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Abstract
Deep reinforcement learning (DRL) has shown remarkable success in artificial domains 
and in some real-world applications. However, substantial challenges remain such as learn-
ing efficiently under safety constraints. Adherence to safety constraints is a hard require-
ment in many high-impact application domains such as healthcare and finance. These 
constraints are preferably represented symbolically to ensure clear semantics at a suitable 
level of abstraction. Existing approaches to safe DRL assume that being unsafe leads to low 
rewards. We show that this is a special case of symbolically constrained RL and analyze a 
generic setting in which total reward and being safe may or may not be correlated. We ana-
lyze the impact of symbolic constraints and identify a connection between expected future 
reward and distance towards a goal in an automaton representation of the constraints. We 
use this connection in an algorithm for learning complex behaviors safely and efficiently. 
This algorithm relies on symbolic reasoning over safety constraints to improve the effi-
ciency of a subsymbolic learner with a symbolically obtained measure of progress. We 
measure sample efficiency on a grid world and a conversational product recommender with 
real-world constraints. The so-called Planning for Potential algorithm converges quickly 
and significantly outperforms all baselines. Specifically, we find that symbolic reasoning is 
necessary for safety during and after learning and can be effectively used to guide a neural 
learner towards promising areas of the solution space. We conclude that RL can be applied 
both safely and efficiently when combined with symbolic reasoning.
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1  Introduction

Reinforcement learning (RL) provides an elegant framework for decision making in auton-
omous agents. In the RL framework, an agent acts in an environment in order to collect 
rewards (Sutton and Barto 2018). RL driven by neural network-based function approxi-
mation, commonly known as Deep Reinforcement Learning (DRL), has recently shown 
remarkable progress in diverse areas such as personalization (den Hengst et  al. 2020), 
robotics (Gu et  al. 2017) and game-playing (Hessel et  al. 2018; Silver et  al. 2018). The 
application of DRL in real-world scenarios, however, remains challenging. Despite the 
significant efforts on making RL agents safe, one of the key challenges remains how to 
impose “safety constraints that should never [...] be violated” (Dulac-Arnold et al. 2019).

Safety constraints are present in various high-impact domains such as healthcare and 
finance. Here, regulations and guidelines describe what behaviors are allowed and disal-
lowed. Typically, the behaviors are not listed explicitly, but described by conditions that 
have to be met at all times. As such, regulations and guidelines form a symbolic and high-
level specification of safe behavior in a particular domain. In many thus governed domains, 
provable compliance to these specifications is an essential prerequisite for the deployment 
of any system, including DRL-based ones.

Provably safe DRL has recently been approached from the perspective of symbolic rea-
soning. Symbolic reasoning provides powerful modeling capabilities, unambiguous seman-
tics and well understood computational properties. Fu and Topcu (2014) introduced a 
framework for checking a bounded safety constraint on a learned model with probabilistic 
guarantees. Wen et al. (2015) proposed a method for strict adherence, which was extended 
by Junges et al. (2016) for stochastic settings. Alshiekh et al. (2018) proposed a mechanism 
that scales to large state-action spaces using a precomputed shield which removes actions 
iff these are unsafe (Bloem et al. 2015).

The above works contain proofs of adherence to the specifications but only target a spe-
cial case in which being safe is correlated with high expected total rewards. A correlation 
between high expected total rewards and being safe, however, is not present many impor-
tant application domains. On the contrary, high rewards can be obtained by engaging in 
disallowed behaviors in many domains. In such domains, regulations are typically put in 
place precisely to avoid behaviors that yield high reward but come rare but highly unde-
sirable events, negative long-term consequences and negative externalities. For example, 
guidelines in healthcare protect organs from damage inflicted during treatment in order 
to safeguard post-treatment quality of life. Although the problem setting of safe RL in the 
presence of antagonistic constraints has been identified before by e.g. Könighofer et  al. 
(2020), it remains, to the best of our knowledge, largely unexplored how these constraints 
affect performance and how to mitigate negative effects.

In this work, we identify that safe policies do not outperform unsafe policies in terms 
of expected reward. We theoretically analyze how symbolic safety constraints impact 
expected reward and identify a connection between expected future reward and distance 
to a goal in a symbolic representation of the safety component. We then introduce an algo-
rithm for safe and efficient RL using this distance. By reasoning over the specification and 
a symbolic goal at an abstract level, an additional reward function is derived automatically 
and supplied to the low-level learner, following the tradition of potential-based reward 
shaping. This ensures that the optimality of the solution is not at stake if the symbolic plan 
is incomplete or even incorrect. Our algorithm includes an approach to estimate the shap-
ing rewards in an online fashion so that no additional hyperparameters are required.
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We evaluate the novel approach, called planning for potential (P4P), on a grid world 
and on a conversational product recommender. The former was inspired by previous work 
on safe RL whereas the latter contains real-world regulatory constraints from the banking 
domain. We compare P4P with a ‘vanilla’ unsafe baseline and a safe baseline. Additionally, 
we analyze performance of P4P on increasingly constrained problems. We find that P4P 
scales well with constraint complexity, is robust with regard to its additional parameter and 
significantly outperforms the baselines in terms of safety and obtained reward.

This paper is structured as follows: after the preliminaries, we formally introduce the 
setting of environments with symbolic safety constraints and derive a bound on perfor-
mance of safe policies. We then show a relation between rewards and reasoning over sym-
bolic constraints using a distance metric. This metric is based on the number of transitions 
in an automaton representation of the symbolic safety component. We then use this relation 
in a novel algorithm to improve sample efficiency of RL. We test this algorithm on a sim-
ple grid world with a tabular RL algorithm and on a realistic conversational product recom-
mendation benchmark with DRL. The proposed algorithm outperforms all baselines and is 
the only algorithm capable of solving the realistic task, indicating that symbolic reasoning 
at an abstract level can be combined with learning via reward shaping as proposed in the 
P4P algorithm.

