
Vol.:(0123456789)

Machine Learning (2022) 111:2255–2274
https://doi.org/10.1007/s10994-022-06143-6

1 3

Planning for potential: efficient safe reinforcement learning

Floris den Hengst1  · Vincent François‑Lavet2 · Mark Hoogendoorn2 ·
Frank van Harmelen2

Received: 4 March 2021 / Revised: 28 October 2021 / Accepted: 7 February 2022 /
Published online: 23 March 2022
© The Author(s) 2022

Abstract
Deep reinforcement learning (DRL) has shown remarkable success in artificial domains
and in some real-world applications. However, substantial challenges remain such as learn-
ing efficiently under safety constraints. Adherence to safety constraints is a hard require-
ment in many high-impact application domains such as healthcare and finance. These
constraints are preferably represented symbolically to ensure clear semantics at a suitable
level of abstraction. Existing approaches to safe DRL assume that being unsafe leads to low
rewards. We show that this is a special case of symbolically constrained RL and analyze a
generic setting in which total reward and being safe may or may not be correlated. We ana-
lyze the impact of symbolic constraints and identify a connection between expected future
reward and distance towards a goal in an automaton representation of the constraints. We
use this connection in an algorithm for learning complex behaviors safely and efficiently.
This algorithm relies on symbolic reasoning over safety constraints to improve the effi-
ciency of a subsymbolic learner with a symbolically obtained measure of progress. We
measure sample efficiency on a grid world and a conversational product recommender with
real-world constraints. The so-called Planning for Potential algorithm converges quickly
and significantly outperforms all baselines. Specifically, we find that symbolic reasoning is
necessary for safety during and after learning and can be effectively used to guide a neural
learner towards promising areas of the solution space. We conclude that RL can be applied
both safely and efficiently when combined with symbolic reasoning.

Keywords  Reinforcement learning · Safety constraints · Symbolic planning · Reward
shaping

Editor: Nikos Katzouris, Alexander Artikis, Luc De Raedt, Artur d’Avila Garcez, Sebastijan Dumancic,
Ute Schmid, Jay Pujara.

 *	 Floris den Hengst
	 Floris.den.Hengst@ing.com

Extended author information available on the last page of the article

http://orcid.org/0000-0002-2092-9904
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06143-6&domain=pdf

2256	 Machine Learning (2022) 111:2255–2274

1 3

1  Introduction

Reinforcement learning (RL) provides an elegant framework for decision making in auton-
omous agents. In the RL framework, an agent acts in an environment in order to collect
rewards (Sutton and Barto 2018). RL driven by neural network-based function approxi-
mation, commonly known as Deep Reinforcement Learning (DRL), has recently shown
remarkable progress in diverse areas such as personalization (den Hengst et al. 2020),
robotics (Gu et al. 2017) and game-playing (Hessel et al. 2018; Silver et al. 2018). The
application of DRL in real-world scenarios, however, remains challenging. Despite the
significant efforts on making RL agents safe, one of the key challenges remains how to
impose “safety constraints that should never [...] be violated” (Dulac-Arnold et al. 2019).

Safety constraints are present in various high-impact domains such as healthcare and
finance. Here, regulations and guidelines describe what behaviors are allowed and disal-
lowed. Typically, the behaviors are not listed explicitly, but described by conditions that
have to be met at all times. As such, regulations and guidelines form a symbolic and high-
level specification of safe behavior in a particular domain. In many thus governed domains,
provable compliance to these specifications is an essential prerequisite for the deployment
of any system, including DRL-based ones.

Provably safe DRL has recently been approached from the perspective of symbolic rea-
soning. Symbolic reasoning provides powerful modeling capabilities, unambiguous seman-
tics and well understood computational properties. Fu and Topcu (2014) introduced a
framework for checking a bounded safety constraint on a learned model with probabilistic
guarantees. Wen et al. (2015) proposed a method for strict adherence, which was extended
by Junges et al. (2016) for stochastic settings. Alshiekh et al. (2018) proposed a mechanism
that scales to large state-action spaces using a precomputed shield which removes actions
iff these are unsafe (Bloem et al. 2015).

The above works contain proofs of adherence to the specifications but only target a spe-
cial case in which being safe is correlated with high expected total rewards. A correlation
between high expected total rewards and being safe, however, is not present many impor-
tant application domains. On the contrary, high rewards can be obtained by engaging in
disallowed behaviors in many domains. In such domains, regulations are typically put in
place precisely to avoid behaviors that yield high reward but come rare but highly unde-
sirable events, negative long-term consequences and negative externalities. For example,
guidelines in healthcare protect organs from damage inflicted during treatment in order
to safeguard post-treatment quality of life. Although the problem setting of safe RL in the
presence of antagonistic constraints has been identified before by e.g. Könighofer et al.
(2020), it remains, to the best of our knowledge, largely unexplored how these constraints
affect performance and how to mitigate negative effects.

In this work, we identify that safe policies do not outperform unsafe policies in terms
of expected reward. We theoretically analyze how symbolic safety constraints impact
expected reward and identify a connection between expected future reward and distance
to a goal in a symbolic representation of the safety component. We then introduce an algo-
rithm for safe and efficient RL using this distance. By reasoning over the specification and
a symbolic goal at an abstract level, an additional reward function is derived automatically
and supplied to the low-level learner, following the tradition of potential-based reward
shaping. This ensures that the optimality of the solution is not at stake if the symbolic plan
is incomplete or even incorrect. Our algorithm includes an approach to estimate the shap-
ing rewards in an online fashion so that no additional hyperparameters are required.

2257Machine Learning (2022) 111:2255–2274	

1 3

We evaluate the novel approach, called planning for potential (P4P), on a grid world
and on a conversational product recommender. The former was inspired by previous work
on safe RL whereas the latter contains real-world regulatory constraints from the banking
domain. We compare P4P with a ‘vanilla’ unsafe baseline and a safe baseline. Additionally,
we analyze performance of P4P on increasingly constrained problems. We find that P4P
scales well with constraint complexity, is robust with regard to its additional parameter and
significantly outperforms the baselines in terms of safety and obtained reward.

This paper is structured as follows: after the preliminaries, we formally introduce the
setting of environments with symbolic safety constraints and derive a bound on perfor-
mance of safe policies. We then show a relation between rewards and reasoning over sym-
bolic constraints using a distance metric. This metric is based on the number of transitions
in an automaton representation of the symbolic safety component. We then use this relation
in a novel algorithm to improve sample efficiency of RL. We test this algorithm on a sim-
ple grid world with a tabular RL algorithm and on a realistic conversational product recom-
mendation benchmark with DRL. The proposed algorithm outperforms all baselines and is
the only algorithm capable of solving the realistic task, indicating that symbolic reasoning
at an abstract level can be combined with learning via reward shaping as proposed in the
P4P algorithm.

