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Abstract
Efficient omission of symmetric solution candidates is essential for combinatorial problem-
solving. Most of the existing approaches are instance-specific and focus on the automatic 
computation of Symmetry Breaking Constraints (SBCs) for each given problem instance. 
However, the application of such approaches to large-scale instances or advanced problem 
encodings might be problematic since the computed SBCs are propositional and, therefore, 
can neither be meaningfully interpreted nor transferred to other instances. As a result, a 
time-consuming recomputation of SBCs must be done before every invocation of a solver. 
To overcome these limitations, we introduce a new model-oriented approach for Answer 
Set Programming that lifts the SBCs of small problem instances into a set of interpret-
able first-order constraints using the Inductive Logic Programming paradigm. Experiments 
demonstrate the ability of our framework to learn general constraints from instance-spe-
cific SBCs for a collection of combinatorial problems. The obtained results indicate that 
our approach significantly outperforms a state-of-the-art instance-specific method as well 
as the direct application of a solver.
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1  Introduction

Modern declarative programming paradigms allow for relatively simple modeling of vari-
ous combinatorial problems. Nevertheless, solving these problems might become infeasi-
ble when the size of input instances and, correspondingly, the number of possible solution 
candidates start to grow (Dodaro et al., 2016). In many cases, these candidates are sym-
metric, i.e., one candidate can easily be obtained from another by renaming constants. In 
order to deal with large problem instances, the ability to encode Symmetry Breaking Con-
straints (SBCs) in a problem representation becomes an essential skill for programmers. 
However, the identification of symmetric solutions and the formulation of constraints that 
remove them is a tedious and time-consuming task. As a result, various tools emerged that 
avoid the computation of symmetric solutions by, for instance, automatically finding a set 
of SBCs using properties of permutation groups or applying specific search methods that 
detect and ignore symmetric states; see (Margot, 2010; Sakallah, 2009; Walsh, 2012) for an 
overview.

Existing approaches to SBC generation can be classified into instance-specific and 
model-oriented ones. The former methods identify symmetries for a particular instance at 
hand by computing and adding ground SBCs to the problem representation (Cohen et al., 
2006; Drescher et  al., 2011; Puget, 2005). Unfortunately, computational advantages do 
not carry forward to large-scale instances or advanced encodings, where instance-specific 
symmetry breaking often requires as much time as it takes to solve the original problem. 
Moreover, ground SBCs generated by instance-specific approaches are (i) not transferable, 
since the knowledge obtained is limited to a single instance; (ii) usually hard to interpret 
and comprehend; (iii) derived from permutation group generators, whose computation is 
itself a combinatorial problem; and (iv) often redundant and might result in a degradation 
of the solving performance.

In contrast, model-oriented approaches aim to find general SBCs that depend less on 
a particular instance. The method presented in Devriendt et al. (2016) uses local domain 
symmetries of a given first-order theory. SBCs are generated by identifying argument posi-
tions in atoms of a formula that comprise object variables defined over the same subset of 
a domain given in the input. As a result, the computation of lexicographical SBCs is very 
fast. However, the method considers each first-order formula separately and cannot reli-
ably remove symmetric solutions, as it requires the analysis of several formulas at once. 
The method of Mears et al. (2008) computes SBCs by generating small instances of para-
metrized constraint programs, and then finds candidate symmetries using Saucy (Codenotti 
et al., 2013; Darga et al., 2004) – a graph automorphism detection tool. Next, the algorithm 
removes all candidate symmetries that are valid only for some of the generated examples as 
well as those that cannot be proven to be parametrized symmetries using heuristic graph-
based techniques. This approach can be seen as a simplified learning procedure that utilizes 
only negative examples represented by the generated SBCs.

In this work, we introduce a novel model-oriented method for Answer Set Programming 
(ASP) (Lifschitz, 2019) that aims to generalize the process of discarding redundant solu-
tion candidates for instances of a target domain using Inductive Logic Programming (ILP) 
(Cropper et al., 2020). The goal is to lift the SBCs of small problem instances and to obtain 
a set of interpretable first-order constraints. Such constraints cut the search space while 
preserving the satisfiability of a problem for the considered instance distribution, which 
improves the solving performance, especially in the case of unsatisfiability. The particular 
contributions of our work are:



1305Machine Learning (2022) 111:1303–1326	

1 3

–	 We suggest several methods to generate a training set comprising positive and negative 
examples, allowing an ILP system to learn first-order SBCs for the problem at hand.

–	 We define the components of an ILP learning task enabling the generation of lexico-
graphical SBCs for ASP.

–	 We analyze the features and characteristics of the results obtained by our methods, as 
well as the effects of language bias decisions on several combinatorial problems.

–	 We present an approach that iteratively applies our method to revise constraints when 
new permutation group generators or more training instances become available.

–	 We conduct performance experiments on variants of the pigeon-hole problem as well as 
the house-configuration problem (Friedrich et al., 2011). The obtained results show that 
the SBCs generated are easy to interpret in most of the cases, and they result in signifi-
cant performance improvements over a state-of-the-art instance-specific method as well 
as an ASP solver without SBCs.

This work extends the previous conference paper (Tarzariol et  al., 2021) with two addi-
tional methods to obtain the positive and negative examples for an ILP task, i.e., an alter-
native atom ordering criterion and a full symmetry breaking approach, along with corre-
sponding experimental results. Moreover, we provide much more detailed descriptions and 
analyses of experiments with the suggested language bias, the previous, and two new learn-
ing settings.

The structure of this paper is the following: a brief overview of the preliminaries is 
given in Sect. 2. Section 3 presents our approach, while Sect. 4 describes its implementa-
tion and specifies the components of an ILP learning task. In Sect. 5, we investigate obser-
vations from learning experiments conducted with our methods. Section  6 provides and 
discusses experimental results on the solving performance obtained for some combinato-
rial problems. Lastly, Sect. 7 concludes the paper and outlines directions for future work.

2 � Background

This section introduces some basics and notations for ASP, symmetry breaking, and ILP.

2.1 � Answer set programming

Answer Set Programming (ASP) (Lifschitz, 2019) is a declarative programming paradigm 
based on non-monotonic reasoning and the stable model semantics (Gelfond and Lifschitz, 
1991). Over the past decades, ASP has attracted considerable interest thanks to its elegant 
syntax, expressiveness, and efficient system implementations, showing promising results 
in numerous domains like, e.g., industrial, robotics, and biomedical applications (Erdem 
et al., 2016; Falkner et al., 2018). We will briefly define the syntax and semantics of ASP, 
and refer the reader to (Gebser et  al., 2012; Lifschitz, 2019) for more comprehensive 
introductions.