2 � Related work

In this section, we relate this work to the wider body of work on symbolic safety con-
straints in RL and the use of symbolic reasoning to improve RL agents. Starting with RL 
under symbolic safety constraints, we group all the works discussed in the introduction. On 
top of these, Zhang et al. (2019) encode legality of actions explicitly into rules. Tomic et al. 
(2020) specifically target learning normative behaviors in a particular normative frame-
work, whereas we focus on high-level, intensional safety constraints. More importantly, 
most of these target environments where being safe is positively correlated with high total 
reward which we show to be a special case of safety-constrained RL. The setting of safe 
RL under constraints that may impact performance negatively was empirically identified 
in Könighofer et  al. (2020). We analyze this problem theoretically and propose an algo-
rithm to learn efficiently in this setting. These works are related in the sense that the contri-
butions presented here are complementary: we argue that symbolic reasoning and reward 
shaping are important components to making these systems viable in realistic scenarios 
where rewards and staying safe are not positively correlated.

Closely related are works on restraining bolts by De Giacomo et al. (2019, 2020). These 
use a similar form of reward shaping based on progress in an automaton representation of 
LTLf /LDLf  specifications of undesired behaviors. These works, however, target a setting in 
which an external regulator has no control over the agent except for external transitions to 
the reward. This is overly restricted for cases where the agent is controlled by actors that 
want to adhere to safety specifications such as in healthcare. More importantly, this setting 
eliminates guarantees of safety. This work, on the other hand, targets a setting in which we 
control the agent fully and where provable guarantees are required. Another recent work by 
Hasanbeig et al. (2020), presents an approach for safety-constrained RL under the assump-
tions of knowledge about the transition function, full observability of adjacent state labels 
and a task fully expressed in LTL. Our work only requires prior knowledge of nonzero 
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transition probabilities at a symbolic level and a goal that expresses which parts of the 
state-action space are associated with high reward.

A second line of related work aims to inform a learner of knowledge obtained by sym-
bolic reasoning or planning. Grzes and Kudenko (2008) combine STRIPS-based plans 
with reward shaping. More recently, several works have proposed using some normal form 
for representing reward functions (Brafman et al. 2018; Icarte et al. 2018; Camacho et al. 
2019; Gaon and Brafman 2020). Of specific interest is the work proposing to specify the 
reward function as an LTL formula and derive intermediate rewards for reward shaping 
(Camacho et al. 2017). These works focus on a scenario where the full task can be repre-
sented as an LTL goal whereas our approach targets unknown numeric reward function to 
which a reward is added. We, on the other hand, combine sub-symbolic learning with high-
level symbolic reasoning to improve efficiency in a setting with unknown MDP reward and 
transition functions.

A recent work by Hasanbeig et  al. (2021) proposes various interesting innovations in 
this setting. The most relevant of these in relation to our work is an intrinsic reward based 
on the observation of novel state labels. This intrinsic reward differs from our shaping 
reward in four important ways. Firstly, it is defined over the state labeling vocabulary �I 
whereas our approach is based on automata states and hence captures information over 
traces of both state and action labels, i.e. over (�I × �O)

∞ . Secondly, the intrinsic rewards 
proposed by Hasanbeig et al. would also reinforce moving further from the goal if there 
happen to be novel labels there. Our shaping approach only reinforces getting closer to the 
goal. Thirdly, the intrinsic rewards of Hasanbeig et al. do not rely on potentials and hence 
may produce optimal policies that are suboptimal to original reward function (Bellemare 
et  al. 2016; Burda et  al. 2019. Finally, we contribute an approach for tuning the single 
novel hyperparameter in our approach automatically and on-the-fly.

Illanes et al. (2020) inform an RL agent with high-level symbolic instructions using the 
options framework in which low-level learned policies can be reused. The instructions are 
of a directive nature which is arguably less generic than the constraints used here. Addi-
tionally, policies learned in the option framework are sub-optimal whereas our reward 
shaping approach maintains optimality guarantees of the underlying learner.

3 � Preliminaries

3.1 � Safety specifications and shield synthesis

We define a finite or infinite sequence of elements from some alphabet as a word and a lin-
ear-time (LT) property as a set of finite or infinite words over the alphabet � ∶ 2AP , where 
AP a set of atomic propositions. We focus on safety properties in terms of system input and 
output and identify subsets of AP and � , relating to these as API , �I for inputs and APO , 
�O for outputs. An invariant is an LT property that has to hold in all reachable states for 
some system, for example “a product may only be recommended if it matches the customer 
risk profile”. Safety properties generalize invariance properties to include patterns over 
time, for example “products may only be recommended after the customer’s objectives are 
known” (Baier and Katoen 2008).

Safety properties can be expressed in a formal language that extends propositional logic 
with temporal operators. Linear temporal logic (LTL) is such a logic (Pnueli 1977). LTL 
extends propositional logic with temporal modal operators � (next) and � (until). �� 
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expresses that a formula � must be true the next time step and ��� expresses that � has to 
hold at least until � becomes true. From these, the operators �� (globally) and �� (finally) 
can be defined to express that, from a particular step onward, � has to respectively hold 
always and at some point in the future respectively. Additionally, the operator � can be 
derived, which ‘weakens’ the � operators assumptions by allowing that its right-hand-side 
may or may not be the true in the future.

