
Vol.:(0123456789)

Machine Learning (2022) 111:1303–1326
https://doi.org/10.1007/s10994-022-06146-3

1 3

Lifting symmetry breaking constraints with inductive logic
programming

Alice Tarzariol1  · Martin Gebser1,2 · Konstantin Schekotihin1

Received: 7 June 2021 / Revised: 29 September 2021 / Accepted: 7 February 2022 /
Published online: 19 April 2022
© The Author(s) 2022

Abstract
Efficient omission of symmetric solution candidates is essential for combinatorial problem-
solving. Most of the existing approaches are instance-specific and focus on the automatic
computation of Symmetry Breaking Constraints (SBCs) for each given problem instance.
However, the application of such approaches to large-scale instances or advanced problem
encodings might be problematic since the computed SBCs are propositional and, therefore,
can neither be meaningfully interpreted nor transferred to other instances. As a result, a
time-consuming recomputation of SBCs must be done before every invocation of a solver.
To overcome these limitations, we introduce a new model-oriented approach for Answer
Set Programming that lifts the SBCs of small problem instances into a set of interpret-
able first-order constraints using the Inductive Logic Programming paradigm. Experiments
demonstrate the ability of our framework to learn general constraints from instance-spe-
cific SBCs for a collection of combinatorial problems. The obtained results indicate that
our approach significantly outperforms a state-of-the-art instance-specific method as well
as the direct application of a solver.

Keywords  Answer set programming · Inductive logic programming · Symmetry breaking
constraints

Editors: Nikos Katzouris, Alexander Artikis, Luc De Raedt, Artur d’Avila Garcez, Ute Schmid,
Sebastijan Dumancic, Jay Pujara.

 *	 Alice Tarzariol
	 alice.tarzariol@aau.at

	 Martin Gebser
	 martin.gebser@aau.at

	 Konstantin Schekotihin
	 konstantin.schekotihin@aau.at

1	 University of Klagenfurt, Klagenfurt, Austria
2	 University of Graz University of Technology, Graz, Austria

http://orcid.org/0000-0001-6586-3649
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06146-3&domain=pdf

1304	 Machine Learning (2022) 111:1303–1326

1 3

1  Introduction

Modern declarative programming paradigms allow for relatively simple modeling of vari-
ous combinatorial problems. Nevertheless, solving these problems might become infeasi-
ble when the size of input instances and, correspondingly, the number of possible solution
candidates start to grow (Dodaro et al., 2016). In many cases, these candidates are sym-
metric, i.e., one candidate can easily be obtained from another by renaming constants. In
order to deal with large problem instances, the ability to encode Symmetry Breaking Con-
straints (SBCs) in a problem representation becomes an essential skill for programmers.
However, the identification of symmetric solutions and the formulation of constraints that
remove them is a tedious and time-consuming task. As a result, various tools emerged that
avoid the computation of symmetric solutions by, for instance, automatically finding a set
of SBCs using properties of permutation groups or applying specific search methods that
detect and ignore symmetric states; see (Margot, 2010; Sakallah, 2009; Walsh, 2012) for an
overview.

Existing approaches to SBC generation can be classified into instance-specific and
model-oriented ones. The former methods identify symmetries for a particular instance at
hand by computing and adding ground SBCs to the problem representation (Cohen et al.,
2006; Drescher et al., 2011; Puget, 2005). Unfortunately, computational advantages do
not carry forward to large-scale instances or advanced encodings, where instance-specific
symmetry breaking often requires as much time as it takes to solve the original problem.
Moreover, ground SBCs generated by instance-specific approaches are (i) not transferable,
since the knowledge obtained is limited to a single instance; (ii) usually hard to interpret
and comprehend; (iii) derived from permutation group generators, whose computation is
itself a combinatorial problem; and (iv) often redundant and might result in a degradation
of the solving performance.

In contrast, model-oriented approaches aim to find general SBCs that depend less on
a particular instance. The method presented in Devriendt et al. (2016) uses local domain
symmetries of a given first-order theory. SBCs are generated by identifying argument posi-
tions in atoms of a formula that comprise object variables defined over the same subset of
a domain given in the input. As a result, the computation of lexicographical SBCs is very
fast. However, the method considers each first-order formula separately and cannot reli-
ably remove symmetric solutions, as it requires the analysis of several formulas at once.
The method of Mears et al. (2008) computes SBCs by generating small instances of para-
metrized constraint programs, and then finds candidate symmetries using Saucy (Codenotti
et al., 2013; Darga et al., 2004) – a graph automorphism detection tool. Next, the algorithm
removes all candidate symmetries that are valid only for some of the generated examples as
well as those that cannot be proven to be parametrized symmetries using heuristic graph-
based techniques. This approach can be seen as a simplified learning procedure that utilizes
only negative examples represented by the generated SBCs.

In this work, we introduce a novel model-oriented method for Answer Set Programming
(ASP) (Lifschitz, 2019) that aims to generalize the process of discarding redundant solu-
tion candidates for instances of a target domain using Inductive Logic Programming (ILP)
(Cropper et al., 2020). The goal is to lift the SBCs of small problem instances and to obtain
a set of interpretable first-order constraints. Such constraints cut the search space while
preserving the satisfiability of a problem for the considered instance distribution, which
improves the solving performance, especially in the case of unsatisfiability. The particular
contributions of our work are:

1305Machine Learning (2022) 111:1303–1326	

1 3

–	 We suggest several methods to generate a training set comprising positive and negative
examples, allowing an ILP system to learn first-order SBCs for the problem at hand.

–	 We define the components of an ILP learning task enabling the generation of lexico-
graphical SBCs for ASP.

–	 We analyze the features and characteristics of the results obtained by our methods, as
well as the effects of language bias decisions on several combinatorial problems.

–	 We present an approach that iteratively applies our method to revise constraints when
new permutation group generators or more training instances become available.

–	 We conduct performance experiments on variants of the pigeon-hole problem as well as
the house-configuration problem (Friedrich et al., 2011). The obtained results show that
the SBCs generated are easy to interpret in most of the cases, and they result in signifi-
cant performance improvements over a state-of-the-art instance-specific method as well
as an ASP solver without SBCs.

This work extends the previous conference paper (Tarzariol et al., 2021) with two addi-
tional methods to obtain the positive and negative examples for an ILP task, i.e., an alter-
native atom ordering criterion and a full symmetry breaking approach, along with corre-
sponding experimental results. Moreover, we provide much more detailed descriptions and
analyses of experiments with the suggested language bias, the previous, and two new learn-
ing settings.

The structure of this paper is the following: a brief overview of the preliminaries is
given in Sect. 2. Section 3 presents our approach, while Sect. 4 describes its implementa-
tion and specifies the components of an ILP learning task. In Sect. 5, we investigate obser-
vations from learning experiments conducted with our methods. Section 6 provides and
discusses experimental results on the solving performance obtained for some combinato-
rial problems. Lastly, Sect. 7 concludes the paper and outlines directions for future work.

2 � Background

This section introduces some basics and notations for ASP, symmetry breaking, and ILP.

2.1 � Answer set programming

Answer Set Programming (ASP) (Lifschitz, 2019) is a declarative programming paradigm
based on non-monotonic reasoning and the stable model semantics (Gelfond and Lifschitz,
1991). Over the past decades, ASP has attracted considerable interest thanks to its elegant
syntax, expressiveness, and efficient system implementations, showing promising results
in numerous domains like, e.g., industrial, robotics, and biomedical applications (Erdem
et al., 2016; Falkner et al., 2018). We will briefly define the syntax and semantics of ASP,
and refer the reader to (Gebser et al., 2012; Lifschitz, 2019) for more comprehensive
introductions.

