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Abstract
In various application domains/sectors, data collected from the respective industries are com-
plemented with open data providing added value to the overall analysis and decision making
process. Open data refer to weather data, transportation information, stock/investment prod-
ucts prices, or even health-related data. One of the application domains that could harvest the
added-value of analytics (including open-data) refers to the food industry and more specif-
ically the decisions related to food recalls. The collected data can be analyzed in real-time
through Artificial Intelligence techniques and obtain insights about potential unsafe goods
and products. These insights are exploited to drive decision making, such as which goods
are more probable to be harmful in the near future and subsequently optimize the food sup-
ply chain. The latter reflects the overall food recall process monitoring and is enhanced
through a data-driven forecasting approach. This provides actionable insights regarding the
enhancement of the food safety across the food supply chain given that goods and prod-
ucts can become unsafe for plenty of reasons, such as mislabeling allergens, contamination
etc. To address this challenge, this paper introduces a deep learning approach leveraging
Natural Language Processing and Time-series Forecasting techniques, to monitor and ana-
lyze the risk associated with each food product category and the corresponding potential
recalls. Furthermore, we propose a technique that exploits reinforcement learning to utilize
historical recall announcements of food products for predicting their future recalls, thus pro-
viding insights to food companies regarding upcoming trends in food recalls that can lead
to timely recalls. We also evaluate and demonstrate the effectiveness and added-value of
the proposed approaches through a real-world scenario that yields promising results. While
several techniques/models have been analyzed and applied to address the challenge of food
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recall predictions, the usage of analogous/surrogate data has also been studied and evaluated
towards more accurate outcomes.

Keywords Natural Language Processing · Product Named Entity Recognition · Deep
Learning · Time-series Forecasting · Reinforcement Learning · Deep Learning · Surrogate
data

1 Introduction

Food safety has attracted considerable public concern and press attention in recent years.
Global associations such as the FDA (‘Food and Drug Administration’) or theWHO (‘World
Health Organization’) pose very strict regulations throughout the supply chain in order to
assess andmonitor the risk of food safety (FAO/WHO, 2007). Thatmakes sense, given the fact
that many products found in the food-marketplace may be harmful not only for individuals
but also for the general economy and health system (Nyachuba 2010; Devlin et al. 2018).

One of the most efficient methods towards food safety is the removal of food products,
after they have been characterized as harmful, from the market at any stage of the supply
chain, including those that are possessed by the consumers. This process is widely known as
food recall. There are several reasons that may lead to a product being characterized as unsafe
or harmful, with the most prevalent of them being the existence of undeclared allergens (Luo
et al. 2021) and the contamination of specific food categories such as meat and poultry where
harmful bacteria (Listeria, Salmonella, and Escherichia coli) (Zhao and Liu 2008) can be
found.

At this moment, the procedure of quality assessment of food products is a tedious and
time-consuming task due to the lack of homogeneity in recall announcements from the
different organisations related to food safety worldwide. Of course, time is of the essence in
this case considering that those products can be consumed during this process (Marvin et al.
2017). Therefore, it is vital to have a reliable system for early detection or even prediction
of unsafe foods in order to prevent outbreaks and serious harm to the public. This is a
challenge of utmost importance, that the research community related to food safety should
focus on, as it is costing global economies billions (Gendel and Zhu 2013; Devlin et al. 2018).
In summary the problem of food safety is an ever-changing one as new threats show up
yearly putting to the test the current ways of food management. Besides being a tremendous
challenge, it heavily impacts human lives. For example, according to WHO the Unsafe
food causes more than 200 diseases—ranging from diarrhea to cancers. It is estimated that
almost 1 in 10 people in the world—fall ill after eating contaminated food and 420.000 die
every year, resulting in the loss of 33 million healthy life years (DALYs). Additionally, the
monetary cost is high. Approximately 110 billion dollars is lost every year in productivity
and medical expenses resulting from unsafe food in low- and middle- income countries.
Moreover, according to the United States Department of Agriculture (USDA), food-borne
illness costs the US economy$10-83 billion per year (Nyachuba 2010).

This paper addresses the emerging challenge of food-safety by introducing a data-driven
approach to facilitate timely decision making for food recalls. In this context, the operational
objective is twofold:

1. Timely food recalls based on efficient classification of each recall according to the under-
lying product. Providing a sound approach for how unstructured text data retrieved from
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heterogeneous sources can be transformed and classified using NLP methods and repre-
sented in the time domain as time-series enabling the exploit of the forecasting method.

2. Systematically forecast recalls based on historical data applied for each general product
category. It is worthwhile mentioning that the latter task is the one described in the con-
ference paper presented in Makridis et al. (2020). The aforementioned paper addressed
mainly the food recalls forecasting task by applying and comparing different probabilis-
tic Deep Learning and Reinforcement Learning methods. This is extended towards both
the introduction of a meta-model enabling a hybrid implementation and the utility of
surrogate data as a dataset enrichment approach.

While the scientific contributions that support and extend the proposed solution can be briefly
summarised in terms of added value, as the proposed approach enables:

(i) continuous optimisation of the model (and as a result of its outcomes as well) based on
the utilization of an RL technique with specific re-training intervals for the NERmodel,

(ii) enhanced model outcomes due the usage of surrogate data that enrich the dataset and
contribute to better generalization of the proposed model,

(iii) best-fit utilization of different models towards improved outcomes (and decision mak-
ing) due to the exploitation of the proposed hybrid approach for selecting the best model
for time-series forecasting.’

In this case, to accurately learn domain-specific knowledge extracted by short texted food
recalls we built the proposed approach on top of spaCy (Honnibal andMontani 2017). SpaCy
is a python library used for Natural Language Processing tasks providing an abstraction facil-
itating the solution of such tasks. One of the provided architectures uses deep neural networks
(DNNs), specifically a similar architecture to iterated dilated convolutional neural networks
with fast token encoders (Strubell et al. 2017), which have been reported to be successful
in various Natural language processing (NLP) tasks such as word embeddings (Bengio et
al. 2007; Mikolov et al. 2013), part-of-speech tagging (Tsuboi 2014), parsing (Socher et al.
2010, 2012), Named Entity Recognition—NER (Hammerton 2003). While research shows
that pre-trained word embeddings can improve accuracy on NLP tasks (Pennington et al.
2014; Mikolov et al. 2013; Lebret and Collobert 2013) there was none pre-trained model
for product entities making necessary the training of a new one. Given the nature of the
food-related dataset regarding the text classification task, NER methodology was applied,
considering the product as entities. Generally a named entity is a word or a phrase that clearly
identifies one item from a set of other items that have similar attributes. Examples of named
entities are organization, person, and location names in general domain; gene, protein, drug
and disease names in biomedical domain (Li et al. 2020).