A LTL safety specification �s can automatically be converted into an automaton that 
represents it. A deterministic finite automaton (DFA) �a = ⟨ℚ, q0,�, �, 𝔽 ⟩ consists of 
a set of states ℚ , an initial state q0 ∈ ℚ , an alphabet � = �I × �O , a transition function 
� ∶ ℚ × � → ℚ and a set of safe state 𝔽 ⊆ ℚ . A run is a finite or infinite sequence of states 
q̄ = q0, q1,… ∈ ℚ∞ induced by a trace 𝜎̄ = 𝜎0, 𝜎1,… ,∈ 𝛴∞ of some system such that 
∀i ∈ ℕ, qi+1 = �(qi, �i) . A trace 𝜎̄ of some system satisfies specification �s and its represen-
tation �a iff the corresponding run q̄ visits safe states only, i.e. ∀i ∈ ℕ, qi ∈ 𝔽  . An example 
LTL specification and its automaton representation can be found in Fig. 1a.

If a model of the environment is available, a reactive system that always produces output 
in accordance with a specification �s can be generated. This challenging task is known as 
reactive synthesis (Pnueli and Rosner 1989). A typical strategy is to formulate the prob-
lem as a two-player alternating game between the system and an adversarial environment. 
Such a safety game can be expressed as a tuple G ∶ ⟨�, g0,�I ,�O, �, � ⟩ with a finite set of 
game states � , initial state g0 ∈ � , a transition function � ∶ � × �I × �O → � and a set of 
safe states � ⊆ � . During the game and for the current state g ∈ � , the environment first 
chooses some �I ∈ �I after which the system chooses �O ∈ �O and the game transitions to 
state g� = �(g, �I , �O) . The resulting (infinite) sequence ḡ = g0, g1,… is called a play and 
is won by the system iff all visited states are safe: ∀gi ∈ ḡ, gi ∈ �  . A winning memoryless 
strategy is a function � ∶ � × �I → �O if all plays ḡ that can be constructed using it are 
won by the system. Standard algorithms can compute such a winning strategy if it exists 
(Mazala 2002).

Shield synthesis is a particular kind of reactive synthesis in which an existing system is 
assumed and in which an external component to correct the system output is computed. The 
correction is guaranteed to change the output of the original system so that it satisfies some 
specification with minimal interference given an abstraction of the system (Bloem et al. 2015). 

(a) (b) (c)

Fig. 1   Example of a car exiting a gated parking lot. The agent can either drive or push a button next to the 
gate, i.e. APO ∶ {d, b}. State labels indicate whether the gate is open and whether the car is in the parking 
lot, i.e. API ∶ {o, i}. a An automaton representation of � ∶ ¬d�o to express that the gate should be open 
before the car may drive, b MDP abstraction with all transitions with nonzero probability in the underly-
ing MDP. Initially, the gate is not open and the car is inside. Error transitions and state are not included 
for legibility. c The result of combining (a) and (b) to form a safety game (excluding abstraction errors). 
Transitions marked with a solid line are part of the safe strategy. Action ‘ d ’ in (p0, q0) is not part of the safe 
strategy since the resulting state is an error state
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An abstraction of the system describes how its executions can possibly evolve, and provides 
the needed information about the environment to allow planning ahead w.r.t. the safety proper-
ties of interest. The model required is typically of limited size as result. More so, as it can be 
expressed in an equivalent lifted representation. It may therefore be easy to construct or learn 
from data. An illustrative abstraction of an MDP and resulting safety game can be found in 
Fig. 1. The corresponding shield would replace any unsafe action with a next best safe action.

3.2 � Reinforcement learning

RL provides a framework for selecting actions in an environment in order to collect a maxi-
mum number of rewards over time (Sutton and Barto 2018; Wiering and Van Otterlo 2012). 
RL deals with problems formalized as Markov decision problems (MDP). We here define a 
MDP as a tuple M ∶ ⟨S,A,T ,R, � , S0⟩ where S ∈ {s(1),… , s(n)} is a finite set of environment 
states, A ∈ {a(1),… , a(m)} a finite set of agent actions, T ∶ S × A × S → [0, 1] a probabilis-
tic transition function, R ∶ S × A × S → [Rmin,Rmax] a reward function with Rmin,Rmax ∈ ℝ , 
� ∈ [0, 1) a discount factor to balance current and future rewards and S0 a distribution of initial 
states: s0 ∼ S0 . The agent observes an environment state st at each time step t and performs 
some action at up to some end time T  , following some policy � ∈ � ∶ S × A → [0, 1] and 
collects reward rt = R(st, at).

If some expectation �� can be formulated to express the sum of rewards by following some 
� , then values V and Q can be assigned to a state s and a tuple (s, a) respectively for that �:

A policy � is the optimal policy �∗ if it results in the highest obtainable reward: 
∀s ∈ S,∀� ∈ � ,∀a ∈ A ∶ Q�∗ (s, a) ≥ Q�(s, a) . Finding �∗ can be addressed by condition-
ing the policy on a set of parameters �(st|�) = at and finding parameter values �∗ that max-
imize the corresponding reward by a learning algorithm. For example, � can be weights of 
a neural network updated with gradient descent.

A particularly popular parameterized approach of learning an approximation of �∗ is 
known as deep Q-Networks (DQN) (Mnih et  al. 2013, 2015). DQN uses a neural network 
with weights � to predict Q�(s, a|�) and selects actions uniform randomly with some prob-
ability � ∈ (0, 1] or greedily with respect to Q�(s, a) with some probability 1 − � at each step t. 
The resulting tuple (st, at, rt, st+1) is added to a buffer or data set D as (s, a, r, s�) . Weights are 
updated in iterations. For every iteration i, the current weights �i are updated to minimize the 
loss function Li(�i) =

where U(D) is a uniform random sample of D and �−
i
 the parameters used in action selec-

tion during iteration i. These parameters �−
i
 are only replaced with �i every C iterations and 

held fixed otherwise as this increases stability of the learned Q-network over time, hence 
improving performance.