Syntax An ASP program P is a set of rules r of the form:

where not stands for default negation and ai , for 0 ≤ i ≤ n , are atoms. An atom is an expres-
sion of the form p(t) , where p is a predicate, t is a possibly empty vector of terms, and the 
predicate ⊥ (with an empty vector of terms) represents the constant false. Each term t in 

a0 ← a1,… , am, not am+1,… , not an
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t is either a variable or a constant, and a literal l is an atom ai (positive) or its negation 
not ai (negative). The atom a0 is the head of a rule r, denoted by H(r) = a0 , and the body 
of r includes the positive or negative, respectively, body atoms B+(r) = {a1,… , am} and 
B−(r) = {am+1,… , an} . A rule r is called a fact if B+(r) ∪ B−(r) = � , and a constraint if 
H(r) = ⊥.

Semantics The semantics of an ASP program P is given in terms of its ground instan-
tiation Pgrd , replacing each rule r ∈ P with instances obtained by substituting the varia-
bles in r by constants occurring in P. Then, an interpretation I  is a set of (true) ground 
atoms occurring in Pgrd that does not contain ⊥ . An interpretation I  satisfies a rule r ∈ Pgrd 
if B+(r) ⊆ I  and B−(r) ∩ I = � imply H(r) ∈ I  , and I  is a model of P if it satisfies all 
rules r ∈ Pgrd . A model I  of  P is stable if it is a subset-minimal model of the reduct 
{H(r) ← B+(r) ∣ r ∈ Pgrd,B

−(r) ∩ I = �} , and we denote the set of all stable models of P 
by AS(P).

2.2 � Symmetry breaking

Most of the modern instance-specific approaches detect symmetries of a given object by 
representing it as an instance of the graph automorphism problem. This problem consists 
of finding all edge-preserving bijective mappings of a graph vertex set to itself. It is an 
attractive target of reduction since this problem can be solved efficiently for many families 
of graphs using methods from the group theory; see (Sakallah, 2009) for an overview.

A group is an abstract algebraic structure ⟨G, ∗⟩ where G is a non-empty set, closed 
under a binary associative operator ∗ , such that G contains an identity element, and each 
element has a unique inverse. If the operator ∗ is implicit, the group is represented by G. A 
subgroup H of a group G is a group such that H ⊆ G . Given a set X = {x1, ..., xn} of n ele-
ments, a permutation of X is a bijection that rearranges its elements. The symmetric group 
SX is defined by the set of all the n! possible permutations of X, and its subgroups are called 
permutation groups. In cycle notation, we represent a permutation as a product of disjoint 
cycles, where each cycle 

(
x1 x2 x3 … xk

)
 means that the element x1 is mapped to x2 , x2 

to x3 , and so on, until xk is mapped back to x1 ; the elements mapped to themselves are not 
contained in the cycles.

Given a group G and a set X, the group action � ∶ G �→ SX defines a permutation of 
the elements in X for each g ∈ G . Then, each permutation �(g) induces a partition on X, 
P
�(g)(X) , whose cells are called orbits of X under �(g) . The cells of the finest partition on X 

that refines P�(g)(X) for each g ∈ G , PG(X) , are the orbits of X under group G.

Example 1  Given a set {a, b, c, d, e} of atoms ordered lexicographically and a permutation 
� = (a d e) (b c) , let us consider a random interpretation {a, c} , respectively, the integer 
00101. To find its symmetries with respect to � , we repeatedly apply the permutation to 
{a, c} until no new interpretation is obtained, e.g., a ↦ d and c ↦ b yielding {b, d} , then, 
d ↦ e and b ↦ c yielding {c, e} , and so on. Thus, we get the orbit {{a, c}, {b, d}, {c, e}, 
{a, b}, {c, d}, {b, e}} , respectively, {00101, 01010, 10100, 00011, 01100, 10010} with the 
integer representation.

Letting G be a permutation group for a set X of ground atoms, the orbits of the set of 
interpretations over X under G identify equivalence classes of the truth assignments for X. 
When taking truth assignments as binary integers determined by some total order of the 
elements in X, the lex-leader scheme consists of specifying a set of Symmetry Breaking 
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Constraints (SBCs) that may eliminate some interpretations but keep the smallest ele-
ment in terms of the associated integer for each orbit. If the SBCs eliminate all symmetric 
assignments and preserve the smallest element of each orbit only, we obtain full symmetry 
breaking. However, dealing with up to n! permutations of n variables explicitly would be 
an infeasible approach, and a more efficient alternative is to focus on a subset of G to refine 
P
G(X) . If this leads to a partition finer than PG(X) , then we get partial symmetry breaking. 

In this case, the SBCs preserve the smallest element as a representative of each orbit but 
also other symmetric interpretations. Considering a set of irredundant generators K of G 
is an effective heuristic for partial symmetry breaking since such generators represent G 
compactly. A set K ⊂ G of elements in a group ⟨G, ∗⟩ is a set of generators for G if every 
element of G can be expressed as a combination of finitely many elements of K under the 
group operation. K is irredundant if no proper subset of it is a set of generators for G.

Example 2  Let us consider the applications of the generator � of the orbit obtained in 
Example 1. For each interpretation in the orbit, we check whether � maps it into a smaller 
interpretation according to the integer representation. Thus, the interpretations {c, e} and 
{b, e} are eliminated since applying � yields {a, b} or {a, c} , respectively, while the inter-
pretations {a, c} , {b, d} , {a, b} , and {c, d} are preserved. As three symmetric interpreta-
tions are obtained in addition to the smallest interpretation of the orbit, the representative 
{a, b} (00011 in the integer representation), SBCs for direct applications of the generator � 
achieve partial symmetry breaking only.

Symmetry-Breaking Answer Set Solving (sbass) (Drescher et  al., 2011) detects and 
eliminates syntactic symmetries in ASP by adding ground SBCs to an input ground pro-
gram Pgrd . A symmetry of Pgrd is given by a permutation � of ground atoms that keeps the 
program syntactically unchanged, i.e., P�

grd
 has the same rules as Pgrd , where P�

grd
 is the set 

of rules obtained by applying � to the head and body literals of rules in Pgrd . In the first 
step, sbass transforms Pgrd to a colored graph GPgrd

 such that permutation groups of GPgrd
 and 

their generators correspond one-to-one to those of Pgrd . In the second step, it uses saucy 
(Codenotti et al., 2013; Darga et al., 2004) to find a set of group generators for GPgrd

 . Finally, 
for each found generator sbass constructs a set of SBCs based on the lex-leader scheme and 
appends them to Pgrd . Given the modified ground program, an ASP solver is provided 
means to avoid symmetric answer sets.

Example 3  To illustrate how sbass works, let us consider the pigeon-hole problem, which 
is about checking whether p pigeons can be placed into h holes such that each hole contains 
at most one pigeon. An encoding in ASP of this problem is: 

It takes as input the ground facts pigeon(p). and hole(h). For example, solving 
the instance with p = 3 and h = 3 leads to six answer sets:
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 The binary integer given on the right is obtained with the following total order of 
atoms:

 Applying sbass to this pigeon-hole encoding, grounded with the previous input 
instance, produces the following set of generators:1

According to the lex-leader scheme, we should discard all answer sets but AS6 , which 
is the only answer set such that applying either generator does not lead to a greater 
interpretation:

 Therefore, with this instance, we obtain full symmetry breaking by applying the lex-
leader scheme for the irredundant generators returned by sbass. However, symmetric solu-
tions can be preserved for other inputs. E.g., with p = 3 and h = 4 , two answer sets are 
preserved, while the generators describe a common cell with all answer sets and a single 
representative.