As far as the second aim of the proposed approach, i.e. forecasting of potential food recalls
is concerned, time-series analysis could also be exploited,which ismotivated by the challenge
of reducing future uncertainty. Utility across different domains, denotes that the extraction
of useful knowledge via temporal data is an active research area (Fu 2011). The methods
for time-series prediction rely on historical data since they include intrinsic patterns that
convey useful information for the future description of the phenomenon under investigation.
In this case deep learning techniques were utilized to provide information regarding the
risk associated with food products and the potential recalls. The techniques mainly focus on
time-series forecasting and reinforcement learning in order to predict the number of food
incidents based on specific industry scenarios. Concerning this task, many challenges had
to be addressed, the one with the greatest scientific impact was the usage of synthetically
produced surrogate data as a way of enriching the original dataset to improve performance
of deep learning models.
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The remaining of the paper is structured as follows. Section 2 includes the background
knowledge for NER and time-series forecasting needed for the reader to follow up the rest
of the paper, Sect. 3 presents the related work in the area of study of this paper, while Sect. 4
delivers an overview of the proposed approach, introduces the overall architecture and details
regarding the collection of the data streams and how these are utilised within the models.
Section 5 presents experiments that have been conducted to demonstrate and evaluate the
operation of the implemented algorithms. The performance of the proposed mechanisms is
depicted in the results and evaluation section. Finally, Section 6 concludes with a discussion
on future research and potentials for the current study.

2 Background

2.1 NER—sequence tagging

Named Entity Recognition (NER) is a subclass of Natural Language Processing (NLP)
domain. It corresponds to the ability to identify the named entities in documents, and label
them with one of entity type labels such as person, location or organisation. However, there
is a long tail of entity labels for different domains. It is a common problem to come up with
entity classes that do not fit the traditional four-class paradigm (PER, LOC, ORG, MISC).
There are many methods of annotating text in order to be used for NER methods, those
methods look promising for NER but still leave much room for improvements.

In Natural Language Processing (NLP), the task of sequence tagging/labelling is used to
assign a categorical label to each term of the sentence/document. One of the most common
tagging schemes is Part Of Speech tagging (POS) which assigns parts of speech to each
word. While this can be addressed as a classification task of each word, the literature high-
lights that the dependencies between words carry useful information, and thus improving
accuracy when included. Therefore, multiple approaches have been carried out such as using
conditional random fields (Pfeiffer et al. 2020), LSTMs with and without the usage of ELMo
(Embeddings from LanguageModels) and BERT. Besides the difference in approaches there
exist a difference in tagging strategies with “BIOE” being the most popular one. In BIOE
tagging strategy, ‘B’ represents the beginning of an attribute, ’I’ represents the inside of an
attribute, ‘O’ represents the outside of an attribute, and ‘E’ represents the end of an attribute.
Other popular tagging strategies include ”UBIOE” and ”IOB”. ”UBIOE” has an extra tag
’U’ representing the unit token tag that separates one-word attributes from multi-word ones.
While for ”IOB” tagging, ’E’ is omitted since ’B’ and ’I’ are sufficient to express e boundary
of an attribute.

2.2 Reinforcement learning for time-series

Reinforcement Learning can be broken down to threemain categories: critic-only, actor-only,
actor-critic (Zhang et al. 2020). It is out of the scope of this paper to analyze extensively each
category. Since the proposed approach falls into the critic-only category it should be noted
that in the critic-only approach the agent tries to learn a state-action value function Q or an
approximation of Q in order to create a mapping S, A → v representing the appropriateness
of a particular action given the state,where S and A are the state and action spaces accordingly.
While there are many implementations falling into this category the most prominent is the
deep Q-learning (DQN) with many improvements such as fixed Q-targets, double DQN’s,
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dueling DQN (DDQN) and Prioritized Experience Replay (PER) (Hessel et al. 2018). For
this approach to work it is necessary to either have a discrete action space or discretise a
continuous one with methods such as tile-coding (Sherstov and Stone 2005), coarse coding,
function approximation etc.

Finally, given that the examined time-series case is a multi-step ahead prediction task, it
should be mentioned that for time-series forecasting, the task of using observed time-series
in the past to predict values in a look-ahead horizon gets proportionally harder as this horizon
widens (Lai et al. 2018). Currently, multi-step ahead prediction tasks are achieved by two
different ways. The first one, called independent value prediction, consists of training a direct
model to predict the exact steps ahead. The second strategy, called iterative method, consists
of repeating one-step ahead predictions to the desired horizon. The iterative prediction only
uses onemodel to forecast all the horizons needed; the objective is to analyze a short sequence
of data and try to predict the rest of the data sequence until a predefined time-step is reached.
The main drawback of this approach is the cumulative nature of the error. The latter approach
was leveraged for the proposed RL-based model, while the utillized probabilistic DNN time-
series models followed the independent value prediction method.

2.3 Surrogate data

The first step of time-series forecasting is to reject the “white-noise” null hypothesis. Sub-
sequently, if non-linear methods such as ML, DL and RL are to be used it is necessary to
reject the null hypothesis regarding the existence of solely temporal linear correlations in
the time-series. A statistically sound framework for the aforesaid test is that of surrogate
data, sometimes known as analogous data. It refers to time-series data that reproduce vari-
ous statistical properties like the autocorrelation structure of a measured data set. The null
hypothesis is represented by the surrogate data which are compared with the original data
under a non-linear discriminating statistic to reject or approve the null hypothesis. In this
work the usage of surrogate data was twofold;

1. Test the non-linearity hypothesis.
2. Enrich existing dataset with the newly generated data.

The latter is proposed due to the nature of most deep learning models which can benefit
from the increase both in diversity and volume of training data. The null hypothesis in our
case is that the usage of analogous data will help the generalization of some if not all deep
learningmodels in the case of time-series forecasting. Even though there aremultiplemethods
to generate such data the IAAFT method (Dolan and Spano 2001) was chosen.

3 Related work

3.1 NER task

It is widely known that Deep Learning models have overtaken many NLP tasks because they
may extract important features from word or character embeddings trained on large amounts
of data and NER tasks follow this trend as well (Li et al. 2020). While this holds true, there is
no pre-trainedLanguageModel that can achieve SotAperformance to supervised downstream
tasks without the need of fine-tuning. There are many Language Models (LM) fine tuned in
order to accomplish state of the art performance in a specific task and in a specific type of text
in a specific language. Awell-known paradigm of such languagemodel achieving impressive
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results is SciBERT, a Bidirectional Encoder Representations from Transformers (Devlin et
al. 2018) (BERT) based model leveraging unsupervised pre-training on a large multi-domain
corpus (Beltagy et al. 2019).

In thematter of the food industry and especially the food recalls, onemotivational research
took place at Boston University School ofMedicine, where a BERT-based AI algorithmman-
aged to detect unsafe food products based on Amazon’s customer reviews with an accuracy
rate of 74% (Maharana et al. 2019). Apart from that, there is a rule-based NER approach for
food information extraction, called FoodIE. It is composed of a small number of computa-
tional linguistics and semantic information rules, that describe the food entities (Popovski
et al. 2019). A recent survey by (Popovski et al. 2020) an extensive comparison between
automated ex-traction methods for food information was made. The authors using manually
annotated recipes saw very promising results in the FoodIE in terms of recall, precision and
F1-score. In Zheng et al. (2018) product profile information such as titles and descriptionswas
leveraged to discover missing values of product attributes, developing a novel deep tagging
model OpenTag with an F-score of 83%. Also, as presented in Yom-Tov (2017) a research
was conducted on predicting whether a recall of a specific drug will be ordered by FDA in a
time horizon ranging from 1 to 40 days in future, utilizing attributes that quantify the change
in query volume at the state level. An excellent overview and comparison of SOTA in NER
both in terms of apporaches and datasets can be found in Zhong and Chen (2020) where
the authors developed a novel method for extracting entities and relations between them.
All the aforementioned papers can justify the motivation behind our approach, proposing
that aggregated Internet search engine data can be used to facilitate early warning of faulty
batches of food.