Syntax An ASP program P is a set of rules r of the form:

where not stands for default negation and ai , for 0 ≤ i ≤ n , are atoms. An atom is an expres-
sion of the form p(t) , where p is a predicate, t is a possibly empty vector of terms, and the
predicate ⊥ (with an empty vector of terms) represents the constant false. Each term t in

a0 ← a1,… , am, not am+1,… , not an

1306	 Machine Learning (2022) 111:1303–1326

1 3

t is either a variable or a constant, and a literal l is an atom ai (positive) or its negation
not ai (negative). The atom a0 is the head of a rule r, denoted by H(r) = a0 , and the body
of r includes the positive or negative, respectively, body atoms B+(r) = {a1,… , am} and
B−(r) = {am+1,… , an} . A rule r is called a fact if B+(r) ∪ B−(r) = � , and a constraint if
H(r) = ⊥.

Semantics The semantics of an ASP program P is given in terms of its ground instan-
tiation Pgrd , replacing each rule r ∈ P with instances obtained by substituting the varia-
bles in r by constants occurring in P. Then, an interpretation I is a set of (true) ground
atoms occurring in Pgrd that does not contain ⊥ . An interpretation I satisfies a rule r ∈ Pgrd
if B+(r) ⊆ I and B−(r) ∩ I = � imply H(r) ∈ I  , and I is a model of P if it satisfies all
rules r ∈ Pgrd . A model I of P is stable if it is a subset-minimal model of the reduct
{H(r) ← B+(r) ∣ r ∈ Pgrd,B

−(r) ∩ I = �} , and we denote the set of all stable models of P
by AS(P).

2.2 � Symmetry breaking

Most of the modern instance-specific approaches detect symmetries of a given object by
representing it as an instance of the graph automorphism problem. This problem consists
of finding all edge-preserving bijective mappings of a graph vertex set to itself. It is an
attractive target of reduction since this problem can be solved efficiently for many families
of graphs using methods from the group theory; see (Sakallah, 2009) for an overview.

A group is an abstract algebraic structure ⟨G, ∗⟩ where G is a non-empty set, closed
under a binary associative operator ∗ , such that G contains an identity element, and each
element has a unique inverse. If the operator ∗ is implicit, the group is represented by G. A
subgroup H of a group G is a group such that H ⊆ G . Given a set X = {x1, ..., xn} of n ele-
ments, a permutation of X is a bijection that rearranges its elements. The symmetric group
SX is defined by the set of all the n! possible permutations of X, and its subgroups are called
permutation groups. In cycle notation, we represent a permutation as a product of disjoint
cycles, where each cycle

(
x1 x2 x3 … xk

)
 means that the element x1 is mapped to x2 , x2

to x3 , and so on, until xk is mapped back to x1 ; the elements mapped to themselves are not
contained in the cycles.

Given a group G and a set X, the group action � ∶ G �→ SX defines a permutation of
the elements in X for each g ∈ G . Then, each permutation �(g) induces a partition on X,
P
�(g)(X) , whose cells are called orbits of X under �(g) . The cells of the finest partition on X

that refines P�(g)(X) for each g ∈ G , PG(X) , are the orbits of X under group G.

Example 1  Given a set {a, b, c, d, e} of atoms ordered lexicographically and a permutation
� = (a d e) (b c) , let us consider a random interpretation {a, c} , respectively, the integer
00101. To find its symmetries with respect to � , we repeatedly apply the permutation to
{a, c} until no new interpretation is obtained, e.g., a ↦ d and c ↦ b yielding {b, d} , then,
d ↦ e and b ↦ c yielding {c, e} , and so on. Thus, we get the orbit {{a, c}, {b, d}, {c, e},
{a, b}, {c, d}, {b, e}} , respectively, {00101, 01010, 10100, 00011, 01100, 10010} with the
integer representation.

Letting G be a permutation group for a set X of ground atoms, the orbits of the set of
interpretations over X under G identify equivalence classes of the truth assignments for X.
When taking truth assignments as binary integers determined by some total order of the
elements in X, the lex-leader scheme consists of specifying a set of Symmetry Breaking

1307Machine Learning (2022) 111:1303–1326	

1 3

Constraints (SBCs) that may eliminate some interpretations but keep the smallest ele-
ment in terms of the associated integer for each orbit. If the SBCs eliminate all symmetric
assignments and preserve the smallest element of each orbit only, we obtain full symmetry
breaking. However, dealing with up to n! permutations of n variables explicitly would be
an infeasible approach, and a more efficient alternative is to focus on a subset of G to refine
P
G(X) . If this leads to a partition finer than PG(X) , then we get partial symmetry breaking.

In this case, the SBCs preserve the smallest element as a representative of each orbit but
also other symmetric interpretations. Considering a set of irredundant generators K of G
is an effective heuristic for partial symmetry breaking since such generators represent G
compactly. A set K ⊂ G of elements in a group ⟨G, ∗⟩ is a set of generators for G if every
element of G can be expressed as a combination of finitely many elements of K under the
group operation. K is irredundant if no proper subset of it is a set of generators for G.

Example 2  Let us consider the applications of the generator � of the orbit obtained in
Example 1. For each interpretation in the orbit, we check whether � maps it into a smaller
interpretation according to the integer representation. Thus, the interpretations {c, e} and
{b, e} are eliminated since applying � yields {a, b} or {a, c} , respectively, while the inter-
pretations {a, c} , {b, d} , {a, b} , and {c, d} are preserved. As three symmetric interpreta-
tions are obtained in addition to the smallest interpretation of the orbit, the representative
{a, b} (00011 in the integer representation), SBCs for direct applications of the generator �
achieve partial symmetry breaking only.

Symmetry-Breaking Answer Set Solving (sbass) (Drescher et al., 2011) detects and
eliminates syntactic symmetries in ASP by adding ground SBCs to an input ground pro-
gram Pgrd . A symmetry of Pgrd is given by a permutation � of ground atoms that keeps the
program syntactically unchanged, i.e., P�

grd
 has the same rules as Pgrd , where P�

grd
 is the set

of rules obtained by applying � to the head and body literals of rules in Pgrd . In the first
step, sbass transforms Pgrd to a colored graph GPgrd

 such that permutation groups of GPgrd
 and

their generators correspond one-to-one to those of Pgrd . In the second step, it uses saucy
(Codenotti et al., 2013; Darga et al., 2004) to find a set of group generators for GPgrd

 . Finally,
for each found generator sbass constructs a set of SBCs based on the lex-leader scheme and
appends them to Pgrd . Given the modified ground program, an ASP solver is provided
means to avoid symmetric answer sets.

Example 3  To illustrate how sbass works, let us consider the pigeon-hole problem, which
is about checking whether p pigeons can be placed into h holes such that each hole contains
at most one pigeon. An encoding in ASP of this problem is:

It takes as input the ground facts pigeon(p). and hole(h). For example, solving
the instance with p = 3 and h = 3 leads to six answer sets:

1308	 Machine Learning (2022) 111:1303–1326

1 3

 The binary integer given on the right is obtained with the following total order of
atoms:

 Applying sbass to this pigeon-hole encoding, grounded with the previous input
instance, produces the following set of generators:1

According to the lex-leader scheme, we should discard all answer sets but AS6 , which
is the only answer set such that applying either generator does not lead to a greater
interpretation:

 Therefore, with this instance, we obtain full symmetry breaking by applying the lex-
leader scheme for the irredundant generators returned by sbass. However, symmetric solu-
tions can be preserved for other inputs. E.g., with p = 3 and h = 4 , two answer sets are
preserved, while the generators describe a common cell with all answer sets and a single
representative.

2.3 � Inductive logic programming

Inductive Logic Programming (ILP) (Cropper et al., 2020) is a form of machine learning
whose goal is to learn a logic program that explains a set of observations in the context of
some pre-existing knowledge. Since its foundation, the majority of research in the field
addresses Prolog semantics (Cropper and Muggleton, 2016; Muggleton, 1995; Srinivasan,
2004), even though applications in other logic paradigms appeared in the last years. The

1  The generators are translated from smodels to symbolic representation, as described in Sect. 4.

1309Machine Learning (2022) 111:1303–1326	

1 3

most expressive ILP system for ASP is Inductive Learning of Answer Set Programs (ilasp)
(Law et al., 2014, 2021), which can be used to solve a variety of ILP tasks.