(1)V�(s) =��

[
T=∞∑

k=t

�k−trk|st = s

]

(2)Q�(s, a) =��

[
T=∞∑

k=t

�k−trk|st = s, at = a

]

(3)�(s,a,r,s�)∼U(D)

(
r + �max

a�
Q(s�, a�|�−

i
) − Q(s, a|�i)

)2
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4 � Safe reinforcement learning

RL has proven capable of learning complex behaviors from interactions with an environ-
ment in a trial-and-error fashion alone. Symbolic reasoning, on the other hand, is well 
suited when safety guarantees on behavior are necessary. Safe RL combines these in order 
to learn complex behaviors under strong guarantees of safety, both during and after learn-
ing. In this section, we introduce safety-constrained environments following Alshiekh et al. 
(2018), identify that safe policies are not expected to outperform unsafe policies and then 
analyze how safety constraints impact the expected future reward.

Definition 1  (Safety-constrained environments) A safety-constrained environment is a 
tuple E ∶ ⟨M,AP,LI , LO,�⟩ where M ∶ ⟨S,A,T ,R, �⟩ is an MDP, � is a safety specification 
with propositions AP ∶ API ∪ APO and labelling functions LI ∶ S → 2API , LO ∶ A → 2APO.

Definition 2  (Safe policies) A policy � ∈ � ∶ S × A → [0, 1] is safe in E if for any 
sequence st, at, st+1, at+1,… it generates with nonzero probability, the corresponding 
sequence of labels (LI(st) ∪ LO(at), LI(st+1) ∪ LO(at+1),…) satisfies � . The set of safe poli-
cies in E is denoted �E.

For the purposes of this paper, the MDP transition function T is unknown. If results 
of actions are unknown, safety of a given policy cannot be verified up-front without 
further assumptions. In order to ensure safety, however, we need only know which 
sequences of labels for a given policy in an environment have a nonzero probability. 
These can be modeled with an automaton abstraction of the MDP.

Definition 3  (MDP abstractions) Given an environment E, the automaton 
�M ∶ ⟨ℚ, q0,�I × �O, �, 𝔽 ⟩ is an abstraction of M if for every trace s0, s1,… ∈ S∞ and cor-
responding action sequence a0, a1,… ∈ A∞ with nonzero probability in E, for every run 
q̄ ∶ q0, q1,… ∈ ℚ∞ with qi+1 = �(qi, LI(si), LO(ai)) , this run q̄ visits only states in � .

Remark 1  It can be verified whether an automaton is an abstraction of M. If a run is gen-
erated in which some state qi ∉ �  then it is not an abstraction of M. This property can be 
used to refine the abstraction when it is tested or to hand over control to a human operator 
or fallback policy.

An abstraction can be used to synthesize safe policies. The cross product of the 
abstraction and an automaton representation of the specification forms a safety game 
from which a safe strategy can be computed as described in the previous section. Poli-
cies following this strategy are provably safe in E (Alshiekh et al. 2018). We now intro-
duce a performance bound for safe policies.

Theorem 1  (Performance bound) For any environment E with MDP M and safe policies 
�E , let �∗

E
∈ �E be the optimal safe policy and �∗

M
∈ � be the optimal (possibly unsafe) 

policy. Then �∗
E
≤ �∗

M
 where �1 ≤ �2 iff ∀s ∈ S,∀a ∈ A,Q�1

(s, a) ≤ Q�2
(s, a).

Proof  𝛱E ⊆ 𝛱 , hence �∗
E
∈ � and �∗

E
≤ �∗

M
 . 	�  ◻
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Theorem  1 shows that safe policies are generally not expected to outperform their 
unsafe counterparts in terms of reward: the environments targeted in previous work 
where being unsafe leads to low rewards are a special case of safety constrained envi-
ronments. We continue to investigate when constraints negatively impact expected 
reward. In order to do so, we first introduce the notion of a goal. Problems with pre-
specified goals are approached within the framework of goal-based MDPs in RL. Such 
MDPs terminate if a goal state sg ∈ S is reached and have a reward function of the form 
R(s, a, s�) = 1 if s� = sg and 0 otherwise. Here, we consider goal-based problems within 
the framework of safety-constrained environments and define them in terms of AP.

Definition 4  (Goals) For a safety-constrained environment E ∶ ⟨M,AP,LI , LO,�⟩ , a goal 
�g ∈ 2AP is reached if an action a ∈ A with labeling �a ∶ LO(a) is selected in a state s ∈ S 
with labeling �s ∶ LI(s) such that 𝜎g ⊆ 𝜎s ∪ 𝜎a.

Definition 5  (Goal-based environments) An environment E ∶ ⟨M,AP,LI , LO,�, �g⟩ 
with goal �g is goal-based if it has a reward function of the following restricted form: 
R(s, a, s�) = 1 if the goal is reached by performing a in s and R(s, a, s�) = 0 otherwise.

How a constraint specifically impacts expected reward depends on the particular 
goal, the constraint and the transition function T, which is unknown in the case of inter-
est here. Even in this case, however, the impact of a constraint can be derived in some 
illustrative cases which serve as an inspiration to the algorithm presented later. First, we 
focus on the case where the goal can be reached immediately.