3.2 Time-series forecasting

However, to the best of the authors’ knowledge, there is no research in the pertinent literature
considering food recalls in time domain representation, as a time-series forecasting use case.
The main reason is obvious as there is no relative open-source dataset. However, there are
plenty of applications and researches in other industrial sectors where DL/ML models are
used to forecast future events. A systematic review of 117 time-series related papers, comes
to strengthen this claim (Parmezan et al. 2019). Additionally, it worthwhile mentioning that
in the same review, a comparison between some of the well-established approaches for time-
series forecasting showed that SARIMA is the only statistical method able to outperform
(in some cases) the following machine learning algorithms: ANN, SVM, and kNN-TSPI,
but without statistically significant difference (Parmezan et al. 2019). Subsequently, the only
statistical method leveraged in our research was a Seasonal method which was used as the
benchmark/baseline model. Instead, the GluonTS framework (Alexandrov et al. 2019) was
utilized as a probabilistic Deep Learning framework for time-series forecasting.

Moreover, recently Reinforcement Learning (RL) algorithms, (Sutton et al. 1998) which
refers to algorithms that are “goal-oriented”, began to thrive in some time-series tasks espe-
cially in the financial sector. So it seems reasonable to explore the possibility that the problem
under study can be modeled in an RL approach and if so, compare this approach to the most
dominant on time-series forecasting. These algorithms are penalized when they make wrong
decisions (predictions) and rewarded when they make the correct ones, which is how the
concept of reinforcement is reflected. In Calabuig et al. (2020) the authors explore Deep
RL algorithms to automatically generate profitable, robust, uncorrelated trading signals in
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any financial market implementing a novel Markov decision process model to capture the
financial trading markets.

3.3 Contribution

The main contribution of this paper is a complete framework leveraging a custom environ-
ment for food recalls. The framework consists of two major components, a classification
mechanism based on a deep neural NER technique, classifying the food recalls announce-
ment according to the implicated product and a time-series forecasting method consuming
the time-series defined from the classified food recalls. The main difference of the proposed
work compared to the existing ones, is the introduction of an innovative actor-only approach
to map the problem as a time-series case. More specifically, the approach includes: (i) the
development of a custom RL environment and, the realization of a RL agent that can estimate
the four month ahead time-based prediction of 30 categories. It should also be mentioned that
this approach is not widely applied concerning time-series forecasting tasks, while it offers
continuous optimisation and adaptability, as the added-value of the RL model. (ii) Given
that for “small” sized time-series datasets, finding an ML/DL forecasting model that offers
qualitative forecasts is a major challenge in machine learning as stated in Fong et al. (2020),
the presented approach proposes the utilization of surrogate data as an enhanced approach
providing more accurate results. (iii) A custom meta-model (based on the statistical features
of each time-series) was leveraged as an extra component in the downstream pipeline in
order to introduce a hybrid model for further optimising the performance of the framework.
Moreover, it should be highlighted that a NER model is leveraged for extracting the impli-
cated food products from the food recalls announcement, which showcases the added-value
moving from unstructured representation of data (i.e. text data) to a structured one, such as
a time-series representation.

4 Methods and procedures

4.1 Proposed approach

Our goal is to utilize ML/DL approaches to enable early detection and prediction of food
recalls, which may be leveraged from companies across the complete food supply chain. The
conceptual architecture of the proposed service is depicted in Fig. 1. Initially the extraction
of specific keywords from short texts is performed. The extraction refers to the PRODUCT
category that has been recalled from the title or the description of recall-announcements.

Given the nature of the dataset and the desired outcome, the proposed approach for clas-
sification was performed by utilizing Named Entity Recognition (NER) techniques. In this
context, the challenge of identifying the reported product that has been recalled can be viewed
as a correctly classified element. The methodology introduced in this paper allows detecting
the product in each recall through: (a) a suitable preprocessing technique for the acquired
dataset, and (b) a proposed model that can estimate if the product (or product category) is
mentioned in a recall announcement. Amore detailed view of this is provided in Fig. 2, which
depicts the data handling pipeline, in a stepped approach, to apply both the NER process and
the reinforcement learning model retraining. In the first step, the raw data were pre-processed
and fed into the NER model. Then the extracted product names were classified in specific
categories (a task that is not part of this research) using the Hierarchy Classification Model
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Fig. 1 Conceptual architecture of the end-to-end proposed approach

a proprietary ontology responsible for taking an entity which is labelled as ’PRODUCT’
and classify it in the corresponding category. Finally the data was transformed in time-series
representations to be utilised for prediction of future recalls. Compared with other relevant
methodologies, an additional novel characteristic of this approach is the extraction of the
implicated product of food recall texts through the combination of a set of analytics models
to increase the efficiency of the analysis.

Regarding the second contribution of the proposed approach, i.e. food-recall forecast-
ing, the proposed RL-based method was implemented yielding promising results compared
to other well established approaches. The classified data from the NER task were repre-
sented in the time domain in order to incorporate RL in the prediction of food-recalls
as a time-series use case. To this end, we defined a custom environment to express the
"context" which our agent can interact with, a custom set of actions (A), which is spe-
cific to the time-series data and a reward Ra(s, s′) function (1). The environment consists
of a set of states (S) where each state is set to be an array of the last data points of
the time-series. A shallow neural network was employed as the mechanism to select the
appropriate action for the agent. The agent presented in this paper, is trained to predict
the next value in a products’ time-series in terms of percentage change. To facilitate this,
the actions available are a discrete set of numbers (20), drawn from statistical features of
time-series (distribution, mean, median, min and max) that the agent can predict. A uni-
form experience replay mechanism is also employed to enable the agent to remember its
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Fig. 2 Schematic explanation of the data aspect to the end-to-end approach including the four main steps to
the process

past experiences and their corresponding rewards due to the nature of time-series forecasting
problems.

4.2 Dataset

As mentioned earlier there is no open-source data for food recalls available. The utillized
dataset has been provided by Agroknow as a real-world use case, composed of short text
data that came from text mining of different online sources such as announcements, articles,
and reports considering food recalls worldwide. It should be mentioned that the procedure
of retrieving this data is out of the scope of this paper. The dataset in its final version was
transformed in tabular format, consisting of the following information: ID, title (short text)
and the product (label). Some indicative examples are depicted in Table1.

