
Machine Learning (2023) 112:3805–3849
https://doi.org/10.1007/s10994-021-06120-5

Scenic: a language for scenario specification and data
generation

Daniel J. Fremont1 · Edward Kim2 · Tommaso Dreossi3 · Shromona Ghosh4 ·
Xiangyu Yue2 · Alberto L. Sangiovanni-Vincentelli2 · Sanjit A. Seshia2

Received: 22 September 2020 / Revised: 13 October 2021 / Accepted: 27 October 2021 /
Published online: 2 February 2022
© The Author(s) 2022

Abstract
We propose a new probabilistic programming language for the design and analysis of cyber-
physical systems, especially those based on machine learning. We consider several problems
arising in the design process, including training a system to be robust to rare events, testing
its performance under different conditions, and debugging failures. We show how a proba-
bilistic programming language can help address these problems by specifying distributions
encoding interesting types of inputs, then sampling these to generate specialized training
and test data. More generally, such languages can be used to write environment models,
an essential prerequisite to any formal analysis. In this paper, we focus on systems such
as autonomous cars and robots, whose environment at any point in time is a scene, a con-
figuration of physical objects and agents. We design a domain-specific language, Scenic,
for describing scenarios that are distributions over scenes and the behaviors of their agents
over time. Scenic combines concise, readable syntax for spatiotemporal relationships with
the ability to declaratively impose hard and soft constraints over the scenario. We develop
specialized techniques for sampling from the resulting distribution, taking advantage of the
structure provided by Scenic’s domain-specific syntax. Finally, we apply Scenic in multi-
ple case studies for training, testing, and debugging neural networks for perception both as
standalone components and within the context of a full cyber-physical system.

Editors: Mykel Kochenderfer, Alessio Lomuscio, Dragos Margineantu, Cheng Soon-Ong.

Preliminary versions of this article appeared in the Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI 2019) (Fremont et al. 2019) and as an April
2018 UC Berkeley technical report (Fremont et al. 2018). D. J. Fremont began this work while affiliated with
UC Berkeley; T. Dreossi and S. Ghosh’s contributions were also made there.

B Daniel J. Fremont
dfremont@ucsc.edu

1 University of California, Santa Cruz, CA, USA

2 University of California, Berkeley, CA, USA

3 insitro, San Francisco, CA, USA

4 Waymo LLC, Mountain View, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06120-5&domain=pdf
http://orcid.org/0000-0002-9992-9965
http://orcid.org/0000-0001-6190-8707

3806 Machine Learning (2023) 112:3805–3849

Keywords Scenario description language · Synthetic data · Deep learning · Probabilistic
programming · Debugging · Automatic test generation · Simulation

CR Subject Classification: D.2.5 · D.3.2 · I.2.6 · I.2.9

1 Introduction

Machine learning (ML) is increasingly used in safety-critical applications, thereby creating an
acute need for techniques to gain higher assurance in ML-based systems (Russell et al. 2015;
Seshia et al. 2016; Amodei et al. 2016). ML has proved particularly effective at the difficult
perceptual tasks (e.g., vision) arising in cyber-physical systems like autonomous vehicles
which operate in heterogeneous, complex physical environments. Thus, there is a pressing
need to tackle several important problems in the design of such ML-based cyber-physical
systems, including:

• training the system to be robust, correctly responding to events that happen only rarely;
• testing the system under a variety of conditions, especially unusual ones, and
• debugging the system to understand the root cause of a failure and eliminate it.

The traditional ML approach to these problems is to gather more data from the environment,
retraining the system until its performance is adequate. The major difficulty here is that
collecting real-world data can be slow and expensive, since it must be preprocessed and
correctly labeled before use. Furthermore, it may be difficult or impossible to collect data
for corner cases that are rare and even dangerous but nonetheless necessary to train and test
against: for example, a car accident. As a result, recent work has investigated training and
testing systemswith synthetically generated data, which can be produced in bulk with correct
labels and giving the designer full control over the distribution of the data (Jaderberg et al.
2014; Gupta et al. 2016; Tobin et al. 2017; Johnson-Roberson et al. 2017).

A challenge to the use of synthetic data is that it can be highly non-trivial to generate
meaningful data, since this usually requires modeling complex environments (Seshia et al.
2016). Suppose we wanted to train a neural network on images of cars on a road. If we
simply sampled uniformly at random from all possible configurations of, say, 12 cars, we
would get data that was at best unrealistic, with cars facing sideways or backward, and at
worst physically impossible, with cars intersecting each other. Instead, we want scenes like
those in Fig. 1, where the cars are laid out in a consistent and realistic way. Furthermore,
we may want scenes that are not only realistic but represent particular scenarios of interest
for training or testing, e.g., parked cars, cars passing across the field of view, or bumper-
to-bumper traffic as in Fig. 1. In general, we need a way to guide data generation toward
scenarios that make sense for our application.

We argue that probabilistic programming languages (PPLs) (Gordon et al. 2014) provide
a natural solution to this problem. Using a PPL, the designer of a system can construct distri-
butions representing different input regimes of interest, and sample from these distributions
to obtain concrete inputs for training and testing. More generally, the designer can model
the system’s environment, with the program becoming a specification of the distribution of
environments under which the system is expected to operate correctly with high probability.
Such environment models are essential for any formal analysis: in particular, composing the
system with the model, we obtain a closed program about which we could potentially prove
properties to establish the correctness of the system.

123

Machine Learning (2023) 112:3805–3849 3807

In this paper, we focus on designing and analyzingML-based cyber-physical systems. We
refer to the environment of such a system at any point in time as a scene, a configuration
of objects in space (including dynamic agents, such as vehicles) along with their features.
We develop a domain-specific scenario description language, Scenic, to specify such envi-
ronments. Scenic is a probabilistic programming language, and a Scenic scenario defines a
distribution over both scenes and the behaviors of the dynamic agents in them over time. As
we will see, the syntax of the language is designed to simplify the task of writing complex
scenarios, and to enable the use of specialized sampling techniques. In particular, Scenic
allows the user to both construct objects in a straightforward imperative style and impose
hard and soft constraints declaratively. It also provides readable, concise syntax for spatial
and temporal relationships: constructs for common geometric relationships that would other-
wise require complex non-linear expressions and constraints, as well as temporal constructs
such as parallel and sequential composition and interrupts for building complex dynamic
behaviors in a modular way. In addition, Scenic provides a notion of classes allowing prop-
erties of objects to be given default values depending on other properties: for example, we
can define a Car so that by default it faces in the direction of the road at its position. More
broadly, Scenic uses a novel approach to object construction which factors the process into
syntactically-independent specifiers which can be combined in arbitrary ways, mirroring
the flexibility of natural language. Finally, Scenic provides constructs to generalize simple
scenarios by adding noise or by composing multiple scenarios together.

The variety of constructs in Scenic makes it possible to model scenarios anywhere on
a spectrum from concrete scenes (i.e. individual test cases) to extremely broad classes of
abstract scenarios (see Fig. 2). A scenario can be reached by moving along the spectrum
from either end: the top-down approach is to progressively constrain a very general scenario,
while the bottom-up approach is to generalize from a concrete example (such as a known
failure case), for example by adding random noise. Probably most usefully, one can write
a scenario in the middle which is far more general than simply adding noise to a single
scene but has much more structure than a completely random scene: for example, the traffic

Fig. 1 Three scenes generated from a single∼ 20-line Scenic program representing bumper-to-bumper traffic

Fig. 2 Spectrum of scenarios,
from general to specific

Concrete example
(“a car at 1.2 m × 4 m”)

Example + noise
(“a car near 1.2 m × 4 m”)

Structured scenario
(“a badly-parked car”)

Generic scenario
(“a car on the road”)

123

3808 Machine Learning (2023) 112:3805–3849

scenario depicted in Fig. 1. We will illustrate all three ways of developing a scenario, which
as we will see are useful for different training, testing, and debugging tasks.

Generating concrete scenarios from a Scenic program requires sampling from the prob-
ability distribution it implicitly defines. This task is closely related to the inference problem
for imperative PPLs with observations (Gordon et al. 2014). While Scenic could be imple-
mented as a library on top of such a language, we found that clarity and concision could be
significantly improved with new syntax (specifiers and interrupts in particular) difficult to
implement as a library. Furthermore, while Scenic could be translated into existing PPLs,
using a new language allows us to impose restrictions that enable domain-specific sampling
techniques which are not applicable to general-purpose PPLs. In particular, we develop algo-
rithms which take advantage of the particular structure of distributions arising from Scenic
programs to dramatically prune the sample space. We refer to the random generation of con-
crete scenarios as scenario improvisation, as it is inspired by and closely related to a class of
problems known as control improvisation (Fremont et al. 2015; Fremont 2019).

We also integrate Scenic as the environment modeling language for VerifAI, a tool for
the formal design and analysis of AI-based systems (Dreossi et al. 2019). VerifAI allows
writing system-level specifications inMetric Temporal Logic (Koymans 1990) or as objective
functions, and performing falsification, running simulations and monitoring for violations of
the specifications.VerifAI provides several search techniques, including active samplers that
use feedback from earlier simulations to try to drive the system towards violations. To support
these active samplers, each sampled concrete scenario and the corresponding performance
of the system with respect to its given specifications are logged in a table. This data can be
analyzed (by clustering, principal component analysis, etc.) to determine promising parts
of the environment space; an active sampler can intelligently select an unexplored concrete
scenario that is likely to induce a violation of a specification. We make these techniques
available from Scenic using syntax to define external parameters which are sampled by
VerifAI or another external tool. Such parameters need not have a fixed distribution of
values: for instance,we candefine aprior distribution, but thenuse cross-entropyoptimization
(Rubinstein and Kroese 2004) to drive the distribution towards one that is concentrated on
values that tend to lead to system failures (Fremont et al. 2020).

We demonstrate the utility of Scenic in training, testing, and debuggingML-based cyber-
physical systems, both at the ML component level and at the full system level. Our first case
study is on SqueezeDet (Wu et al. 2017), a convolutional neural network for object detection
in autonomous cars. For this task, it has been shown (Johnson-Roberson et al. 2017) that good
performance on real images can be achievedwith networks trained purely on synthetic images
from the video game Grand Theft Auto V [GTAV (Rockstar Games 2015)]. We implemented
a sampler for Scenic scenarios, using it to generate scenes which were rendered into images
by GTAV. Our experiments demonstrate using Scenic to:

• evaluate the accuracy of the ML model under particular conditions, e.g. in good or bad
weather,

• improve performance in corner cases by emphasizing them during training: we use
Scenic to both identify a deficiency in a state-of-the-art car detection data set (Johnson-
Roberson et al. 2017) and generate a new training set of equal size but yielding
significantly better performance, and

• debug a known failure case by generalizing it in many directions, exploring sensitivity to
different features and developing a more general scenario for retraining: we use Scenic
to find an image the network misclassifies, discover the root cause, and fix the bug, in

123

Machine Learning (2023) 112:3805–3849 3809

Fig. 3 Various domains where we have applied Scenic: reinforcement learning agents for soccer (Azad et al.
2021), ML-based aircraft navigation (Fremont et al. 2020), and autonomous vehicle testing in the real world
(Fremont et al. 2020b)

the process improving the network’s performance on its original test set (again, without
increasing training set size).

These experiments show that Scenic can be a very useful tool for understanding and improv-
ing ML-based perception systems.

While this case study is performed in the domain of visual perception for autonomous
driving, and uses one particular simulator (GTAV), we stress that Scenic is not specific to
either. Several other applicationswherewehave successfully used Scenic are shown inFig. 3;
see the cited papers for details. In this paper, we include two additional examples: in Sec. 3
we illustrate a different domain, namely robotic motion planning [using theWebots simulator
(Michel 2004)], and in Sect. 7.2.2we use Scenic andVerifAI to falsify an autonomous agent
in theCARLAdriving simulator (Dosovitskiy et al. 2017). The latter experiment demonstrates
Scenic’s usefulness applied not only to ML-based perception components in isolation but
to entire closed-loop cyber-physical systems. In fact, since the conference version of this
paper we have successfully applied Scenic in two industrial case studies on large ML-based
systems (Fremont et al. 2020,b): an aircraft navigation system from Boeing [tested in the X-
Plane flight simulator (LaminarResearch 2019)] and theApollo autonomous driving platform
(Baidu 2020) [tested in the LGSVL driving simulator (Rong et al. 2020) and on an actual test
track]. Generally, Scenic can produce data of any desired type (e.g. RGB images, LIDAR
point clouds, or trajectories from dynamical simulations) by interfacing it to an appropriate
simulator. This requires only two steps: (1) writing a small Scenic library defining the types
of objects supported by the simulator, as well as the geometry of the workspace; (2) writing
an interface layer converting the configurations output by Scenic into the simulator’s input
format (and, for dynamic scenarios, transferring simulator state back into Scenic). While
the current version of Scenic is primarily concerned with geometry, leaving the details of
rendering up to the simulator, the language allows putting distributions on any parameters
the simulator exposes: for example, in GTAV the meshes of the various car models are fixed
but we can control their overall color. We have also used Scenic to specify distributions over
parameters on system dynamics, such as mass.