Theorem 2  (Q values and reaching goals) For any goal-based environment E with safe opti-
mal policy �∗

E
 and for any s, s� ∈ S and any a, a� ∈ A with �s ∶ LI(s), �s� ∶ LI(s

�), �a ∶ LO(a) 
and �a� ∶ L�

O
(a�):

Proof  If 𝜎g ⊆ 𝜎s ∪ 𝜎a then performing a in s ends the episode in E and yields the maxi-
mum obtainable reward of R(s, a, ⋅) = 1 . Since 𝜎g ⊈ 𝜎s� ∪ 𝜎a� , R(s�, a�, ⋅) = 0 and therefore 
Q𝜋∗

E
(s, a) > Q𝜋∗

E
(s�, a�) . 	�  ◻

Corollary 1  For an environment E in some state s ∈ S for any two actions a, a� ∈ A such 
that 𝜎g ⊆ 𝜎s ∪ 𝜎a and 𝜎g ⊈ 𝜎s ∪ 𝜎a�:

Proof  By substituting s� = s in Theorem 2. 	�  ◻

When the goal cannot be reached immediately, reaching the goal requires multiple 
transitions in both the underlying MDP and the safety game G . The minimum number 
of transitions required in G for any of its safe states f ∈ �  is denoted �G(fi, �g) . It can be 
derived using planning and interpreted as the distance from f to the goal while staying 
safe.

Q𝜋∗
E
(s, a) > Q𝜋∗

E
(s�, a�) if

𝜎g ⊆ 𝜎s ∪ 𝜎a and

𝜎g ⊈ 𝜎s� ∪ 𝜎a�

Q𝜋∗
E
(s, a) > Q𝜋∗

E
(s, a�)
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Definition 6  (Distance in safety games) For a goal-based environment E with safety game 
G ∶ ⟨ℚ, q0,�I ,�O, �, 𝔽 ⟩ with a winning strategy � , a distance map �G ∶ 𝔽 → ℕ1 is defined 
as the length of the shortest play f̄ = fi,… , fk, fl starting in any fi ∈ �  with �(fk, �i, �o) = fl 
such that the play f̄  can be constructed with � and 𝜎g ⊆ 𝜎i ∪ 𝜎o.

Remark 2  �G(f , �g) = 1 iff 𝜎g ⊆ 𝜎s ∪ 𝜎a for some a ∈ A in a given s ∈ S, f ∈ �

Reaching the goal may also require multiple transitions in the MDP. Since T is unknown in 
the setting of interest, the expected number of transitions is unknown as well. Therefore, we 
look into a second illustrative case where safety constraints and goals are defined fully on the 
action space, i.e. API = �.

Theorem 3  (Q values and distances) For any goal-based environment E with safety game G 
and for any s, s� ∈ S , a, a� ∈ A , f , f � ∈ � :

(sketch)  Suppose that the consequent of the equation holds. Let n denote the distance 
towards a goal by taking a, n = �G(�(f , �, �a), �g) , and n′ denote the distance towards a goal 
by taking action a′ , n� = �G(�(f

�, �, �a� ), �g) . An optimal safe policy in E takes n time steps 
to reach �g after performing a and similarly so for n′ and a′ . Now by substituting T = n and 
T = n� in Eq. 2 and since 𝛾 < 1 and n < n′ we find Q𝜋∗

E
(s, a) > Q𝜋∗

E
(s�, a�) . 	�  ◻

Remark 3  An inequality for a single s ∈ S and single f ∈ �  can be derived analogously to 
Corollary 1.

The presented analysis shows how Q values relate to goals and distances to goals in safety 
games. Although the analysis is targeted at goal-based environments, their implications are 
also applicable to other settings, such as those in which the symbolic goal serves as a proxy for 
a high reward area of the state-action space. Our analysis indicates that there are two classes 
of safety constrained environments and it shows how to identify them. In the first class, safe 
policies are expected to perform equally to unsafe policies in terms of obtained rewards. The 
distance from initial state to a goal in the associated safety game is not impacted by the safety 
constraints in these environments: they would be equal to the distance of a safety game result-
ing from vacuous constraints that always hold. In the second class of safety constrained envi-
ronments, unsafe policies are expected to outperform safe ones. The safety constraints add 
transitions to the shortest path towards a goal. As constraints are added, the distance from the 
goal grows. Every transition that a safety constraint contributes, leads to at least one additional 
transition for the learner to incorporate and as such makes the learning problem more com-
plex. The next section introduces an algorithm to improve the scalability of safe RL as prob-
lems become more constrained.

Q𝜋∗
E
(s, a) > Q𝜋∗

E
(s�, a�) if

𝛥G(f
�, 𝜎g) > 1 and

𝛥G(𝛿(f , �, 𝜎a), 𝜎g) < 𝛥G(𝛿(f
�, �, 𝜎a� ), 𝜎g)



2264	 Machine Learning (2022) 111:2255–2274

1 3

5 � Planning for potential

In this section, we propose a scalable and efficient RL algorithm adhering to a safety speci-
fication. The algorithm uses symbolic knowledge available in a safety-constrained envi-
ronments to speed up the learning. Optimality is preserved in cases of incomplete or even 
incorrect prior knowledge. In the proposed approach, the learner is informed of progress 
with respect to a symbolic goal by transforming the reward function automatically. The 
approach follows the tradition of potential-based reward shaping which we introduce first.

5.1 � Reward shaping

Shaping is a technique within RL in which the original MDP M ∶ ⟨S,A,T ,R, �⟩ is replaced 
with a surrogate M� ∶ ⟨S,A, T ,R�, �⟩ in order to guide the learner. It is desirable that R′ is 
easier to learn but yields only optimal policies that are also optimal under the original R. Ng 
et  al. (1999) showed that R� = R + S with shaping function S ∶ S × A × S → ℝ such that 
S(s, a, s�) = ��(s�) −�(s) with so-called potential � ∶ S → ℝ are the only R′ that guarantee 
that any policy optimal in M′ is also optimal in M if no further information on transition and 
reward functions is known. The challenge now consists of defining a potential function � that 
informs the learner.

In safety-constrained RL, knowledge about the task is available in symbolic form in the 
safety component. To use this knowledge, a description of state-action tuples associated with 
high reward are described in symbolic form. The distance to this symbolic goal is established 
with planning. By comparing distances prior to and after taking an action, we know whether that 
action contributed to reaching the symbolic goal. The agent is informed of this with potential-
based reward shaping, hence we call this approach planning for potential (abbreviated P4P).