2.3 � Inductive logic programming

Inductive Logic Programming (ILP) (Cropper et al., 2020) is a form of machine learning 
whose goal is to learn a logic program that explains a set of observations in the context of 
some pre-existing knowledge. Since its foundation, the majority of research in the field 
addresses Prolog semantics (Cropper and Muggleton, 2016; Muggleton, 1995; Srinivasan, 
2004), even though applications in other logic paradigms appeared in the last years. The 

1  The generators are translated from smodels to symbolic representation, as described in Sect. 4.
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most expressive ILP system for ASP is Inductive Learning of Answer Set Programs (ilasp) 
(Law et al., 2014, 2021), which can be used to solve a variety of ILP tasks.

In ILP, a learning task ⟨P,E,HM⟩ is defined by three elements: a background knowledge 
P, a set of (positive and negative) examples E, and a hypothesis space HM , which defines 
all the rules that can be learned. The learned hypothesis is a subset of the hypothesis space 
that satisfies a specified learning setting: for ilasp, the setting is learning from answer sets 
(Law et al., 2014). Before defining it, we introduce the terminology used by ilasp authors. 
A Partial Interpretation (PI) is a pair of sets of atoms, epi = ⟨T ,F⟩ , called inclusions (T) 
and exclusions (F), respectively. Given a (total) interpretation I  and a PI epi , we say that I  
extends epi if T ⊆ I  and F ∩ I = � . We can augment epi with an ASP program C to obtain 
a Context Dependent Partial Interpretation (CDPI) ⟨epi,C⟩ . Given a program P, a CDPI 
e = ⟨epi,C⟩ , and an interpretation I  , we say that I  is an accepting answer set of e with 
respect to P if I ∈ AS(P ∪ C) such that I  extends epi.

A learning task for ilasp is given by an ASP program P as background knowledge, two 
sets of CDPIs, E+ and E− , as positive and negative examples, and the hypothesis space HM 
defined by a language bias M, which limits the potentially learnable rules. The learned 
hypothesis H ⊆ HM must respect the following criteria: (i) for each positive example 
e ∈ E+ , there is some accepting answer set of e with respect to P ∪ H ; and (ii) for any 
negative example e ∈ E− , there is no accepting answer set of e with respect to P ∪ H . If 
multiple hypotheses satisfy the conditions, the system returns one of the shortest, i.e., with 
the minimum number of literals (Law et al., 2014). In Law et al. (2018), the authors extend 
the expressiveness of ilasp by allowing noisy examples. With this setting, if an example e 
is not covered (i.e., there is an accepting answer set for e if it is negative, and none, if it is 
positive), the corresponding weight is counted as a penalty. Therefore, the learning task 
becomes an optimization problem with two goals: minimize the size of H and minimize the 
total penalties for the uncovered examples.

Now, we will define the syntax of ilasp necessary for our work and refer the reader to 
the system’s manual (Law et al., 2021) for further details. A CDPI is expressed as follows:

where type is either pos or neg, ID is a unique identifier for the example, W is a positive 
integer representing the example’s weight (if not defined, the weight is infinite), Inc and 
Exc are two sets of atoms, and C is an ASP program. The language bias can be specified 
by mode declarations, which define the predicates that may appear in a rule, their argu-
ment types, and their frequency. Since in our work we aim to learn constraints, we restrict 
the search space just to rules r with H(r) = ⊥ . Hence, we only need to specify the mode 
declarations for the body of a rule, expressed by #modeb(R,P,(E)) where R and E are 
optional and P is a ground atom whose arguments are placeholders of type var(t) for 
some constant term t. In the learned rules, the placeholders will be replaced by variables 
of type t. The optional element R is a positive integer, called recall, which specifies the 
maximum number of times that the mode declaration can be used in each rule. Lastly, E is 
a condition that further restricts the hypothesis space. We limit our interest to the anti_
reflexive option that works with predicates of arity 2. When using it, atoms of the predi-
cate P should be generated with two distinguished argument values.

Choosing an appropriate language bias is still one of the major challenges for modern 
ILP systems. Whenever the bias does not provide enough limitations, the problem becomes 
intractable and ilasp might not be able to find useful constraints. In contrast, a too strong 

#����(��@�, {���}, {���}, {�}).
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bias may exclude solutions from the search space, thus resulting in suboptimal SBCs 
(Cropper & Dumančć, 2020).

3 � Approach

We tackle combinatorial problems modeled in ASP such that the instances of a logic pro-
gram P are generated by a discrete and often stationary stochastic process. Such situations 
occur, e.g., in industrial settings where the encoding of a manufacturing system is fixed and 
production orders vary. In this case, every problem instance can be seen as an outcome of 
the process. We assume that any instance (i) specifies the (true) atoms of unary domain 
predicates p1,… , pk in P, where ci is the number of atoms that hold for each pi ; and (ii)the 
satisfiability of the instance depends on the number of atoms for each domain predicate, 
but not on the values of their terms. Thus, without loss of generality, we consider the terms 
for each pi to be consecutive integers from 1 to ci.

Our method exploits instance-specific SBCs on a representative set of instances and uti-
lizes them to generate examples for an ILP task. The learning method yields first-order 
constraints that remove symmetries in the analyzed problem instances as much as possi-
ble while preserving the instances’ satisfiability. We consider the following two learning 
settings:

–	 enum is a cautious setting that preserves all answer sets that are not filtered out by the 
ground SBCs; and

–	 sat setting aims to learn tighter constraints which, however, preserve at least one answer 
set for each instance.

To compute the examples, our approach relies on small satisfiable instances (i.e., with a 
low value for each ci ), subdivided into two parts: S and Gen . Each instance g ∈ Gen

defines a positive example with empty inclusions and exclusions, and g as context. 
These examples, denoted by ExGen , guarantee that the learned constraints generalize for 
the target distribution since they force the constraints to preserve some solution for each 
g ∈ Gen . The instances i ∈ S are used to obtain positive and negative examples, repre-
senting answer sets of P ∪ i to be preserved or filtered out, respectively, by corresponding 
SBCs. We denote their union by ExS in Fig. 1, where positive examples represent whole 
answer sets in the enum setting, or like instances in Gen , consist of empty inclusions and 
exclusions along with the context i in sat.