Based on the data and the metadata of the web-crawlers that also include the timestamp of
each recall, another dataset of 30 time-series was created, representing the daily number of
food recalls of 30 implicated categories (such as ‘Food Additives and Flavorings’, ‘ Meat and
products’, ‘Fish and products’ etc.) since 2000. Furthermore, Fig. 3a depicts some indicative
categories of interest, while Fig. 3b presents the seasonality component of the examined
time-series, highlighting that the majority of food recalls are being published on Fridays
(considering days of week as time frame). Additionally, it is observed that during the summer
months less food recalls occur compared to other months.
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Table 1 Initial short-texts with their corresponding products

ID Title Product

0 aflatoxins (tot. = 54.1/mg/kg-ppb) in dried figs from turkey dried figs

1 salmonella (presence /125g) in onion powder from india onion powder

2 limena, llc recalls salvadorean string cheese (quesillo cheese) because of
possible health risk

semi-soft cheese

3 fosthiazate (0.125+/-0.063 mg/kg—ppm) in fresh peppers from turkey fresh peppers

4 migration of formaldehyde (188.2 mg/kg—ppm) from bamboo mug from
china

food contact materials

5 salmonella (1 out of 5 samples /25g) in hot smoked bacon from poland smoked bacon

Fig. 3 a Food recalls of specific categories in time domain representation and b Average product recalls
aggregated by month and day of the week. The x-axis represents a unit time (months or days) and the y-axis
is measured in percentages
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Table 2 Preprocessing steps (vertical) for NER task

Initial Text aflatoxins (b1 = 27.2; tot. = 37 g/kg—ppb) in pistachios
from the united states, manufactured in turkey

Remove numbers and symbols aflatoxins b tot gkg ppb in pistachios from the united states
manufactured in turkey

Remove noise aflatoxins in pistachios from the united states manufactured
in turkey

Lemmatization and lower case aflatoxin in pistachio from manufacture in

Annotation (13, 22, ’PRODUCT’)

4.3 Preprocessing

Data in real-life cases are often noisy, high-dimensional, most of them may be broken or
missing, so suitable preprocessing needs to be performed prior to any analytics task. As far
as the NER task is considered, the preprocessing approaches aim to make the short texts,
derived from heterogeneous sources, more readable and remove words and characteristics
that may be assumed as noise. Even tough multiple preprocessing steps were considered
our methodology consists of the following steps (a) Remove Numbers, (b) Remove specific
words which as noise, (c) Lemmatization and lowercase, (d) Annotation. SpaCy framework
which was used in this work for the NER provides an object describing what it considers
to be an entity match. In this object, exists an “annotation” tuple which follows the form
(starting character position, ending character position, type of entity). As an example we
provide the tuple (13, 22, ’PRODUCT’), which corresponds to a product existing in the
13th to 22nd character of the given text. It is worth mentioning that not all texts contain an
exact match and those cases are annotated as (0,0,”) providing the capability to our model
to recognise the lack of an entity. For this reason, we split the data (during the train-test
split) in such a way that both the training and the testing datasets contain examples with and
without annotations. Table 2 summarises the transformations applied in each step providing
a representative example.

For the time-series forecasting task, the stationarity of the data was checked by using
augmented Dickey-Fuller test (Cheung and Lai 1995). This process is of major importance
for any predictivemethod that exploits historical data since thesemethods are usually based on
the assumption that the data generation mechanism does not change over time. Furthermore,
it should be noted that in terms of predictions, the prediction time-frames of the recallsmay be
4 months, 6 months, or 12 months. Since the predictions will contribute to quality assurance
and enable food safety professionals to ensure the continuity of their supply chain, minimize
future risks and financial losses, we chose the smallest, i.e. a 4-month prediction window.
Based on the latter, three options stand out:

(i) Use the dataset as is, with its daily frequency resulting in a 120-time-step window of
prediction. This is not recommended as most of the time-series produced are sparse
leaving no obvious pattern to be learnt from.

(ii) Resample the data in weeks, resulting in a 16-timestepwindow of prediction.While some
patterns begin to emerge, the data in some cases are still very sparse and the cumulative
error from the 16-step prediction is theoretically relatively big.

(iii) Resample the data in months periods, providing stationary time-series with visible pat-
terns and a lower theoretical accumulated error of prediction, since the window has been
reduced to 4-timesteps.
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Table 3 Categories of time-series dataset

0 Food Additives and Flavorings 15 Other food products

1 Fruits and Vegetables 16 Food contact materials

2 Poultry meat and products 17 Non-alcoholic beverages

3 Prepared dishes and snacks 18 Fats and Oils

4 Dietetic foods, Food supplements, fortified foods 19 Sugars and Syrups

5 Feed materials 20 Nuts, Seeds and products

6 Honey and Royal Jelly 21 Cereals and Bakery products

7 Bivalve mollusks and products 22 Crustaceans and products

8 Meat and products 23 Eggs and products

9 Feed Additives 24 Alcoholic beverages

10 Milk and Milk products 25 Cocoa, Coffee and Tea

11 Herbs and Spices 26 Gastropods

12 Confectionery 27 Cephalopods and products

13 Soups, Broths, Sauces and Condiments 28 Pet Feed

14 Fish and products 29 Ices and Desserts

Finally, another hypothesis to be tested was the forecasting task to be addressed as both
univariate and multivariate assuming that complex non-linear feature interactions are present
in our data when all the categories of food recalls are concerned. Consequently, taking also
into consideration that 23 out of 30 in total time-series were stationary according to the
Augmented Dickey-Fuller test that was conducted in the first place, and the fact that they
differ greatly in statistical features (min, max, variance etc.) which would have a negative
effect on some model’s performance while favor some others, the percentage change of
the time-series was used instead. This enables the model to generalize better (arithmetic
rate) while it also transforms remaining non-stationary time-series to stationary. Specifically,
regarding the given data, to apply percentage change we had to deal with zero values. In most
of the equivalent tasks handling those cases requires domain expertise as there is no "right"
methodology. In our case one “recall” in every month in every category was added, which
is insignificant and does not convey real change, to avoid having a zero in the percentage
change denominator. Mathematically, let xt = (xt+1)−(xt−1+1)

xt−1+1 be the percentage change, xt
is the number of recalls on month t .

4.4 Surrogate data

The original dataset size after preprocessing is 30∗147 and produced surrogate data matches
its size, providing a combined dataset with of 30 * 247 data points. During our analysis, we
refer to the corresponding data based on their ID number as cited in Table 3.

Themost commonlyused techniques for generating surrogate data for statistical analysis of
nonlinear processes include random shuffling of the original time-series, Fourier-transformed
surrogates, amplitude adjusted Fourier-transformed (AAFT surrogates), and iterated AAFT
surrogates (IAAFT) (Dolan andSpano2001). In ourworkwe incorporated the IAAFTmethod
to addresses the issue of power spectrum whitening, as the main drawback of AAFTmethod,
by performing a series of iterations in which the power spectrum of an AAFT surrogate is
adjusted back to that of the original data before the distribution is rescaled back to that of the
original data.
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4.5 Datamodels

4.5.1 NER task

Since our goal is to classify short food recall text based on implicated product (discarding
possible noisy patterns), and since there is no any open-source pre-trained model specified
for food product recognition to directly apply transfer learning for NER task, we approached
the problem by training from scratch a Deep Neural Network utilizing the spaCy frame-
work (Honnibal and Montani 2017). The training took under consideration the custom made
PRODUCT annotations. The central data structures in spaCy are the Doc and the Vocab.
The Doc object owns the sequence of tokens and all their annotations. Finally, regarding our
problem setup an architecture of Residual CNN (ResNET) (He et al. 2016) network yields
the best results in terms of the evaluation metrics that will be analysed in detail in the next
subsection. In traditional neural networks, each layer feeds into the next layer. In a network
with residual blocks, each layer feeds into the next layer and directly into the layers about
2-3 hops away.