5.2 � Algorithm

P4P is listed in Algorithm 1. For a given safety constraint and MDP abstraction, a safety game 
and shield are computed following Alshiekh et al. (2018). Next, a map of potentials � is com-
puted for all safe states of the safety game, after which the learning loop begins. This is a tradi-
tional RL learning loop with two modifications: actions are selected from the set of safe actions 
(line 11) and the reward is augmented with the difference between potentials (line 15).
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Algorithm 2 lists how the map of potentials � can be computed. The minimum number 
of transitions, or shortest distance, from each state to the goal state are determined using 
symbolic planning. These distances can be derived prior to interacting with the environ-
ment and with minimal knowledge of the MDP transition function. This makes them well 
suited as a signal of progress for an exploring agent in a safety-constrained environment. 
The algorithm presented here computes potentials for all states upfront. Although limited 
in terms of scalability with respect to the safety game state space, this simple approach will 
suffice for many settings for two reasons. Firstly, the safety game only includes aspects of 
safety and this ‘abstraction’ over the full MDP yields relatively small safety games. Sec-
ondly, the calculation of these values is a one-time operation that is easily dwarfed by the 
iterative training approach of many RL algorithms used in practice. If necessary, however, 
more elaborate methods can be applied. Any solution to the unweighted single start short-
est path algorithm tailored to the desired performance characteristics can be used. More so, 
the distances and potentials can be calculated in an online fashion, i.e. deferring the cal-
culation of these values for all states to the moment of first visiting them to increase scal-
ability for settings with a large number of safety game states that are not visited in practice.

In order to convert distances to progress, the difference in distances to a goal between 
the initial state and any other state are calculated. This difference represents the progress 
for any given state. It is multiplied with cost parameter c to offset the ‘costs’ already 
incurred while moving closer to the goal. A reward bonus is given to state-action pairs 
closer to the symbolic goal in accordance to the inequalities of Theorems 2 and 3. As P4P 
uses potentials to augment the obtained rewards, there are no formal requirements on c 
except for being > 0 by Theorems 2 and 3. In the case of stochasticity in updates of esti-
mates for V and Q, however, the value of c may affect convergence. In this case, c can be 
set using knowledge of the domain, tuned as a hyperparameter or estimated during learning 
in an online fashion, see Sect. 5.4.
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5.3 � Example

For the safety-constrained environment in Fig. 1, the goal is to not be in the parking lot 
�g ∶ ¬i . This goal can be reached safely by taking any action in (p2, q1) . We can only visit 
this state by first visiting (p1, q0) which has potential:

Transitioning from (p0, q0) → (p1, q0) therefore yields an additional reward of � ⋅ c . On the 
other hand, the additional reward for transitioning from (p1, q0) → (p1, q1) = � ⋅ c − c and 
effectively reflects the fact that visiting (p1, q1) was not necessary in order to reach the goal.

The additional rewards supplied to the learning algorithm guide the learner to prefer 
certain states and actions. Doing so involves balancing the provided bias to increase learn-
ing without limiting the learner. Two mechanisms in P4P ensure that the amount of bias is 
suitable. Firstly, the use of potential-based shaping ensures that the optimal policy under 
transformed reward function is optimal under the original reward as well (see Sect. 5.1). 
Secondly, progress in the algorithm is based on the shortest safe path toward the goal in the 
safety game. This may be overly optimistic when the trajectories in the MDP correspond-
ing with this path have low probability. If this is the case, the learner will observe these 
trajectories infrequently and the effects of P4P will be limited. P4P thus successfully lever-
ages all information available at the symbolic level without overly biasing the learner.

In P4P, distances to a goal are derived by symbolic reasoning and subsequently used to 
inform a learner via reward shaping. The shaped reward function is more dense than the 
original reward function and guides the agent towards promising regions of the state-action 
space in exploration phases. Furthermore, rewards are obtained as the agent progresses 
towards its goal. Thus, a part of the value assignment problem of RL is already solved for 
the learner. Finally, the usage of potential-based shaping guarantees that optimality guar-
antees for the underlying learning algorithm also apply to P4P, even if the provided goal is 
incomplete or incorrect.

5.4 � Estimation of c

The parameter c in Algorithms 1 and 2 controls the additional rewards given to the agent 
for each transition towards a goal in the safety game. As previously noted, there are no 
formal requirements on setting parameter c, except for c > 0 according to Theorems 2 and 
3. Although convergence towards the optimal policy is not affected by the value of c in 
the long run, a suitable value can impact speedups obtained when using function approxi-
mation such as in DRL. In this section, we describe two ways to find a suitable value for 
c. They can be used depending on the available upfront knowledge. The first approach is 
based on the size of the safety game and existing knowledge of the maximum obtaina-
ble reward. If this knowledge is available, then parameter c can be set using the following 
heuristic:

where R̂max denotes an estimate of Rmax , the maximum of R, and dist(g0) denotes the dis-
tance of the initial state in the safety game to its closest goal as calculated in Algorithm 2.

�((p1q0)) = c ∗ (�G((p0, q0)) − �G((p1, q0))

= c ∗ (3 − 2) = c

(4)c ∶=
R̂max

dist(g0)
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Alternatively, c can be tuned in an online fashion from interactions alone. In order to 
do so, rewards are to be associated with transitions in the safety game. Figure  2 shows 
how state transitions in the MDP are associated with state transitions in the safety game. 
Although the agent is successful in the end, a reward of −3 is incurred by transitioning 
q0 → q1 . These ‘costs’ for safety game transitions are stored in a buffer, averaged and mul-
tiplied with −1 in order to establish c in an online fashion. In some environments, reward is 
0 most of the time. An example environment is the goal-based environment in Definition 
5. In such environments, no rewards are obtained by transitioning in the safety game. An 
elegant solution for this problem is to linearly transform all observed rewards to ℝ≤0 as a 
first step of estimating c dynamically.