In summary, the main contributions of this work are:

– Scenic, a domain-specific probabilistic programming language for describing scenarios:
distributions over spatio-temporal configurations of physical objects and agents;

– a methodology for using PPLs to design and analyze cyber-physical systems, especially
those based on ML;

– domain-specific algorithms for sampling from the distribution defined by a Scenic pro-
gram;

123

3810 Machine Learning (2023) 112:3805–3849

Fig. 4 Tool flow using Scenic to train, test, and debug a cyber-physical system

– a case study using Scenic to analyze and improve the accuracy of a practical deep neural
network used for perception in an autonomous driving context beyond what is achieved
by state-of-the-art synthetic data generation methods.

The paper is structured as follows: we begin with an overview of our approach in Sect. 2.
Section 3 gives examples highlighting the major features of Scenic for specifying spatial
relationships and motivating various choices in its design. We continue in Sect. 4 with a
discussion of Scenic’s more advanced features for temporal modeling and scenario com-
position. In Sect. 5 we describe the syntax of the Scenic language in detail, and in Sect. 6
we discuss its formal semantics and our sampling algorithms. Section 7 describes the setup
and results of our car detection case study and other experiments. Finally, we discuss related
work in Sect. 8 before concluding in Sect. 9 with a summary and directions for future work.

An early version of this paper appeared as Fremont et al. (2018), extended and published
as Fremont et al. (2019). This paper further extends Fremont et al. (2019) by generalizing
Scenic to dynamic scenarios (including new spatiotemporal pruning techniques), adding
constructs for composing scenarios, and integrating Scenic within the broader VerifAI
toolkit. For the Appendices and our implementation code, see Fremont et al. (2020a).

2 Using PPLs to design and analyzeML-based cyber-physical systems

We propose a methodology for training, testing, and debugging ML-based cyber-physical
systems using probabilistic programming languages. The core idea is to use PPLs to formal-
ize general operation scenarios, then sample from these distributions to generate concrete
environment configurations. Putting these configurations into a simulator, we obtain images
or other sensor data which can be used to test and train the system. The general procedure
is outlined in Fig. 4. For a demonstration of this paradigm on an industrial system, proceed-
ing from falsification through failure analysis, retraining, and validation, see Fremont et al.
(2020). Note that the training/testing datasets need not be purely synthetic: we can generate
data to supplement existing real-world data (possibly mitigating a deficiency in the latter,
while avoiding overfitting). Furthermore, even for models trained purely on real data, syn-
thetic data can still be useful for testing and debugging, as we will see below. Nowwe discuss
the three design problems from the Introduction in more detail.

Testing and falsification. The most straightforward problem is that of assessing system per-
formance under different conditions.We can simplywrite scenarios capturing each condition,

123

Machine Learning (2023) 112:3805–3849 3811

generate a test set from each one, and evaluate the performance of the system on these. Note
that conditions which occur rarely in the real world present no additional problems: as long as
the PPLwe use can encode the condition, we can generate as many instances as desired. If we
do not have particular conditions in mind, we can write a very general scenario describing the
expected operation regime of the system [e.g., the “Operational Design Domain” (ODD) of
an autonomous vehicle (Thorn et al. 2018)] and perform falsification, looking for violations
of the system’s specification. We can perform such analyses at the level of individual com-
ponents or of the system as a whole: in Sect. 7.2.1 we test a car-detecting neural network’s
sensitivity to weather, while in Sect. 7.2.2, we use the VerifAI toolkit (Dreossi et al. 2019)
to falsify a closed-loop AV system, modeling a traffic scenario in Scenic and specifying a
safety specification for the AV in temporal logic.

Training on rare events. Extending the previous application, we can use this procedure to
help ensure the system performs adequately even in unusual circumstances or particularly
difficult cases. Writing a scenario capturing these rare events, we can generate instances of
them to augment or replace part of the original training set. Emphasizing these instances in
the training set can improve the system’s performance in the hard case without impacting
performance in the typical case. In Sect. 7.3 we will demonstrate this for car detection, where
a hard case is when one car partially overlaps another in the image. We wrote a Scenic
program to generate a set of these overlapping images. Training the car-detection network on
a state-of-the-art synthetic dataset obtained by randomly driving around inside the simulated
world of GTAV and capturing images periodically (Johnson-Roberson et al. 2017), we find
its performance is significantly worse on the overlapping images. However, if we keep the
training set size fixed but increase the proportion of overlapping images, performance on
such images dramatically improves without harming performance on the original generic
dataset.

Debugging failures. Finally, we can use the same procedure to help understand and fix bugs
in the system. If we find an environment configuration where the system fails, we can write
a scenario reproducing that particular configuration. Having the configuration encoded as
a program then makes it possible to explore the neighborhood around it in a variety of
different directions, leaving some aspects of the scene fixed while varying others. This can
give insight into which features of the scene are relevant to the failure, and eventually identify
the root cause. The root cause can then itself be encoded into a scenario which generalizes
the original failure, allowing retraining without overfitting to the particular counterexample.
We will demonstrate this approach in Sect. 7.4, starting from a single misclassification,
identifying a general deficiency in the training set, replacing part of the training data to fix
the gap, and ultimately achieving higher performance on the original test set.
For all of these applications we need a PPL which can encode a wide range of general and
specific environment scenarios. In the next section, we describe the design of a language
suited to this purpose.

3 The basic Scenic language

We use Scenic scenarios from our autonomous car case study to motivate and illustrate the
main features of the language, focusing on features that make Scenic particularly well-suited
for the domain of specifying scenarios for cyber-physical systems. We begin by describing
how Scenic can define spatial relationships between objects to model scenarios like “a

123

3812 Machine Learning (2023) 112:3805–3849

badly-parked car”; in Sect. 4, we will cover Scenic’s more advanced constructs for temporal
dynamics and scenario composition.

Classes, Objects, Geometry, and Distributions. To start, suppose we want scenes of one car
viewed from another on the road. We can simply write:

1 model scenic.simulators.gta.model
2 ego = Car
3 Car

First, we import Scenic’s world model for the GTAV simulator: a Scenic library con-
taining everything specific to our case study, including the class Car and information about
the locations of roads (from now on we suppress this line). Only general geometric concepts
are built into Scenic.

The second line creates a Car and assigns it to the special variable ego specifying the
ego object which is the reference point for the scenario. In particular, rendered images from
the scenario are from the perspective of the ego object (it is a syntax error to leave ego
undefined). Finally, the third line creates an additional Car. Note that we have not specified
the position or any other properties of the two cars: this means they are inherited from the
default values defined in the class Car. Object-orientation is valuable in Scenic since it
provides a natural organizational principle for scenarios involving different types of physical
objects. It also improves compositionality, since we can define a generic Car model in a
library like the GTAV world model and use it in different scenarios. Our definition of Car
begins as follows (slightly simplified):

1 class Car:
2 position: Point on road
3 heading: roadDirection at self.position

Here, position and heading are properties of a Car object. These properties may
have distributions and constraints, both of which model realistic initial state of the object.
road is a region (one of Scenic’s primitive types) defined in the GTAV world model to
specify which points in the workspace are on a road. Similarly, roadDirection is a
vector field specifying the prevailing traffic direction at such points. The operator F at X
simply gets the direction of the field F at point X , so the default value for a car’s heading is
the road direction at its position. The default position, in turn, is a Point on road
(we will explain this syntax shortly), which means a uniformly random point on the road.

The ability to make random choices like this is a key aspect of Scenic. Scenic’s proba-
bilistic nature allows it to model real-world stochasticity, for example encoding a distribution
for the distance between two cars learned from data. This in turn is essential for our applica-
tion of PPLs to training perception systems: using randomness, a PPL can generate training
data matching the distribution the system will be used under. Scenic provides several basic
distributions (and allows more to be defined). For example, we can write

1 Car offset by (Range(-10, 10), Range(20, 40))

to create a car that is 20–40 m ahead of the camera. The notation Range(X, Y) creates
a uniform distribution over the given continuous range, and (X,Y)creates a pair, interpreted
here as a vector given by its xy coordinates.

Local Coordinate systems.Using offset by as above overrides the default position of the
Car, leaving the default orientation (along the road) unchanged. Suppose for greater realism

123

Machine Learning (2023) 112:3805–3849 3813

we don’t want to require the car to be exactly aligned with the road, but to be within say 5◦.
We could try:

1 Car offset by (Range(-10, 10), Range(20, 40)),
2 facing Range(-5, 5) deg

where facing overrides the default heading of the Car, but this is not quite what we
want, since it sets the orientation of the Car in global coordinates (i.e. within 5◦ of North).
Instead we can use Scenic’s general operator X relative to Y, which can interpret
vectors and headings in a variety of local coordinate systems:

1 Car offset by (Range(-10, 10), Range(20, 40)),
2 facing Range(-5, 5) deg relative to roadDirection

If we want the heading to be relative to the ego car’s orientation, we simply write
Range(-5, 5) deg relative to ego.

Notice that sinceroadDirection is a vector field, it defines a coordinate system at each
point, and an expression like 15 deg relative to field does not define a unique
heading. The example above works because Scenic knows that
Range(-5, 5) deg relative to roadDirection depends on a reference posi-
tion, and automatically uses the position of the Car being defined. This is a feature of
Scenic’s system of specifiers, which we explain next.

Readable, Flexible Specifiers.The syntaxoffset byX andfacing Y for specifying posi-
tions and orientations may seem unusual compared to typical constructors in object-oriented
languages. There are two reasons why Scenic uses this kind of syntax: first, readability. The
second is more subtle and based on the fact that in natural language there are many ways to
specify positions and other properties, some of which interact with each other. Consider the
following ways one might describe the location of an object:

1. “is at position X” (absolute position);
2. “is just left of position X” (position based on orientation);
3. “is 3 m left of the taxi” (a local coordinate system);
4. “is one lane left of the taxi” (another local coordinate system);
5. “appears to be 10 m behind the taxi” (relative to the line of sight);
6. “is 10 m along the road from the taxi” (following a curved vector field).

These are all fundamentally different from each other: e.g., (3) and (4) differ if the taxi is not
parallel to the lane.

Furthermore, these specifications combine other properties of the object in different ways:
to place the object “just left of” a position,wemust first know the object’sheading; whereas
if we wanted to face the object “towards” a location, we must instead know its position.
There can be chains of such dependencies: “the car is 0.5 m left of the curb” means that the
right edge of the car is 0.5m away from the curb, not the car’sposition, which is its center.
So the car’s position depends on its width, which in turn depends on its model. In a
typical object-oriented language, this might be handled by computing values for position
and other properties and passing them to a constructor:

1 # hypothetical Python-like language
2 model = Car.defaultModelDistribution.sample()
3 pos = curb.offsetLeft(0.5 + model.width / 2)
4 car = Car(pos, model=model)

123

3814 Machine Learning (2023) 112:3805–3849

Notice how model must be used twice, because model determines both the model of
the car and (indirectly) its position. This is inelegant and breaks encapsulation because the
default model distribution must be used outside of the Car constructor. The latter problem
could be fixed by having a specialized constructor, i.e.,

1 car = CarLeftOfBy(curb, 0.5)

but these would proliferate since we would need to handle all possible combinations
of ways to specify different properties (e.g. do we want to require a specific model? Are
we overriding the width provided by the model for this specific car?). Instead of having
a multitude of such monolithic constructors, Scenic factors the definition of objects into
potentially-interacting but syntactically-independent parts:

1 Car left of spot by 0.5, with model BUS

Here left of X by D and with modelM are specifiers, which are unordered and
together specify the properties of the car. Scenicworks out the dependencies between prop-
erties (position is provided by left of, which depends on width, whose default
value depends on model) and evaluates them in the correct order. To use the default model
distribution we would simply omit with model BUS; keeping it affects the position
appropriately without having to specify BUS more than once.