An ILP task further requires background knowledge and a hypothesis space HM . Both 
of them are defined by the user (for a possible instantiation, see Sect.  4.3). The back-
ground knowledge consists of a logic program P along with an Active Background Knowl-
edge, denoted by ABK in Algorithm 1. We use ABK to simplify the management of aux-
iliary predicate definitions and constraints learned so far. The hypothesis space contains 
the mode declarations, and we assume it to be general enough to entail ground SBCs by 
learned first-order constraints. The remaining inputs of Algorithm 1 consist of the instances 
in Gen and S as well as the learning setting m. For each answer set I  of an instance i ∈ S 
to be analyzed, the algorithm determines T and F by projecting I  to the atoms occurring 
in IG , denoted by atoms(IG) . Next, in line 10, the predicate lexLead(⟨T ,F⟩, IG) evaluates 
to true if I  is dominated, i.e., I  can be mapped to a lexicographically smaller, symmet-
ric answer set by means of some irredundant generator in IG . In this case, the negative 
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example neg(T ,F, i) is added to ExS in order to eliminate I  , while pos(I, �, i) or pos(�, �, i) 
is taken as the positive example otherwise, depending on whether the enum or sat setting is 
selected. Positive examples of the form pos(�, �, g) are also gathered in ExGen for instances 
g ∈ Gen , and solving the ILP task at line 16 gives new constraints C to extend ABK.

4 � Implementation

The implementation of our framework relies on clingo (consisting of the grounding and 
solving components gringo and clasp), sbass and ilasp, and is available at Tarzariol et al. 
(2021). Figure 2 shows the pipeline to generate the examples for a given instance i ∈ S (the 
for-loop at line 5 of Algorithm  1). First, the union of P, i, and ABK is grounded with 
gringo to get the ground program Pgrd in smodels format. Then, the solver clasp enumer-
ates all its answer sets, obtaining AS(Pgrd) . Independently, sbass is run on Pgrd with the 
option –show to output a set of irredundant permutation group generators. This set con-
tains the vertex permutations of GPgrd

 , expressed in cycle notation. We extract the cycles 
defined by vertices representing atoms of Pgrd and transform them from smodels format 
back into their original symbolic representation (by a predicate and integer terms).

Fig. 1   ILP examples generation
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Next, we identify the symmetric answer sets in AS(Pgrd) by using an ASP encoding 
similar to the lex-leader predicate definition in Sakallah (2009) to evaluate SBCs. To this 
end, we implement an ordering criterion to compare atoms according to their signatures. 
Given two ground atoms p1(a1,… , an) and p2(b1,… , bm) , the first is considered smaller 
than the second if: (i) p1 is lexicographically smaller than p2 ; (ii) p1 = p2 and n < m ; or 
(iii) p1 = p2 , n = m , and there are constants ai < bi such that aj = bj for all 0 < j < i . Our 
ASP encoding then checks whether an answer set I ∈ AS(Pgrd) is undominated by interpre-
tations obtainable by applying the symbolic representation of some irredundant generator 
returned by sbass to I .

In case I  is dominated and thus must be eliminated as a symmetric answer set, we map 
it to a negative example with a unique identifier and a weight of 100. Due to the weights, 
ilasp returns a set of constraints even if some negative examples are not covered. Moreover, 
we use uniform weights so that all negative examples have the same relevance and as many 
as possible are to be eliminated. Lastly, answer sets that were not found to be dominated 
for any of the generators yield positive examples according to the selected setting—enum 
or sat. Such positive examples are unweighted so that the learned hypothesis must cover all 
of them.

4.1 � Alternative atom ordering

Let us consider sets of n lexicographically ordered atoms that only differ in the val-
ues of the last terms in each atom. For two such sets A = {p( ��⃗x1, a1),… , p( ��⃗xn, an)} and 
B = {p( ��⃗x1, b1),… , p( ��⃗xn, bn)} of atoms, where ��⃗xi contains all terms but the last, the lex-
leader scheme starts by checking the atoms with the greatest ��⃗xi vectors until there are two 
constants ai ≠ bi . Since various configuration problems yield answer sets of this kind, 
we devised an alternative atom ordering such that the lex-leader scheme starts from the 
smallest ��⃗xi vectors when comparing two answer sets. To this end, an atom p1(a1,… , an) 
is considered smaller than p2(b1,… , bm) if: (i) p1 is lexicographically smaller than p2 ; (ii) 
p1 = p2 and n < m ; (iii) p1 = p2 , n = m , and there are constants ai > bi such that i < n and 
aj = bj for all 0 < j < i ; or (iv) p1 = p2 , n = m , ai = bi for all 0 < i < n , and an < bn.

Fig. 2   Pipeline to compute examples from an instance i 
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This alternative ordering allows for more natural, undominated answer sets, as illus-
trated in the following example.

Example 4  Applying the alternative ordering criterion to the same input as described in 
Example 3, we get the following total order of atoms: 

Thus, the integers associated with the answer sets become:

Now the lex-leader scheme discards all but the answer set AS1 , and three permutations 
map AS6 to smaller answer sets:

The answer set AS1 contains atoms that are preserved by the general first-order con-
straint ∶ −���(�, �), � < �. , which removes all other symmetric solutions. Unlike that, 
when taking AS6 as a representative solution, we have to distinguish particular cases for the 
assignment of the first and the last pigeon, resulting in longer and more specific constraints.

4.2 � Exploiting generators for full symmetry breaking

When investigating irredundant generators to label an answer set as a positive or negative 
example according to the lex-leader scheme, there can be cases where the labeling achieves 
partial instead of full symmetry breaking. As illustrated in Example 2, this is because sin-
gle applications of generators yield a subset of the orbit of an interpretation only. Thus, we 
implement an alternative setting to label the examples, named fullSBCs, which exploits 
generators to explore the whole orbit of symmetric interpretations for every answer set. For 
each of the obtained cells, we label the smallest answer set as a positive example and all 
the remaining ones as negative. This approach reduces the sensitivity of ILP tasks to par-
ticular irredundant generators returned by sbass, allowing to achieve full symmetry break-
ing for any instance i ∈ S.
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We implement this setting by means of the clingo API2 to interleave the solving phase, 
which returns a candidate answer set, with the analysis of its orbit. Then, before continuing 
with the search for the next answer set, we prohibit the explored interpretations by feeding 
respective constraints to clingo. This setting allows for reducing the number of positive 
examples produced, and as we can configure it to sample a limited subset of all answer 
sets, it is also useful for dealing with underconstrained configuration problems that yield 
plenty of answer sets even for very small instances.

Example 5  To illustrate the fullSBCs setting, let us reconsider the pigeon-hole problem 
introduced in Example 3, where the instance with three pigeons and four holes leads to 24 
solutions. Running sbass on this instance yields five generators, which identify a single cell 
since all the answer sets are symmetric. However, we only consider the first two generators 
in the following, allowing us to demonstrate the fullSBCs approach on an example with 
several, i.e., four, cells. The generators we inspect are:

Let AS1 ={p2h(1,3), p2h(2,2), p2h(3,4)} be the first answer set found. 
Then, before searching for other solutions, we repeatedly apply �1 and �2 to AS1 to obtain 
the whole orbit of symmetric interpretations. The identified answer sets are:

Once we have computed all answer sets symmetric to AS1 , we produce a positive exam-
ple for the smallest answer set encountered, i.e., AS2 , while the other five answer sets con-
stitute negative examples. Now, we can proceed with the search for the next answer set, 
e.g., AS7 =

2  A complete reference documentation can be found at https://​potas​sco.​org/​clingo/​python-​api/​curre​nt/.

https://potassco.org/clingo/python-api/current/
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{p2h(1,2), p2h(2,1), p2h(3,3)}, and repeat the application of generators 
to explore its cell, identifying another five symmetric solutions of which {p2h(1,3), 
p2h(2,1), p2h(3,2)} is the smallest. This process continues until all 24 answer sets, 
partitioned into four cells with a smallest representative for each, are explored.