6 � Experimental setup

The experimental setup was designed to answer four specific research questions: how can 
RL agents learn safely and efficiently (Q1)? How do different constraints impact efficiency 
(Q2)? How sensitive is the proposed approach to its hyperparameters (Q3)? In order to 
answer these questions, the proposed P4P approach was evaluated in two environments. 
In these environments, agents were trained in different conditions: a baseline not adhering 
to the specification (‘unsafe’), a ‘shielded’ baseline from Alshiekh et al. (2018) and three 
P4P variants. In the first of these variants, the P4P hyperparameter c is estimated online as 
proposed in Sect. 5.4. The other two variants use a fixed value for this parameter in order 
to answer Q3. The values are set to overestimate (‘P4P-o’) and underestimate (‘P4P-u’) the 
true cost.

6.1 � Grid world environment

A grid world environment from (Alshiekh et al. 2018) with an ‘exact’ abstraction was used. 
Grid world environments are often used in RL as they are relatively simple to grasp but 
include many of the characteristics of more challenging learning problems and are useful 
to e.g. test intuitions. In the grid world used here (Fig. 3a), being safe does not correlate 
with high reward. A reward of 1 is obtained when all regions have been visited in order 
and 0 otherwise. States in gray can be visited but are to be avoided according to the safety 
requirements. The goal was formulated as area1 ∧ area2 ∧ area3 ∧ area4 . Parameter c was 
estimated in an online fashion by storing rewards obtained for each transition in the safety 
game (see Sect. 5.4). Additionally, we ran experiments with over- and underestimates for 
c to answer Q3. These were established as follows. In this environment, the average cost 
of a safety game transition can be calculated. Based on the number of actions necessary to 

Fig. 2   Traces for a successful episode in a hypothetical MDP (top) and safety game (bottom). Transition 
labels indicate rewards associated with that transition
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visit all regions safely and the reward that is obtained, the average cost was established at 
8e−3 . The cost parameter was set to c = 1e−5 as an underestimate (P4P-u) and c = 2 as an 
overestimate (P4P-o) in order to test robustness to this parameter. All agents were trained 
using �-greedy tabular Q-learning with � = 0.2 and � = .95 (Watkins and Dayan 1992). 
Exploration parameter � was cooled down linearly from − 0.2 to 0.01 over the total number 
of 1e4 episodes. Episode length and number of violations of the safety specification were 
recorded across ten random seeds.

6.2 � Conversational recommendation environment

A realistic and high-dimensional environment from the banking domain was included due 
to the availability of real-world constraints (den Hengst et al. 2019). In this conversational 
recommendation environment, the agent interacts with a simulated user. The task is to 
recommend a product and provide the desired information in a minimal number of turns. 
Reward is specified as follows: each conversation turn yields a reward of −1 and at the end 
of each conversation, an additional reward of 20 is obtained if the provided information 
meets the information need and 0 otherwise. The unconstrained action space consists of 
38 actions. States are each represented by a boolean vector with length 136 that describes 
beliefs over the customers preferences and the dialogue history. The dimensionality of the 
state-action space is 38 × 2136 and makes this a challenging problem for which function 
approximation is necessary.

Realistic constraints were constructed from a real-world regulatory document. All state-
ments pertaining to the interaction between a bank and customers were extracted from 
this document and formalized in consultation with two domain experts. The vocabulary 
used in the specification is listed in Table 1 and the specifications are listed in Table 2. 
Separate specifications were used to gauge the impact of different constraints (Q2). Accu-
racy was recorded for random rollouts for each separate constraint as a proxy for the ‘dif-
ficulty’ of the constraint. Constraints are presented in decreasing difficulty in Table  2. 
Increasingly difficult specifications were created by combining separate specifications: 
�1,2 = �1 ∧ �2,�1,2,3 = �1,2 ∧ �3,… ,�1−6 =

⋀
�1,…6 . For all constraints, the goal rec 

was used.
Agents were trained in eight conditions: a baseline, P4P with online estimated c (P4P), 

P4P with an overestimate of c (P4P-o) and P4P with an underestimate of c (P4P-u), all for 
both the unsafe and shielded case. The under- and over-estimates of c were determined as 
follows: the reward of a dialogue turn is − 1 . However, only some turns result in a transi-
tion in the safety game. Therefore, 1 is a reasonable underestimate for c. The overestimate 
was based on the average number of turns used by an unconstrained agent. After training, it 
requires on average seven turns to complete the task. Therefore, we used c = 8 as an over-
estimate for each single transition towards the goal.

For each condition, five agents with different random seeds were trained on 30K dia-
logues. After every 1K dialogues, performance was measured on 500 test dialogues. 
Rewards, accuracy, number of dialogue turns and safety specification violations were 
recorded. All agents use �-greedy DQN where � is linearly cooled down from 0.3 to 
�f = 0.05 and with a learning rate � = 1e−4 . These hyperparameters were selected after a 
grid search on �s ∈ {0.3, 0.5, 0.9} , �f ∈ {0.05, 0.3} and � ∈ {1e−3, 1e−4}.
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7 � Experimental results

7.1 � Grid world environment

Figure 3b shows episode lengths for all included agents in the grid world environment. P4P 
converges toward an optimal policy quickly (Q1). As a result of the ‘exact’ abstraction, the 
potentials reflect progress made for every time step. P4P significantly outperforms both 
safe and unsafe baselines, which both achieve optimal behavior eventually. More so, we see 
that both P4P-u and P4P-o converge faster than P4P (Q3). This is explained by the fact that 
P4P requires a short phase where an appropriate estimation of c is to be learned. Addition-
ally, we see comparable results for P4P-o and P4P-u, which is explained by the relatively 
small effect of shaping reward scale on the probability of selecting a particular action in the 
case of �-greedy tabular Q-learning.