In ILP, a learning task ⟨P,E,HM⟩ is defined by three elements: a background knowledge
P, a set of (positive and negative) examples E, and a hypothesis space HM , which defines
all the rules that can be learned. The learned hypothesis is a subset of the hypothesis space
that satisfies a specified learning setting: for ilasp, the setting is learning from answer sets
(Law et al., 2014). Before defining it, we introduce the terminology used by ilasp authors.
A Partial Interpretation (PI) is a pair of sets of atoms, epi = ⟨T ,F⟩ , called inclusions (T)
and exclusions (F), respectively. Given a (total) interpretation I and a PI epi , we say that I
extends epi if T ⊆ I and F ∩ I = � . We can augment epi with an ASP program C to obtain
a Context Dependent Partial Interpretation (CDPI) ⟨epi,C⟩ . Given a program P, a CDPI
e = ⟨epi,C⟩ , and an interpretation I  , we say that I is an accepting answer set of e with
respect to P if I ∈ AS(P ∪ C) such that I extends epi.

A learning task for ilasp is given by an ASP program P as background knowledge, two
sets of CDPIs, E+ and E− , as positive and negative examples, and the hypothesis space HM
defined by a language bias M, which limits the potentially learnable rules. The learned
hypothesis H ⊆ HM must respect the following criteria: (i) for each positive example
e ∈ E+ , there is some accepting answer set of e with respect to P ∪ H ; and (ii) for any
negative example e ∈ E− , there is no accepting answer set of e with respect to P ∪ H . If
multiple hypotheses satisfy the conditions, the system returns one of the shortest, i.e., with
the minimum number of literals (Law et al., 2014). In Law et al. (2018), the authors extend
the expressiveness of ilasp by allowing noisy examples. With this setting, if an example e
is not covered (i.e., there is an accepting answer set for e if it is negative, and none, if it is
positive), the corresponding weight is counted as a penalty. Therefore, the learning task
becomes an optimization problem with two goals: minimize the size of H and minimize the
total penalties for the uncovered examples.

Now, we will define the syntax of ilasp necessary for our work and refer the reader to
the system’s manual (Law et al., 2021) for further details. A CDPI is expressed as follows:

where type is either pos or neg, ID is a unique identifier for the example, W is a positive
integer representing the example’s weight (if not defined, the weight is infinite), Inc and
Exc are two sets of atoms, and C is an ASP program. The language bias can be specified
by mode declarations, which define the predicates that may appear in a rule, their argu-
ment types, and their frequency. Since in our work we aim to learn constraints, we restrict
the search space just to rules r with H(r) = ⊥ . Hence, we only need to specify the mode
declarations for the body of a rule, expressed by #modeb(R,P,(E)) where R and E are
optional and P is a ground atom whose arguments are placeholders of type var(t) for
some constant term t. In the learned rules, the placeholders will be replaced by variables
of type t. The optional element R is a positive integer, called recall, which specifies the
maximum number of times that the mode declaration can be used in each rule. Lastly, E is
a condition that further restricts the hypothesis space. We limit our interest to the anti_
reflexive option that works with predicates of arity 2. When using it, atoms of the predi-
cate P should be generated with two distinguished argument values.

Choosing an appropriate language bias is still one of the major challenges for modern
ILP systems. Whenever the bias does not provide enough limitations, the problem becomes
intractable and ilasp might not be able to find useful constraints. In contrast, a too strong

#����(��@�, {���}, {���}, {�}).

1310	 Machine Learning (2022) 111:1303–1326

1 3

bias may exclude solutions from the search space, thus resulting in suboptimal SBCs
(Cropper & Dumančć, 2020).

3 � Approach

We tackle combinatorial problems modeled in ASP such that the instances of a logic pro-
gram P are generated by a discrete and often stationary stochastic process. Such situations
occur, e.g., in industrial settings where the encoding of a manufacturing system is fixed and
production orders vary. In this case, every problem instance can be seen as an outcome of
the process. We assume that any instance (i) specifies the (true) atoms of unary domain
predicates p1,… , pk in P, where ci is the number of atoms that hold for each pi ; and (ii)the
satisfiability of the instance depends on the number of atoms for each domain predicate,
but not on the values of their terms. Thus, without loss of generality, we consider the terms
for each pi to be consecutive integers from 1 to ci.

Our method exploits instance-specific SBCs on a representative set of instances and uti-
lizes them to generate examples for an ILP task. The learning method yields first-order
constraints that remove symmetries in the analyzed problem instances as much as possi-
ble while preserving the instances’ satisfiability. We consider the following two learning
settings:

–	 enum is a cautious setting that preserves all answer sets that are not filtered out by the
ground SBCs; and

–	 sat setting aims to learn tighter constraints which, however, preserve at least one answer
set for each instance.

To compute the examples, our approach relies on small satisfiable instances (i.e., with a
low value for each ci ), subdivided into two parts: S and Gen . Each instance g ∈ Gen

defines a positive example with empty inclusions and exclusions, and g as context.
These examples, denoted by ExGen , guarantee that the learned constraints generalize for
the target distribution since they force the constraints to preserve some solution for each
g ∈ Gen . The instances i ∈ S are used to obtain positive and negative examples, repre-
senting answer sets of P ∪ i to be preserved or filtered out, respectively, by corresponding
SBCs. We denote their union by ExS in Fig. 1, where positive examples represent whole
answer sets in the enum setting, or like instances in Gen , consist of empty inclusions and
exclusions along with the context i in sat.

An ILP task further requires background knowledge and a hypothesis space HM . Both
of them are defined by the user (for a possible instantiation, see Sect. 4.3). The back-
ground knowledge consists of a logic program P along with an Active Background Knowl-
edge, denoted by ABK in Algorithm 1. We use ABK to simplify the management of aux-
iliary predicate definitions and constraints learned so far. The hypothesis space contains
the mode declarations, and we assume it to be general enough to entail ground SBCs by
learned first-order constraints. The remaining inputs of Algorithm 1 consist of the instances
in Gen and S as well as the learning setting m. For each answer set I of an instance i ∈ S
to be analyzed, the algorithm determines T and F by projecting I to the atoms occurring
in IG , denoted by atoms(IG) . Next, in line 10, the predicate lexLead(⟨T ,F⟩, IG) evaluates
to true if I is dominated, i.e., I can be mapped to a lexicographically smaller, symmet-
ric answer set by means of some irredundant generator in IG . In this case, the negative

1311Machine Learning (2022) 111:1303–1326	

1 3

example neg(T ,F, i) is added to ExS in order to eliminate I  , while pos(I, �, i) or pos(�, �, i)
is taken as the positive example otherwise, depending on whether the enum or sat setting is
selected. Positive examples of the form pos(�, �, g) are also gathered in ExGen for instances
g ∈ Gen , and solving the ILP task at line 16 gives new constraints C to extend ABK.

4 � Implementation

The implementation of our framework relies on clingo (consisting of the grounding and
solving components gringo and clasp), sbass and ilasp, and is available at Tarzariol et al.
(2021). Figure 2 shows the pipeline to generate the examples for a given instance i ∈ S (the
for-loop at line 5 of Algorithm 1). First, the union of P, i, and ABK is grounded with
gringo to get the ground program Pgrd in smodels format. Then, the solver clasp enumer-
ates all its answer sets, obtaining AS(Pgrd) . Independently, sbass is run on Pgrd with the
option –show to output a set of irredundant permutation group generators. This set con-
tains the vertex permutations of GPgrd

 , expressed in cycle notation. We extract the cycles
defined by vertices representing atoms of Pgrd and transform them from smodels format
back into their original symbolic representation (by a predicate and integer terms).