2 � Related work

In this section, we relate this work to the wider body of work on symbolic safety con-
straints in RL and the use of symbolic reasoning to improve RL agents. Starting with RL
under symbolic safety constraints, we group all the works discussed in the introduction. On
top of these, Zhang et al. (2019) encode legality of actions explicitly into rules. Tomic et al.
(2020) specifically target learning normative behaviors in a particular normative frame-
work, whereas we focus on high-level, intensional safety constraints. More importantly,
most of these target environments where being safe is positively correlated with high total
reward which we show to be a special case of safety-constrained RL. The setting of safe
RL under constraints that may impact performance negatively was empirically identified
in Könighofer et al. (2020). We analyze this problem theoretically and propose an algo-
rithm to learn efficiently in this setting. These works are related in the sense that the contri-
butions presented here are complementary: we argue that symbolic reasoning and reward
shaping are important components to making these systems viable in realistic scenarios
where rewards and staying safe are not positively correlated.

Closely related are works on restraining bolts by De Giacomo et al. (2019, 2020). These
use a similar form of reward shaping based on progress in an automaton representation of
LTLf /LDLf specifications of undesired behaviors. These works, however, target a setting in
which an external regulator has no control over the agent except for external transitions to
the reward. This is overly restricted for cases where the agent is controlled by actors that
want to adhere to safety specifications such as in healthcare. More importantly, this setting
eliminates guarantees of safety. This work, on the other hand, targets a setting in which we
control the agent fully and where provable guarantees are required. Another recent work by
Hasanbeig et al. (2020), presents an approach for safety-constrained RL under the assump-
tions of knowledge about the transition function, full observability of adjacent state labels
and a task fully expressed in LTL. Our work only requires prior knowledge of nonzero

2258	 Machine Learning (2022) 111:2255–2274

1 3

transition probabilities at a symbolic level and a goal that expresses which parts of the
state-action space are associated with high reward.

A second line of related work aims to inform a learner of knowledge obtained by sym-
bolic reasoning or planning. Grzes and Kudenko (2008) combine STRIPS-based plans
with reward shaping. More recently, several works have proposed using some normal form
for representing reward functions (Brafman et al. 2018; Icarte et al. 2018; Camacho et al.
2019; Gaon and Brafman 2020). Of specific interest is the work proposing to specify the
reward function as an LTL formula and derive intermediate rewards for reward shaping
(Camacho et al. 2017). These works focus on a scenario where the full task can be repre-
sented as an LTL goal whereas our approach targets unknown numeric reward function to
which a reward is added. We, on the other hand, combine sub-symbolic learning with high-
level symbolic reasoning to improve efficiency in a setting with unknown MDP reward and
transition functions.

A recent work by Hasanbeig et al. (2021) proposes various interesting innovations in
this setting. The most relevant of these in relation to our work is an intrinsic reward based
on the observation of novel state labels. This intrinsic reward differs from our shaping
reward in four important ways. Firstly, it is defined over the state labeling vocabulary �I
whereas our approach is based on automata states and hence captures information over
traces of both state and action labels, i.e. over (�I × �O)

∞ . Secondly, the intrinsic rewards
proposed by Hasanbeig et al. would also reinforce moving further from the goal if there
happen to be novel labels there. Our shaping approach only reinforces getting closer to the
goal. Thirdly, the intrinsic rewards of Hasanbeig et al. do not rely on potentials and hence
may produce optimal policies that are suboptimal to original reward function (Bellemare
et al. 2016; Burda et al. 2019. Finally, we contribute an approach for tuning the single
novel hyperparameter in our approach automatically and on-the-fly.

Illanes et al. (2020) inform an RL agent with high-level symbolic instructions using the
options framework in which low-level learned policies can be reused. The instructions are
of a directive nature which is arguably less generic than the constraints used here. Addi-
tionally, policies learned in the option framework are sub-optimal whereas our reward
shaping approach maintains optimality guarantees of the underlying learner.

3 � Preliminaries

3.1 � Safety specifications and shield synthesis

We define a finite or infinite sequence of elements from some alphabet as a word and a lin-
ear-time (LT) property as a set of finite or infinite words over the alphabet � ∶ 2AP , where
AP a set of atomic propositions. We focus on safety properties in terms of system input and
output and identify subsets of AP and � , relating to these as API , �I for inputs and APO ,
�O for outputs. An invariant is an LT property that has to hold in all reachable states for
some system, for example “a product may only be recommended if it matches the customer
risk profile”. Safety properties generalize invariance properties to include patterns over
time, for example “products may only be recommended after the customer’s objectives are
known” (Baier and Katoen 2008).

Safety properties can be expressed in a formal language that extends propositional logic
with temporal operators. Linear temporal logic (LTL) is such a logic (Pnueli 1977). LTL
extends propositional logic with temporal modal operators � (next) and � (until). ��

2259Machine Learning (2022) 111:2255–2274	

1 3

expresses that a formula � must be true the next time step and ��� expresses that � has to
hold at least until � becomes true. From these, the operators �� (globally) and �� (finally)
can be defined to express that, from a particular step onward, � has to respectively hold
always and at some point in the future respectively. Additionally, the operator � can be
derived, which ‘weakens’ the � operators assumptions by allowing that its right-hand-side
may or may not be the true in the future.

A LTL safety specification �s can automatically be converted into an automaton that
represents it. A deterministic finite automaton (DFA) �a = ⟨ℚ, q0,�, �, 𝔽 ⟩ consists of
a set of states ℚ , an initial state q0 ∈ ℚ , an alphabet � = �I × �O , a transition function
� ∶ ℚ × � → ℚ and a set of safe state 𝔽 ⊆ ℚ . A run is a finite or infinite sequence of states
q̄ = q0, q1,… ∈ ℚ∞ induced by a trace 𝜎̄ = 𝜎0, 𝜎1,… ,∈ 𝛴∞ of some system such that
∀i ∈ ℕ, qi+1 = �(qi, �i) . A trace 𝜎̄ of some system satisfies specification �s and its represen-
tation �a iff the corresponding run q̄ visits safe states only, i.e. ∀i ∈ ℕ, qi ∈ 𝔽  . An example
LTL specification and its automaton representation can be found in Fig. 1a.

If a model of the environment is available, a reactive system that always produces output
in accordance with a specification �s can be generated. This challenging task is known as
reactive synthesis (Pnueli and Rosner 1989). A typical strategy is to formulate the prob-
lem as a two-player alternating game between the system and an adversarial environment.
Such a safety game can be expressed as a tuple G ∶ ⟨�, g0,�I ,�O, �, � ⟩ with a finite set of
game states � , initial state g0 ∈ � , a transition function � ∶ � × �I × �O → � and a set of
safe states � ⊆ � . During the game and for the current state g ∈ � , the environment first
chooses some �I ∈ �I after which the system chooses �O ∈ �O and the game transitions to
state g� = �(g, �I , �O) . The resulting (infinite) sequence ḡ = g0, g1,… is called a play and
is won by the system iff all visited states are safe: ∀gi ∈ ḡ, gi ∈ �  . A winning memoryless
strategy is a function � ∶ � × �I → �O if all plays ḡ that can be constructed using it are
won by the system. Standard algorithms can compute such a winning strategy if it exists
(Mazala 2002).