7.2 � Conversational recommendation environment

Performance metrics for all agents in the conversational recommender environment are 
listed in Table 3. The shielded baseline does not learn to solve the task at hand, i.e. aver-
age accuracy is 0.00. In contrast, accuracies for P4P are comparable to the unsafe baseline 
(Q1). Finally, all unsafe agents violate the specification: rewarding safe behavior is not suf-
ficient for a safe agent. Figure 4 shows the accuracy of the tested approaches on varying 
constraints (Q2). P4P performs comparable to the unsafe baseline and comparable to or 

Table 1   Atomic propositions in the recommender environment

Propositions Explanation

APO rec The agent makes a recommendation
e The agent explains the expected result of a recommended product
ena The agent explains the need for analysis of the customer profile
dsp The agent discloses the customer profile
dvp The agent recommends a product that deviates from the risk profile

API ok The objective of the customer is known
cdvp The customer confirms they want to deviate from their risk profile
vp The customer verifies the risk profile disclosed by the agent
ue The customer indicates to understand the explanation of the result

Table 2   Formalization of regulatory safety statements into LTL specifications

�
#

Regulatory statement Specification

1 Explain the expected result, check whether it is understood �(rec → ((e ∨ rec)�ue))

2 No recommendation if the profile has been disclosed but not verified �(dsp → (¬rec�vp))

3 No deviation from risk profile until customer confirms deviation ¬dvp�cdvp

4 No recommendation until customer objective known ¬rec�ok

5 No recommendation until the customer profile has been disclosed ¬rec�dsp

6 No recommendation until the need for analysis has been explained ¬rec�ena



2270	 Machine Learning (2022) 111:2255–2274

1 3

better than the safe baseline. Benefits of P4P grow as problems become more constrained 
(Q2).

We continue to investigate sensitivity to the c parameter by comparing the results 
between P4P variants (Q3). We first revisit Table 3. Both P4P variants converge to high 
reward policies without a significant difference in reward, accuracy or number of turns 
between the two variants. However, Fig.  4 shows differences in data efficiency. Specifi-
cally, P4P with c = 8 converges to high rewards faster than the c = 1 variant. The signal for 
progress with respect to the safety constraints is more prominent with c = 8 without harm-
ing overall performance.

8 � Discussion

This work set out to address the problem of efficient and provably safe RL in settings where 
being safe need not be associated with high rewards. We formally introduced environments 
with symbolic safety constraints and showed that the performance of safe policies are only 
expected to perform equally to unsafe policies in a special case. We analyzed how con-
straints impact expected future rewards and showed a relation between expected rewards 
and the progress toward a goal in an automaton representation of the available symbolic 
knowledge.

We then proposed an algorithm to scale safe RL with constraint complexity based on 
symbolic reasoning. Reasoning is used to infer progress towards a symbolic goal. A rein-
forcement learner is then infused with this progress signal using additional rewards, fol-
lowing the convention of potential-based reward shaping. We evaluated the so-called P4P 
algorithm on two existing environments, one of which with real-world constraints. We 
found that it significantly outperforms baselines and scales well as problems become more 
constrained. Additionally, we introduced an approach for tuning its single additional hyper-
parameter in an online fashion and showed that the algorithm is robust against various val-
ues of this parameter.

In P4P, safety constraints are expressed at a symbolic, intensional level and need not 
align with large total rewards. Such problems are abundant in e.g. regulated domains such 
as healthcare and finance. Here, regulatory constraints prevent rare yet undesirable events, 

(a) (b)

Fig. 3   Grid world with start position ‘s’. Positions marked in gray are to be avoided
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Table 3   Recommendation environment test set results (mean ± 95% confidence interval)

Bold denotes significant improvements w.r.t. baseline/shielded

Unsafe Safe

Baseline P4P Shielded P4P

Reward 5.43 ± 1.94 6.43 ± 1.94 −11.93 ± 1.73 �.�� ± �.��

Accuracy (%) 65.84 ± 2.75 ��.�� ± �.�� 0.00 ± 0.00 ��.�� ± �.��

Violations (%) 80.16 ± 11.36 74.00 ± 7.49 0.00 ± 0.000 0.00 ± 0.000

Turns 7.73 ± 1.539 9.49 ± 1.591 11.93 ± 1.730 10.01 ± 1.561

Fig. 4   Test set results in an increasingly constrained recommendation environment (mean and 95% confi-
dence intervals)
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unwelcome long-term effects and negative externalities. P4P exemplifies that safety in RL 
can be achieved at negligible performance penalty if learning and reasoning are combined.

The findings presented here inspire various directions for future work. Firstly, we have 
seen that constraints have a varying effect on learning efficiency. It would be useful if these 
could be estimated analytically and up-front by building on the framework of safety-con-
strained environments as first introduced by Alshiekh et al. (2018). Secondly, there is an 
interesting direction in altering the approach to be applicable to settings that do not neces-
sarily involve safety constraints, but where knowledge about suitable policies is available at 
a symbolic level. Of particular interest here is the decomposition of the full RL task in sub-
tasks, as has been proposed recently by Andreas et al. (2017) and Illanes et al. (2020). The 
use of constraints may be an interesting alternative if more fine-grained symbolic informa-
tion is not available. Thirdly, the approach presented here can be combined with methods 
that learn a set of symbolic labels for the state and action spaces or that learn an automaton 
representation of the problem (Hasanbeig et al. 2021). This is of particular interest if the 
safety constraints are not strict, because learning these requires violation of the constraints 
during early stages.
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