Fig. 1   ILP examples generation

1312	 Machine Learning (2022) 111:1303–1326

1 3

Next, we identify the symmetric answer sets in AS(Pgrd) by using an ASP encoding
similar to the lex-leader predicate definition in Sakallah (2009) to evaluate SBCs. To this
end, we implement an ordering criterion to compare atoms according to their signatures.
Given two ground atoms p1(a1,… , an) and p2(b1,… , bm) , the first is considered smaller
than the second if: (i) p1 is lexicographically smaller than p2 ; (ii) p1 = p2 and n < m ; or
(iii) p1 = p2 , n = m , and there are constants ai < bi such that aj = bj for all 0 < j < i . Our
ASP encoding then checks whether an answer set I ∈ AS(Pgrd) is undominated by interpre-
tations obtainable by applying the symbolic representation of some irredundant generator
returned by sbass to I .

In case I is dominated and thus must be eliminated as a symmetric answer set, we map
it to a negative example with a unique identifier and a weight of 100. Due to the weights,
ilasp returns a set of constraints even if some negative examples are not covered. Moreover,
we use uniform weights so that all negative examples have the same relevance and as many
as possible are to be eliminated. Lastly, answer sets that were not found to be dominated
for any of the generators yield positive examples according to the selected setting—enum
or sat. Such positive examples are unweighted so that the learned hypothesis must cover all
of them.

4.1 � Alternative atom ordering

Let us consider sets of n lexicographically ordered atoms that only differ in the val-
ues of the last terms in each atom. For two such sets A = {p(��⃗x1, a1),… , p(��⃗xn, an)} and
B = {p(��⃗x1, b1),… , p(��⃗xn, bn)} of atoms, where ��⃗xi contains all terms but the last, the lex-
leader scheme starts by checking the atoms with the greatest ��⃗xi vectors until there are two
constants ai ≠ bi . Since various configuration problems yield answer sets of this kind,
we devised an alternative atom ordering such that the lex-leader scheme starts from the
smallest ��⃗xi vectors when comparing two answer sets. To this end, an atom p1(a1,… , an)
is considered smaller than p2(b1,… , bm) if: (i) p1 is lexicographically smaller than p2 ; (ii)
p1 = p2 and n < m ; (iii) p1 = p2 , n = m , and there are constants ai > bi such that i < n and
aj = bj for all 0 < j < i ; or (iv) p1 = p2 , n = m , ai = bi for all 0 < i < n , and an < bn.

Fig. 2   Pipeline to compute examples from an instance i 

1313Machine Learning (2022) 111:1303–1326	

1 3

This alternative ordering allows for more natural, undominated answer sets, as illus-
trated in the following example.

Example 4  Applying the alternative ordering criterion to the same input as described in
Example 3, we get the following total order of atoms:

Thus, the integers associated with the answer sets become:

Now the lex-leader scheme discards all but the answer set AS1 , and three permutations
map AS6 to smaller answer sets:

The answer set AS1 contains atoms that are preserved by the general first-order con-
straint ∶ −���(�, �), � < �. , which removes all other symmetric solutions. Unlike that,
when taking AS6 as a representative solution, we have to distinguish particular cases for the
assignment of the first and the last pigeon, resulting in longer and more specific constraints.

4.2 � Exploiting generators for full symmetry breaking

When investigating irredundant generators to label an answer set as a positive or negative
example according to the lex-leader scheme, there can be cases where the labeling achieves
partial instead of full symmetry breaking. As illustrated in Example 2, this is because sin-
gle applications of generators yield a subset of the orbit of an interpretation only. Thus, we
implement an alternative setting to label the examples, named fullSBCs, which exploits
generators to explore the whole orbit of symmetric interpretations for every answer set. For
each of the obtained cells, we label the smallest answer set as a positive example and all
the remaining ones as negative. This approach reduces the sensitivity of ILP tasks to par-
ticular irredundant generators returned by sbass, allowing to achieve full symmetry break-
ing for any instance i ∈ S.

1314	 Machine Learning (2022) 111:1303–1326

1 3

We implement this setting by means of the clingo API2 to interleave the solving phase,
which returns a candidate answer set, with the analysis of its orbit. Then, before continuing
with the search for the next answer set, we prohibit the explored interpretations by feeding
respective constraints to clingo. This setting allows for reducing the number of positive
examples produced, and as we can configure it to sample a limited subset of all answer
sets, it is also useful for dealing with underconstrained configuration problems that yield
plenty of answer sets even for very small instances.

Example 5  To illustrate the fullSBCs setting, let us reconsider the pigeon-hole problem
introduced in Example 3, where the instance with three pigeons and four holes leads to 24
solutions. Running sbass on this instance yields five generators, which identify a single cell
since all the answer sets are symmetric. However, we only consider the first two generators
in the following, allowing us to demonstrate the fullSBCs approach on an example with
several, i.e., four, cells. The generators we inspect are:

Let AS1 ={p2h(1,3), p2h(2,2), p2h(3,4)} be the first answer set found.
Then, before searching for other solutions, we repeatedly apply �1 and �2 to AS1 to obtain
the whole orbit of symmetric interpretations. The identified answer sets are:

Once we have computed all answer sets symmetric to AS1 , we produce a positive exam-
ple for the smallest answer set encountered, i.e., AS2 , while the other five answer sets con-
stitute negative examples. Now, we can proceed with the search for the next answer set,
e.g., AS7 =

2  A complete reference documentation can be found at https://​potas​sco.​org/​clingo/​python-​api/​curre​nt/.

https://potassco.org/clingo/python-api/current/

1315Machine Learning (2022) 111:1303–1326	

1 3

{p2h(1,2), p2h(2,1), p2h(3,3)}, and repeat the application of generators
to explore its cell, identifying another five symmetric solutions of which {p2h(1,3),
p2h(2,1), p2h(3,2)} is the smallest. This process continues until all 24 answer sets,
partitioned into four cells with a smallest representative for each, are explored.

Algorithm 2 outlines the fullSBCs approach, providing an alternative implementation of the
for-loop at line 7 of Algorithm 1. In the first line, we create a search control object, cnt , using the
clingo API. This object keeps track of already identified solutions and provides the get_new_solu-
tion method, which returns either a new answer set I or false if all solutions have been exhausted.
Similar to the previously presented approaches to example generation, we project the atoms of I
to atoms(IG) . The resulting interpretation min represents the smallest solution encountered so far
in the current cell, and the set seen keeps track of already discovered interpretations belonging to
the current cell. Starting with min , the queue Q collects the interpretations to which all irredundant
generators will be applied to yield new symmetric interpretations. The while-loop at line 7 checks
whether there is an interpretation, T, left to pop. Then, if T is greater than min (according to the
applied atom ordering criterion), it constitutes a negative example, while a smaller T is taken as
new smallest interpretation and the previous min instead becomes a negative example. Only after
the cell has been completely explored, the interpretation min is eventually labeled as a positive
example. Lastly, before querying cnt for the next solution, we eliminate answer sets subsumed by
the explored interpretations in seen from the search space of cnt.

4.3 � ILP learning task

After considering the example generation, we specify components of the ILP learning task
suitable for the learning of constraints. The idea is to encode the predicates used by lex-
leader symmetry breaking to order atoms and extract the maximal values for domain predi-
cates. Since the mode declarations of ilasp (v4.0.0) do not support arithmetic built-ins such
as <, we provide auxiliary predicates in ABK to simulate them. Presupposing the presence
of unary domain predicates p1,… , pk with integers from 1 to ci for each pi , ABK defines
the auxiliary predicates maxpi(ci) for each pi and lessThan(t1,t2) for each pair of integers

1316	 Machine Learning (2022) 111:1303–1326

1 3

1 ≤ t1 < t2 ≤ max{ci ∣ i = 1,… , k} . These two predicates, based exclusively on syntactic
properties of a considered problem, are minimal for overcoming limitations of ilasp to
learn lex-leader SBCs. The selection of small yet representative instances for S and Gen
depends on their hardness for learning. Regarding S, we pursued the strategy to empirically
determine instances for which sbass yields a manageable number of permutation group
generators. As mentioned in Sect. 4.2, the irredundant generators alone sometimes achieve
partial symmetry breaking, and we selected only instances without any or a small amount
of “misclassified" answer sets. The instances in Gen are usually larger yet still solvable in a
short running time to check that the learned constraints generalize.