Algorithm 2 outlines the fullSBCs approach, providing an alternative implementation of the 
for-loop at line 7 of Algorithm 1. In the first line, we create a search control object, cnt , using the 
clingo API. This object keeps track of already identified solutions and provides the get_new_solu-
tion method, which returns either a new answer set I or false if all solutions have been exhausted. 
Similar to the previously presented approaches to example generation, we project the atoms of I  
to atoms(IG) . The resulting interpretation min represents the smallest solution encountered so far 
in the current cell, and the set seen keeps track of already discovered interpretations belonging to 
the current cell. Starting with min , the queue Q collects the interpretations to which all irredundant 
generators will be applied to yield new symmetric interpretations. The while-loop at line 7 checks 
whether there is an interpretation, T, left to pop. Then, if T is greater than min (according to the 
applied atom ordering criterion), it constitutes a negative example, while a smaller T is taken as 
new smallest interpretation and the previous min instead becomes a negative example. Only after 
the cell has been completely explored, the interpretation min is eventually labeled as a positive 
example. Lastly, before querying cnt for the next solution, we eliminate answer sets subsumed by 
the explored interpretations in seen from the search space of cnt.

4.3 � ILP learning task

After considering the example generation, we specify components of the ILP learning task 
suitable for the learning of constraints. The idea is to encode the predicates used by lex-
leader symmetry breaking to order atoms and extract the maximal values for domain predi-
cates. Since the mode declarations of ilasp (v4.0.0) do not support arithmetic built-ins such 
as <, we provide auxiliary predicates in ABK to simulate them. Presupposing the presence 
of unary domain predicates p1,… , pk with integers from 1 to ci for each pi , ABK defines 
the auxiliary predicates maxpi(ci) for each pi and lessThan(t1,t2) for each pair of integers 
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1 ≤ t1 < t2 ≤ max{ci ∣ i = 1,… , k} . These two predicates, based exclusively on syntactic 
properties of a considered problem, are minimal for overcoming limitations of ilasp to 
learn lex-leader SBCs. The selection of small yet representative instances for S and Gen 
depends on their hardness for learning. Regarding S, we pursued the strategy to empirically 
determine instances for which sbass yields a manageable number of permutation group 
generators. As mentioned in Sect. 4.2, the irredundant generators alone sometimes achieve 
partial symmetry breaking, and we selected only instances without any or a small amount 
of “misclassified" answer sets. The instances in Gen are usually larger yet still solvable in a 
short running time to check that the learned constraints generalize.

The language bias of our learning task includes the mode declarations #modeb(2, pi(
var(ti))) and #modeb(1,maxpi(var(ti))) for each domain predicate pi , in which var(ti) is 
a placeholder indicating the domain for which each pi holds. Moreover, for each (non-aux-
iliary) predicate P appearing in some of the generators computed for instances in S, we use 
#modeb(2,P), where the domains of variables in atoms of P are provided by a vector of 
the placeholders in {���(ti) ∣ i = 1,… , k} , depending on the role of P in the given program 
P. In addition, we include mode declarations #modeb(2,lessThan(var(ti),var(tj))) for 
all i, j = 1,… , k , with the option anti_reflexive in case i = j.

We decided to distinguish the variables’ types in the mode declarations in order to restrict 
the hypothesis space to rules such that a variable X of type t is included as an argument only 
in predicates defined over the same type  t. To illustrate how this decision influences the 
search space of an ILP task, let us consider two extensions of the pigeon-hole problem intro-
duced in Example 3, adding color and owner assignments. The pigeon-hole problem with 
colors associates a color with each pigeon and requires pigeons placed into neighboring 
holes to be of the same color. The version with colors and owners additionally assigns an 
owner to each pigeon and imposes the same constraint as with the colors for owners as well. 
For the pigeon-hole problem with colors, by using typed variables in the mode declarations, 
ilasp generates a search space of 1837 rules,3 while 9169 rules are obtained without distin-
guishing variables’ types. Regarding the extension to owners, this difference is even larger: 
2895 rules using typed variables versus 21406 rules without distinguishing variables’ types.

To compare the learning performance of ilasp, we conducted several experiments on 
the pigeon-hole problem with colors and owners for a pool of instances4 and observed 
that applying our approach with typed variables in the mode declarations allows for learn-
ing constraints quicker than without distinguishing the types. When using the iterative 
approach described in Sect. 4.4, ilasp took on average less than two minutes to learn the 
shortest constraints related to holes, colors, and owners, and always finished in less than 
ten minutes. In opposite, a similar ILP task defined without distinction of variable types 
took on average thirty minutes, with cases where no hypothesis was found within an hour.

Reducing the hypothesis space has the potential drawback of learning less efficient rules 
since there can be situations where stronger constraints with fewer variables are excluded. For 
instance, a constraint like :- pigeon(X), not p2h(X,X). cannot be learned in the 
current setting, as the variable X is taken for a pigeon and a hole at the same time. However, 
we decided to use the restricted search space for our experiments in Sect. 6 because it leads to 
much better scalability of learning and constraints that still improve the solving performance. 

4  The collected data can be found at Tarzariol et  al. (2021). The experiments were run on an Intel® 
i7-3930K machine under Linux (Debian GNU/Linux 10), where each run of ilasp4 was limited to 3600 s.

3  For all our experiments, we used the default value (3 literals) for the ilasp parameter that defines the 
maximum number of literals that can occur together in the body of each rule of the hypothesis.



1317Machine Learning (2022) 111:1303–1326	

1 3

In fact, the ability to learn constraints in acceptable time is important for handling application 
scenarios better than with instance-specific symmetry breaking methods.