Shield synthesis is a particular kind of reactive synthesis in which an existing system is
assumed and in which an external component to correct the system output is computed. The
correction is guaranteed to change the output of the original system so that it satisfies some
specification with minimal interference given an abstraction of the system (Bloem et al. 2015).

(a) (b) (c)

Fig. 1   Example of a car exiting a gated parking lot. The agent can either drive or push a button next to the
gate, i.e. APO ∶ {d, b}. State labels indicate whether the gate is open and whether the car is in the parking
lot, i.e. API ∶ {o, i}. a An automaton representation of � ∶ ¬d�o to express that the gate should be open
before the car may drive, b MDP abstraction with all transitions with nonzero probability in the underly-
ing MDP. Initially, the gate is not open and the car is inside. Error transitions and state are not included
for legibility. c The result of combining (a) and (b) to form a safety game (excluding abstraction errors).
Transitions marked with a solid line are part of the safe strategy. Action ‘ d ’ in (p0, q0) is not part of the safe
strategy since the resulting state is an error state

2260	 Machine Learning (2022) 111:2255–2274

1 3

An abstraction of the system describes how its executions can possibly evolve, and provides
the needed information about the environment to allow planning ahead w.r.t. the safety proper-
ties of interest. The model required is typically of limited size as result. More so, as it can be
expressed in an equivalent lifted representation. It may therefore be easy to construct or learn
from data. An illustrative abstraction of an MDP and resulting safety game can be found in
Fig. 1. The corresponding shield would replace any unsafe action with a next best safe action.

3.2 � Reinforcement learning

RL provides a framework for selecting actions in an environment in order to collect a maxi-
mum number of rewards over time (Sutton and Barto 2018; Wiering and Van Otterlo 2012).
RL deals with problems formalized as Markov decision problems (MDP). We here define a
MDP as a tuple M ∶ ⟨S,A,T ,R, � , S0⟩ where S ∈ {s(1),… , s(n)} is a finite set of environment
states, A ∈ {a(1),… , a(m)} a finite set of agent actions, T ∶ S × A × S → [0, 1] a probabilis-
tic transition function, R ∶ S × A × S → [Rmin,Rmax] a reward function with Rmin,Rmax ∈ ℝ ,
� ∈ [0, 1) a discount factor to balance current and future rewards and S0 a distribution of initial
states: s0 ∼ S0 . The agent observes an environment state st at each time step t and performs
some action at up to some end time T  , following some policy � ∈ � ∶ S × A → [0, 1] and
collects reward rt = R(st, at).

If some expectation �� can be formulated to express the sum of rewards by following some
� , then values V and Q can be assigned to a state s and a tuple (s, a) respectively for that �:

A policy � is the optimal policy �∗ if it results in the highest obtainable reward:
∀s ∈ S,∀� ∈ � ,∀a ∈ A ∶ Q�∗ (s, a) ≥ Q�(s, a) . Finding �∗ can be addressed by condition-
ing the policy on a set of parameters �(st|�) = at and finding parameter values �∗ that max-
imize the corresponding reward by a learning algorithm. For example, � can be weights of
a neural network updated with gradient descent.

A particularly popular parameterized approach of learning an approximation of �∗ is
known as deep Q-Networks (DQN) (Mnih et al. 2013, 2015). DQN uses a neural network
with weights � to predict Q�(s, a|�) and selects actions uniform randomly with some prob-
ability � ∈ (0, 1] or greedily with respect to Q�(s, a) with some probability 1 − � at each step t.
The resulting tuple (st, at, rt, st+1) is added to a buffer or data set D as (s, a, r, s�) . Weights are
updated in iterations. For every iteration i, the current weights �i are updated to minimize the
loss function Li(�i) =

where U(D) is a uniform random sample of D and �−
i
 the parameters used in action selec-

tion during iteration i. These parameters �−
i
 are only replaced with �i every C iterations and

held fixed otherwise as this increases stability of the learned Q-network over time, hence
improving performance.

(1)V�(s) =��

[
T=∞∑

k=t

�k−trk|st = s

]

(2)Q�(s, a) =��

[
T=∞∑

k=t

�k−trk|st = s, at = a

]

(3)�(s,a,r,s�)∼U(D)

(
r + �max

a�
Q(s�, a�|�−

i
) − Q(s, a|�i)

)2

2261Machine Learning (2022) 111:2255–2274	

1 3

4 � Safe reinforcement learning

RL has proven capable of learning complex behaviors from interactions with an environ-
ment in a trial-and-error fashion alone. Symbolic reasoning, on the other hand, is well
suited when safety guarantees on behavior are necessary. Safe RL combines these in order
to learn complex behaviors under strong guarantees of safety, both during and after learn-
ing. In this section, we introduce safety-constrained environments following Alshiekh et al.
(2018), identify that safe policies are not expected to outperform unsafe policies and then
analyze how safety constraints impact the expected future reward.

Definition 1  (Safety-constrained environments) A safety-constrained environment is a
tuple E ∶ ⟨M,AP,LI , LO,�⟩ where M ∶ ⟨S,A,T ,R, �⟩ is an MDP, � is a safety specification
with propositions AP ∶ API ∪ APO and labelling functions LI ∶ S → 2API , LO ∶ A → 2APO.

Definition 2  (Safe policies) A policy � ∈ � ∶ S × A → [0, 1] is safe in E if for any
sequence st, at, st+1, at+1,… it generates with nonzero probability, the corresponding
sequence of labels (LI(st) ∪ LO(at), LI(st+1) ∪ LO(at+1),…) satisfies � . The set of safe poli-
cies in E is denoted �E.

For the purposes of this paper, the MDP transition function T is unknown. If results
of actions are unknown, safety of a given policy cannot be verified up-front without
further assumptions. In order to ensure safety, however, we need only know which
sequences of labels for a given policy in an environment have a nonzero probability.
These can be modeled with an automaton abstraction of the MDP.

Definition 3  (MDP abstractions) Given an environment E, the automaton
�M ∶ ⟨ℚ, q0,�I × �O, �, 𝔽 ⟩ is an abstraction of M if for every trace s0, s1,… ∈ S∞ and cor-
responding action sequence a0, a1,… ∈ A∞ with nonzero probability in E, for every run
q̄ ∶ q0, q1,… ∈ ℚ∞ with qi+1 = �(qi, LI(si), LO(ai)) , this run q̄ visits only states in � .

Remark 1  It can be verified whether an automaton is an abstraction of M. If a run is gen-
erated in which some state qi ∉ � then it is not an abstraction of M. This property can be
used to refine the abstraction when it is tested or to hand over control to a human operator
or fallback policy.