In the computer vision domain, CNNs are used for dimensionality reduction or reducing
matrices to vectors with the usage of multiple filters focusing in setting the stride, kernel size,
padding etc. In SpaCy the CNNs are used in away similar to what is described in (Collobert et
al. 2011) but of course leveraging the up-to-date implementation details to facilitate training
and accuracy. The founding block of the CNNs used by SpaCy are the trigramcnn that
concatenates the embeddings of each word with those of its two neighboring words. For
example, if the embedding dimension of each word was 128-dimensions this concatenation
would create a 384-dimension vector representing those three words. After this, an MLP
is used to reduce this input’s representation dimension back to the original, relearning the
meaning of each word based on its context. While staking these layers together a sort of
”effective receptive field” in terms of vision emerges. This happens due to staking, thus
making the vectors’ representations sensitive to information found in words further away
from the initial term. Another aspect of interest, is the usage of residual connections from
layer to layer. The latter means that the output of each layer is the output produced by the
layer plus its input facilitating training. This has a fundamental effect as it implies that the
output space vector of each convolutional layer is likely to be similar to the output space of
the input vector—due to using and feeding forward the input feature at each layer.

4.5.2 Forecasting task

Regarding the time-series forecasting approach, several models have been utilized, as sum-
marized below:

– A DeepAR Estimator,which implements an (Recurrent Neural Network) RNN-based
model, close to the one described in Salinas et al. (2019). More specifically it applies a
methodology for producing accurate probabilistic forecasts, based on training an autore-
gressive recurrent neural network model on many related time-series. Recurrent Neural
Net-work is a feed-forward neural network that has an internalmemory. The “recurrence”
explains the fact that the produced output is copied and sent back into the recurrent net-
work as an additional input. For making a decision regarding every output of every layer,
it considers the current input and the output that it has learned from the previous input.
That capability makes them perfect candidate for handling sequence data
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– A Simple Feed Forward Estimator which implements a simple Multi-layer Percep-
trons (MLP) model predicting the next target time-steps given the previous ones. MLP
is a supervised learning algorithm that learns a function by training on a dataset, where
n is the number of dimensions for input and o is the number of dimensions for output.
Given a set of features X = x1, x2, ..., xn and a target y, it can learn a non-linear func-
tion of approximation for either classification or regression.Implemented as described
(Pedregosa et al. 2011).

– One Deep Factor Estimator, an implementation of Wang et al. (2019). It uses a global
RNN model to learn patterns across multiple related time-series and an arbitrary local
model to model the time-series on a per time-series basis.

– ASeasonal Naive Estimator, based on data seasonality. Thismodel predicts Y (T +k) =
y(T + k − h) where T is the forecast time, kε[0, predictionlength − 1] and h = season
length. If a time-series is shorter than season length, then the mean observed value is
used as prediction.

– A WaveNet Estimator based on WaveNet architecture (Oord et al. 2016) was used.
WaveNet, is a deep neural network created for generating raw audio waveforms. The
model is fully probabilistic and auto-regressive, with the predictive distribution for each
audio sample conditioned on all previous ones, yielding state of the art results in tasks
such as text-to speech conversions, source disaggregation etc.

On top of the implementation and experimentation of the aforementioned models, an
Reinforcement Learning approach was researched and developed, including both a custom
environment for time-series and an agent. This custom environment could also be utilized
in other time-series cases apart from food-recalls forecasting. The RL agent interacts with
this environment in discrete time steps. At each time t, the agent receives an observation Ot ,
which typically includes the reward Rt and the state St . In this custom environment the states
from the historical values and the rewards are produced by applying the reward function 1.
The Agent then chooses an action from the set of available actions At , which is subsequently
sent to the environment. The environment moves to a new state and the reward associated
with the transition (St , At , St+1) is determined.

The design of the reward function depends on the actions we want the agent to favor. In
this work, the reward Rt at time t is:

Rt = 1/log(MSE(Yt , Ŷt )) + k (1)

where Yt is the actual number of recalls for the given time-step, Ŷt is the predicted one and
k is a small positive integer.

With Q-learning the agent seeks to learn a policy that maximizes the total reward for the
selected set of actions in a given environment. In practice, a Q-table is a [state, action] table
where the values of each action are stored. A DQN architecture with experience replay was
realized as described below:

Where γ is the discount factor, used to balance the importance of future and immediate
reward, α (learning rate) defines the rate in which the newly calculated value of Q affects the
old one. It should be highlighted that the algorithm provides very good results in the cases of
small action and state spaces. In the cases of prohibitive size St , At a neural network is pro-
posed to approximate and compress the Q-table, where updating the weights w corresponds
to updating the Q-values. One improvement of Deep Q-learning algorithm has been achieved
by using an additional neural network with the same architecture but with fixed weights ŵ

that are updated every n iterations to break the correlation between updated values w and
�w .
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Algorithm 1: Deep Q- learning with experience replay

1 Initialize replay memory D to capacity N
2 Initialize action function Q with random weights θ

3 Initialize target action function Q̂ with weights θ̄

4 for episode = 1,M do
5 Initialize the environment and get the state s1
6 for t = 1, T do
7 with probability ε select a random action αt
8 otherwise select αt = argmaxaQ(st , α; θ)

9 execute action αt in the environment and observe the reward rt and next state st+1
10 store transition (st , αt , rt , st+1) in D
11 use a random batch of transitions from D
12 if episode terminates at step j + 1 then
13 set y j = r j
14 end
15 else
16 set y j = r j + γmaxαQ(s j+1, α; θ̄ )

17 end
18 perform gradient descent on (y j − Q(s j , α j ; θ))2 with respect to parameters θ

19 every C steps reset Q̂ = Q
20 end
21 end

5 Results

In this section we initially provide a brief description of the evaluation strategy regarding
the approaches introduced in this paper: the NER task for classification, and the time-series
forecasting for food recalls prediction. Then the results of each approach are presented
respectively.