Example 6  To illustrate a feasible outcome of our ILP framework, let us inspect the constraints 
learned for the pigeon-hole problem and its instance with three pigeons and three holes, as also 
considered in Example 3. Applying the generators returned by sbass to the six answer sets 
gives one positive and five negative examples, and the resulting ILP task is as follows:

.
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Let us notice that the ASP input encoding in Example 3 has been adapted into an equiv-
alent one above. Such a modification is necessary because the current version of ilasp does 
not support rules like {p2h(P,H) : hole(H)} = 1 :- pigeon(P). with the 
conditional operator “:" in the head. After running ilasp, the learned first-order constraints 
are:

:- p2h(X,Y), lessThan(Z,Y), maxpigeon(X).
% do not assign the pigeon with the max label to a hole
% other than the first one

:- p2h(X,Y), lessThan(X,Y), lessThan(Y,Z).
% for all but the last hole, do not assign a pigeon with
% a smaller label to the hole

4.4 � Iterative learning

Inspired by the lifelong learning approach (Cropper et al. 2020), we apply our framework 
incrementally to a split learning task. This idea is especially useful if the ASP encoding 
presents several symmetries, where some of them are independent of the others. The iter-
ative approach simplifies the learning task by exploiting the incremental applicability of 
ILP: first, it solves a subtask to identify a subset of symmetries, and before addressing 
the remaining ones, we integrate the constraints just learned into the background knowl-
edge. To this end, we divide the hypothesis space for programs with three or more types 
of variables in the language bias. Then, in the first step, we provide a set S of instances to 
address their symmetries involving only two types of variables and define the search space 
with mode declarations restricted to the two types of variables considered. Next, we solve 
the ILP subtask and append the learned constraints to ABK . In the following steps, we 
repeat the procedure and analyze the same or different instances in S for symmetries going 
beyond those already handled by solving ILP subtasks with the mode declarations progres-
sively extended to further types of variables.

To illustrate a concrete application scenario, reconsider the pigeon-hole problem with 
color and owner assignments, introduced in Sect. 4.3. For this problem, the search space is 
split into three incremental parts:

–	 the first is limited to predicates whose atoms exclusively include variables of the types 
pigeon and hole,

–	 the second part extends mode declarations by allowing atoms with variables of the type 
color too, and, finally,

–	 the third step includes variables of the type owners.

Initially, S contains instances with only one color and owner so that our framework pro-
duces examples entailing symmetries related exclusively to the pigeons’ placement. Next, 
we append the learned constraints to ABK and repeat the procedure by redefining S with 
instances with one owner but more than one color. Lastly, we analyze instances in S with-
out restrictions on the numbers of colors and owners while considering the whole language 
bias. In this way, ilasp can learn new symmetries using predicates that involve more types 
of variables, as the language bias is progressively extended until it reaches the whole set of 
mode declarations.
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By applying the iterative approach, the learning task can be decomposed into smaller 
and easier ILP subtasks. For an indication of the practical impact on the size of the search 
space(s), we note that ilasp generates 1040 rules for variables of the types pigeon and 
hole only, 1837 rules when variables of the type color are added, and 2895 rules with 
the full language bias for the pigeon-hole problem with colors and owners. That is, the 
search space for the ILP subtask in the last iteration includes the same rules as generated 
when addressing the full language bias in a single step, yet the background knowledge may 
already be extended by constraints reducing the number of (negative) examples still to 
investigate. We assessed the impact of the iterative approach in several experiments experi-
ments (see footnote 4) and observed that it allows us to learn constraints much quicker than 
when tackling all symmetries in a single pass. By splitting the learning task, ilasp took on 
average less than two minutes to learn constraints related to pigeons and holes, then colors, 
and finally owner assignments. Unlike that, the ILP task that addresses the full language 
bias directly took on average more than thirty minutes to return the shortest hypothesis, 
where in some cases the search was not finished within one hour.

Splitting the learning task has the potential drawback that some of the symmetries can 
be lost in the process, as the updated ABK is considered in subsequent calls to sbass for 
identifying remaining symmetries. However, for the combinatorial problems investigated 
in our experiments in Sect. 6, the results showed that even in case we learn constraints han-
dling a subset of all problem symmetries, the solving performance benefits substantially.

5 � Learning performance

We tested the different settings of our implementation over the two extensions of the 
pigeon-hole problem described in Sect. 4.3. For every setting, we used the same initial set 
of instances in Gen , auxiliary constraints in ABK , and mode declarations in the language 
bias (split to apply the iterative approach). For keeping the number of instances in Gen 
moderate, we hand-picked a few (satisfiable) instances to start from, applied our iterative 
learning approach, and then validated the learned constraints on other satisfiable instances 
as well. The instances for which learned constraints led to unsatisfiability were then also 
added to Gen , and we repeated the learning phase until all instances were found satisfiable 
together with the learned first-order SBCs.

In the following, we report representative results and conclusions drawn from the 
instances and records of learning experiments provided in our repository (Tarzariol et al., 
2021).

5.1 � Enum vs sat setting

The difference between the enum and sat setting lies in the positive examples generated for 
the instances in S: in the first setting, we explicitly list all undominated answer sets as posi-
tive examples, while the second produces just a general positive example with empty inclu-
sions and exclusions. That is, the sat setting abstracts over undominated answer sets, as 
they are neither labeled as positive nor negative examples in the ILP task. In this case, ilasp 
aims at eliminating as many symmetric answer sets as possible while preserving the satisfi-
ability of a given instance. This even means that the preserved answer sets, required in view 
of the general positive example, might belong to negative examples but are not covered by 
the learned constraints. In this way, we may, in general, learn alternative constraints that 
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preserve some specific pattern of solutions appearing in all satisfiable instances, regardless 
of symmetries, while representative solutions can be lost.

For example, in the first ILP iteration on the pigeon-hole problem with colors and own-
ers, the instance with three pigeons and four holes (and only one color and owner) gives 24 
answer sets, 22 of which are labeled as negative. In the enum setting, ilasp finds optimal 
constraints removing 12 negative examples and thus returns a hypothesis that applied to the 
same instance leaves 12 answer sets. In contrast, the sat setting enables learning of stronger 
constraints by ilasp, which preserve 2 answer sets only, both labeled as negative examples.

The complexity of the ILP task depends on the possibility of covering all negative 
examples. Since with enum we have tighter conditions on the candidate hypotheses, the 
search space is smaller than in the sat setting. Hence, the optimization problem regarding 
(weighted) negative examples addressed by ilasp takes in general longer for sat, but only if 
many negative examples cannot be covered even under relaxed conditions on the candidate 
hypotheses. On the other hand, if the language bias permits many hypotheses covering all 
or most of the negative examples, an ILP task is usually quickly solved with the sat setting. 
E.g., the instance with three pigeons, four holes, one color and owner took 72.8 seconds 
to be solved in the enum (eliminating 12 out of 22 symmetric answer sets) and just 27.7 
seconds in the sat setting (eliminating 20 symmetric answer sets and the 2 unlabeled ones).

5.2 � Alternative atom ordering

When answer sets for the combinatorial problem analyzed have the property described in 
Sect. 4.1, our alternative ordering criterion for the lex-leader scheme may distinguish the 
representative and symmetric solutions. Hence, ILP tasks can be solved with shorter con-
straints than for the default atom ordering. For instance, the setting illustrated in Example 6 
yields the representative answer set {p2h(1,1),p2h(2,2),p2h(3,3)} instead of 
{p2h(1,3),p2h(2,2),p2h(3,1)}. This allows ilasp to learn the short constraint 
:- p2h(X,Y), lessThan(Y,X)., expressing that no pigeon can be placed into a 
hole smaller than its label, which leaves just one answer set for instances with an equal 
number p = h of pigeons and holes.