An abstraction can be used to synthesize safe policies. The cross product of the
abstraction and an automaton representation of the specification forms a safety game
from which a safe strategy can be computed as described in the previous section. Poli-
cies following this strategy are provably safe in E (Alshiekh et al. 2018). We now intro-
duce a performance bound for safe policies.

Theorem 1  (Performance bound) For any environment E with MDP M and safe policies
�E , let �∗

E
∈ �E be the optimal safe policy and �∗

M
∈ � be the optimal (possibly unsafe)

policy. Then �∗
E
≤ �∗

M
 where �1 ≤ �2 iff ∀s ∈ S,∀a ∈ A,Q�1

(s, a) ≤ Q�2
(s, a).

Proof  𝛱E ⊆ 𝛱 , hence �∗
E
∈ � and �∗

E
≤ �∗

M
 . 	� ◻

2262	 Machine Learning (2022) 111:2255–2274

1 3

Theorem 1 shows that safe policies are generally not expected to outperform their
unsafe counterparts in terms of reward: the environments targeted in previous work
where being unsafe leads to low rewards are a special case of safety constrained envi-
ronments. We continue to investigate when constraints negatively impact expected
reward. In order to do so, we first introduce the notion of a goal. Problems with pre-
specified goals are approached within the framework of goal-based MDPs in RL. Such
MDPs terminate if a goal state sg ∈ S is reached and have a reward function of the form
R(s, a, s�) = 1 if s� = sg and 0 otherwise. Here, we consider goal-based problems within
the framework of safety-constrained environments and define them in terms of AP.

Definition 4  (Goals) For a safety-constrained environment E ∶ ⟨M,AP,LI , LO,�⟩ , a goal
�g ∈ 2AP is reached if an action a ∈ A with labeling �a ∶ LO(a) is selected in a state s ∈ S
with labeling �s ∶ LI(s) such that 𝜎g ⊆ 𝜎s ∪ 𝜎a.

Definition 5  (Goal-based environments) An environment E ∶ ⟨M,AP,LI , LO,�, �g⟩
with goal �g is goal-based if it has a reward function of the following restricted form:
R(s, a, s�) = 1 if the goal is reached by performing a in s and R(s, a, s�) = 0 otherwise.

How a constraint specifically impacts expected reward depends on the particular
goal, the constraint and the transition function T, which is unknown in the case of inter-
est here. Even in this case, however, the impact of a constraint can be derived in some
illustrative cases which serve as an inspiration to the algorithm presented later. First, we
focus on the case where the goal can be reached immediately.

Theorem 2  (Q values and reaching goals) For any goal-based environment E with safe opti-
mal policy �∗

E
 and for any s, s� ∈ S and any a, a� ∈ A with �s ∶ LI(s), �s� ∶ LI(s

�), �a ∶ LO(a)
and �a� ∶ L�

O
(a�):

Proof  If 𝜎g ⊆ 𝜎s ∪ 𝜎a then performing a in s ends the episode in E and yields the maxi-
mum obtainable reward of R(s, a, ⋅) = 1 . Since 𝜎g ⊈ 𝜎s� ∪ 𝜎a� , R(s�, a�, ⋅) = 0 and therefore
Q𝜋∗

E
(s, a) > Q𝜋∗

E
(s�, a�) . 	� ◻

Corollary 1  For an environment E in some state s ∈ S for any two actions a, a� ∈ A such
that 𝜎g ⊆ 𝜎s ∪ 𝜎a and 𝜎g ⊈ 𝜎s ∪ 𝜎a�:

Proof  By substituting s� = s in Theorem 2. 	� ◻

When the goal cannot be reached immediately, reaching the goal requires multiple
transitions in both the underlying MDP and the safety game G . The minimum number
of transitions required in G for any of its safe states f ∈ � is denoted �G(fi, �g) . It can be
derived using planning and interpreted as the distance from f to the goal while staying
safe.

Q𝜋∗
E
(s, a) > Q𝜋∗

E
(s�, a�) if

𝜎g ⊆ 𝜎s ∪ 𝜎a and

𝜎g ⊈ 𝜎s� ∪ 𝜎a�

Q𝜋∗
E
(s, a) > Q𝜋∗

E
(s, a�)

2263Machine Learning (2022) 111:2255–2274	

1 3

Definition 6  (Distance in safety games) For a goal-based environment E with safety game
G ∶ ⟨ℚ, q0,�I ,�O, �, 𝔽 ⟩ with a winning strategy � , a distance map �G ∶ 𝔽 → ℕ1 is defined
as the length of the shortest play f̄ = fi,… , fk, fl starting in any fi ∈ � with �(fk, �i, �o) = fl
such that the play f̄ can be constructed with � and 𝜎g ⊆ 𝜎i ∪ 𝜎o.

Remark 2  �G(f , �g) = 1 iff 𝜎g ⊆ 𝜎s ∪ 𝜎a for some a ∈ A in a given s ∈ S, f ∈ �

Reaching the goal may also require multiple transitions in the MDP. Since T is unknown in
the setting of interest, the expected number of transitions is unknown as well. Therefore, we
look into a second illustrative case where safety constraints and goals are defined fully on the
action space, i.e. API = �.

Theorem 3  (Q values and distances) For any goal-based environment E with safety game G
and for any s, s� ∈ S , a, a� ∈ A , f , f � ∈ � :

(sketch)  Suppose that the consequent of the equation holds. Let n denote the distance
towards a goal by taking a, n = �G(�(f , �, �a), �g) , and n′ denote the distance towards a goal
by taking action a′ , n� = �G(�(f

�, �, �a�), �g) . An optimal safe policy in E takes n time steps
to reach �g after performing a and similarly so for n′ and a′ . Now by substituting T = n and
T = n� in Eq. 2 and since 𝛾 < 1 and n < n′ we find Q𝜋∗

E
(s, a) > Q𝜋∗

E
(s�, a�) . 	� ◻

Remark 3  An inequality for a single s ∈ S and single f ∈ � can be derived analogously to
Corollary 1.

The presented analysis shows how Q values relate to goals and distances to goals in safety
games. Although the analysis is targeted at goal-based environments, their implications are
also applicable to other settings, such as those in which the symbolic goal serves as a proxy for
a high reward area of the state-action space. Our analysis indicates that there are two classes
of safety constrained environments and it shows how to identify them. In the first class, safe
policies are expected to perform equally to unsafe policies in terms of obtained rewards. The
distance from initial state to a goal in the associated safety game is not impacted by the safety
constraints in these environments: they would be equal to the distance of a safety game result-
ing from vacuous constraints that always hold. In the second class of safety constrained envi-
ronments, unsafe policies are expected to outperform safe ones. The safety constraints add
transitions to the shortest path towards a goal. As constraints are added, the distance from the
goal grows. Every transition that a safety constraint contributes, leads to at least one additional
transition for the learner to incorporate and as such makes the learning problem more com-
plex. The next section introduces an algorithm to improve the scalability of safe RL as prob-
lems become more constrained.