5.1 NER task

Precision, Recall and F1-score at a token level are the most common evaluation metrics for
NER tasks (Batista 2018). However in the examined use-case, it is more useful to evaluate
at a full named-entity level. There are some metrics that are appropriate for this approach
as they are measuring the full named-entity token performance presented (Sundheim and
Chinchor 1993) . Following this strategy the metrics can be defined in terms of comparing
the response of a system against the golden annotation as follows:

– Correct (COR): both are the same,
– Incorrect (INC): the output of a system and the golden annotation don’t match,
– Partial (PAR): system and the golden annotation are somewhat “similar” but not the same,
– Missing (MIS): a golden annotation is not captured by a system,
– Spurius (SPU): system produces a response which doesn’t exist in the golden annotation,

In order to cover the scenarios defined in our problem, we need to consider the differences
between NER output and golden annotations based on two axes, the surface string, and
the entity type. Another equivalent approach was presented in International Workshop on
Semantic Evaluation (SemEval 13) (Segura Bedmar et al. 2013), where introduced four
ways to measure precision/recall/f1-score results based on the metrics defined by MUC

– Strict: exact boundary surface string match and entity type;
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Table 4 Evaluation Scheme based on Semantic Evaluation (SemEval 13)

Golden standard System prediction Evaluation
Surface string Entity type Surface string Entity type Type Partial Exact Strict

Organic Flour PRODUCT Organic Flour PRODUCT COR COR COR COR

– – Organic Flour PRODUCT SPU SPU SPU SPU

Organic Flour PRODUCT Organic Flour PRODUCT COR COR COR COR

Organic Flour PRODUCT – – MIS MIS MIS MIS

Organic Flour PRODUCT Tuna PRODUCT COR INC INC INC

Organic Flour PRODUCT Flour PRODUCT COR PAR PAR INC

– Exact: exact boundary match over the surface string, regardless of the type;
– Partial: partial boundary match over the surface string, regardless of the type;
– Type: some overlap between the system tagged entity and the gold annotation is required;

Furthermore, to define precision/recall/f1-score two more variables need to be calculated:
The number of gold-standard annotations contributing to the final score given as:

POSSI BLE(POS) = COR + I NC + PAR + MI S = T P + FN (2)

And the number of annotations produced by the NER system:

ACTU AL(ACT ) = COR + I NC + PAR + SPU = T P + FP (3)

In brief precision is the percentage of correct named-entities found by the NER system, and
recall is the percentage of the named-entities in the golden annotations that are retrieved by
the NER system. These are calculated either for exact match (i.e., strict and exact ) or for
partial match (i.e., partial and type) scenario by the following equations:

Exact Match (i.e., strict and exact)

Precision = COR

ACT
= T P

T P + FP
(4)

Recall = COR

POS
= T P

T P + FN
(5)

Partial Match (i.e., partial and type)

Precision = COR + 0.5 × PAR

ACT
= T P

T P + FP
(6)

Recall = COR + 0.5 × PAR

POS
= COR

ACT
= T P

T P + FP
(7)

Table 4 presents some examples from the utilized dataset, explaining how can be evaluated
based on these the above-mentioned metrics. Then precision/recall/f1-score are calculated
for each different evaluation schema applied on a 4-fold stratified scheme of evaluating our
results and the average results in terms of the evaluation strategy are presented in Table 5.

5.2 Time-series forecasting

The total training data consist of a matrix N ∈ R
30×147, where ‘30’ corresponds to the

number of time-series of products and ‘147’ to the last 147 month time-steps of each. In
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Table 5 Results in terms of
evaluation metrics

Type Partial Exact Strict

correct 12715 12534 12534 12534

incorrect 0 7.75 7.75 181.5

partial 0 173.5 173.5 0

missed 654 654.5 654.5 654.5

spurious 561 561 561 561

possible 12270 13370 13370 13370

actual 13276 13276.5 13276.5 13276

precision 0.957877 0.944245 0.9442455 0.9442455

recall 0.951183 0.937578 0.9375785 0.943409

Fig. 4 Proposed one step forward validation scheme

order to obtain more reliable results, we trained every model 47 times on a rolling window
of 100 time-steps forming 47 tables ∈ R

30x100 (ex. [30,1-100], [30,2-101] etc.). While all
models share some hyper-parameters such as epochs ← 200, the length(prediction) ← 4
and length(context) ← 12 months, some others are specific only to some models. These
specific parameters were fine-tuned using grid-search techniques, as a fundamental step of
the ML pipeline. Grid-search and Random-search algorithms are widely used for hyperpa-
rameter tuning. Basically, the domain of the hyperparameters into a discrete grid. Then, every
combination of values of this grid (i.e. grid-search) is used in terms of using cross-validation.
The point of the grid that maximizes the average value in cross-validation, is the optimal set
of values for the hyperparameters.

In commonMLusage, cross-validationmethods reflect a pitfall in a time-series forecasting
approach, as they may result in a significant overlap between train and test data. Thus, the
optimum approach is to simulate models in a ‘walk-forward’ sequence, periodically re-
training the model to incorporate specific chunks of data available at that point in time. This
procedure is depicted in Fig. 4 while regarding the validations process followed in the case
of the RL model, Algorithm2 has been applied.

Based on the evaluation, we observed the following results in terms of the Mean Squared
Error (MSE) with the usage of the original data, the data after applying the preprocessing
mentioned in the corresponding section and with the enriched dataset using surrogate data.
The results are presented in Table6. Furthermore, the relevant plots are depicted in Fig. 5,
showing the estimators on specific time-series.

Tables6 and 7 are divided into three parts where the comparison of the models in different
cases is depicted. The first part uses univariate data (predictions are based solely on one time-
series at a time), while the second utilizes the surrogate data in Table 6 and multivariate data
(all 30 time-series are used for predictions) in Table6 andmultivariate data (all 30 time-series
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Algorithm 2: Deep Q- learning evaluation process

1 for validation f old = 1, Validation f olds do
2 Initialize the custom time-series environment and get the state s regarding validation f old
3 Load the pre-trained DQN agent as agent regarding validation f old
4 initialize list predictionsgets[]
5 for step in lengthof stepsahead do
6 prediction = agent .predict(s)
7 state = state[1 :].append(prediction)

8 predictions.append(prediction)

9 end
10 evaluate(yt rue, predictions)
11 end

are used for predictions) in Table7. The last part of both tables provide a comparison with
the proposed RL approach.

The Deep Factor model is omitted in the univariate case as it is not applicable due to the
existence of a global RNN model as described in Wang et al. (2019), used to learn patterns
across multiple related time-series.

The results presented in Tables6 and 7 which can be found in Appendix A, highlight that
the model with the best performance in most cases is the Deep ARmodel, while theWaveNet
follows up due to its capability of capturing long term dependencies like LSTMs but with
less training. The Simple Feed Forward network wins in 4/30 time-series in the multivariate
setup.

As expected, even though the seasonal model achieves mostly low errors due to the way
of predicting values it never outperforms all deep models. Another interesting result is that
utilizing univariate models seems to be more accurate. This contradicts our initial hypothesis
that by using multivariate data streams, complex non-linear feature interactions will emerge,
facilitating the optimization of the models. As mentioned above the data were normalized in
case of different scales. The inferiority of the multivariate dataset arises from the fact that a
wide but not deep set of data is exploited, making it harder to distinguish between signal and
noise as well as from the lack of correlation between time-series.

Additionally, we can express guarded optimism for the usage of analogous/surrogate data
as an enrichment technique, which can be further explored, since results presented in Table
6, demonstrate a successful trial of the proposed approach in some cases.

Finally, the RL model that utilized our custom environment yields promising results.
According to Table 6, it outperforms all other models in 9/30 datasets. Taking under consid-
eration the fact that the RL model was trained on univariate time-series without surrogate
data we can reinforce the belief that using univariate data is appropriate for this task.