Specifying Multiple Properties Together. Recall that we defined the default position for
a Car to be a Point on road: this is an example of another specifier, on region, which
specifies position to be a uniformly random point in the given region. This specifier
illustrates another feature of Scenic, namely that specifiers can specify multiple properties
simultaneously. Consider the following scenario, which creates a parked car given a region
curb defined in the GTAV world model:

1 spot = OrientedPoint on visible curb
2 Car left of spot by 0.25

The function visible region returns the part of the region that is visible from the
ego object. The specifier on visible curb will then set position to be a uniformly
random visible point on the curb. We create spot as an OrientedPoint, which is a built-
in class that defines a local coordinate system by having both a position and a heading.
The on region specifier can also specify heading if the region has a preferred orientation (a
vector field) associated with it: in our example, curb is oriented by roadDirection. So
spot is, in fact, a uniformly random visible point on the curb, oriented along the road. That
orientation then causes the car to be placed 0.25 m left of spot in spot’s local coordinate
system, i.e. away from the curb, as desired.

In fact, Scenic makes it easy to elaborate the scenario without needing to alter the code
above. Most simply, we could specify a particular model or non-default distribution over
models by just adding with modelM to the definition of the Car. More interestingly, we
could produce a scenario for badly-parked cars by adding two lines:

1 spot = OrientedPoint on visible curb
2 badAngle = Uniform(1.0, -1.0) * Range(10, 20) deg
3 Car left of spot by 0.5,
4 facing badAngle relative to roadDirection

This will yield cars parked 10◦–20◦ off from the direction of the curb, as seen in Fig. 5.
This illustrates how specifiers greatly enhance Scenic’s flexibility and modularity.

123

Machine Learning (2023) 112:3805–3849 3815

Fig. 5 A scene of a badly-parked car

Declarative Specifications ofHard and Soft Constraints.Notice that in the scenarios abovewe
never explicitly ensured that the two cars will not intersect each other. Despite this, Scenic
will never generate such scenes. This is because Scenic enforces several default require-
ments: all objects must be contained in the workspace, must not intersect each other, and
must be visible from the ego object.1 Scenic also allows the user to define custom require-
ments checking arbitrary conditions built fromvarious geometric predicates. For example, the
following scenario produces a car headed roughly towards us, while still facing the nominal
road direction:

1 carB = Car offset by (Range(-10, 10), Range(20, 40)),
2 with viewAngle 30 deg
3 require carB can see ego

Here we have used the X can see Y predicate, which in this case is checking that the ego
car is inside the 30◦ view cone of the second car. If we only need this constraint to hold part
of the time, we can use a soft requirement specifying the minimum probability with which it
must hold:

1 require[0.5] carB can see ego

Hard requirements, called “observations” in other PPLs (see, e.g., Gordon et al. (2014)),
are very convenient in our setting because they make it easy to restrict attention to particular
cases of interest. They also improve encapsulation, since we can restrict an existing scenario
without altering it (we can simply import it in a new Scenic program that includes additional
require statements). Finally, soft requirements are useful in ensuring adequate represen-
tation of a particular condition when generating a training set: for example, we could require
that at least 90% of the images have a car driving on the right side of the road.

Mutations. Scenic provides a simple mutation system that improves compositionality by
providing a mechanism to add variety to a scenario without changing its code. This is useful,
for example, if we have a scenario encoding a single concrete scene obtained from real-world
data and want to quickly generate variations. For instance:

1 The last requirement ensures that the object will affect the rendered image. It can be disabled on a per-object
basis, for example in dynamic scenarios where the object is initially out of sight but may interact with the ego
object later on.

123

3816 Machine Learning (2023) 112:3805–3849

Fig. 6 Webots scene of a Mars rover in a debris field with a bottleneck

1 taxi = Car at (120, 300), facing 37 deg, ...
2 ...
3 mutate taxi

This will add Gaussian noise to the position and heading of taxi, while still
enforcing all built-in and custom requirements. The standard deviation of the noise can be
scaled by writing, for example, mutate taxi by 2 (which adds twice as much noise),
and we will see later that it can be controlled separately for position and heading.

Multiple Domains and Simulators.We conclude this section by illustrating a second applica-
tion domain, namely testing motion planning algorithms, and also Scenic’s ability to work
with different simulators. A robot like a Mars rover able to climb over rocks can have very
complex dynamics, with the feasibility of a motion plan depending on exact details of the
robot’s hardware and the geometry of the terrain. We can use Scenic to write a scenario
generating challenging cases for a planner to solve. Figure 6 shows a scene, visualized using
an interface we wrote between Scenic and the Webots robotics simulator (Michel 2004),
with a bottleneck between the robot and its goal that forces the planner to consider climbing
over a rock.

Even within a single application domain, such as autonomous driving, Scenic enables
writing cross-platform scenarios that will work without change in multiple simulators. This
is made possible by what we call abstract application domains: Scenicworld models which
define object classes and other world information like our GTAV world model, but which
are abstract, simulator-agnostic protocols that can be implemented by models for particu-
lar simulators. For example, Scenic includes an abstract domain for autonomous driving,
scenic.domains.driving, which loads road networks from standard formats, provid-
ing a uniform API for referring to lanes, maneuvers, and other aspects of road geometry. The
driving domain also provides generic Car and Pedestrian classes, complete with imple-
mentations of common dynamic behaviors (covered in the next section) like lane following.
These make it straightforward to implement complex driving scenarios, which are then guar-

123

Machine Learning (2023) 112:3805–3849 3817

Fig. 7 Scenes sampled from the same Scenic program in CARLA and LGSVL

anteed to work in any simulator supporting the driving domain. Figure 7 illustrates this,
showing the exact same Scenic code being used to generate scenarios in both the CARLA
(Dosovitskiy et al. 2017) and LGSVL (Rong et al. 2020) simulators.
All of the examples we have seen above illustrate the versatility of Scenic inmodeling awide
range of interesting scenarios. Complete Scenic code for the bumper-to-bumper scenario of
Fig. 1, the Mars rover scenario of Fig. 6, as well as other scenarios used as examples in this
section or in our experiments, along with images of generated scenes, can be found in the
Appendix (Fremont et al. 2020a).

4 Dynamic and compositional scenarios

In Sect. 3 we saw the basic constructs Scenic provides for defining objects and their spatial
relationships. These constructs suffice for expressing static scenarios like “a badly-parked
car”, where Scenic need only define a configuration of objects at one point in time. However,
for dynamic scenarios like “a badly-parked car, which pulls into the road as you approach”,we
need ways to express temporal properties of objects. In this section, we outline Scenic’s sup-
port for dynamic scenarios, as well as for composing multiple scenarios together to produce
more complex ones.

4.1 Dynamic scenarios

Agents, Actions, and Behaviors.We call Scenic objects which take actions over time dynamic
agents, or simply agents. We can still use all of the syntax described above to define the initial
positions, orientations, etc. of such objects. In addition, we specify their dynamic behavior
using a built-in property called behavior. Using a behavior defined in Scenic’s driving
library, we can write for example:

1 model scenic.domains.driving.model
2 Car with behavior FollowLaneBehavior

A behavior defines a sequence of actions for the agent to take, which need not be fixed
but can be probabilistic and depend on the state of the agent or other objects. In Scenic, an
action is an instantaneous operation executed by an agent, like setting the steering angle of a
car or turning on its headlights. Most actions are specific to particular application domains,
and so different sets of actions are provided by different simulator interfaces. For example,
the Scenic driving domain defines a SetThrottleAction for cars.

123

3818 Machine Learning (2023) 112:3805–3849

Fig. 8 Diagram showing
interaction between Scenic and a
simulator during the execution of
a dynamic scenario

To define a behavior, we write a function which runs over the course of the scenario,
periodically issuing actions. Scenic uses a discrete notion of time, so at each time step the
function specifies zero or more actions for the agent to take. For example, here is a very
simplified version of the FollowLaneBehavior above:

1 behavior FollowLaneBehavior():
2 while True:
3 throttle, steering = ... # compute controls
4 take SetThrottleAction(throttle), SetSteerAction(steering)

We intend this behavior to run for the entire scenario, so we use an infinite loop. In each
step of the loop, we compute appropriate throttle and steering controls, then use the take
statement to take the corresponding actions. When that statement is executed, Scenic pauses
the behavior until the next time step of the simulation, whereupon the function resumes and
the loop repeats.

Execution of Behaviors. When there are multiple agents, their behaviors run in parallel, as
seen in Fig. 8; each time step, Scenic sends their selected actions to the simulator to be
executed and runs the simulation for one step. It then reads back the state of the simulation,
updating the position, speed, etc. of each object.

As behaviors run dynamically during simulations, they can access the current state of the
world to decide what actions to take. Consider the following behavior:

1 behavior WaitUntilClose(threshold=15):
2 while (distance from self to ego) > threshold:
3 wait
4 do FollowLaneBehavior()

Here, we repeatedly query the distance from the agent running the behavior (self)
to the ego car; as long as it is above a threshold, we use the wait statement to take no
action. Once the threshold is met, we start driving by using the do statement to invoke the
FollowLaneBehavior we saw above.

Behavior Arguments and RandomParameters.The example above also shows how behaviors
may take arguments, like any Scenic function. Here, threshold has default value 15 but
can be customized, so we could write for example:

1 ego = Car
2 carB = Car visible, with behavior WaitUntilClose
3 carC = Car visible, with behavior WaitUntilClose(20)

Both carB and carCwill use the WaitUntilClose behavior, but independent copies
of it with thresholds of 15 and 20 respectively.

Unlike ordinary Scenic code, control flow constructs such as if and while are allowed
to depend on random variables inside a behavior. Any distributions defined inside a behavior
are sampled at simulation time, not during scene sampling. Consider the following behavior:

123

Machine Learning (2023) 112:3805–3849 3819

1 behavior AvoidPedestrian():
2 threshold = Range(4, 7)
3 while True:
4 if self.distanceToClosest(Pedestrian) < threshold:
5 strength = TruncatedNormal(0.8, 0.02, 0.5, 1)
6 take SetBrakeAction(strength), SetThrottleAction(0)
7 else:
8 take SetThrottleAction(0.5), SetBrakeAction(0)

Here, the value of threshold is sampled only once, at the beginning of the scenario
when the behavior starts running. The value strength, on the other hand, is sampled every
time control reaches line 5, so that every time step when the car is braking we use a slightly
different braking strength.

Interrupts. It is frequently useful to take an existing behavior and add a complication to it;
for example, suppose we want a car that follows a lane, stopping whenever it encounters
an obstacle. Scenic provides a concept of interrupts which allows us to reuse the basic
FollowLaneBehavior without having to modify it.

1 behavior FollowAvoidingObstacles():
2 try:
3 do FollowLaneBehavior()
4 interrupt when self.distanceToClosest(Object) < 5:
5 take SetBrakeAction(1)

This try-interrupt statement has the following semantics: at first, the code block
after the try (the body) is executed. At the start of every time step during its execution, the
condition from each interrupt clause is checked; if any are true, execution of the body
is suspended and we instead begin to execute the corresponding interrupt handler. In the
example above, there is only one interrupt, which fires when we come within 5 meters of
any object. When that happens, FollowLaneBehavior is paused and we instead apply
full braking for one time step. In the next step, we will resume FollowLaneBehavior
wherever it left off, unless we are still within 5 meters of an object, in which case the interrupt
will fire again.

Successiveinterrupt clauses take precedence over thosewhich precede them, and such
higher-priority interrupts can fire even during the execution of an earlier interrupt handler.
This makes it easy tomodel a hierarchy of behaviors with different priorities; for example, we
could implement a car which drives along a lane, passing slow cars and avoiding collisions,
along the following lines:

1 behavior Drive():
2 try:
3 do FollowLaneBehavior()
4 interrupt when self.distanceToNextObstacle() < 20:
5 do PassingBehavior()
6 interrupt when self.timeToCollision() < 5:
7 do CollisionAvoidance()

Here, the car begins by lane following, switching to passing if there is a car or other
obstacle too close ahead. During either of those two sub-behaviors, if the time to collision
gets too low, we switch to collision avoidance. Once the CollisionAvoidance behavior
completes, we will resume whichever behavior was interrupted earlier. If we were executing
PassingBehavior, it will run to completion (possibly being interrupted again) before
we finally resume FollowLaneBehavior.