The language bias of our learning task includes the mode declarations #modeb(2, pi(
var(ti))) and #modeb(1,maxpi(var(ti))) for each domain predicate pi , in which var(ti) is
a placeholder indicating the domain for which each pi holds. Moreover, for each (non-aux-
iliary) predicate P appearing in some of the generators computed for instances in S, we use
#modeb(2,P), where the domains of variables in atoms of P are provided by a vector of
the placeholders in {���(ti) ∣ i = 1,… , k} , depending on the role of P in the given program
P. In addition, we include mode declarations #modeb(2,lessThan(var(ti),var(tj))) for
all i, j = 1,… , k , with the option anti_reflexive in case i = j.

We decided to distinguish the variables’ types in the mode declarations in order to restrict
the hypothesis space to rules such that a variable X of type t is included as an argument only
in predicates defined over the same type t. To illustrate how this decision influences the
search space of an ILP task, let us consider two extensions of the pigeon-hole problem intro-
duced in Example 3, adding color and owner assignments. The pigeon-hole problem with
colors associates a color with each pigeon and requires pigeons placed into neighboring
holes to be of the same color. The version with colors and owners additionally assigns an
owner to each pigeon and imposes the same constraint as with the colors for owners as well.
For the pigeon-hole problem with colors, by using typed variables in the mode declarations,
ilasp generates a search space of 1837 rules,3 while 9169 rules are obtained without distin-
guishing variables’ types. Regarding the extension to owners, this difference is even larger:
2895 rules using typed variables versus 21406 rules without distinguishing variables’ types.

To compare the learning performance of ilasp, we conducted several experiments on
the pigeon-hole problem with colors and owners for a pool of instances4 and observed
that applying our approach with typed variables in the mode declarations allows for learn-
ing constraints quicker than without distinguishing the types. When using the iterative
approach described in Sect. 4.4, ilasp took on average less than two minutes to learn the
shortest constraints related to holes, colors, and owners, and always finished in less than
ten minutes. In opposite, a similar ILP task defined without distinction of variable types
took on average thirty minutes, with cases where no hypothesis was found within an hour.

Reducing the hypothesis space has the potential drawback of learning less efficient rules
since there can be situations where stronger constraints with fewer variables are excluded. For
instance, a constraint like :- pigeon(X), not p2h(X,X). cannot be learned in the
current setting, as the variable X is taken for a pigeon and a hole at the same time. However,
we decided to use the restricted search space for our experiments in Sect. 6 because it leads to
much better scalability of learning and constraints that still improve the solving performance.

4  The collected data can be found at Tarzariol et al. (2021). The experiments were run on an Intel®
i7-3930K machine under Linux (Debian GNU/Linux 10), where each run of ilasp4 was limited to 3600 s.

3  For all our experiments, we used the default value (3 literals) for the ilasp parameter that defines the
maximum number of literals that can occur together in the body of each rule of the hypothesis.

1317Machine Learning (2022) 111:1303–1326	

1 3

In fact, the ability to learn constraints in acceptable time is important for handling application
scenarios better than with instance-specific symmetry breaking methods.

Example 6  To illustrate a feasible outcome of our ILP framework, let us inspect the constraints
learned for the pigeon-hole problem and its instance with three pigeons and three holes, as also
considered in Example 3. Applying the generators returned by sbass to the six answer sets
gives one positive and five negative examples, and the resulting ILP task is as follows:

.

1318	 Machine Learning (2022) 111:1303–1326

1 3

Let us notice that the ASP input encoding in Example 3 has been adapted into an equiv-
alent one above. Such a modification is necessary because the current version of ilasp does
not support rules like {p2h(P,H) : hole(H)} = 1 :- pigeon(P). with the
conditional operator “:" in the head. After running ilasp, the learned first-order constraints
are:

:- p2h(X,Y), lessThan(Z,Y), maxpigeon(X).
% do not assign the pigeon with the max label to a hole
% other than the first one

:- p2h(X,Y), lessThan(X,Y), lessThan(Y,Z).
% for all but the last hole, do not assign a pigeon with
% a smaller label to the hole

4.4 � Iterative learning

Inspired by the lifelong learning approach (Cropper et al. 2020), we apply our framework
incrementally to a split learning task. This idea is especially useful if the ASP encoding
presents several symmetries, where some of them are independent of the others. The iter-
ative approach simplifies the learning task by exploiting the incremental applicability of
ILP: first, it solves a subtask to identify a subset of symmetries, and before addressing
the remaining ones, we integrate the constraints just learned into the background knowl-
edge. To this end, we divide the hypothesis space for programs with three or more types
of variables in the language bias. Then, in the first step, we provide a set S of instances to
address their symmetries involving only two types of variables and define the search space
with mode declarations restricted to the two types of variables considered. Next, we solve
the ILP subtask and append the learned constraints to ABK . In the following steps, we
repeat the procedure and analyze the same or different instances in S for symmetries going
beyond those already handled by solving ILP subtasks with the mode declarations progres-
sively extended to further types of variables.

To illustrate a concrete application scenario, reconsider the pigeon-hole problem with
color and owner assignments, introduced in Sect. 4.3. For this problem, the search space is
split into three incremental parts:

–	 the first is limited to predicates whose atoms exclusively include variables of the types
pigeon and hole,

–	 the second part extends mode declarations by allowing atoms with variables of the type
color too, and, finally,

–	 the third step includes variables of the type owners.

Initially, S contains instances with only one color and owner so that our framework pro-
duces examples entailing symmetries related exclusively to the pigeons’ placement. Next,
we append the learned constraints to ABK and repeat the procedure by redefining S with
instances with one owner but more than one color. Lastly, we analyze instances in S with-
out restrictions on the numbers of colors and owners while considering the whole language
bias. In this way, ilasp can learn new symmetries using predicates that involve more types
of variables, as the language bias is progressively extended until it reaches the whole set of
mode declarations.

1319Machine Learning (2022) 111:1303–1326	

1 3

By applying the iterative approach, the learning task can be decomposed into smaller
and easier ILP subtasks. For an indication of the practical impact on the size of the search
space(s), we note that ilasp generates 1040 rules for variables of the types pigeon and
hole only, 1837 rules when variables of the type color are added, and 2895 rules with
the full language bias for the pigeon-hole problem with colors and owners. That is, the
search space for the ILP subtask in the last iteration includes the same rules as generated
when addressing the full language bias in a single step, yet the background knowledge may
already be extended by constraints reducing the number of (negative) examples still to
investigate. We assessed the impact of the iterative approach in several experiments experi-
ments (see footnote 4) and observed that it allows us to learn constraints much quicker than
when tackling all symmetries in a single pass. By splitting the learning task, ilasp took on
average less than two minutes to learn constraints related to pigeons and holes, then colors,
and finally owner assignments. Unlike that, the ILP task that addresses the full language
bias directly took on average more than thirty minutes to return the shortest hypothesis,
where in some cases the search was not finished within one hour.

Splitting the learning task has the potential drawback that some of the symmetries can
be lost in the process, as the updated ABK is considered in subsequent calls to sbass for
identifying remaining symmetries. However, for the combinatorial problems investigated
in our experiments in Sect. 6, the results showed that even in case we learn constraints han-
dling a subset of all problem symmetries, the solving performance benefits substantially.

5 � Learning performance

We tested the different settings of our implementation over the two extensions of the
pigeon-hole problem described in Sect. 4.3. For every setting, we used the same initial set
of instances in Gen , auxiliary constraints in ABK , and mode declarations in the language
bias (split to apply the iterative approach). For keeping the number of instances in Gen
moderate, we hand-picked a few (satisfiable) instances to start from, applied our iterative
learning approach, and then validated the learned constraints on other satisfiable instances
as well. The instances for which learned constraints led to unsatisfiability were then also
added to Gen , and we repeated the learning phase until all instances were found satisfiable
together with the learned first-order SBCs.

In the following, we report representative results and conclusions drawn from the
instances and records of learning experiments provided in our repository (Tarzariol et al.,
2021).