Q𝜋∗
E
(s, a) > Q𝜋∗

E
(s�, a�) if

𝛥G(f
�, 𝜎g) > 1 and

𝛥G(𝛿(f , �, 𝜎a), 𝜎g) < 𝛥G(𝛿(f
�, �, 𝜎a�), 𝜎g)

2264	 Machine Learning (2022) 111:2255–2274

1 3

5 � Planning for potential

In this section, we propose a scalable and efficient RL algorithm adhering to a safety speci-
fication. The algorithm uses symbolic knowledge available in a safety-constrained envi-
ronments to speed up the learning. Optimality is preserved in cases of incomplete or even
incorrect prior knowledge. In the proposed approach, the learner is informed of progress
with respect to a symbolic goal by transforming the reward function automatically. The
approach follows the tradition of potential-based reward shaping which we introduce first.

5.1 � Reward shaping

Shaping is a technique within RL in which the original MDP M ∶ ⟨S,A,T ,R, �⟩ is replaced
with a surrogate M� ∶ ⟨S,A, T ,R�, �⟩ in order to guide the learner. It is desirable that R′ is
easier to learn but yields only optimal policies that are also optimal under the original R. Ng
et al. (1999) showed that R� = R + S with shaping function S ∶ S × A × S → ℝ such that
S(s, a, s�) = ��(s�) −�(s) with so-called potential � ∶ S → ℝ are the only R′ that guarantee
that any policy optimal in M′ is also optimal in M if no further information on transition and
reward functions is known. The challenge now consists of defining a potential function � that
informs the learner.

In safety-constrained RL, knowledge about the task is available in symbolic form in the
safety component. To use this knowledge, a description of state-action tuples associated with
high reward are described in symbolic form. The distance to this symbolic goal is established
with planning. By comparing distances prior to and after taking an action, we know whether that
action contributed to reaching the symbolic goal. The agent is informed of this with potential-
based reward shaping, hence we call this approach planning for potential (abbreviated P4P).

5.2 � Algorithm

P4P is listed in Algorithm 1. For a given safety constraint and MDP abstraction, a safety game
and shield are computed following Alshiekh et al. (2018). Next, a map of potentials � is com-
puted for all safe states of the safety game, after which the learning loop begins. This is a tradi-
tional RL learning loop with two modifications: actions are selected from the set of safe actions
(line 11) and the reward is augmented with the difference between potentials (line 15).

2265Machine Learning (2022) 111:2255–2274	

1 3

Algorithm 2 lists how the map of potentials � can be computed. The minimum number
of transitions, or shortest distance, from each state to the goal state are determined using
symbolic planning. These distances can be derived prior to interacting with the environ-
ment and with minimal knowledge of the MDP transition function. This makes them well
suited as a signal of progress for an exploring agent in a safety-constrained environment.
The algorithm presented here computes potentials for all states upfront. Although limited
in terms of scalability with respect to the safety game state space, this simple approach will
suffice for many settings for two reasons. Firstly, the safety game only includes aspects of
safety and this ‘abstraction’ over the full MDP yields relatively small safety games. Sec-
ondly, the calculation of these values is a one-time operation that is easily dwarfed by the
iterative training approach of many RL algorithms used in practice. If necessary, however,
more elaborate methods can be applied. Any solution to the unweighted single start short-
est path algorithm tailored to the desired performance characteristics can be used. More so,
the distances and potentials can be calculated in an online fashion, i.e. deferring the cal-
culation of these values for all states to the moment of first visiting them to increase scal-
ability for settings with a large number of safety game states that are not visited in practice.

In order to convert distances to progress, the difference in distances to a goal between
the initial state and any other state are calculated. This difference represents the progress
for any given state. It is multiplied with cost parameter c to offset the ‘costs’ already
incurred while moving closer to the goal. A reward bonus is given to state-action pairs
closer to the symbolic goal in accordance to the inequalities of Theorems 2 and 3. As P4P
uses potentials to augment the obtained rewards, there are no formal requirements on c
except for being > 0 by Theorems 2 and 3. In the case of stochasticity in updates of esti-
mates for V and Q, however, the value of c may affect convergence. In this case, c can be
set using knowledge of the domain, tuned as a hyperparameter or estimated during learning
in an online fashion, see Sect. 5.4.

2266	 Machine Learning (2022) 111:2255–2274

1 3

5.3 � Example

For the safety-constrained environment in Fig. 1, the goal is to not be in the parking lot
�g ∶ ¬i . This goal can be reached safely by taking any action in (p2, q1) . We can only visit
this state by first visiting (p1, q0) which has potential:

Transitioning from (p0, q0) → (p1, q0) therefore yields an additional reward of � ⋅ c . On the
other hand, the additional reward for transitioning from (p1, q0) → (p1, q1) = � ⋅ c − c and
effectively reflects the fact that visiting (p1, q1) was not necessary in order to reach the goal.

The additional rewards supplied to the learning algorithm guide the learner to prefer
certain states and actions. Doing so involves balancing the provided bias to increase learn-
ing without limiting the learner. Two mechanisms in P4P ensure that the amount of bias is
suitable. Firstly, the use of potential-based shaping ensures that the optimal policy under
transformed reward function is optimal under the original reward as well (see Sect. 5.1).
Secondly, progress in the algorithm is based on the shortest safe path toward the goal in the
safety game. This may be overly optimistic when the trajectories in the MDP correspond-
ing with this path have low probability. If this is the case, the learner will observe these
trajectories infrequently and the effects of P4P will be limited. P4P thus successfully lever-
ages all information available at the symbolic level without overly biasing the learner.

In P4P, distances to a goal are derived by symbolic reasoning and subsequently used to
inform a learner via reward shaping. The shaped reward function is more dense than the
original reward function and guides the agent towards promising regions of the state-action
space in exploration phases. Furthermore, rewards are obtained as the agent progresses
towards its goal. Thus, a part of the value assignment problem of RL is already solved for
the learner. Finally, the usage of potential-based shaping guarantees that optimality guar-
antees for the underlying learning algorithm also apply to P4P, even if the provided goal is
incomplete or incorrect.

5.4 � Estimation of c

The parameter c in Algorithms 1 and 2 controls the additional rewards given to the agent
for each transition towards a goal in the safety game. As previously noted, there are no
formal requirements on setting parameter c, except for c > 0 according to Theorems 2 and
3. Although convergence towards the optimal policy is not affected by the value of c in
the long run, a suitable value can impact speedups obtained when using function approxi-
mation such as in DRL. In this section, we describe two ways to find a suitable value for
c. They can be used depending on the available upfront knowledge. The first approach is
based on the size of the safety game and existing knowledge of the maximum obtaina-
ble reward. If this knowledge is available, then parameter c can be set using the following
heuristic:

where R̂max denotes an estimate of Rmax , the maximum of R, and dist(g0) denotes the dis-
tance of the initial state in the safety game to its closest goal as calculated in Algorithm 2.