123

3820 Machine Learning (2023) 112:3805–3849

When resuming the interrupted code after an interrupt completes is undesired, using the
abort statement exits the entire try-interrupt statement. For example, to run a behavior until
a condition is met without resuming it later, we can write:

1 behavior ApproachAndTurnLeft():
2 try:
3 do FollowLaneBehavior()
4 interrupt when (distance to intersection) < 10:
5 abort # cancel lane following
6 do WaitForTrafficLightBehavior()
7 do TurnLeftBehavior()

This is a common enough use case of interrupts that Scenic provides a shorthand notation:

1 behavior ApproachAndTurnLeft():
2 do FollowLaneBehavior() until (distance to intersection) < 10
3 do WaitForTrafficLightBehavior()
4 do TurnLeftBehavior()

Finally, note that when try-interrupt statements are nested, interrupts of the outer statement
take precedence. This makes it easy to build up complex behaviors in a modular way. For
example, the behavior Drive we wrote above is relatively complicated, using interrupts
to switch between several different sub-behaviors. We would like to be able to put it in a
library and reuse it in many different scenarios without modification. Interrupts make this
straightforward; for example, if for a particular scenario we want a car that drives normally
but suddenly brakes for 5 seconds when it reaches a certain area, we can write:

1 behavior DriveWithSuddenBrake():
2 haveBraked = False
3 try:
4 do Drive()
5 interrupt when self in targetRegion and not haveBraked:
6 do StopBehavior() for 5 seconds
7 haveBraked = True

With this behavior, Drive operates as it did before, interrupts firing as appropriate to
switch between lane following, passing, and collision avoidance. But during any of these sub-
behaviors, if the car enters the targetRegion it will immediately brake for 5 seconds,
then pick up where it left off. This example also shows how behaviors can use local variables
to maintain state, enabling the encoding of behaviors which make decisions based on actions
taken in the past.

Requirements and Monitors. Just as you can declare spatial constraints on scenes using the
require statement, you can also impose constraints on dynamic scenarios. For example, if
we don’t want to generate any simulations where carA and carB are simultaneously visible
from the ego car, we could write:

1 require always not ((ego can see carA) and (ego can see carB))

The require always statement enforces that the given condition must hold at every
time step of the scenario; if it is ever violated during a simulation, we reject that simulation
and sample a new one. Similarly, we can require that a condition hold at some time during
the scenario using the require eventually statement:

1 require eventually ego in intersection

123

Machine Learning (2023) 112:3805–3849 3821

To enforce more complex temporal properties, you can define a monitor. Like behaviors,
monitors are functions which run in parallel with the scenario and can inspect world state.
Here is a monitor for the property “carA and carB must both enter the intersection before
carC”:

1 monitor CarCEntersLast:
2 seenA, seenB = False, False
3 while not (seenA and seenB):
4 require carC not in intersection
5 if carA in intersection:
6 seenA = True
7 if carB in intersection:
8 seenB = True
9 wait

We use the variables seenA and seenB to remember whether we have seen carA and
carB respectively enter the intersection. The loop will iterate as long as at least one of the
cars has not yet entered the intersection, so if carC enters before either carA or carB,
the requirement on line 4 will fail and we will reject the simulation. Note the necessity of
the wait statement on line 9: if we omitted it, the loop could run forever without any time
actually passing in the simulation.

Preconditions and Invariants. Even general behaviors designed to be used in multi-
ple scenarios may not operate correctly from all possible starting states: for example,
FollowLaneBehavior assumes that the agent is actually in a lane rather than, say, on
a sidewalk. To model such assumptions, Scenic provides a notion of guards for behaviors.
Most simply, we can specify one or more preconditions:

1 behavior MergeInto(newLane):
2 precondition: self.lane is not newLane and self.road is newLane.road
3 ...

Here, the precondition requires that whenever the MergeInto behavior is executed by
an agent, the agent must not already be in the destination lane but should be on the same
road. We can add any number of such preconditions; like ordinary requirements, violating
any precondition causes the simulation to be rejected.

Since behaviors can be interrupted, it is possible for a behavior to resume execution in
a state it doesn’t expect: imagine a car which is lane following, but then swerves onto the
shoulder to avoid an accident; naïvely resuming lane following, we find we are no longer in
a lane. To catch such situations, Scenic allows us to define invariants which are checked at
every time step during the execution of a behavior, not just when it begins running. These
are written similarly to preconditions:

1 behavior FollowLaneBehavior():
2 invariant: self in road
3 ...

While by default guard violations cause the simulation to be rejected, in some cases it may
be possible to recover by taking additional actions. To enable this kind of design, Scenic
signals guard violations by raising a GuardViolation exception which can be caught
like any other exception; the simulation is only rejected if the exception propagates out to
the top level. So to model the lane-following-with-collision-avoidance behavior suggested
above, we could write code like this:

123

3822 Machine Learning (2023) 112:3805–3849

1 behavior Drive():
2 while True:
3 try:
4 do FollowLaneBehavior()
5 interrupt when self.distanceToClosest(Object) < 5:
6 do CollisionAvoidance()
7 except InvariantViolation: # FollowLaneBehavior has failed
8 do GetBackOntoRoad()

When any object comes within 5 meters, we suspend lane following and switch to col-
lision avoidance. When the latter completes, FollowLaneBehavior will be resumed;
if its invariant fails because we are no longer on the road, we catch the resulting
InvariantViolation exception and run a GetBackOntoRoad behavior to restore
the invariant. The whole try statement then completes, so the outermost loop iterates and
we begin lane following once again.

Terminating the Scenario. By default, scenarios run forever, unless a time limit is specified
when running the Scenic tool. However, scenarios can also define termination criteria using
the terminate when statement; for example, we could decide to end a scenario as soon
as the ego car travels at least a certain distance:

1 start = Point on road
2 ego = Car at start
3 terminate when (distance to start) >= 50

Additionally, the terminate statement can be used inside behaviors and monitors: if
it is ever executed, the scenario ends. For example, we can use a monitor to terminate the
scenario once the ego spends 30 time steps in an intersection:

1 monitor StopAfterTimeInIntersection:
2 totalTime = 0
3 while totalTime < 30:
4 if ego in intersection:
5 totalTime += 1
6 wait
7 terminate

4.2 Compositional scenarios

Scenic provides facilities for defining multiple scenarios in a single program and composing
them in various ways. This enables writing a library of scenarios which can be repeatedly
used as building blocks to construct more complex scenarios.

Modular Scenarios.Todefine a named, reusable scenario, optionallywith tunable parameters,
Scenic provides the scenario statement. For example, here is a scenario which creates
a parked car on the shoulder of the ego’s current lane (assuming there is one), using some
APIs from the driving library:

1 scenario ParkedCar(gap=0.25):
2 precondition: ego.laneGroup._shoulder != None
3 setup:
4 spot = OrientedPoint on visible ego.laneGroup.curb
5 parkedCar = Car left of spot by gap

123

Machine Learning (2023) 112:3805–3849 3823

The setup block contains Scenic code which executes when the scenario is instantiated,
and which can define classes, create objects, declare requirements, etc. as in any of the exam-
ple scenarios we saw above. Additionally, we can define preconditions and invariants, which
operate in the same way as for dynamic behaviors. Having now defined the ParkedCar
scenario, we can use it in a more complex scenario, potentially multiple times:

1 scenario Main():
2 setup:
3 ego = Car
4 compose:
5 do ParkedCar(), ParkedCar(0.5)

Here our Main scenario itself only creates the ego car; then its compose block orches-
trates how to run other modular scenarios. In this case, we invoke two copies of the
ParkedCar scenario in parallel, specifying in one case that the gap between the parked car
and the curb should be 0.5 m instead of the default 0.25. So the scenario will involve three
cars in total, and as usual Scenic will automatically ensure that they are all on the road and
do not intersect.

Parallel and Sequential Composition. The scenario above is an example of parallel compo-
sition, where we use the do statement to run two scenarios at the same time. We can also use
sequential composition, where one scenario begins after another ends. This is done the same
way as in behaviors: in fact, the compose block of a scenario is executed in the same way
as a monitor, and allows all the same control-flow constructs. For example, we could write a
compose block as follows:

1 while True:
2 do ParkedCar(gap=0.25) for 30 seconds
3 do ParkedCar(gap=0.5) for 30 seconds

Here, a new parked car is created every 30s,2 with the distance to the curb alternating
between 0.25 and 0.5 m. Note that without the for 30,s qualifier, we would never get
past line 2, since the ParkedCar scenario does not define any termination conditions using
terminate when (or terminate) and so runs forever by default. If instead we want
to create a new car only when the ego has passed the current one, we can use a do-until
statement:

1 while True:
2 subScenario = ParkedCar(gap=0.25)
3 do subScenario until distance past subScenario.parkedCar > 10

Note how we can refer to the parkedCar variable created in the ParkedCar scenario
as a property of the scenario. Combined with the ability to pass objects as parameters of
scenarios, this is convenient for reusing objects across scenarios.

Interrupts, Overriding, and Initial Scenarios. The try-interrupt statement used in
behaviors can also be used in compose blocks to switch between scenarios. For exam-
ple, suppose we already have a scenario where the ego is following a leadCar, and want
to elaborate it by adding a parked car which suddenly pulls in front of the lead car. We could
write a compose block as follows:

2 In a real implementation, we would probably want to require that the parked car is not initially visible from
the ego, to avoid the sudden appearance of cars out of nowhere.

123

3824 Machine Learning (2023) 112:3805–3849

1 following = FollowingScenario()
2 try:
3 do following
4 interrupt when distance to following.leadCar < 10:
5 do ParkedCarPullingAheadOf(following.leadCar)

If theParkedCarPullingAheadOf scenario is defined to end shortly after the parked
car finishes entering the lane, the interrupt handler will complete and Scenic will resume
executing FollowingScenario on line 3 (unless the ego is still within 10 m of the lead
car).

Suppose thatwewant the lead car to behave differentlywhile the parked car scenario is run-
ning; for example, perhaps the behavior for the lead car defined in FollowingScenario
does not handle a parked car suddenly pulling in. To enable changing the behavior or
other properties of an object in a sub-scenario, Scenic provides the override statement,
which we can use as follows:

1 scenario ParkedCarPullingAheadOf(target):
2 setup:
3 override target with behavior FollowLaneAvoidingCollisions
4 parkedCar = Car left of ...

Here we override the behavior property of target for the duration of the scenario,
reverting it back to its original value (and thereby continuing to execute the old behavior)
when the scenario terminates. The override object specifier, . . . statement has the same
syntax as an object definition, and can specify any properties of the object except for dynamic
properties like position or speed which can only be indirectly controlled by taking
actions.

In order to allow writing scenarios which can both stand on their own and be invoked
during another scenario, Scenic provides a special conditional statement testing whether we
are inside the initial scenario, i.e., the very first scenario to run.

1 scenario TwoLanePedestrianScenario():
2 setup:
3 if in initial scenario: # create ego on random 2-lane road
4 roads = filter(lambda r: len(r.lanes) == 2, network.roads)
5 road = Uniform(*roads) # pick uniformly from list
6 ego = Car on road
7 else: # use existing ego car; require it is on a 2-lane road
8 require len(ego.road.lanes) == 2
9 road = ego.road

10 Pedestrian on visible road.sidewalkRegion, with behavior ...

Random Selection of Scenarios. For very general scenarios, like “driving through a city,
encountering typical human traffic”,wemaywant a variety of different events and interactions
to be possible. We saw above howwe can write behaviors for individual agents which choose
randomly between possible actions; Scenic allows us to do the same with entire scenarios.
Most simply, since scenarios are first-class objects, we can write functions which operate on
them, perhaps choosing a scenario from a list of options based on some complex criterion:

1 chosenScenario = pickNextScenario(ego.position, ...)
2 do chosenScenario

However, some scenarios may only make sense in certain contexts; for example, a red
light runner scenario can take place only at an intersection. To facilitate modeling such

123

Machine Learning (2023) 112:3805–3849 3825

situations, Scenic provides variants of the do statement which randomly choose scenarios
to run amongst only those whose preconditions are satisfied:

1 do choose RedLightRunner, Jaywalker, ParkedCar(gap=0.5)
2 do shuffle RedLightRunner, Jaywalker, ParkedCar

Here, line 1 checks the preconditions of the three given scenarios, then executes one
(and only one) of the enabled scenarios. If for example the current road has no shoulder,
then ParkedCar will be disabled and we will have a 50/50 chance of executing either
RedLightRunner or Jaywalker (assuming their preconditions are satisfied). If none of
the three scenarios are enabled, Scenicwill reject the simulation. Line 2 is a shuffled variant,
where all three scenarios will be executed, but in random order.3

5 Syntax of Scenic

Scenic is an object-oriented PPL, with programs consisting of sequences of statements built
with standard imperative constructs including conditionals, loops, functions, and methods
(which we do not describe further, focusing on the new elements). Compared to other imper-
ative PPLs, the major restriction of Scenic, made in order to allow more efficient sampling,
is that conditional branching may not depend on random variables (except in behaviors). The
novel syntax, outlined above, is largely devoted to expressing spatiotemporal relationships
in a concise and flexible manner. Figure 9 gives a formal grammar for Scenic, which we
now describe in detail.