5.1 � Enum vs sat setting

The difference between the enum and sat setting lies in the positive examples generated for
the instances in S: in the first setting, we explicitly list all undominated answer sets as posi-
tive examples, while the second produces just a general positive example with empty inclu-
sions and exclusions. That is, the sat setting abstracts over undominated answer sets, as
they are neither labeled as positive nor negative examples in the ILP task. In this case, ilasp
aims at eliminating as many symmetric answer sets as possible while preserving the satisfi-
ability of a given instance. This even means that the preserved answer sets, required in view
of the general positive example, might belong to negative examples but are not covered by
the learned constraints. In this way, we may, in general, learn alternative constraints that

1320	 Machine Learning (2022) 111:1303–1326

1 3

preserve some specific pattern of solutions appearing in all satisfiable instances, regardless
of symmetries, while representative solutions can be lost.

For example, in the first ILP iteration on the pigeon-hole problem with colors and own-
ers, the instance with three pigeons and four holes (and only one color and owner) gives 24
answer sets, 22 of which are labeled as negative. In the enum setting, ilasp finds optimal
constraints removing 12 negative examples and thus returns a hypothesis that applied to the
same instance leaves 12 answer sets. In contrast, the sat setting enables learning of stronger
constraints by ilasp, which preserve 2 answer sets only, both labeled as negative examples.

The complexity of the ILP task depends on the possibility of covering all negative
examples. Since with enum we have tighter conditions on the candidate hypotheses, the
search space is smaller than in the sat setting. Hence, the optimization problem regarding
(weighted) negative examples addressed by ilasp takes in general longer for sat, but only if
many negative examples cannot be covered even under relaxed conditions on the candidate
hypotheses. On the other hand, if the language bias permits many hypotheses covering all
or most of the negative examples, an ILP task is usually quickly solved with the sat setting.
E.g., the instance with three pigeons, four holes, one color and owner took 72.8 seconds
to be solved in the enum (eliminating 12 out of 22 symmetric answer sets) and just 27.7
seconds in the sat setting (eliminating 20 symmetric answer sets and the 2 unlabeled ones).

5.2 � Alternative atom ordering

When answer sets for the combinatorial problem analyzed have the property described in
Sect. 4.1, our alternative ordering criterion for the lex-leader scheme may distinguish the
representative and symmetric solutions. Hence, ILP tasks can be solved with shorter con-
straints than for the default atom ordering. For instance, the setting illustrated in Example 6
yields the representative answer set {p2h(1,1),p2h(2,2),p2h(3,3)} instead of
{p2h(1,3),p2h(2,2),p2h(3,1)}. This allows ilasp to learn the short constraint
:- p2h(X,Y), lessThan(Y,X)., expressing that no pigeon can be placed into a
hole smaller than its label, which leaves just one answer set for instances with an equal
number p = h of pigeons and holes.

Given that the positive examples kept after checking direct applications of the irredun-
dant generators returned by sbass heavily depend on the computed generators, we found
that often more positive examples are produced than for the default atom ordering. Namely,
the generators preserve more symmetric solutions than the default ordering for the exten-
sions of the pigeon-hole problem to colors as well as colors and owners. This leads to
weaker (although shorter and easier to interpret) constraints, and better-suited ways of
aligning generators with symbolic atom representations would be of interest.

5.3 � Exploiting generators for full symmetry breaking

Section 4.2 describes an alternative implementation for labeling answer sets as positive
or negative examples, called the fullSBCs setting. We can see the effects of always labe-
ling the answer sets according to full SBCs on the same scenario as discussed in Sect. 5.1:
instead of 22 negative and 2 positive examples generated with the enum setting, fullSBCs
returns just one positive example, i.e., the representative of the single cell characterized by
the generators of sbass. As a consequence, instead of 72.8 seconds to return a hypothesis
that produces 12 of the original 24 answer sets, with the ILP task defined based on fullS-
BCs, ilasp took 21.4 seconds to find a hypothesis that preserves only 4 answer sets.

1321Machine Learning (2022) 111:1303–1326	

1 3

We note that reducing the number of examples for an ILP task generated by some of our set-
tings has a limited impact on ilasp, as its latest versions implement mechanisms to scale with
respect to the number of examples (Law et al., 2016; Law, 2021). However, for instances with
many answer sets, the fullSBCs approach can be helpful because equivalent answer sets need
not be exhaustively computed by clingo.

6 � Solving experiments

To evaluate our approach and the implementation design, we applied it to a series of
combinatorial search problems. For each considered problem, we compared the running
time of the original encoding, the version extended with our learned constraints, and the
instance-specific approach of sbass. The learned constraints depend on the instances used
in S and Gen as well as how we apply the iterative learning approach. In the following, we
report results for the constraints with good performance learned applying the definitions
of Sect. 4.3.5 We ran our tests on an Intel® i7-3930K machine under Linux (Debian GNU/
Linux 10), where each run was limited to 900 seconds and 20 GB of memory.

Table 1   Runtime in seconds for pigeon-hole problem

Enum Sat Ord Full BASE SBASS CLASP
�

p50-h49 0.092 0.092 0.084 0.091 TO 52.829 1.900
p50-h50 0.080 0.080 0.073 0.082 0.116 53.408 1.417
p100-h99 0.635 0.715 0.640 0.715 TO TO –
p100-h100 0.707 0.627 0.574 0.622 1.047 TO –
p200-h199 5.602 5.861 5.192 5.656 TO TO –
p200-h200 5.772 5.907 6.004 5.627 11.162 TO –
p300-h299 21.606 21.166 19.162 21.963 TO TO –
p300-h300 20.824 20.629 19.477 20.631 38.723 TO –
p400-h399 50.054 50.202 46.937 50.482 TO TO –
p400-h400 51.144 50.439 47.718 50.255 94.253 TO –

Table 2   Runtime in seconds for pigeon-hole problem with colors

Enum Sat Ord Full BASE SBASS CLASP
�

c1-p12-h11 1.939 0.007 0.007 0.006 692.704 0.284 0.015
c1-p52-h52 0.147 0.100 0.101 0.100 0.145 63.455 1.083
c2-p12-h12 6.648 0.009 0.010 0.010 TO 0.092 TO
c2-p52-h53 0.559 0.298 0.421 0.293 TO 93.870 TO
c3-p12-h13 4.457 0.014 0.052 0.019 TO 0.228 TO
c3-p52-h54 4.974 0.545 1.072 0.628 1.674 449.324 TO
c4-p12-h14 4.195 0.022 3.026 0.075 TO 0.479 TO
c4-p52-h55 3.131 0.959 2.033 3.849 TO 550.065 TO
c5-p12-h15 5.673 0.035 138.861 0.251 TO 1.020 TO
c5-p52-h56 18.336 1.561 581.164 11.704 5.930 TO –

5  Detailed settings are provided at Tarzariol et al. (2021).

1322	 Machine Learning (2022) 111:1303–1326

1 3

In Tables 1, 2, 3 and 4, the satisfiable instances are shown in even rows, while the odd
rows contain unsatisfiable instances. The column base refers to clingo (v5.5.0) run on the
original encoding, while Enum, Sat, Ord, and Full report results for the original encoding
augmented with first-order constraints learned in the enum, sat, and enum with alterna-
tive atom ordering or fullSBCs setting, respectively. The time required by sbass to compute
ground SBCs is given in the corresponding column, and clasp� provides the solving time
obtained with these ground SBCs. Runs that did not finish within the time limit of 900 sec-
onds are indicated by TO entries.