In a real-world scenario as the case presented in this paper, there are other features than
accuracy of the results that may make a model more suitable. Such features, are for example
the required computing and data resources and the model’s complexity. This paper also
introduces an approach to optimise the process of time-series forecasting by accounting
for the aforementioned features. The latter is achieved by a meta-model, which proposes
the best-fit model to be used without exhaustively trying and evaluating all of the possible
candidate-models. Towards this direction, this model selection should be based on some
indicative statistical metrics of each time-series such as Augmented Dickey-Fuller (ADF)
denoting the stationarity, standard deviation (SD), block entropy and hjorth-mobility. As
seasonal component, we have used the results of univariate Seasonal model of GlounTS.
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tives time-series rials time-series

dishes and snacks time-series

(a) Deep-AR Estimator on feed addi- (b) Deep-AR Estimator on feed mate-

(c) Deep-AR Estimator on prepared (d) Deep-AR Estimator on sugars and
syrups time-series

Fig. 5 Indicative examples predictions using Deep AR estimator on specific time-series. Marked in dark green
is the 0.5 prediction (confidence) interval and marked in light green is the 0.9 prediction (confidence) interval.
The x-axis presents time in moths while the y-axis represents percentage change of recalls per month. The
prediction horizon is 4 months. While the blue line represent the actual values of the time-series

Additionally, Table 8 of the appendix presents the values for the aforementioned statistical
metrics for each time-series. Focusing on the approaches that yield the best results (univariate
DeepAR and RL) we calculated the correlation between the prediction error and the various
statistical metrics, presenting them in the heat-map of Fig.6.

Also in Table 8 are presented the values for the aforementioned statistical metrics for each
time-series to supplement the reader with useful information.

It is obvious that the RLmodel is highly positively correlated with SD and hjorth-mobility.
The latter means that when a time-series has bigger value of SD, the expectation of the error
for the RL model follows the same trend. The reason for that is that we used a static action-
space for the RL model.Given our dataset, and results of the models, we applied a tree model
in an attempt to explain the decisions made for model selection. The results are depicted in
Fig. 7.

Specifically, in this figure red color nodes denote the selection of DeepAR model, and the
blue ones the RL model. The main findings of the implementation of the meta-model can be
summarised in the following statements. When the hjorth mobility is high we can confidently
use the DeepAR model, which means that the models are better at capturing different kinds
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Fig. 6 Correlations of the
univariate Deep Ar and RL
models regarding statistical
metrics

Fig. 7 Decision Tree for model
selection, red color denotes the
selection of DeepAR model,
while with the blue color the RL
model

of variation of the time-series. Besides that, another important factor is the block entropy
which is an estimation of the entropy growth curve with respect to a window size. From the
tree we see that when the hjorth mobility is big we use with confidence the Deep AR model
which means that this model is better at capturing the intra-block variation of the time-series.
On the other hand, when we observe extreme values of block entropy we tend to choose the
RL model which means that it can better capture the inter-block variation. The exploitation
of such a model enables the utility of the two best models in a hybrid way, optimising the
predicting outcomes in terms of accuracy by selecting the best model for each time-series
category.
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The exploitation of such a model enables the utilization of the two best-fit models in a
hybrid way, optimising the predicting outcomes in terms of accuracy by selecting the best-fit
model for each time-series category.

6 Conclusions

The approaches presented in this paper have been implemented as a framework to address
one of the main challenges in the food safety sector, which is the constant optimization of
the monitoring, early detecting and predicting the food recall trends. The present research
realizes an overall optimisation both in terms of performance, as the meta-model and the
usage of surrogate data enhance the predicted outcomes of the proposed forecasting model,
and in terms of adaptability and continuous optimization by applying a RL model for time-
series prediction. One major obstacle to apply the proposed approaches in large scale is the
adaptability to new types of resources. This is addressed within the context of our research
by introducing an RL-based prediction approach offering continuous optimization through
specific training intervals for the NER model.

With regards to time-series forecasting, we presented specific approaches in the field of
time-series forecasting, while addressing key challenges that include interpretation, scale,
accuracy and complexity (which are inherent in many cases of time-series manipulation).
Though the experimentation and evaluation, we compared a variety of approaches based on
deep neural networks and statistical terms. The complementary model, which consists of an
RL (DQN) model, provides promising results in terms of food recalls prediction.

Regarding the future work, the two aforementioned improvements represent key areas of
future work that will be generally beneficial for monitoring dynamic and complex recall
announcements published on different sources. We also plan to continue to refine our
approaches by applying continuous action spaceRLmodel, utilizing amultivariate andmulti-
step actions environment and try leveraging an approach close to Signal2Vec. A Time-series
Embedding Representation used for dimensionality reduction for time-series (Nalmpantis
and Vrakas 2019). Moreover, it is within our future plans to address the case of large num-
ber of ‘spurious’ labeled data. This is tackled by the approaches such as Karamanolakis et
al. (2020), which consists an extension of OpenTag for multiple product categories called
TXtract. Specifically, specific entity (’annotation’) for each product category will be assigned
instead of a universal ”PRODUCT” entity. This is expected to improve or at least enhance
the downstream task transforming the unstructured text data to time-series. On this note, we
plan to develop a supervised learning scenario encoding the lexical semantics of the recall
announcement with embeddings to predict the product category listed in the recall. Addi-
tionally, we are currently experimenting with fine-tuning a BERT model with the usage of
HuggingFace interface to compare or even improve our initial NER performance. Finally,
making the proposed NER model multilingual is another highly rated production-based
requirement.
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A Results

See Tables 6, 7 and 8.

Table 6 Comparison between univariate approach, data augmentation and Reinforcement Learning

Univariate Univariate with Data Surrogation

Deep AR Simple FF Seasonal WaveNet Deep AR Simple FF Seasonal WaveNet RL

0 0.922 1.895 3.268 2.175 1.74 1.785 3.267 1.644 1.752

1 0.196 0.442 0.787 0.697 0.073 0.068 0.106 0.07 0.104

2 0.037 0.081 0.144 0.131 0.218 0.217 0.463 0.253 0.171

3 0.453 1.307 2.765 1.178 1.355 1.58 2.786 1.414 0.238

4 0.367 0.969 1.688 1.432 4.011 3.908 8.041 3.701 1.256

5 0.076 0.207 0.244 0.234 1.067 1.173 1.202 1.083 1.011

6 6.021 8.377 8.39 8.093 1.321 1.364 2.429 1.181 0.309

7 0.539 1.841 3.046 1.511 1.019 1.095 2.221 0.955 0.282

8 0.228 0.782 1.374 1.235 5.248 5.477 6.241 5.235 2.52

9 0.284 0.93 1.811 0.892 0.944 0.961 1.567 0.776 0.055

10 0.138 0.376 0.557 0.509 0.558 0.403 0.787 0.425 1.144

11 0.03 0.085 0.106 0.112 0.06 0.082 0.144 0.083 0.149

12 0.058 0.212 0.236 0.215 1.138 1.141 2.763 1.071 0.683

13 1.374 3.603 5.399 3.044 0.637 0.644 1.692 0.609 0.105

14 0.108 0.22 0.394 0.329 0.168 0.199 0.244 0.183 0.648

15 2.305 7.129 8.789 6.067 8.085 8.125 8.386 7.932 14.329

16 0.459 0.985 1.609 0.953 1.429 1.469 3.045 1.269 0.586

17 0.13 0.531 1.026 0.524 0.68 0.68 1.374 0.616 0.357

18 0.108 0.228 0.625 0.317 0.748 0.824 1.811 0.783 0.874

19 0.375 0.836 1.179 1.221 0.365 0.371 0.557 0.355 0.213
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Table 6 continued