5.1 Data types

Scenic provides several primitive data types:

Booleans expressing truth values.
Scalars as floating-point numbers, which can be sampled from various distributions

(see Table 1).
Vectors representing positions and offsets in space, constructed from coordinates in

meters with the syntax (X, Y). 4

Headings representing orientations in space. Conveniently, in 2D these are a single angle
(in radians, anticlockwise from North). By convention the heading of a local
coordinate system is the heading of its y-axis, so, for example, (-2, 3)
means 2 meters left and 3 ahead.

Vector Fields associating an orientation to each point in space. For example, the shortest
paths to a destination or (in our case study) the nominal traffic direction.

Regions representing sets of points in space. These can have an associated vector field
giving points in the region preferred orientations (e.g. the surface of an object
could have normal vectors, so that objects placed randomly on the surface
face outward by default).

In addition, Scenic provides objects, organized into single-inheritance classes specifying
a set of properties their instances must have, together with corresponding default values

3 Respecting preconditions, so in particular the simulation will be rejected if at some point none of the
remaining scenarios to execute are enabled.
4 The Smalltalk-like (Goldberg and Robson 1983) syntax X @ Y used in earlier versions of Scenic is also
legal.

123

3826 Machine Learning (2023) 112:3805–3849

program := (statement)∗
boolean := True | False | booleanOp
scalar := number | distrib | scalarOp
distrib := baseDist | resample(distrib)
vector := (scalar, scalar) | Point

| vectorOp
heading := scalar | OrientedPoint

| headingOp
direction := heading | vectorField

value := boolean | scalar | vector
| direction | region
| object | object.property

classDef := class class[(superclass)]:
(property: value)∗

object := class specifier, . . .
specifier := with property value

| posSpec | headSpec

behavior := behavior name(params):
(precondition: boolean)∗
(invariant: boolean)∗
(statement)∗

try := try:
(statement)∗

(interrupt when boolean:
(statement)∗)∗

(except exception:
(statement)∗)∗

scenario := scenario name(params):
(precondition: boolean)∗
(invariant: boolean)∗
[setup:

(statement)∗]
[compose:

(statement)∗]

Fig. 9 Simplified Scenic grammar. Point and OrientedPoint are instances of the corresponding classes. See
Table 5 for statements, Fig. 11 for operators, Table 1 for baseDist, and Tables 3 and 4 for posSpec and headSpec

Table 1 Built-in distributions

Syntax Distribution

Range (low, high) Uniform on continuous interval

Uniform (value, …) Uniform over discrete values

Discrete ({value: Weight, …}) Discrete with weights

Normal (mean, stdDev) Normal (Gaussian)

TruncatedNormal (mean, stdDev, low, high) Normal, truncated to the given window

All parameters are scalars except value

(see Fig. 9). Default value expressions are evaluated each time an object is created. Thus
if we write weight: Range(1, 5) when defining a class then each instance will have
a weight drawn independently from Range(1, 5). Default values may use the special
syntax self.property to refer to one of the other properties of the object, which is then a
dependency of this default value. In our case study, for example, the width and length
of a Car are by default derived from its model.

Physical objects in a scene are instances of Object, which is the default superclass when
none is specified. Object descends from the two other built-in classes: its superclass is
OrientedPoint,which in turn subclassesPoint. These represent locations in space,with
and without an orientation respectively, and so provide the fundamental properties heading
and position. Object extends them by defining a bounding box with the properties
width and length, as well as temporal information like speed and behavior. Table 2
lists the properties of these classes and their default values.

To allow cleaner notation, Point and OrientedPoint are automatically interpreted
as vectors or headings in contexts expecting these (as shown in Fig. 9). For example, we
can write taxi offset by (1, 2) and 30 deg relative to taxi instead of
taxi.position offset by (1, 2) and
30 deg relative to taxi.heading. Ambiguous cases, e.g.

123

Machine Learning (2023) 112:3805–3849 3827

Table 2 Properties of the built-in classes Point, OrientedPoint, and Object

Property Default Meaning

position (0, 0) Position in global coordinates

viewDistance 50 Distance for ‘can see’ predicate

mutationScale 0 Overall scale of mutations

positionStdDev 1 Mutation σ for position

heading 0 Heading in global coordinates

viewAngle 360◦ Angle for ‘can see’ predicate

headingStdDev 5◦ Mutation σ for heading

width 1 Width of bounding box

length 1 Length of bounding box

speed 0 Speed of object

velocity (0, 0) Velocity (default from speed, heading)

angularSpeed 0 Angular speed (in rad/s)

behavior None Dynamic behavior, if any

allowCollisions False Collisions allowed

requireVisible True Must be visible from ego

regionContainedIn None Region object must be contained in

taxi relative to limo, are illegal (caught by a simple type system); the more ver-
bose syntax must be used instead.

5.2 Expressions

Scenic’s expressions are mostly straightforward, largely consisting of the arithmetic,
boolean, and geometric operators shown in Fig. 11. The meanings of these operators are
largely clear from their syntax, so we defer complete definitions of their semantics to the
Appendix (Fremont et al. 2020a). Figure 10 illustrates several of the geometric operators (as
well as some specifiers, which we will discuss in the next section). Various points to note:

• X can see Y uses a simple model where a Point can see a certain distance, and an
OrientedPoint restricts this to the sector along its heading with a certain angle
(see Table 2). An Object is visible iff its bounding box is.

• X relative to Y interprets X as an offset in a local coordinate system defined
by Y. Thus (-3, 0) relative to Y yields 3 m West of Y if Y is a vector,
and 3 m left of Y if Y is an OrientedPoint. If defining a heading inside a
specifier, either X or Y can be a vector field, interpreted as a heading by evaluat-
ing it at the position of the object being specified. So we can write for example
Car at (120,70), facing 30 deg relative to roadDirection.

• visible region yields the part of the region visible from the ego, so we can write
for example Car on visible road. The form region visible from X uses X
instead of ego.

• front of Object, front left of Object, etc. yield the corresponding points on
the bounding box of the object, oriented along the object’s heading.

123

3828 Machine Learning (2023) 112:3805–3849

ego

left of ego

back right of ego

1

2
Point offset by (1, 2)

or
(1, 2) relative to ego

P

P offset by (0, -2)

2

2

1

Point beyond P by (-2, 1)

Object behind P by 2

apparent heading of P

Fig. 10 Various Scenic operators and specifiers applied to the ego object and an OrientedPoint P.
Instances of OrientedPoint are shown as bold arrows

scalarOperator := max(scalar, . . .) | min(scalar, . . .)
| -scalar | abs(scalar) | scalar (+ | *) scalar
| relative heading of heading [from heading]
| apparent heading of OrientedPoint [from vector]
| distance to vector [from vector]
| distance [of OrientedPoint] past vector
| angle [from vector] to vector

booleanOperator := not boolean
| boolean (and | or) boolean
| scalar (== | != | < | > | <= | >=) scalar
| (Point | OrientedPoint) can see (vector | Object)
| (vector | Object) in region

headingOperator := scalar deg
| vectorField at vector
| direction relative to direction

vectorOperator := vector relative to vector
| vector offset by vector
| vector offset along direction by vector

regionOperator := visible region
| region visible from (Point | OrientedPoint)

orientedPointOperator :=
vector relative to OrientedPoint

| OrientedPoint offset by vector
| (front | back | left | right) of Object
| (front | back) (left | right) of Object

Fig. 11 Operators by result type

123

Machine Learning (2023) 112:3805–3849 3829

Two types of Scenic expressions are more complex: distributions and object definitions.
As in a typical imperative probabilistic programming language, a distribution evaluates to a
sample from the distribution. Thus the program

1 x = Range(0, 1)
2 y = (x, x)

does not make y uniform over the unit box, but rather over its diagonal. For convenience
in sampling multiple times from a primitive distribution, Scenic provides a resample(D)
function returning an independent5 sample from D, one of the distributions in Table 1.Scenic
also allows defining custom distributions beyond those in the Table.

The second type of complex Scenic expressions are object definitions. These are the
only expressions with a side effect, namely creating an object in the generated scene. More
interestingly, properties of objects are specified using the system of specifiers discussed
above, which we now detail.

5.3 Specifiers

As shown in the grammar in Fig. 9, an object is created by writing the class name followed
by a (possibly empty) comma-separated list of specifiers. The specifiers are combined, pos-
sibly adding default specifiers from the class definition, to form a complete specification of
all properties of the object. Arbitrary properties (including user-defined properties with no
meaning in Scenic) can be specified with the generic specifier with property value, while
Scenic provides manymore specifiers for the built-in properties position and heading,
shown in Tables 3 and 4 respectively.

In general, a specifier is a function taking in values for zero or more properties, its
dependencies, and returning values for one or more other properties, some of which can
be specified optionally, meaning that other specifiers will override them. For example, on
region specifies position and optionally specifies heading if the given region has a pre-
ferred orientation. If road is such a region, as in our case study, then Object on road
will create an object at a position uniformly random in road and with the preferred orien-
tation there. But since heading is only specified optionally, we can override it by writing
Object on road, facing 20 deg.

Specifiers are combined to determine the properties of an object by evaluating them in an
order ensuring that their dependencies are always already assigned. If there is no such order
or a single property is specified twice, the scenario is ill-formed. The procedure by which the
order is found, taking into account properties that are optionally specified and default values,
will be described in the next section.

As the semantics of the specifiers in Tables 3 and 4 are largely evident from their syntax,
we defer exact definitions to the Appendix (Fremont et al. 2020a). We briefly discuss some
of the more complex specifiers, referring to the examples in Fig. 10:

• behind vectormeans the object is placed with the midpoint of its front edge at the given
vector, and similarly for ahead/left/right of vector.

• beyond A by O from B means the position obtained by treating O as an offset in the
local coordinate system at A oriented along the line of sight from B. In this and other
specifiers, if the from B is omitted, the ego object is used by default. So for example

5 Conditioned on the values of the distribution’s parameters (e.g. low and high for a uniform interval), which
are not resampled.

123

3830 Machine Learning (2023) 112:3805–3849

Table 3 Specifiers for position

Specifier Dependencies

at vector —

offset by vector —

offset along direction by vector —

(left | right) of vector [by scalar] heading, width

(ahead of | behind) vector [by scalar] heading, length

beyond vector by vector [from vector] —

visible [from (Point | OrientedPoint)] —

(in | on) region —

(left | right) of (OrientedPoint | Object) [by scalar] width

(ahead of | behind) (OrientedPoint | Object) [by scalar] length

following vectorField [from vector] for scalar —

The specifiers in the second group also optionally specify heading

Table 4 Specifiers for heading

Specifier Deps.

facing heading —

facing vectorField position

facing (toward | away from) vector position

apparently facing heading [from vector] position

beyond taxi by (0, 3) means 3 m directly behind the taxi as viewed by the
camera (see Fig. 10 for another example).

• The heading optionally specified by left of OrientedPoint, etc. is that of the
OrientedPoint (thus in Fig. 10, P offset by (0, -2) yields an
OrientedPoint facing the same way as P). Similarly, the heading optionally spec-
ified by the following vectorField specifier is that of the vector field at the specified
position.

• apparently facing H means the object has heading H with respect to the line
of sight from ego. For example, apparently facing 90 deg would orient the
object so that the camera views its left side head-on.

5.4 Statements

Finally, we discuss Scenic’s statements, listed in Table 5. Class and object definitions have
been discussed above, and variable assignment behaves in the standard way.

Selecting a world model. The model name statement specifies that the Scenic program
is written for the given Scenic world model. It is equivalent to the statement from name
import * (as in Python), importing everything from the given Scenic module, but can
be overridden from the command-line when running the Scenic tool. This enables writing
cross-platform scenarios using abstract domains like scenic.domains.driving, then

123

Machine Learning (2023) 112:3805–3849 3831

Table 5 Statements (excluding if, while, def, import, etc. from Python)

Syntax Meaning

model name Select world model

name = value Variable assignment

param name = value, … Global parameter assignment

classDefn (see Fig. 9) Class definition

object Object definition

behavior Behavior definition

monitor Monitor definition

scenario Modular scenario definition

require boolean Hard requirement

require[number] boolean Soft requirement

require always boolean Always dynamic requirement

require eventually boolean Eventually dynamic requirement

terminate when boolean Termination condition

mutate name, … [by number] Enable mutation

take action, … Invoke action(s)

wait Invoke no actions this step

terminate End scenario immediately

do name, … Invoke sub-behavior(s)/sub-scenario(s)

do name, … for scalar (seconds | steps) Invoke with time limit

do name, … until boolean Invoke until condition

try (see Fig. 9) Try-interrupt statement

abort Abort try-interrupt statement

override name specifier, … Override object properties dynamically

The statements in the second group are only legal inside behaviors, monitors, and compose blocks

executing them in particular simulators by overriding the model with a more specific module
(e.g. scenic.simulators.carla.model).