Given that the positive examples kept after checking direct applications of the irredun-
dant generators returned by sbass heavily depend on the computed generators, we found 
that often more positive examples are produced than for the default atom ordering. Namely, 
the generators preserve more symmetric solutions than the default ordering for the exten-
sions of the pigeon-hole problem to colors as well as colors and owners. This leads to 
weaker (although shorter and easier to interpret) constraints, and better-suited ways of 
aligning generators with symbolic atom representations would be of interest.

5.3 � Exploiting generators for full symmetry breaking

Section  4.2 describes an alternative implementation for labeling answer sets as positive 
or negative examples, called the fullSBCs setting. We can see the effects of always labe-
ling the answer sets according to full SBCs on the same scenario as discussed in Sect. 5.1: 
instead of 22 negative and 2 positive examples generated with the enum setting, fullSBCs 
returns just one positive example, i.e., the representative of the single cell characterized by 
the generators of sbass. As a consequence, instead of 72.8 seconds to return a hypothesis 
that produces 12 of the original 24 answer sets, with the ILP task defined based on fullS-
BCs, ilasp took 21.4 seconds to find a hypothesis that preserves only 4 answer sets.
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We note that reducing the number of examples for an ILP task generated by some of our set-
tings has a limited impact on ilasp, as its latest versions implement mechanisms to scale with 
respect to the number of examples (Law et al., 2016; Law, 2021). However, for instances with 
many answer sets, the fullSBCs approach can be helpful because equivalent answer sets need 
not be exhaustively computed by clingo.

6 � Solving experiments

To evaluate our approach and the implementation design, we applied it to a series of 
combinatorial search problems. For each considered problem, we compared the running 
time of the original encoding, the version extended with our learned constraints, and the 
instance-specific approach of sbass. The learned constraints depend on the instances used 
in S and Gen as well as how we apply the iterative learning approach. In the following, we 
report results for the constraints with good performance learned applying the definitions 
of Sect. 4.3.5 We ran our tests on an Intel® i7-3930K machine under Linux (Debian GNU/
Linux 10), where each run was limited to 900 seconds and 20 GB of memory.

Table 1   Runtime in seconds for pigeon-hole problem

Enum Sat Ord Full BASE SBASS CLASP
�

p50-h49 0.092 0.092 0.084 0.091 TO 52.829 1.900
p50-h50 0.080 0.080 0.073 0.082 0.116 53.408 1.417
p100-h99 0.635 0.715 0.640 0.715 TO TO –
p100-h100 0.707 0.627 0.574 0.622 1.047 TO –
p200-h199 5.602 5.861 5.192 5.656 TO TO –
p200-h200 5.772 5.907 6.004 5.627 11.162 TO –
p300-h299 21.606 21.166 19.162 21.963 TO TO –
p300-h300 20.824 20.629 19.477 20.631 38.723 TO –
p400-h399 50.054 50.202 46.937 50.482 TO TO –
p400-h400 51.144 50.439 47.718 50.255 94.253 TO –

Table 2   Runtime in seconds for pigeon-hole problem with colors

Enum Sat Ord Full BASE SBASS CLASP
�

c1-p12-h11 1.939 0.007 0.007 0.006 692.704 0.284 0.015
c1-p52-h52 0.147 0.100 0.101 0.100 0.145 63.455 1.083
c2-p12-h12 6.648 0.009 0.010 0.010 TO 0.092 TO
c2-p52-h53 0.559 0.298 0.421 0.293 TO 93.870 TO
c3-p12-h13 4.457 0.014 0.052 0.019 TO 0.228 TO
c3-p52-h54 4.974 0.545 1.072 0.628 1.674 449.324 TO
c4-p12-h14 4.195 0.022 3.026 0.075 TO 0.479 TO
c4-p52-h55 3.131 0.959 2.033 3.849 TO 550.065 TO
c5-p12-h15 5.673 0.035 138.861 0.251 TO 1.020 TO
c5-p52-h56 18.336 1.561 581.164 11.704 5.930 TO –

5  Detailed settings are provided at Tarzariol et al. (2021).
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In Tables 1, 2,  3 and 4, the satisfiable instances are shown in even rows, while the odd 
rows contain unsatisfiable instances. The column base refers to clingo (v5.5.0) run on the 
original encoding, while Enum, Sat, Ord, and Full report results for the original encoding 
augmented with first-order constraints learned in the enum, sat, and enum with alterna-
tive atom ordering or fullSBCs setting, respectively. The time required by sbass to compute 
ground SBCs is given in the corresponding column, and clasp� provides the solving time 
obtained with these ground SBCs. Runs that did not finish within the time limit of 900 sec-
onds are indicated by TO entries.

We first tested the pigeon-hole problem, working without any division and iterative 
analysis of the language bias: the four learning settings led to similar performance con-
straints, although the ones obtained with the alternative ordering were shorter, as men-
tioned in Sect.  5.2. The running time comparison in Table  1 shows that all the settings 
of our approach bring about a similar speedup for solving satisfiable as well as unsatisfi-
able instances. In fact, the vast problem symmetries are cut by the learned first-order con-
straints. This is particularly important in case of unsatisfiability, where runs on the original 
encoding without additional constraints do not finish within the time limit. While sbass 
also manages to handle the two smallest instances, the computation of permutation group 

Table 3   Runtime in seconds for pigeon-hole problem with colors and owners

Enum Sat Ord Full BASE SBASS CLASP
�

o1-c3-p12-h13 1.505 0.016 0.051 0.046 TO 0.204 TO
o1-c3-p52-h54 1.749 0.554 1.002 0.906 1.709 312.328 TO
o2-c3-p12-h13 1.081 0.017 0.070 0.045 TO 0.337 TO
o2-c3-p52-h54 1.017 0.705 1.561 1.231 TO 542.377 TO
o3-c1-p12-h13 1.511 0.016 0.053 0.035 TO 0.21 TO
o3-c1-p52-h54 1.726 0.551 0.996 0.903 1.698 313.062 TO
o4-c4-p12-h14 0.894 0.031 3.162 1.114 TO 1.102 TO
o4-c4-p52-h55 4.123 1.819 3.486 3.546 6.653 TO –
o5-c5-p12-h15 0.684 0.061 97.453 21.272 TO 2.093 TO
o5-c5-p52-h56 13.984 3.045 573.523 200.467 11.622 TO –

Table 4   Runtime in seconds for house-configuration problem

Enum Sat Ord Full BASE SBASS CLASP
�

p2-c6-t13 0.337 0.025 0.097 0.329 219.753 0.095 12.951
p2-c80-t160 4.928 5.001 5.166 5.024 6.583 TO –
p3-c6-t13 0.342 0.031 0.093 0.424 254.065 0.242 73.041
p3-c80-t160 13.682 14.315 15.174 14.110 20.724 TO –
p4-c6-t13 0.420 0.035 0.102 0.349 221.784 0.453 105.145
p4-c80-t160 27.437 28.866 28.145 27.299 40.121 TO –
p5-c6-t13 0.418 0.042 0.101 0.397 236.961 0.890 405.461
p5-c80-t160 48.057 49.382 48.598 49.645 68.167 TO –
p4-c7-t15 13.263 0.335 1.524 14.229 TO 0.729 TO
p15-c15-t30 5.655 6.777 2.700 2.525 4.155 TO –
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generators becomes too expensive when the instance size grows, in which case we cannot 
run clasp� with ground SBCs from sbass.