Univariate Univariate with Data Surrogation

Deep AR Simple FF Seasonal WaveNet Deep AR Simple FF Seasonal WaveNet RL

20 0.513 1.76 2.286 2.644 0.133 0.143 0.236 0.144 0.083

21 2.285 11.554 23.353 9.327 2.575 2.748 5.396 2.606 3.068

22 0.086 0.277 0.462 0.315 0.256 0.211 0.394 0.225 0.474

23 0.581 1.889 2.786 1.858 6.081 6.188 8.785 5.881 N/A

24 1.575 4.22 8.045 3.744 0.975 0.852 1.609 0.742 0.593

25 0.348 1.389 1.203 2.595 0.468 0.479 1.027 0.46 0.084

26 0.615 1.404 2.429 2.345 0.255 0.256 0.625 0.277 0.232

27 0.314 1.087 2.22 1.036 0.804 0.814 1.181 0.762 0.053

28 2.129 5.206 6.244 4.68 1.599 1.735 2.287 1.554 0.622

29 0.313 1.049 1.568 1.02 5.813 6.386 23.423 5.751 9.747

Table 7 Comparison between univariate, multivariate and Reinforcement Learning approach

Univariate Multivariate

Deep AR Simple FF Seasonal WaveNet Deep AR Simple FF Deep Factor Seasonal WaveNet RL

0 0.922 1.895 3.268 2.175 0.154 0.198 1.777 0.244 0.187 1.752

1 0.196 0.442 0.787 0.697 1.919 1.851 3.266 3.267 1.736 0.104

2 0.037 0.081 0.144 0.131 5.04 6.678 7.181 23.423 5.681 0.171

3 0.453 1.307 2.765 1.178 0.817 0.959 2.406 1.567 0.862 0.238

4 0.367 0.969 1.688 1.432 1.55 1.755 2.806 2.287 1.534 1.256

5 0.076 0.207 0.244 0.234 0.233 0.213 1.805 0.394 0.270 1.011

6 6.021 8.377 8.39 8.093 1.514 1.582 3.155 2.786 1.636 0.309

7 0.539 1.841 3.046 1.511 0.951 1.196 2.748 1.202 1.195 0.282

8 0.228 0.782 1.374 1.235 0.318 0.380 1.943 0.557 0.314 2.52

9 0.284 0.93 1.811 0.892 4.530 6.278 7.375 8.786 5.777 0.055

10 0.138 0.376 0.557 0.509 1.406 1.484 2.901 3.045 1.428 1.144

11 0.03 0.085 0.106 0.112 0.083 0.07 1.619 0.106 0.083 0.149

12 0.058 0.212 0.236 0.215 0.413 0.420 2.052 0.787 0.428 0.683

13 1.374 3.603 5.399 3.044 2.111 2.792 4.280 5.396 2.654 0.105

14 0.108 0.22 0.394 0.329 3.950 3.893 5.377 8.041 3.619 0.648

15 2.305 7.129 8.789 6.067 0.643 0.828 2.353 1.811 0.800 14.329

16 0.459 0.985 1.609 0.953 1.165 1.180 2.593 2.763 1.089 0.586

17 0.13 0.531 1.026 0.524 0.921 0.784 2.424 1.181 0.954 0.357

18 0.108 0.228 0.625 0.317 0.621 0.681 2.131 1.692 0.597 0.874

19 0.375 0.836 1.179 1.221 0.812 0.981 2.558 2.221 0.825 0.213

20 0.513 1.76 2.286 2.644 0.085 0.079 1.751 0.144 0.081 0.083

21 2.285 11.554 23.353 9.327 0.842 0.828 2.381 1.609 0.790 3.068

22 0.086 0.277 0.462 0.315 7.311 8.071 9.351 8.387 8.030 0.474

23 0.581 1.889 2.786 1.858 4.916 5.493 6.682 6.241 5.167 N/A

24 1.575 4.22 8.045 3.744 0.555 0.689 2.191 1.027 0.492 0.593
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Table 7 continued

Univariate Multivariate

Deep AR Simple FF Seasonal WaveNet Deep AR Simple FF Deep Factor Seasonal WaveNet RL

25 0.348 1.389 1.203 2.595 0.267 0.247 1.764 0.625 0.310 0.084

26 0.615 1.404 2.429 2.345 0.244 0.22 1.74 0.463 0.232 0.232

27 0.314 1.087 2.22 1.036 0.173 0.142 1.777 0.236 0.160 0.053

28 2.129 5.206 6.244 4.68 1.139 1.316 2.657 2.429 1.315 0.622

29 0.313 1.049 1.568 1.02 0.672 0.783 2.394 1.374 0.647 9.747

Table 8 Hjorth mobility, block entropy, ADF, Variance and Seasonality component of the time-series

Hjorth mobility block entropy ADF Variance Seasonal

0 1.116 1.029 −14.606 1.462 14.0

1 1.146 0.163 −9.000 0.152 7.0

2 1.151 0.535 −9.000 0.526 63.0

3 1.168 0.970 −15.682 1.365 28.0

4 1.179 0.608 −14.140 1.466 25.0

5 1.123 0.651 −1.984 0.499 26.0

6 1.172 1.327 −15.398 2.527 38.0

7 1.175 0.878 −13.988 2.101 14.0

8 1.213 0.540 0.676 2.165 9.0

9 1.144 1.134 −6.642 1.046 5.0

10 1.152 0.846 −10.914 1.654 11.0

11 1.130 0.262 −4.956 0.307 71.0

12 1.179 0.934 −15.293 1.476 11.0

13 1.152 0.946 −16.049 0.890 37.0

14 1.081 0.181 −13.479 0.178 140.0

15 1.208 1.330 −13.788 5.791 3.0

16 1.197 0.749 −16.988 1.092 66.0

17 1.144 0.860 −11.610 0.604 9.0

18 1.147 0.961 −16.567 0.783 21.0

19 1.125 0.841 −11.958 0.383 481.0

20 1.090 0.059 −10.602 0.102 36.0

21 1.164 0.274 −14.269 0.960 31.0

22 1.177 0.571 −15.046 1.074 120.0

23 1.201 1.266 −13.241 2.577 10.0

24 1.150 1.229 −18.744 1.035 7.0

25 1.151 0.703 −5.879 0.843 50.0

26 1.118 0.791 −5.793 0.337 51.0

27 1.119 1.088 −13.468 1.047 13.0

28 1.140 1.315 −17.363 1.498 NaN

29 1.228 1.445 −12.721 7.643 7.0
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