Global parameters. The statement param name = value, . . . assigns values to global
parameters of the scenario. These have no semantics in Scenic but provide a general-purpose
way to encode arbitrary global information. For example, in our case study we used parame-
ters time and weather to put distributions on the time of day and the weather conditions
during the scene.

Behaviors and monitors. The behavior statement (see Fig. 9) defines a dynamic behavior.
A behavior definition has the same structure as a function definition, with two differences: (1)
it may begin with any number of precondition: boolean and invariant: boolean
lines defining preconditions and invariants; (2) it may use the statements in the second section
of Table 5, which are not allowed in ordinary functions. The monitor statement has the
same structure as a behavior statement but defines a monitor.

Modular scenarios. The scenario statement (see Fig. 9) defines a modular scenario which
can be invoked from another scenario. Scenario definitions begin like behavior definitions,
with a name, parameters, preconditions, and invariants. However, the body of a scenario
consists of two parts, either of which can be omitted: a setup block and a compose block.

123

3832 Machine Learning (2023) 112:3805–3849

The setup block contains code that runs once when the scenario begins to execute, and is
a list of statements like a top-level Scenic program.6 The compose block orchestrates the
execution of sub-scenarios during a dynamic scenario, and may use do and any of the other
statements allowed inside behaviors (except take, which only makes sense for an individual
agent).

Requirements. The require boolean statement requires that the given condition hold in
all generated scenes (equivalently to observe statements in other probabilistic programming
languages; see e.g. Milch et al. (2004); Claret et al. (2013)). The variant require[p]
boolean adds a soft requirement that need only holdwith some probability p (whichmust be a
constant).Wewill discuss the semantics of these in the next section. Therequire always
andrequire eventually variants define requirements thatmust hold in every and some
time step of dynamic simulations respectively.

Mutation. The mutate instance, . . . by number statement adds Gaussian noise with the
given standard deviation (default 1) to the position and heading properties of the listed
objects (or every Object, if no list is given). For example, mutate taxi by 2 would
add twice as much noise as mutate taxi. The noise can be controlled separately for
position and heading, as we discuss in the next section.

Termination conditions. The terminate when boolean statement defines a condition
which ismonitored as inrequire eventually, but whichwhen true causes the scenario
to end. The terminate statement can be called inside a behavior, monitor, or compose
block to end the scenario immediately.

Actions. The take action, . . . statement can be used inside behaviors to select one or more
actions7 for the agent to take in the current time step. The wait statement means no actions
are taken in this time step (which makes sense inside monitors and compose blocks). When
either of these statements is executed, the behavior is suspended until one time step has
elapsed; then its invariants are checked (raising an InvariantViolation exception if
any are violated) and it is resumed.

Invoking other behaviors and scenarios. The do name, . . . statement has the same structure
as the take statement, but invokes one or more behaviors (if in a behavior) or scenarios (if
in a compose block). It does not return until the sub-behavior/sub-scenario terminates, so
multiple time steps may pass (unlike take). Early termination can be enabled by adding a
for scalar seconds/steps clause, which enforces a maximum time limit, or an until
boolean clause, which adds an arbitrary termination criterion.When thedo statement returns,
the invariants of the calling behavior/scenario are checked as above.

Interrupts. The try statement (see Fig. 9) consists of a try: block and one or more
interrupt when boolean: and except exception: blocks, each containing arbitrary
lists of statements. As described in Sect. 4.1, when a try statement executes, the conditions
for each interrupt when block are checked at each time step. While none of them are
true, the try block executes. When an interrupt condition becomes true, the body of the
corresponding block is executed (with lower blocks preempting those above), suspending
any behaviors/scenarios that were executing in the try block until the interrupt handler

6 In fact, a top-level Scenic program is equivalent to an unnamed scenario definition with no parameters,
preconditions, invariants, or compose block, and whose setup block consists of the whole program.
7 The statement will accept lists and tuples of actions, in order to support taking a number of actions that is
not fixed, i.e., if myActions is a list of actions, we can write take myActions.

123

Machine Learning (2023) 112:3805–3849 3833

completes (at which point the invariants of the suspended behavior/scenario are checked as
usual). Any exceptions raised in the try block or any interrupt handler can be caught by
except blocks as in the Python try statement. Additionally, any block may execute the
abort statement to immediately terminate the entire try statement.

Overrides. The override name specifier, . . . statement may be used inside a scenario def-
inition to override properties of an object during a dynamic scenario. It has the same structure
as an object definition, with override and the name of the object replacing the class, so for
example given anobjecttaxiwecouldwriteoverride taxi with aggression 3
to set the aggression property of taxi to 3. Dynamic properties read back from the sim-
ulator at every time step, like position, cannot be overridden since they are controlled
using actions and not direct assignments. Properties overridden by a scenario revert to their
original values when the scenario terminates. When the behavior property is overridden,
the original behavior is suspended, then resumed at the end of the scenario.

6 Semantics and concrete scenario generation

6.1 Semantics of Scenic

The output of a Scenic program has two parts: first, a scene consisting of an assignment to
all the properties of each Object defined in the scenario, plus any global parameters defined
with param. For dynamic scenarios, this scene forms the initial state of the scenario, which
then changes after each time step according to the actions taken by the agents. Since actions
and their effects are domain-specific (consider for example the different physics involved for
aerial, ground, and underwater vehicles), dynamic Scenic scenarios do not directly define
trajectories for objects. Instead, the second part of the output of a Scenic program is a policy,
a function mapping the history of past scenes to the choice of actions for the agents in the
current time step.8 This pair of a scene and a policy is what wemean formally by the concrete
scenario generated by a Scenic program.

Since Scenic is a probabilistic programming language, the semantics of a program is
actually a distribution over possible outputs, here concrete scenarios. As for other imperative
PPLs (with declarative constraints), the semantics can be defined operationally as a typical
interpreter for an imperative language but with two differences to handle random sampling
and constraints. First, the interpreter makes random choices when evaluating distributions
(Saheb-Djahromi 1978). For example, the Scenic statement x = Range(0, 1) updates
the state of the interpreter by assigning a value to x drawn from the uniform distribution on
the interval (0, 1). In this way every possible run of the interpreter has a probability associated
with it. Second, every run where a require statement (the equivalent of an “observation”
in other PPLs) is violated gets discarded, and the run probabilities appropriately normalized
(see, e.g., Gordon et al. (2014)). For example, adding the statement require x > 0.5
above would yield a uniform distribution for x over the interval (0.5, 1).

In order to support efficient sampling, the Scenic tool does not directly implement an
interpreter along the lines above; instead, it compiles a Scenic program into an interme-
diate representation, an expression forest, which preserves the structure of the distributions
defined in the program. The expression forest is a directed acyclic graph where each vertex

8 In fact the policy is a probabilistic function, since behaviors can make random choices, and it can also return
special values indicating that the scenario should terminate or that it has violated a requirement and should be
discarded, as we discuss below.

123

3834 Machine Learning (2023) 112:3805–3849

is a random-valued expression occurring in the program, and edges indicate dependencies
between expressions.9 For example, in the program Car at x offset by y, the forest
would have a root node for the position property of the car; that node would have a single
child representing x offset by y, which in turn would have children representing x and
y. The Scenic sampler works by traversing the expression forest in topological order from
leaves to roots, sampling a value for each node after values for all of its dependencies have
already been determined. This yields the same distribution that would be obtained by simply
“running” the Scenic code as usual in imperative PPLs; by rejecting any samples which vio-
late require statements, we obtain a scene distribution conditioned on the requirements
being satisfied, as desired. However, the structural information in the expression forest allows
us to improve on this simplistic rejection sampling approach by performing transformations
on the forest that reduce the probability of rejectionwhile leaving the conditioned distribution
the same. These transformations take advantage of the domain-specific syntax of Scenic,
using pattern matching to identify subtrees representing certain geometric relationships in
the forest and replace them with “pruned” versions that exclude parts of the parameter space
which would be guaranteed to violate built-in or user-defined requirements. We describe sev-
eral such pruning techniques in Sect. 6.2. For clarity, since these techniques do not change
the semantics of the program, in the rest of this section and in the Appendix we describe the
semantics of Scenic constructs in terms of a simple imperative interpreter.

Scenic uses the standard semantics for assignments, arithmetic, loops, functions, and
so forth. Below, we define the semantics of the main constructs unique to Scenic. See the
Appendix (Fremont et al. 2020a) for a more formal treatment.

Soft requirements. The statementrequire[p] B is interpreted asrequire Bwith prob-
ability p and as a no-op otherwise: that is, it is interpreted as a hard requirement that is only
checked with probability p. This ensures that the condition B will hold with probability at
least p in the induced distribution of the Scenic program, as desired.

Specifiers and object definitions.As we saw above, each specifier defines a function mapping
values for its dependencies to values for the properties it specifies. When an object of class C
is constructed using a set of specifiers S, the object is defined as follows (see the Appendix
(Fremont et al. 2020a) for details):

1. If a property is specified (non-optionally) by multiple specifiers in S, an ambiguity error
is raised.

2. The set of properties P for the new object is found by combining the properties specified
by all specifiers in S with the properties inherited from the class C .

3. Default value specifiers from C are added to S as needed so that each property in P is
paired with a unique specifier in S specifying it, with precedence order: non-optional
specifier, optional specifier, then default value.

4. The dependency graph of the specifiers S is constructed. If it is cyclic, an error is raised.
5. The graph is topologically sorted and the specifiers are evaluated in this order to determine

the values of all properties P of the new object.

Mutation. The mutate X by N statement sets the special mutationScale property to
N (the mutate X form sets it to 1). At the end of evaluation of the Scenic program, but

9 Such forests are similar to the abstract syntax trees commonly used in compilers, except that in our case
the forest tracks only the semantic relationships between distributions, not the syntax used to define those
relationships. For example, the assignment x = y would not be saved in the forest at all: the node for
x would simply be the same as the node for y. The lack of conditional control flow in Scenic (outside
behaviors) makes it possible to determine such relationships at compile time.

123

Machine Learning (2023) 112:3805–3849 3835

before requirements are checked, Gaussian noise is added to the position and heading
properties of objects with nonzero mutationScale. The standard deviation of the noise
is the value of the positionStdDev and headingStdDev property respectively (see
Table 2), multiplied by mutationScale.

Dynamic constructs. As suggested in Sect. 5.4, behaviors and monitors are coroutines: they
usually execute like ordinary functions, but are suspended when they take an action (or
wait) until one time step has passed. Scenarios behave similarly: in their compose blocks,
using wait causes them to wait for one step, and any sub-scenarios they invoke using
do run recursively; scenarios without compose blocks do nothing in a time step other
than check whether any of their terminate when conditions have been met or their
require always conditions violated.

The output of the policy of a dynamicScenicprogram is defined according to the following
procedure:

1. Run the compose blocks of all currently-running scenarios for one time step. If any
require conditions fail, discard the simulation. If instead the top-level scenario fin-
ishes its compose block (if any), one of its terminate when conditions is true, or
it executes terminate, set a flag to remember this (we use a flag rather than termi-
nating immediately since we need to ensure that all requirements are satisfied before
terminating).

2. Check all require always conditions of currently-running scenarios; if any fail,
discard the simulation.

3. Run all monitors of currently-running scenarios for one time step. As above, discard the
simulation if any require conditions fail, and set the terminate flag if the terminate
statement is executed.

4. If the flag is set, check that all require eventually conditions were satisfied at
some time step: if so, terminate the simulation; otherwise, discard it.

5. Run all the behaviors of dynamic agents for one time step, gathering their actions and
discarding the simulation or setting the terminate flag as in (3).

6. Repeat (4) to check the terminate flag.
7. Return the choice of actions selected by the dynamic agents.

The problem of sampling scenes from the distribution defined by a Scenic program is essen-
tially a special case of the sampling problem for imperative PPLswith observations (since soft
requirements can also be encoded as observations). While we could apply general techniques
for such problems,10 the domain-specific design of Scenic enables specialized sampling
methods, which we discuss below. We also note that the scenario generation problem is
closely related to control improvisation, an abstract framework capturing various problems
requiring synthesis under hard, soft, and randomness constraints (Fremont et al. 2015; Fre-
mont 2019). Scenario improvisation from a Scenic program can be viewed as an extension
with a more detailed randomness constraint given by the imperative part of the program.

