based 
solutions.

5 � Discussion

Thus far, we have provided strong evidence regarding the effectiveness of our proximity-
based proposals in detecting temporal outliers both at the trace and the activity level. For 
completeness, we briefly discuss the following four issues:

–	 As discussed in Rogge-Solti and Kasneci (2014), Mavroudopoulos and Gounaris (2020) 
it is hard to interpret whether temporal event anomalies are true anomalies or meas-
urement errors. In the latter case, the timestamp of an event has been falsely logged, 
causing an event to appear as outlier. The key remark is that measurements errors typi-
cally affect two consecutive tasks in the trace in a negatively correlated manner. More 
specifically, if there is no abnormal behavior in the real execution, but due to delayed 
(resp. early) recording, a task instance has a long (resp. short) latency in the logs, it 
is expected that the subsequent event will have a recorded short (resp. long) latency. 
Then, this is (most probably) a measurement error and has to be distinguished from 
real outliers. We have directly tackled this issue in our previous work (Mavroudopoulos 
and Gounaris 2020), and the main results are orthogonal to the exact proximity-based 
outlier detection. More specifically, we advocate, after detecting an outlier in a trace, to 
check whether the immediate successor is an outlier as well.

–	 The outlier detection techniques may need to be big-data aware, in terms of both the 
volume and the velocity of data. The variants examined, and especially the Distance-
based one, can directly benefit from recent advances that manage to combine massive 
parallelism and runtime detection in an efficient manner. Also, to tackle the issue of 
the sensitivity to the parameters, multiple combinations of parameters can be applied 
simultaneously. The details are out of the scope of this work and can be found at Tolio-
poulos et al. (2020).

–	 Apart from the sensitivity to the parameters, a well known weak point of proximity-
based methods is their inefficiency in high-dimensional spaces. In this work, although 
the trace vectors are high-dimensional, there is no such inefficiency observed. However, 
in the future, our proposals can be extended with specific techniques tailored to high-
dimensional spaces according to the state-of-the-art, as described in surveys, such as 
Boukerche et al. (2020). However, our techniques are applicable in settings where the 
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event attributes are not single-dimensional (i.e., activity execution time only). In that 
case, the trace outlier techniques need to employ a flattened vector with as many ele-
ments as the product of the number of activities and the number of dimensions of each 
event record.

–	 Another extension to the temporal trace outlier detection methods is the anomaly expla-
nation and the deeper investigation of deep learning solutions. Providing explanations 
is crucial in the field of business process and helps the domain experts to diagnose the 
root cause of the anomaly. There are a number of different approaches proposed in the 
literature, e.g., Myrtakis et  al. (2021), which rely on the detection of the appropriate 
subspaces to explain why an outliers is detected. Additionally, deep-learning solutions 
for anomaly detection with no need for large volumes of training data is a very active 
research area. We plan to explore both these directions in the future.

6 � Related work

There are several proposals about outlier or deviation detection in business processes 
(Francesco and Luigi 2018). However, most of them focus on detecting outliers regarding 
the structure of the underlying process model. As business process log trace is typically in 
the form of a sequence of tasks, outliers can be found in these sequences, e.g., (Conforti 
et  al. 2017; de Lima Bezerra and Wainer 2013). In addition, a typical application is to 
clear the log dataset removing infrequent behavior in order to facilitate process discovery; 
process discovery aims to derive the underlying process model out of event logs. Another 
example of dealing with variations in the process model structure is to allow configurable 
models, as thoroughly covered in Rosa et al. (2017).

Anomaly detection methods that take into account both the structure of the model and 
the data attributes, known as multi-perspective ones, have been developed, such as the pro-
posals in Böhmer and Rinderle-Ma (2016), Nolle et al. (2019), Böhmer and Rinderle-Ma 
(2020). However, none of these approaches consider execution times as continuous vari-
able, and thus are not directly comparable to our approach.

Outlier detection can be used in order to predict the failure of an ongoing process. In 
Kang et  al. (2012), Borkowski et  al. (2019), different approaches to predicting the next 
tasks of an active trace, and based on this prediction to determine if a trace will fail to 
execute properly, are presented. In addition, a number of different methods for predictive 
process monitoring have been proposed in the field of machine learning that either predict 
the outcome of an active trace (Teinemaa et al. 2019; Theis and Darabi 2019) or the type 
and attributes of the next event (Tax et al. 2017; Pasquadibisceglie et al. 2021; Philipp et al. 
2020). Even though there are some similarities between our method and predictive process 
mining, we aim to just detect the temporal anomalies in a business process logfile and not 
use this information to predict the future state of a trace, although this would be an interest-
ing extension.

Temporal outlier detection, in the context of BPM, have been addressed in Rogge-Solti 
and Kasneci (2014), and we have directly compared it to the proximity-based methods. 
Also, we compare against ODAL, a method proposed in Hsu et al. (2017), which proposes 
a k-nearest neighbor technique that considers as neighborhood the traces that contain iden-
tical tasks.
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From the outlier detection point of view, there exist several textbooks and recent sur-
veys, e.g., (Aggarwal 2017; Boukerche et al. 2020). The techniques based on statistics were 
the first to be proposed, e.g., through determining data values at the tails of a univariate 
distribution and the corresponding level of statistical significance. Nearest-neighbor-based 
outlier detection, which is leveraged in this work, is a representative of proximity-based 
anomaly detection.

Some of the advantages of this technique is the linear scalability in the size of the data-
set (Knorr and Ng 1998; Dai et al. 2019), the ability to interpret the results and operate 
in a streaming and/or massively parallel environment, e.g., (Toliopoulos et al. 2020), and 
their wide applicability as reported in Subramaniam et al. (2006). In this work, we have 
explored a wide range of different proximity-based alternatives to outlier detection, and our 
work can be deemed as a comparison study of these alternatives in a specific application 
setting.

7 � Conclusion

In this work, we deal with the problem of detecting temporal anomalies in event logs of 
business processes. We investigate four different proximity-based variants and we also 
investigate the impact of different distance metrics. In our initial work in Mavroudopoulos 
and Gounaris (2020), we have already provided strong insights into the superiority of dis-
tance-based outlier detection over techniques that perform probability distribution fitting. 
In this work, we complement these early results with new conclusions covering additional 
proximity-based variants that are explicitly stated in Sect. 4.3. These conclusions also pro-
vide guidelines as to which variant to be chosen given the type of anomaly targeted (trace 
vs. event) and the dataset characteristics. Finally, we have provided all our implementation 
in open source so that third parties can repeat our experiments.
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