We first tested the pigeon-hole problem, working without any division and iterative
analysis of the language bias: the four learning settings led to similar performance con-
straints, although the ones obtained with the alternative ordering were shorter, as men-
tioned in Sect. 5.2. The running time comparison in Table 1 shows that all the settings
of our approach bring about a similar speedup for solving satisfiable as well as unsatisfi-
able instances. In fact, the vast problem symmetries are cut by the learned first-order con-
straints. This is particularly important in case of unsatisfiability, where runs on the original
encoding without additional constraints do not finish within the time limit. While sbass
also manages to handle the two smallest instances, the computation of permutation group

Table 3   Runtime in seconds for pigeon-hole problem with colors and owners

Enum Sat Ord Full BASE SBASS CLASP
�

o1-c3-p12-h13 1.505 0.016 0.051 0.046 TO 0.204 TO
o1-c3-p52-h54 1.749 0.554 1.002 0.906 1.709 312.328 TO
o2-c3-p12-h13 1.081 0.017 0.070 0.045 TO 0.337 TO
o2-c3-p52-h54 1.017 0.705 1.561 1.231 TO 542.377 TO
o3-c1-p12-h13 1.511 0.016 0.053 0.035 TO 0.21 TO
o3-c1-p52-h54 1.726 0.551 0.996 0.903 1.698 313.062 TO
o4-c4-p12-h14 0.894 0.031 3.162 1.114 TO 1.102 TO
o4-c4-p52-h55 4.123 1.819 3.486 3.546 6.653 TO –
o5-c5-p12-h15 0.684 0.061 97.453 21.272 TO 2.093 TO
o5-c5-p52-h56 13.984 3.045 573.523 200.467 11.622 TO –

Table 4   Runtime in seconds for house-configuration problem

Enum Sat Ord Full BASE SBASS CLASP
�

p2-c6-t13 0.337 0.025 0.097 0.329 219.753 0.095 12.951
p2-c80-t160 4.928 5.001 5.166 5.024 6.583 TO –
p3-c6-t13 0.342 0.031 0.093 0.424 254.065 0.242 73.041
p3-c80-t160 13.682 14.315 15.174 14.110 20.724 TO –
p4-c6-t13 0.420 0.035 0.102 0.349 221.784 0.453 105.145
p4-c80-t160 27.437 28.866 28.145 27.299 40.121 TO –
p5-c6-t13 0.418 0.042 0.101 0.397 236.961 0.890 405.461
p5-c80-t160 48.057 49.382 48.598 49.645 68.167 TO –
p4-c7-t15 13.263 0.335 1.524 14.229 TO 0.729 TO
p15-c15-t30 5.655 6.777 2.700 2.525 4.155 TO –

1323Machine Learning (2022) 111:1303–1326	

1 3

generators becomes too expensive when the instance size grows, in which case we cannot
run clasp� with ground SBCs from sbass.

Next, we tested the pigeon-hole problem adding color and owner assignments. For
the pigeon-hole problem with color assignments, we divided the language bias into two
parts: the first limiting to predicates whose atoms exclusively include variables of the
types pigeon and hole, while the second part allows variables to be of the type color
too. Likewise, the problem version with owners and colors required a third language bias
extension to variables of the type owner. For both extensions of the pigeon-hole prob-
lem, the first-order constraints learned in sat turned out to be stronger than in the other
settings. Nevertheless, all kinds of constraints helped to improve the search for solutions.
Tables 2 and 3 show similar results: the constraints learned with the sat setting lead to
the fastest running times for both satisfiable and unsatisfiable instances. The constraints
learned with enum using the alternative ordering are shorter and easier to read than the
other settings, but sightly less efficient since they break only a subset of all symmetries.
In Table 2, the time took for identifying satisfiable and unsatisfiable instances is lower if
we use the constraints learned with fullSBCs than those learned with enum; on the other
hand, in Table 3, we observe the opposite behavior, especially for the last instances: for the
pigeon-hole problem with colors and owners, we could have learned the same constraints
in both settings because to obtain the constraints with enum, we used instances that iden-
tify full SBCs. However, we tested a different set of rules for fullSBCs since they were
stricter than enum, concerning the pigeons’ placement symmetries. Indeed, the first unsat-
isfiable instance with one color and owner was solved earlier by the constraint of fullSBCs.
Lastly, for small unsatisfiable instances, the ground SBCs from sbass lead to better perfor-
mance than the constraints learned with the enum setting. However, as soon as the color (or
owner) dimension grows, the runs of clasp� reach the timeout. This behavior is due to the
redundancy of the ground SBCs, which slow down the search instead of facilitating it. For
some of the satisfiable instances, finding a solution with the constraints learned in enum
takes longer than with the original encoding alone. Nevertheless, the latter also has time-
outs that do not occur with our learned first-order constraints.

To conclude, we applied the different settings of our approach to the house-configu-
ration problem (Friedrich et al. 2011), which consists of assigning t things of p persons
to c cabinets, where each cabinet has a capacity limit of two things that must belong to
the same owner. Similarly to the pigeon-hole problem with color, we divided the language
bias into two parts: the first limiting to predicates whose atoms exclusively include vari-
ables of the types cabinet and thing, while the second part allows variables to be of
the type person too. The running times in Table 4 exhibit the same trend as observed
on the previous problems that our first-order constraints help the search, especially those
learned with the sat setting. For this problem, the constraints learned with the enum setting,
the alternative ordering, and exploiting the full SBCs show similar performances. In some
cases, the original encoding is quicker to solve satisfiable instances, although it takes con-
siderably longer for unsatisfiable ones. On the other hand, sbass brings a moderate speedup
for unsatisfiable instances, but its performance suffers a lot when the problem size grows.

1324	 Machine Learning (2022) 111:1303–1326

1 3

7 � Conclusions

This paper introduces methods to lift the SBCs of combinatorial problem encodings in
ASP for a target distribution of instances. Our framework addresses the limitations of com-
mon instance-specific approaches, like sbass, since: (i) the knowledge is transferable, as
learned constraints preserve the satisfiability for the considered instance distribution; (ii)
the first-order constraints are easier to interpret than ground SBCs; (iii) the SBCs are com-
puted offline, allowing for addressing large-scale instances, as shown in our experiments;
and (iv) the learned constraints are non-redundant, avoiding performance degradation due
to an excessive ground representation size. In the current implementation of our approach,
ilasp learns shortest constraints that cover as many examples as possible, while there is
no distinction regarding the solving performance of candidate hypotheses. Despite this,
our experiments showed that the learned constraints significantly improve the solving per-
formance on the analyzed problems. Moreover, the two example generation methods sug-
gested in this work allowed for ILP tasks with (i) fewer positive examples and (ii) shorter
learned constraints, in comparison to the two methods of our previous paper (Tarzariol
et al., 2021). These results are due to the full symmetry breaking when enumerating all
answer sets with the fullSBCs approach or an alternative atom ordering for the lex-leader
scheme, respectively.

Nevertheless, there are still some limitations in the usability of our framework, which
partially go back to the components used in our current implementation, i.e., sbass, clingo,
and ilasp. The sbass tool does not support ASP programs with weak constraints (Calimeri
et al., 2019), whose implementation is out of the scope of this work. However, extensions
of instance-specific symmetry detection and model-oriented symmetry breaking to optimi-
zation problems are undoubtedly worthwhile. Optimization involves solving unsatisfiable
subproblem(s) attempting (and failing) to improve an optimal answer set, where symmetry
breaking is particularly crucial for performance. Concerning clingo, if a given encoding P
leads to large ground instantiations, the addition of learned constraints does not reduce the
size. Therefore, it would be desirable to directly incorporate the information about redun-
dant answer sets into a modified encoding. For instance, for the pigeon-hole problem, this
might prevent our method from even generating ground atoms representing the placement
of a pigeon into some hole with a greater label. Lastly, ilasp does currently not scale well
with respect to the size of the hypothesis space spanned by the language bias, which is a
well-known issue tackled by next-generation ILP systems under development (Law et al.,
2020, 2021).

At present, the successful application of our framework relies on the following charac-
teristics of a combinatorial problem: (i) we can easily provide simple instances (i.e., the
total number of solutions can be managed by our implementation) that entail the symme-
tries of the whole instance distribution; (ii) the object domains can be expressed in terms
of unary predicates that hold for a range of consecutive integers; and (iii) the auxiliary
predicate definitions suggested for ABK in Sect. 4.3 enable the learning of constraints that
improve the solving performance. In particular, if it gets difficult to compute solutions for
an instance in S to analyze, the formulation of an ILP task to learn constraints can become
prohibitive.