�((p1q0)) = c ∗ (�G((p0, q0)) − �G((p1, q0))

= c ∗ (3 − 2) = c

(4)c ∶=
R̂max

dist(g0)

2267Machine Learning (2022) 111:2255–2274	

1 3

Alternatively, c can be tuned in an online fashion from interactions alone. In order to
do so, rewards are to be associated with transitions in the safety game. Figure 2 shows
how state transitions in the MDP are associated with state transitions in the safety game.
Although the agent is successful in the end, a reward of −3 is incurred by transitioning
q0 → q1 . These ‘costs’ for safety game transitions are stored in a buffer, averaged and mul-
tiplied with −1 in order to establish c in an online fashion. In some environments, reward is
0 most of the time. An example environment is the goal-based environment in Definition
5. In such environments, no rewards are obtained by transitioning in the safety game. An
elegant solution for this problem is to linearly transform all observed rewards to ℝ≤0 as a
first step of estimating c dynamically.

6 � Experimental setup

The experimental setup was designed to answer four specific research questions: how can
RL agents learn safely and efficiently (Q1)? How do different constraints impact efficiency
(Q2)? How sensitive is the proposed approach to its hyperparameters (Q3)? In order to
answer these questions, the proposed P4P approach was evaluated in two environments.
In these environments, agents were trained in different conditions: a baseline not adhering
to the specification (‘unsafe’), a ‘shielded’ baseline from Alshiekh et al. (2018) and three
P4P variants. In the first of these variants, the P4P hyperparameter c is estimated online as
proposed in Sect. 5.4. The other two variants use a fixed value for this parameter in order
to answer Q3. The values are set to overestimate (‘P4P-o’) and underestimate (‘P4P-u’) the
true cost.

6.1 � Grid world environment

A grid world environment from (Alshiekh et al. 2018) with an ‘exact’ abstraction was used.
Grid world environments are often used in RL as they are relatively simple to grasp but
include many of the characteristics of more challenging learning problems and are useful
to e.g. test intuitions. In the grid world used here (Fig. 3a), being safe does not correlate
with high reward. A reward of 1 is obtained when all regions have been visited in order
and 0 otherwise. States in gray can be visited but are to be avoided according to the safety
requirements. The goal was formulated as area1 ∧ area2 ∧ area3 ∧ area4 . Parameter c was
estimated in an online fashion by storing rewards obtained for each transition in the safety
game (see Sect. 5.4). Additionally, we ran experiments with over- and underestimates for
c to answer Q3. These were established as follows. In this environment, the average cost
of a safety game transition can be calculated. Based on the number of actions necessary to

Fig. 2   Traces for a successful episode in a hypothetical MDP (top) and safety game (bottom). Transition
labels indicate rewards associated with that transition

2268	 Machine Learning (2022) 111:2255–2274

1 3

visit all regions safely and the reward that is obtained, the average cost was established at
8e−3 . The cost parameter was set to c = 1e−5 as an underestimate (P4P-u) and c = 2 as an
overestimate (P4P-o) in order to test robustness to this parameter. All agents were trained
using �-greedy tabular Q-learning with � = 0.2 and � = .95 (Watkins and Dayan 1992).
Exploration parameter � was cooled down linearly from − 0.2 to 0.01 over the total number
of 1e4 episodes. Episode length and number of violations of the safety specification were
recorded across ten random seeds.

6.2 � Conversational recommendation environment

A realistic and high-dimensional environment from the banking domain was included due
to the availability of real-world constraints (den Hengst et al. 2019). In this conversational
recommendation environment, the agent interacts with a simulated user. The task is to
recommend a product and provide the desired information in a minimal number of turns.
Reward is specified as follows: each conversation turn yields a reward of −1 and at the end
of each conversation, an additional reward of 20 is obtained if the provided information
meets the information need and 0 otherwise. The unconstrained action space consists of
38 actions. States are each represented by a boolean vector with length 136 that describes
beliefs over the customers preferences and the dialogue history. The dimensionality of the
state-action space is 38 × 2136 and makes this a challenging problem for which function
approximation is necessary.

Realistic constraints were constructed from a real-world regulatory document. All state-
ments pertaining to the interaction between a bank and customers were extracted from
this document and formalized in consultation with two domain experts. The vocabulary
used in the specification is listed in Table 1 and the specifications are listed in Table 2.
Separate specifications were used to gauge the impact of different constraints (Q2). Accu-
racy was recorded for random rollouts for each separate constraint as a proxy for the ‘dif-
ficulty’ of the constraint. Constraints are presented in decreasing difficulty in Table 2.
Increasingly difficult specifications were created by combining separate specifications:
�1,2 = �1 ∧ �2,�1,2,3 = �1,2 ∧ �3,… ,�1−6 =

⋀
�1,…6 . For all constraints, the goal rec

was used.
Agents were trained in eight conditions: a baseline, P4P with online estimated c (P4P),

P4P with an overestimate of c (P4P-o) and P4P with an underestimate of c (P4P-u), all for
both the unsafe and shielded case. The under- and over-estimates of c were determined as
follows: the reward of a dialogue turn is − 1 . However, only some turns result in a transi-
tion in the safety game. Therefore, 1 is a reasonable underestimate for c. The overestimate
was based on the average number of turns used by an unconstrained agent. After training, it
requires on average seven turns to complete the task. Therefore, we used c = 8 as an over-
estimate for each single transition towards the goal.

For each condition, five agents with different random seeds were trained on 30K dia-
logues. After every 1K dialogues, performance was measured on 500 test dialogues.
Rewards, accuracy, number of dialogue turns and safety specification violations were
recorded. All agents use �-greedy DQN where � is linearly cooled down from 0.3 to
�f = 0.05 and with a learning rate � = 1e−4 . These hyperparameters were selected after a
grid search on �s ∈ {0.3, 0.5, 0.9} , �f ∈ {0.05, 0.3} and � ∈ {1e−3, 1e−4}.

2269Machine Learning (2022) 111:2255–2274	

1 3

7 � Experimental results

7.1 � Grid world environment

Figure 3b shows episode lengths for all included agents in the grid world environment. P4P
converges toward an optimal policy quickly (Q1). As a result of the ‘exact’ abstraction, the
potentials reflect progress made for every time step. P4P significantly outperforms both
safe and unsafe baselines, which both achieve optimal behavior eventually. More so, we see
that both P4P-u and P4P-o converge faster than P4P (Q3). This is explained by the fact that
P4P requires a short phase where an appropriate estimation of c is to be learned. Addition-
ally, we see comparable results for P4P-o and P4P-u, which is explained by the relatively
small effect of shaping reward scale on the probability of selecting a particular action in the
case of �-greedy tabular Q-learning.