6.2 Domain-specific sampling techniques

The geometric nature of the constraints in Scenic programs, together with Scenic’s lack
of conditional control flow outside behaviors, enable domain-specific sampling techniques

10 Note however that the presence of dynamic agents complicates the use of standard PPL techniques, since
the fact that the physics relating actions to their effects on the world is not modeled in Scenic means that the
program effectively contains an unknown, black-box function. For the same reason, Scenic does not currently
analyze dynamic behaviors using expression trees, as it does for the static part of the program.

123

3836 Machine Learning (2023) 112:3805–3849

inspired by robotic path planning methods. Specifically, we can use ideas for constructing
configuration spaces to prune parts of the sample space where the objects being positioned
do not fit into the workspace. Furthermore, by combining spatial and temporal constraints,
we can prune some initial scenes by proving that they force a requirement to be violated at
some future point during a dynamic scenario. We describe several pruning techniques below,
deferring formal statements of the algorithms to the Appendix (Fremont et al. 2020a).

Pruning based on containment. The simplest technique applies to anyobject X whose position
is uniform in a region R and which must be contained in a region C (e.g. the road in our case
study). If minRadius is a lower bound on the distance from the center of X to its bounding
box, then we can restrict R to R∩ erode(C,minRadius). This is sound, since if X is centered
anywhere not in the restriction, then some point of its bounding box must lie outside of C .

Pruning based on orientation. The next technique applies to scenarios placing constraints
on the relative heading and the maximum distance M between objects X and Y , which are
oriented with respect to a vector field that is constant within polygonal regions (such as our
roads). For each polygon P , we find all polygons Qi satisfying the relative heading constraints
with respect to P (up to a perturbation if X and Y need not be exactly aligned to the field),
and restrict P to P ∩ dilate(∪Qi , M). This is also sound: suppose X can be positioned at x
in polygon P . Then Y must lie at some y in a polygon Q satisfying the constraints, and since
the distance from x to y is at most M , we have x ∈ dilate(Q, M).

Pruning based on size. In the setting above of objects X and Y aligned to a polygonal vector
field (with maximum distance M), we can also prune the space using a lower bound on the
width of the configuration. For example, in our bumper-to-bumper scenario we can infer such
a bound from the offset by specifiers in the program. We first find all polygons that are
not wide enough to fit the configuration according to the bound: call these “narrow”. Then
we restrict each narrow polygon P to P ∩ dilate(∪Qi , M) where Qi runs over all polygons
except P . To see that this is sound, suppose object X can lie at x in polygon P . If P is not
narrow, we do not restrict it; otherwise, object Y must lie at y in some other polygon Q.
Since the distance from x to y is at most M , as above we have x ∈ dilate(Q, M).

Pruning based on reachability. Finally, we can prune initial positions for objects which
make it impossible to reach a goal location within the duration of the scenario; for example,
a car which travels down a road and then runs a red light must start sufficiently close to
an intersection. Suppose an object is required to enter a region R within T time (either by
an explicit require eventually statement or a precondition of a behavior or scenario
guaranteed to eventually execute) and we have an upper bound S on the object’s speed.
Then we can prune away all initial positions of the object which do not lie within a distance
D = ST of R, i.e., we can restrict its initial positions to dilate(R, D). If the object is also
required to stay within some containing region C (e.g., a road) for the entire duration of the
scenario, we can compute a tighter value of D by considering only paths that lie within C .
After pruning the space as described above, our implementation uses rejection sampling,
generating scenes from the imperative part of the scenario until all requirements are satisfied.
While this samples from exactly the desired distribution, it has the drawback that a huge
number of samples may be required to yield a single valid scene (in the worst case, when the
requirements have probability zero of being satisfied, the algorithm will not even terminate).
However, we found in our experiments that all reasonable scenarios we tried required at most
several hundred iterations of rejection sampling, yielding a sample within a few seconds.
Furthermore, the pruning methods above could reduce the number of samples needed by a
factor of 3 or more (see the Appendix (Fremont et al. 2020a) for details of our experiments).

123

Machine Learning (2023) 112:3805–3849 3837

In future work it would be interesting to see whether Markov chain Monte Carlo methods
previously used for probabilistic programming (see, e.g., Milch et al. (2004); Nori et al.
(2014); Wood et al. (2014)) could be made effective in the case of Scenic.

7 Experiments

We demonstrate the three applications of Scenic discussed in Sect. 2: testing a system under
particular conditions, either a perception component in isolation Sect. 7.2.1 or a dynamic
closed-loop system Sect. 7.2.2, training a system to improve accuracy in hard cases Sect. 7.3,
and debugging failures Sect. 7.4. We begin by describing the general experimental setup.

7.1 Experimental setup

For our main case study, we generated scenes in the virtual world of the video game Grand
Theft Auto V (GTAV) (Rockstar Games 2015). We wrote a Scenic world model defining
Regions representing the roads and curbs in (part of) this world, as well as a type of object
Car providing two additional properties11: model, representing the type of car, with a
uniform distribution over 13 diverse models provided by GTAV, and color, representing
the car color, with a default distribution based on real-world car color statistics (DuPont
2012). In addition, we implemented two global scene parameters: time, representing the
time of day, and weather, representing the weather as one of 14 discrete types supported
by GTAV (e.g. “clear” or “snow”).

GTAV is closed-source and does not expose any kind of scene description language.
Therefore, to import scenes generated by Scenic into GTAV, we wrote a plugin based on
DeepGTAV.12 The plugin calls internal functions of GTAV to create cars with the desired
positions, colors, etc., as well as to set the camera position, time of day, and weather.

Our experiments used SqueezeDet (Wu et al. 2017), a convolutional neural network real-
time object detector for autonomous driving.13 We used a batch size of 20 and trained all
models for 10,000 iterations unless otherwise noted. Images captured from GTAV with res-
olution 1920× 1200 were resized to 1248× 384, the resolution used by SqueezeDet and the
standard KITTI benchmark (Geiger et al. 2012). All models were trained and evaluated on
NVIDIA TITAN XP GPUs.

We used standard metrics precision and recall to measure the accuracy of detection on
a particular image set. The accuracy is computed based on how well the network predicts
the correct bounding box, score, and category of objects in the image set. Details are in
the Appendix (Fremont et al. 2020a), but in brief, precision is defined as tp/(tp + f p) and
recall as tp/(tp + f n), where true positives tp is the number of correct detections, false
positives f p is the number of predicted boxes that do not match any ground truth box, and
false negatives f n is the number of ground truth boxes that are not detected.

11 For the full definition of Car, see the Appendix (Fremont et al. 2020a); the definitions of road, curb, etc.
are a few lines loading the corresponding sets of points from a file storing the GTAV map (see the Appendix
for how this file was generated).
12 https://github.com/aitorzip/DeepGTAV.
13 Used industrially, for example by DeepScale (http://deepscale.ai/).

123

https://github.com/aitorzip/DeepGTAV
http://deepscale.ai/

3838 Machine Learning (2023) 112:3805–3849

7.2 Testing and falsification

Webeginwith themost straightforward application of Scenic, namely generating specialized
data to test a system under particular conditions. We demonstrate both using a static scenario
to test a perception component, and using a dynamic scenario to falsify a closed-loop system.

7.2.1 Testing a perception module

When testing a model, one may be interested in a particular operation regime. For instance,
an autonomous car manufacturer may be more interested in certain road conditions (e.g.
desert vs. forest roads) depending on where its cars will be mainly used. Scenic provides a
systematic way to describe scenarios of interest and construct corresponding test sets.

To demonstrate this, we first wrote very general scenarios describing static scenes of
1–4 cars (not counting the camera), specifying only that the cars face within 10◦ of the
road direction: all other features had their default distributions, e.g. the cars were positioned
uniformly at random over the road and the time of day was uniform over an entire 24h
period. We generated 1000 images from each scenario, yielding a training set Xgeneric of
4000 images, and used these to train a model Mgeneric as described in Sect. 7.1. We also
generated an additional 50 images from each scenario to obtain a generic test set Tgeneric of
200 images. For all of our scenarios (including in our other experiments), sampling a single
scene and rendering an image from it took at most several seconds.

Next, we specialized the general scenarios in opposite directions: scenarios for good/bad
road conditions fixing the time to noon/midnight and the weather to sunny/rainy respectively,
generating specialized test sets Tgood and Tbad.

Evaluating Mgeneric on Tgeneric, Tgood, and Tbad, we obtained precisions of 83.1, 85.7,
and 72.8%, respectively, and recalls of 92.6, 94.3, and 92.8%. This shows that, as might be
expected, the model performs better on bright days than on rainy nights. This suggests there
might not be enough examples of rainy nights in the training set, and indeed under our default
weather distribution rain is less likely than shine. This illustrates how specialized test sets
can highlight the weaknesses and strengths of a particular model. In Sect. 7.3, we go one step
further and use Scenic to redesign the training set and improve model performance.

7.2.2 Falsifying a dynamic closed-loop system

Next, we demonstrate how we can use a dynamic Scenic scenario to test a closed-loop
system, using VerifAI’s falsification facilities to monitor and analyze counterexamples to
a system-level specification. We tested an autonomous agent14 in the CARLA (Dosovitskiy
et al. 2017) driving simulator, for which we wrote a similar Scenic world model as we did
for GTA V. This agent consists of a planner and controller (but no perception components)
which implement basic driving behaviors including abiding by traffic lights, lane following,
and collision avoidance.

We wrote a Scenic program describing a scenario where the ego vehicle (i.e. the
autonomous agent) is performing a right turn at an intersection, yielding to the crossing
traffic. As the ego approaches the intersection, the traffic light turns green, but a crossing
car runs the red light. The ego vehicle has to decide either to yield or make a right turn.
The crossing car executes a reactive behavior where it slows down to maintain a minimum
distance with any car in front.

14 https://github.com/carla-simulator/carla/blob/dev/PythonAPI/examples/automatic_control.py.

123

https://github.com/carla-simulator/carla/blob/dev/PythonAPI/examples/automatic_control.py

Machine Learning (2023) 112:3805–3849 3839

Fig. 12 Falsification results in CARLA. Top: Town05; bottom: Town03

We allowed three environment parameters to vary in this scenario (code for which can be
found in the Appendix (Fremont et al. 2020a)) :

– The traffic light’s transition from red to green is triggered when the distance between
the ego and the crossing car reaches a threshold, which was uniformly random between
10–30 m.

– The crossing car’s speed was uniformly random between 5–12 m/s.
– The scenario takes place at a random 4-way intersection in the CARLA map. To demon-

strate how Scenic programs can be written in a generic, map-agnostic style, we used the
same Scenic code on two different CARLA maps (Town05 and Town03).

We formulated a safety specification for the autonomous agent in Metric Temporal Logic,
stating that the distance between the agent and the crossing car must be greater than 5 meters
at all times. Giving this specification and the Scenic program toVerifAI, we generated 2,000
scenarios for each map. VerifAI monitored each simulation and computed the robustness
valueρ of theMTL specification,whichmeasures how strongly the specificationwas satisfied
(Koymans 1990) (negative values meaning it was violated).

Our results are shown in Fig. 12. On the left, we plot ρ as a function of the traffic light
trigger threshold and the speed of the crossing car. Each dot represents one simulation, with
redder colors indicating smaller ρ, i.e., being closer to violating the safety specification. We
found a significant number of violations, approximately 21% and 17% of tests on Town05
and Town03 respectively. From the plots we observe broadly similar behavior across the
two maps, with the distance when the traffic light switch occurs being the dominant factor
controlling failures of the autonomous agent (most failures occurring for values of 15–25 m).

123

3840 Machine Learning (2023) 112:3805–3849

1 wiggle = Range(-10 deg, 10 deg)
2 ego = Car with roadDeviation wiggle
3 c = Car visible, with roadDeviation resample(wiggle)
4 leftRight = Uniform(1.0, -1.0) * Range(1.25, 2.75)
5 Car beyond c by (leftRight, Range(4, 10)),
6 with roadDeviation resample(wiggle)

Fig. 13 A scenario where one car partially occludes another. The property roadDeviation is defined in
Car to mean its heading relative to the roadDirection

Fig. 14 Two scenes generated from the partial-occlusion scenario

On the right side of Fig. 12, we plot the average value of ρ at each intersection, with color
again indicating the average value of ρ and the size of each dot being proportional to its
variance. We can see that some intersections are much easier or harder for the autonomous
agent to handle. Investigating some of the most extreme intersections, we observed that those
with 4-lane legs and a turning radius of about 6.5 m caused the agent to fail most frequently.
Re-testing the agent at such intersections,we found that this geometry often created a situation
where the agent and the crossing car were merging into the same lane simultaneously, instead
of one car completing its maneuver before the other.