In the future, we aim to investigate whether the learning of SBCs can be readily applied
or further adapted to advanced industrial configuration problems, such as the Partner Units
Problem (Dodaro et al., 2016), as well as complex combinatorial problems with specific
instance distributions, like the labeling of Graceful Graphs (Petrie & Smith, 2003). For

1325Machine Learning (2022) 111:1303–1326	

1 3

such application scenarios, the language bias may be enriched, possibly extending the
background knowledge with additional predicates characterizing the structure of instances.
Moreover, for problem instances that yield a vast number of solutions, we can take advan-
tage of the incremental implementation of the fullSBCs approach to limit the number of
answer sets to consider as examples for an ILP task. Lastly, we intend to develop auto-
matic mechanisms to select suitable instances for S and Gen from instance collections, sup-
port lifelong learning, and further optimize the grounding and solving efficiency of learned
constraints.

Acknowledgements  This work was partially funded by KWF Project 28472, cms electronics GmbH, Fun-
derMax GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, Infineon Technologies Austria AG, Isovolta
AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse. We thank the anonymous reviewers
for their helpful and constructive comments.

Funding  Open access funding provided by University of Klagenfurt.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N., Maratea, M.,
Ricca, F., & Schaub, T. (2019). ASP-Core-2 input language format. Theory and Practice of Logic Pro-
gramming, 20(2), 294–309.

Codenotti, P., Katebi, H., Sakallah, K., & Markov, I. (2013). Conflict analysis and branching heuristics in
the search for graph automorphisms. In 25th IEEE International Conference on Tools with Artificial
Intelligence, pp. 907–914. IEEE Computer Society.

Cohen, D., Jeavons, P., Jefferson, C., Petrie, K., & Smith, B. (2006). Symmetry definitions for constraint
satisfaction problems. Constraints, 11(2–3), 115–137.

Cropper, A., Dumančić, S., & Muggleton, S. (2020). Turning 30: New ideas in inductive logic program-
ming. In 29th International Joint Conference on Artificial Intelligence, pp. 4833–4839. ijcai.org

Cropper, A., & Dumančć, S. (2020). Inductive logic programming at 30: A new introduction. https://​arxiv.​
org/​abs/​2008.​07912

Cropper, A., & Muggleton, S. (2016). Metagol. https://​github.​com/​metag​ol/​metag​ol
Darga, P., Katebi, H., Liffiton, M., Markov, I., & Sakallah, K. (2004). Saucy http://​vlsic​ad.​eecs.​umich.​edu/​

BK/​SAUCY/
Devriendt, J., Bogaerts, B., Bruynooghe, M., & Denecker, M. (2016). On local domain symmetry for model

expansion. Theory and Practice of Logic Programming, 16(5–6), 636–652.
Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., & Schekotihin, K. (2016). Combining answer

set programming and domain heuristics for solving hard industrial problems. Theory and Practice of
Logic Programming, 16(5–6), 653–669.

Drescher, C., Tifrea, O., & Walsh, T. (2011). Symmetry-breaking answer set solving. AI Communications,
24(2), 177–194.

Erdem, E., Gelfond, M., & Leone, N. (2016). Applications of ASP. AI Magazine, 37(3), 53–68.
Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R., & Teppan, E. (2018). Industrial applications of

answer set programming. Künstliche Intelligenz, 32(2–3), 165–176.
Friedrich, G., Ryabokon, A., Falkner, A., Haselböck, A., Schenner, G., & Schreiner, H. (2011). (Re)configuration

using answer set programming. In: IJCAI 2011 Workshop on Configuration, pp. 17–24. CEUR-WS.org.
Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012). Answer set solving in practice. Morgan and Clay-

pool Publishers.

http://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2008.07912
https://arxiv.org/abs/2008.07912
https://github.com/metagol/metagol
http://vlsicad.eecs.umich.edu/BK/SAUCY/
http://vlsicad.eecs.umich.edu/BK/SAUCY/

1326	 Machine Learning (2022) 111:1303–1326

1 3

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases. New Genera-
tion Computing, 9, 365–385.

Law, M. (2021). Conflict-driven inductive logic programming. https://​arxiv.​org/​abs/​2101.​00058
Law, M., Russo, A., Bertino, E., Broda, K., & Lobo, J. (2020). FastLAS: Scalable inductive logic programming

incorporating domain-specific optimisation criteria. In: 34th National Conference on Artificial Intelligence ,
pp. 2877–2885. AAAI Press.

Law, M., Russo, A., & Broda, K. (2014). Inductive learning of answer set programs. In 14th European Conference
on Logics in Artificial Intelligence , pp. 311–325. Springer.

Law, M., Russo, A., & Broda, K. (2016). Iterative learning of answer set programs from context dependent exam-
ples. Theory and Practice of Logic Programming, 16(5–6), 834–848.

Law, M., Russo, A., & Broda, K. (2018). Inductive learning of answer set programs from noisy examples.
Advances in Cognitive Systems, 7, 57–76.

Law, M., Russo, A., & Broda, K. (2021). Ilasp. http://​www.​ilasp.​com
Law, M., Russo, A., Broda, K., & Bertino, E. (2021). Scalable non-observational predicate learning in ASP. In 30th

International Joint Conference on Artificial Intelligence , pp. 1936–1943. ijcai.org.
Lifschitz, V. (2019). Answer set programming. Springer.
Margot, F. (2010). Symmetry in integer linear programming. In 50 Years of Integer Programming 1958–2008, pp.

647–686. Springer-Verlag.
Mears, C., García de la Banda, M., Wallace, M., & Demoen, B. (2008). A novel approach for detecting symmetries

in CSP models. In: 5th International Conference on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems , pp. 158–172. Springer.

Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13(3–4), 245–286.
Petrie, K., & Smith, B. (2003). Symmetry breaking in graceful graphs. In 9th International Conference on Princi-

ples and Practice of Constraint Programming , pp. 930–934. Springer.
Puget, J. (2005). Automatic detection of variable and value symmetries. In 11th International Conference on Princi-

ples and Practice of Constraint Programming, pp. 475–489. Springer .
Sakallah, K. (2009). Symmetry and satisfiability. In: Handbook of satisfiability, pp. 289–338. IOS Press.
Srinivasan, A. (2004). The Aleph manual. https://​www.​cs.​ox.​ac.​uk/​activ​ities/​progr​amind​uction/​Aleph/.
Tarzariol, A., Gebser, M., & Schekotihin, K. (2021). ILP symmetry breaking. https://​github.​com/​prosy​sscie​nce/​

Symme​try_​Break​ing_​with_​ILP/​tree/​exten​ded
Tarzariol, A., Gebser, M., & Schekotihin, K. (2021). Lifting symmetry breaking constraints with inductive logic

programming. In 30th International Joint Conference on Artificial Intelligence , pp. 2062–2068. ijcai.org.
Walsh, T. (2012). Symmetry breaking constraints: Recent results. In 26th National Conference on Artificial Intel-

ligence , pp. 2192–2198. AAAI Press.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://arxiv.org/abs/2101.00058
http://www.ilasp.com
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/
https://github.com/prosysscience/Symmetry_Breaking_with_ILP/tree/extended
https://github.com/prosysscience/Symmetry_Breaking_with_ILP/tree/extended

	Lifting symmetry breaking constraints with inductive logic programming
	Abstract
	1 Introduction
	2 Background
	2.1 Answer set programming
	2.2 Symmetry breaking
	2.3 Inductive logic programming

	3 Approach
	4 Implementation
	4.1 Alternative atom ordering
	4.2 Exploiting generators for full symmetry breaking
	4.3 ILP learning task
	4.4 Iterative learning

	5 Learning performance
	5.1 Enum vs sat setting
	5.2 Alternative atom ordering
	5.3 Exploiting generators for full symmetry breaking

	6 Solving experiments
	7 Conclusions
	Acknowledgements
	References