7.2 � Conversational recommendation environment

Performance metrics for all agents in the conversational recommender environment are
listed in Table 3. The shielded baseline does not learn to solve the task at hand, i.e. aver-
age accuracy is 0.00. In contrast, accuracies for P4P are comparable to the unsafe baseline
(Q1). Finally, all unsafe agents violate the specification: rewarding safe behavior is not suf-
ficient for a safe agent. Figure 4 shows the accuracy of the tested approaches on varying
constraints (Q2). P4P performs comparable to the unsafe baseline and comparable to or

Table 1   Atomic propositions in the recommender environment

Propositions Explanation

APO rec The agent makes a recommendation
e The agent explains the expected result of a recommended product
ena The agent explains the need for analysis of the customer profile
dsp The agent discloses the customer profile
dvp The agent recommends a product that deviates from the risk profile

API ok The objective of the customer is known
cdvp The customer confirms they want to deviate from their risk profile
vp The customer verifies the risk profile disclosed by the agent
ue The customer indicates to understand the explanation of the result

Table 2   Formalization of regulatory safety statements into LTL specifications

�
#

Regulatory statement Specification

1 Explain the expected result, check whether it is understood �(rec → ((e ∨ rec)�ue))

2 No recommendation if the profile has been disclosed but not verified �(dsp → (¬rec�vp))

3 No deviation from risk profile until customer confirms deviation ¬dvp�cdvp

4 No recommendation until customer objective known ¬rec�ok

5 No recommendation until the customer profile has been disclosed ¬rec�dsp

6 No recommendation until the need for analysis has been explained ¬rec�ena

2270	 Machine Learning (2022) 111:2255–2274

1 3

better than the safe baseline. Benefits of P4P grow as problems become more constrained
(Q2).

We continue to investigate sensitivity to the c parameter by comparing the results
between P4P variants (Q3). We first revisit Table 3. Both P4P variants converge to high
reward policies without a significant difference in reward, accuracy or number of turns
between the two variants. However, Fig. 4 shows differences in data efficiency. Specifi-
cally, P4P with c = 8 converges to high rewards faster than the c = 1 variant. The signal for
progress with respect to the safety constraints is more prominent with c = 8 without harm-
ing overall performance.

8 � Discussion

This work set out to address the problem of efficient and provably safe RL in settings where
being safe need not be associated with high rewards. We formally introduced environments
with symbolic safety constraints and showed that the performance of safe policies are only
expected to perform equally to unsafe policies in a special case. We analyzed how con-
straints impact expected future rewards and showed a relation between expected rewards
and the progress toward a goal in an automaton representation of the available symbolic
knowledge.

We then proposed an algorithm to scale safe RL with constraint complexity based on
symbolic reasoning. Reasoning is used to infer progress towards a symbolic goal. A rein-
forcement learner is then infused with this progress signal using additional rewards, fol-
lowing the convention of potential-based reward shaping. We evaluated the so-called P4P
algorithm on two existing environments, one of which with real-world constraints. We
found that it significantly outperforms baselines and scales well as problems become more
constrained. Additionally, we introduced an approach for tuning its single additional hyper-
parameter in an online fashion and showed that the algorithm is robust against various val-
ues of this parameter.

In P4P, safety constraints are expressed at a symbolic, intensional level and need not
align with large total rewards. Such problems are abundant in e.g. regulated domains such
as healthcare and finance. Here, regulatory constraints prevent rare yet undesirable events,

(a) (b)

Fig. 3   Grid world with start position ‘s’. Positions marked in gray are to be avoided

2271Machine Learning (2022) 111:2255–2274	

1 3

Table 3   Recommendation environment test set results (mean ± 95% confidence interval)

Bold denotes significant improvements w.r.t. baseline/shielded

Unsafe Safe

Baseline P4P Shielded P4P

Reward 5.43 ± 1.94 6.43 ± 1.94 −11.93 ± 1.73 �.�� ± �.��

Accuracy (%) 65.84 ± 2.75 ��.�� ± �.�� 0.00 ± 0.00 ��.�� ± �.��

Violations (%) 80.16 ± 11.36 74.00 ± 7.49 0.00 ± 0.000 0.00 ± 0.000

Turns 7.73 ± 1.539 9.49 ± 1.591 11.93 ± 1.730 10.01 ± 1.561

Fig. 4   Test set results in an increasingly constrained recommendation environment (mean and 95% confi-
dence intervals)

2272	 Machine Learning (2022) 111:2255–2274

1 3

unwelcome long-term effects and negative externalities. P4P exemplifies that safety in RL
can be achieved at negligible performance penalty if learning and reasoning are combined.

The findings presented here inspire various directions for future work. Firstly, we have
seen that constraints have a varying effect on learning efficiency. It would be useful if these
could be estimated analytically and up-front by building on the framework of safety-con-
strained environments as first introduced by Alshiekh et al. (2018). Secondly, there is an
interesting direction in altering the approach to be applicable to settings that do not neces-
sarily involve safety constraints, but where knowledge about suitable policies is available at
a symbolic level. Of particular interest here is the decomposition of the full RL task in sub-
tasks, as has been proposed recently by Andreas et al. (2017) and Illanes et al. (2020). The
use of constraints may be an interesting alternative if more fine-grained symbolic informa-
tion is not available. Thirdly, the approach presented here can be combined with methods
that learn a set of symbolic labels for the state and action spaces or that learn an automaton
representation of the problem (Hasanbeig et al. 2021). This is of particular interest if the
safety constraints are not strict, because learning these requires violation of the constraints
during early stages.

Funding  This study was funded by ING Bank N.V.

Data availibility  Data and code will be made available upon acceptance of this paper. FdH contributed the
code, performed experiments and drafted the manuscript. FdH, VFL, MH and FvH contributed the concep-
tion and design of study, analysed and interpreted data and critically revised the manuscript.

Declarations 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose.

Research involving human or animal subjects  No ethical approval was sought for this study on the grounds
of no involvement of any human or animal subjects.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., & Topcu, U. (2018). Safe reinforcement
learning via shielding. In Proceedings of the AAAI conference on artificial intelligence (Vol. 32).

Andreas, J., Klein, D., & Levine, S. (2017). Modular multitask reinforcement learning with policy sketches.
In Proceedings of the 36th international conference on machine learning vonference (pp. 166–175).
PMLR.

Baier, C., & Katoen, J.-P. (2008). Principles of model checking. MIT.
Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., & Munos, R. (2016). Unifying count-

based exploration and intrinsic motivation. Advances in Neural Information Processing Systems, 29,
1471–1479.

http://creativecommons.org/licenses/by/4.0/

2273Machine Learning (2022) 111:2255–2274	

1 3

Bloem, R., Könighofer, B., Könighofer, R., & Wang, C. (2015). Shield synthesis. In International confer-
ence on tools and algorithms for the construction and analysis of systems (pp. 533–548). Springer.

Brafman, R. I., De Giacomo, G., & Patrizi, F. (2018). LTLf/LDLf non-Markovian rewards. In Proceedings
of the AAAI conference on artificial intelligence (Vol. 32).