Next, we tested the pigeon-hole problem adding color and owner assignments. For 
the pigeon-hole problem with color assignments, we divided the language bias into two 
parts: the first limiting to predicates whose atoms exclusively include variables of the 
types pigeon and hole, while the second part allows variables to be of the type color 
too. Likewise, the problem version with owners and colors required a third language bias 
extension to variables of the type owner. For both extensions of the pigeon-hole prob-
lem, the first-order constraints learned in sat turned out to be stronger than in the other 
settings. Nevertheless, all kinds of constraints helped to improve the search for solutions. 
Tables 2 and  3 show similar results: the constraints learned with the sat setting lead to 
the fastest running times for both satisfiable and unsatisfiable instances. The constraints 
learned with enum using the alternative ordering are shorter and easier to read than the 
other settings, but sightly less efficient since they break only a subset of all symmetries. 
In Table 2, the time took for identifying satisfiable and unsatisfiable instances is lower if 
we use the constraints learned with fullSBCs than those learned with enum; on the other 
hand, in Table 3, we observe the opposite behavior, especially for the last instances: for the 
pigeon-hole problem with colors and owners, we could have learned the same constraints 
in both settings because to obtain the constraints with enum, we used instances that iden-
tify full SBCs. However, we tested a different set of rules for fullSBCs since they were 
stricter than enum, concerning the pigeons’ placement symmetries. Indeed, the first unsat-
isfiable instance with one color and owner was solved earlier by the constraint of fullSBCs. 
Lastly, for small unsatisfiable instances, the ground SBCs from sbass lead to better perfor-
mance than the constraints learned with the enum setting. However, as soon as the color (or 
owner) dimension grows, the runs of clasp� reach the timeout. This behavior is due to the 
redundancy of the ground SBCs, which slow down the search instead of facilitating it. For 
some of the satisfiable instances, finding a solution with the constraints learned in enum 
takes longer than with the original encoding alone. Nevertheless, the latter also has time-
outs that do not occur with our learned first-order constraints.

To conclude, we applied the different settings of our approach to the house-configu-
ration problem (Friedrich et  al. 2011), which consists of assigning t things of p persons 
to c cabinets, where each cabinet has a capacity limit of two things that must belong to 
the same owner. Similarly to the pigeon-hole problem with color, we divided the language 
bias into two parts: the first limiting to predicates whose atoms exclusively include vari-
ables of the types cabinet and thing, while the second part allows variables to be of 
the type person too. The running times in Table 4 exhibit the same trend as observed 
on the previous problems that our first-order constraints help the search, especially those 
learned with the sat setting. For this problem, the constraints learned with the enum setting, 
the alternative ordering, and exploiting the full SBCs show similar performances. In some 
cases, the original encoding is quicker to solve satisfiable instances, although it takes con-
siderably longer for unsatisfiable ones. On the other hand, sbass brings a moderate speedup 
for unsatisfiable instances, but its performance suffers a lot when the problem size grows.
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7 � Conclusions

This paper introduces methods to lift the SBCs of combinatorial problem encodings in 
ASP for a target distribution of instances. Our framework addresses the limitations of com-
mon instance-specific approaches, like sbass, since: (i) the knowledge is transferable, as 
learned constraints preserve the satisfiability for the considered instance distribution; (ii) 
the first-order constraints are easier to interpret than ground SBCs; (iii) the SBCs are com-
puted offline, allowing for addressing large-scale instances, as shown in our experiments; 
and (iv) the learned constraints are non-redundant, avoiding performance degradation due 
to an excessive ground representation size. In the current implementation of our approach, 
ilasp learns shortest constraints that cover as many examples as possible, while there is 
no distinction regarding the solving performance of candidate hypotheses. Despite this, 
our experiments showed that the learned constraints significantly improve the solving per-
formance on the analyzed problems. Moreover, the two example generation methods sug-
gested in this work allowed for ILP tasks with (i) fewer positive examples and (ii) shorter 
learned constraints, in comparison to the two methods of our previous paper (Tarzariol 
et  al., 2021). These results are due to the full symmetry breaking when enumerating all 
answer sets with the fullSBCs approach or an alternative atom ordering for the lex-leader 
scheme, respectively.

Nevertheless, there are still some limitations in the usability of our framework, which 
partially go back to the components used in our current implementation, i.e., sbass, clingo, 
and ilasp. The sbass tool does not support ASP programs with weak constraints (Calimeri 
et al., 2019), whose implementation is out of the scope of this work. However, extensions 
of instance-specific symmetry detection and model-oriented symmetry breaking to optimi-
zation problems are undoubtedly worthwhile. Optimization involves solving unsatisfiable 
subproblem(s) attempting (and failing) to improve an optimal answer set, where symmetry 
breaking is particularly crucial for performance. Concerning clingo, if a given encoding P 
leads to large ground instantiations, the addition of learned constraints does not reduce the 
size. Therefore, it would be desirable to directly incorporate the information about redun-
dant answer sets into a modified encoding. For instance, for the pigeon-hole problem, this 
might prevent our method from even generating ground atoms representing the placement 
of a pigeon into some hole with a greater label. Lastly, ilasp does currently not scale well 
with respect to the size of the hypothesis space spanned by the language bias, which is a 
well-known issue tackled by next-generation ILP systems under development (Law et al., 
2020, 2021).

At present, the successful application of our framework relies on the following charac-
teristics of a combinatorial problem: (i) we can easily provide simple instances (i.e., the 
total number of solutions can be managed by our implementation) that entail the symme-
tries of the whole instance distribution; (ii) the object domains can be expressed in terms 
of unary predicates that hold for a range of consecutive integers; and (iii) the auxiliary 
predicate definitions suggested for ABK in Sect. 4.3 enable the learning of constraints that 
improve the solving performance. In particular, if it gets difficult to compute solutions for 
an instance in S to analyze, the formulation of an ILP task to learn constraints can become 
prohibitive.

In the future, we aim to investigate whether the learning of SBCs can be readily applied 
or further adapted to advanced industrial configuration problems, such as the Partner Units 
Problem (Dodaro et al., 2016), as well as complex combinatorial problems with specific 
instance distributions, like the labeling of Graceful Graphs (Petrie & Smith, 2003). For 
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such application scenarios, the language bias may be enriched, possibly extending the 
background knowledge with additional predicates characterizing the structure of instances. 
Moreover, for problem instances that yield a vast number of solutions, we can take advan-
tage of the incremental implementation of the fullSBCs approach to limit the number of 
answer sets to consider as examples for an ILP task. Lastly, we intend to develop auto-
matic mechanisms to select suitable instances for S and Gen from instance collections, sup-
port lifelong learning, and further optimize the grounding and solving efficiency of learned 
constraints.
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