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., & Efros, A. A. (2019). Large-scale study of
curiosity-driven learning. In International conference on learning representations.

Camacho, A., Chen, O., Sanner, S., & McIlraith, S. A. (2017). Non-markovian rewards expressed in LTL:
Guiding search via reward shaping. In Tenth annual symposium on combinatorial search.

Camacho, A., Icarte, R. T., Klassen, T. Q., Valenzano, R. A., & McIlraith, S. A. (2019). Ltl and beyond:
Formal languages for reward function specification in reinforcement learning. In Proceedings of the
28th joint conference on artificial intelligence (Vol. 19, pp. 6065–6073).

De Giacomo, G., Iocchi, L., Favorito, M., & Patrizi, F. (2019). Foundations for restraining bolts: Reinforce-
ment learning with LTLf/LDLf restraining specifications. In Proceedings of the international confer-
ence on automated planning and scheduling (Vol. 29, pp. 128–136).

De Giacomo, G., Favorito, M., Iocchi, L., & Patrizi, F. (2020). Imitation learning over heterogeneous agents
with restraining bolts. In Proceedings of the international conference on automated planning and
scheduling (Vol. 30, pp. 517–521).

den Hengst, F., Hoogendoorn, M., Van Harmelen, F., & Bosman, J. (2019). Reinforcement learning for per-
sonalized dialogue management. In International conference on web intelligence (pp. 59–67). IEEE/
WIC/ACM.

den Hengst, F., Grua, E. M., el Hassouni, A., & Hoogendoorn, M. (2020). Reinforcement learning for per-
sonalization: A systematic literature review. Data Science, 3(1), 107–147.

Dulac-Arnold, G., Mankowitz, D., & Hester, T. (2019). Challenges of real-world reinforcement learning. In
ICML workshop on real-life reinforcement learning.

Fu, J., & Topcu, U. (2014). Probably approximately correct mdp learning and control with temporal logic
constraints. In Proceedings of robotics: Science and systems (Vol. 10).

Gaon, M., & Brafman, R. (2020). Reinforcement learning with non-markovian rewards. In Proceedings of
the AAAI conference on artificial intelligence, (Vol. 34, pp. 3980–3987).

Grzes, M., & Kudenko, D. (2008). Plan-based reward shaping for reinforcement learning. In International
IEEE conference intelligent systems (Vol. 2, pp. 10–22). IEEE.

Gu, S., Holly, E., Lillicrap, T., & Levine, S. (2017). Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates. In 2017 IEEE international conference on robotics and automa-
tion (ICRA) (pp. 3389–3396). IEEE.

Hasanbeig, M., Abate, A., & Kroening, D. (2020). Cautious reinforcement learning with logical constraints.
In Proceedings of the 19th international conference on autonomous agents and multiagent systems (pp.
483–491).

Hasanbeig, M., Jeppu, N. Y., Abate, A., Melham, T., & Kroening, D. (2021).Deepsynth: Automata synthesis
for automatic task segmentation in deep reinforcement learning. In The 35th AAAI conference on artifi-
cial intelligence, AAAI (Vol. 2, p. 36).

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar,
M., & Silver, D. (2018). Rainbow: Combining improvements in deep reinforcement learning. In Pro-
ceedings of the AAAI conference on artificial intelligence (Vol. 32).

Icarte, R. T., Klassen, T., Valenzano, R., & McIlraith, S. (2018). Using reward machines for high-level task
specification and decomposition in reinforcement learning. In Proceedings of the 37th international
conference on machine learning conference (pp. 2107–2116).

Illanes, L., Yan, X., Icarte, R. T., & McIlraith, S. A. (2020). Symbolic plans as high-level instructions for
reinforcement learning. In Proceedings of the international conference on automated planning and
scheduling (Vol. 30, pp. 540–550).

Junges, S., Jansen, N., Dehnert, C., Topcu, U., & Katoen, J.-P.. (2016). Safety-constrained reinforcement
learning for mdps. In International conference on tools and algorithms for the construction and analy-
sis of systems (pp. 130–146). Springer.

Könighofer, B., Lorber, F., Jansen, N., & Bloem, R. (2020). Shield synthesis for reinforcement learning. In
International symposium on leveraging applications of formal methods (pp. 290–306). Springer.

Mazala, R. (2002). Infinite games (pp. 23–38). Springer. ISBN 978-3-540-36387-3.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013).

Playing atari with deep reinforcement learning. In NIPS deep learning workshop.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller,

M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H.,
Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control through deep rein-
forcement learning. Nature, 518(7540), 529–533.

2274	 Machine Learning (2022) 111:2255–2274

1 3

Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invariance under reward transformations: Theory and
application to reward shaping. In Proceedings of the 16th international conference on machine learn-
ing (pp. 278–287).

Pnueli, A. (1977). The temporal logic of programs. In 18th Annual symposium on foundations of computer
science (pp. 46–57). IEEE.

Pnueli, A., & Rosner, R. (1989). On the synthesis of a reactive module. In ACM SIGPLAN-SIGACT​ (pp.
179–190).

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,
D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play. Science, 362(6419), 1140–1144.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT.
Tomic, S., Pecora, F., & Saffiotti, A. (2020). Learning normative behaviors through abstraction. In Proceed-

ings of the 24th European conference on artificial intelligence.
Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.
Wen, M., Ehlers, R., & Topcu, U. (2015). Correct-by-synthesis reinforcement learning with temporal logic

constraints. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp.
4983–4990). RSJ/IEEE.

Wiering, M., & Van Otterlo, M. (2012). Reinforcement learning. Adaptation, Learning, and Optimization,
12, 3.

Zhang, H., Gao, Z., Zhou, Y., Zhang, H., Wu, K., & Lin, F. (2019). Faster and safer training by embedding
high-level knowledge into deep reinforcement learning. arXiv preprint. arXiv:​1910.​09986

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Floris den Hengst1  · Vincent François‑Lavet2 · Mark Hoogendoorn2 ·
Frank van Harmelen2

	 Vincent François‑Lavet
	 vincent.francoislavet@vu.nl

	 Mark Hoogendoorn
	 m.hoogendoorn@vu.nl

	 Frank van Harmelen
	 frank.van.harmelen@vu.nl

1	 ING Bank N.V., Amsterdam, Netherlands
2	 Present Address: Vrije Universiteit Amsterdam, Amsterdam, Netherlands

http://arxiv.org/abs/1910.09986
http://orcid.org/0000-0002-2092-9904

	Planning for potential: efficient safe reinforcement learning
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Safety specifications and shield synthesis
	3.2 Reinforcement learning

	4 Safe reinforcement learning
	5 Planning for potential
	5.1 Reward shaping
	5.2 Algorithm
	5.3 Example
	5.4 Estimation of c

	6 Experimental setup
	6.1 Grid world environment
	6.2 Conversational recommendation environment

	7 Experimental results
	7.1 Grid world environment
	7.2 Conversational recommendation environment

	8 Discussion
	References