These results show how we can use Scenic to find scenarios where a closed-loop system
violates its specification. In Sect. 7.4, we will further show how Scenic can help us diagnose
the root causes of failures and eliminate them through retraining.

7.3 Training on rare events

In the synthetic data setting, we are limited not by data availability but by the cost of training.
The natural question is then how to generate a synthetic data set that as effective as possible
given a fixed size. In this section we show that over-representing a type of input that may
occur rarely but is difficult for the model can improve performance on the hard case without
compromising performance in the typical case. Scenic makes this possible by allowing the
user to write a scenario capturing the hard case specifically.

For our car detection task, an obvious hard case is when one car substantially occludes
another. We wrote a simple scenario, shown in Fig. 13, which generates such scenes by
placing one car behind the other as viewed from the camera, offset left or right so that it is at
least partially visible; Fig. 14 shows some of the resulting images. Generating images from
this scenario we obtained a training set Xoverlap of 250 images and a test set Toverlap of 200
images.

For a baseline training set we used the “Driving in theMatrix” synthetic data set (Johnson-
Roberson et al. 2017), which has been shown to yield good car detection performance even

123

Machine Learning (2023) 112:3805–3849 3841

Table 6 Performance of models
trained on 5000 images from
Xmatrix or a mixture with
Xoverlap, averaged over 8 training
runs with random selections of
images from Xmatrix

Mixture Tmatrix Toverlap
% Precision Recall Precision Recall

100/0 72.9 ± 3.7 37.1 ± 2.1 62.8 ± 6.1 65.7 ± 4.0

95/5 73.1 ± 2.3 37.0 ± 1.6 68.9 ± 3.2 67.3 ± 2.4

on real-world images.15 Like our images, the “Matrix” images were rendered in GTAV;
however, rather than using a PPL to guide generation, they were produced by allowing the
game’s AI to drive around randomly while periodically taking screenshots. We randomly
selected 5000 of these images to form a training set Xmatrix, and 200 for a test set Tmatrix.
We trained SqueezeDet for 5,000 iterations on Xmatrix, evaluating it on Tmatrix and Toverlap.
To reduce the effect of jitter during training we used a standard technique (Arlot and Celisse
2010), saving the last 10 models in steps of 10 iterations and picking the one achieving the
best total precision and recall. This yielded the results in the first row of Table 6. Although
Xmatrix contains many images of overlapping cars, the precision on Toverlap is significantly
lower than for Tmatrix, indicating that the network is predicting lower-quality bounding boxes
for such cars.16

Next we attempted to improve the effectiveness of the training set bymixing in the difficult
images producedwith Scenic. Specifically, we replaced a random5%of Xmatrix (250 images)
with images from Xoverlap, keeping the overall training set size constant. We then retrained
the network on the new training set and evaluated it as above. To reduce the dependence
on which images were replaced, we averaged over 8 training runs with different random
selections of the 250 images to replace. The results are shown in the second row of Table 6.
Even altering only 5% of the training set, performance on Toverlap significantly improves.
Critically, the improvement on Toverlap is not paid for by a corresponding decrease on Tmatrix:
performance on the original data set remains the same. Thus, by allowing us to specify and
generate instances of a difficult case, Scenic enables the generation ofmore effective training
sets than can be obtained through simpler approaches not based on PPLs.

7.4 Debugging failures

In our final experiment, we show how Scenic can be used to generalize a single input on
which a model fails, exploring its neighborhood in a variety of different directions and giving
insight into which features of the scene are responsible for the failure. The original failure
can then be generalized to a broader scenario describing a class of inputs on which the
model misbehaves, which can in turn be used for retraining. We selected one scene from
our first experiment, shown in Fig. 15, consisting of a single car viewed from behind at a
slight angle, which Mgeneric wrongly classified as three cars (thus having 33.3% precision
and 100% recall). We wrote several scenarios which left most of the features of the scene
fixed but allowed others to vary. Specifically, scenario (1) varied the model and color of the

15 We use the “Matrix” data set since it is known to be effective for car detection and was not designed by us,
making the fact that Scenic is able to improve it more striking. The results of this experiment also hold under
the Average Precision (AP) metric used in Johnson-Roberson et al. (2017), as well as in a similar experiment
using the Scenic generic two-car scenario from the last section as the baseline. See Appendix (Fremont et al.
2020a) for details.
16 Recall is much higher on Toverlap, meaning the false-negative rate is better; this is presumably because all
the Toverlap images have exactly 2 cars and are in that sense easier than the Tmatrix images, which can have
many cars.

123

3842 Machine Learning (2023) 112:3805–3849

Fig. 15 The misclassified image, with the predicted bounding boxes

Table 7 Performance of Mgeneric
on different scenarios
representing variations of the
image in Fig. 15

Scenario Precision Recall

(1) Varying model and color 80.3 100

(2) Varying background 50.5 99.3

(3) Varying local position, orientation 62.8 100

(4) Varying position but staying close 53.1 99.3

(5) Any position, same apparent angle 58.9 98.6

(6) Any position and angle 67.5 100

(7) Varying background, model, color 61.3 100

(8) Staying close, same apparent angle 52.4 100

(9) Staying close, varying model 58.6 100

car, (2) left the position and orientation of the car relative to the camera fixed but varied
the absolute position, effectively changing the background of the scene, and (3) used the
mutation feature of Scenic to add a small amount of noise to the car’s position, heading,
and color. For each scenario we generated 150 images and evaluated Mgeneric on them. As
seen in Table 7, changing the model and color improved performance the most, suggesting
they were most relevant to the misclassification, while local position and orientation were
less important and global position (i.e. the background) was least important.

To investigate these possibilities further, we wrote a second round of variant scenarios,
also shown in Table 7. The results confirmed the importance of model and color [compare
(2)–(7)], as well as angle [compare (5)–(6)], but also suggested that being close to the camera
could be the relevant aspect of the car’s local position. We confirmed this with a final round
of scenarios [compare (5) and (8)], which also showed that the effect of car model is small
among scenes where the car is close to the camera [compare (4) and (9)].

123

Machine Learning (2023) 112:3805–3849 3843

Table 8 Performance of Mgeneric
after retraining, replacing 10% of
Xgeneric with different data

Replacement Data Precision Recall

Original (no replacement) 82.9 92.7

Classical augmentation 78.7 92.1

Close car 87.4 91.6

Close car at shallow angle 84.0 92.1

Having established that car model, closeness to the camera, and view angle all contribute
to poor performance of the network, we wrote broader scenarios capturing these features. To
avoid overfitting, and since our experiments indicated car model was not very relevant when
the car is close to the camera, we decided not to fix the car model. Instead, we specialized the
generic one-car scenario from our first experiment to produce only cars close to the camera.
We also created a second scenario specializing this further by requiring that the car be viewed
at a shallow angle.

Finally, we used these scenarios to retrain Mgeneric, hoping to improve performance on its
original test set Tgeneric (to better distinguish small differences in performance, we increased
the test set size to 400 images). To keep the size of the training set fixed as in the previous
experiment, we replaced 400 one-car images in Xgeneric (10% of the whole training set)
with images generated from our scenarios. As a baseline, we used images produced with
classical image augmentation techniques implemented in imgaug (Jung 2018). Specifically,
we modified the original misclassified image by randomly cropping 10–20% on each side,
flipping horizontally with probability 50%, and applying Gaussian blur with σ ∈ [0.0, 3.0].

The results of retraining Mgeneric on the resulting data sets are shown in Table 8. Inter-
estingly, using classical augmentation actually decreased performance, presumably due to
overfitting to relatively slight variants of a single image. On the other hand, replacing part
of the data set with specialized images of cars close to the camera significantly reduced the
number of false positives like the original misclassification (while the improvement for the
“shallow angle” scenario was less, perhaps due to overfitting to the restricted angle range).
This demonstrates how Scenic can be used to improve performance by generalizing indi-
vidual failures into scenarios that capture the essence of the problem but are broad enough
to prevent overfitting during retraining.

8 Related work

Synthetic data generation. There has been a large amount ofwork on generating synthetic data
for specific applications, including text recognition (Jaderberg et al. 2014), text localization
(Gupta et al. 2016), robotic object grasping (Tobin et al. 2017), and autonomous driving
(Johnson-Roberson et al. 2017; Filipowicz et al. 2017). Closely related is work on domain
adaptation, which attempts to correct differences between synthetic and real-world input
distributions. Domain adaptation has enabled synthetic data to successfully train models for
several other applications including 3D object detection (Liebelt et al. 2010; Stark et al.
2010), pedestrian detection (Vazquez et al. 2014), and semantic image segmentation (Ros
et al. 2016). Suchwork provides important context for our paper, showing that models trained
exclusively on synthetic data (possibly domain-adapted) can achieve acceptable performance
on real-world data. The major difference in our work is that we provide, through Scenic,
language-based systematic data generation for any cyber-physical system.

123

3844 Machine Learning (2023) 112:3805–3849

A closely-related area is that of Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014a), a particular kind of neural network able to generate realistic synthetic data,
which has been used to augment training sets (Liang et al. 2017; Marchesi 2017). The
difference with Scenic is that GANs require an initial training set/pretrained model and do
not easily incorporate declarative constraints, while Scenic produces synthetic data in an
explainable, programmatic fashion requiring only a simulator. At present, achieving precise
control over the contents of images generated by GANs is challenging. However, in future it
would be interesting to explore using GANs in combination with Scenic, either to improve
the realism of the generated data (as in domain adaptation), or more interestingly, using
Scenic to generate some of the latent variables of the GAN, thereby providing some level
of controllability.

Robustness checking and adversarial ML. Adversarial machine learning (Szegedy et al.
2014) is a field which focuses on the analysis of ML algorithms against adversarial attacks
and the design ofmodels robust to such attacks. Some of thesemethods generatemisclassified
examples by looking at the model gradient and by finding minimal input perturbations that
lead to a misclassification (Szegedy et al. 2013; Goodfellow et al. 2014b; Moosavi-Dezfooli
et al. 2016; Nguyen et al. 2015). Other techniques assume themodel to be gray/black-box and
focus on input modifications or high-level properties of the model (Pei et al. 2017; Dreossi
et al. 2017, 2018). Based on these analyses, some works have explored the idea of using
adversarial examples (i.e. misclassified examples) to retrain and improve ML models (e.g.,
Xu et al. 2016; Wong et al. 2016; Goodfellow et al. 2014b; Dreossi et al. 2018). Our work
on Scenic is complementary to most prior work on adversarial ML, which usually considers
attacks consisting of small pixel-level perturbations to the input images. By contrast, Scenic
is part of a line of work on semantic adversarial ML (Dreossi et al. 2018), enabling search
through a space of meaningful, high-level features rather than individual pixel values.

Model-based test generation. Techniques using a model to guide test generation have long
existed Broy et al. 2005. A popular approach is to provide example tests, as in mutational
fuzz testing (Sutton et al. 2007) and example-based scene synthesis (Fisher et al. 2012).
While these methods are easy to use, they do not provide fine-grained control over the
generated data. Another approach is to give rules or a grammar specifying how the data
can be generated, as in generative fuzz testing (Sutton et al. 2007), procedural generation
from shape grammars (Müller et al. 2006), and grammar-based scene synthesis (Jiang et al.
2018). While grammars allow much greater control, they do not easily allow enforcing
global properties. This is also true when writing a program in a domain-specific language
with nondeterminism (Elmas et al. 2013). Conversely, constraints as in constrained-random
verification (Naveh et al. 2006) allow global properties but can be difficult to write. Scenic
improves on these methods by simultaneously providing fine-grained control, enforcement
of global properties, specification of probability distributions, and simple imperative syntax.

Probabilistic programming languages. The semantics (and to some extent, the syntax) of
Scenic are similar to that of other probabilistic programming languages such as Prob (Gor-
don et al. 2014),Church (Goodmanet al. 2008), andBLOG(Milch et al. 2004). In probabilistic
programming the focus is usually on inference rather than generation (themain application in
our case), and in particular to our knowledge probabilistic programming languages have not
previously been used for test generation. However, the most popular inference techniques are
based on sampling and so could be directly applied to generate scenes from Scenic programs,
as we discussed in Sect. 6.

123

Machine Learning (2023) 112:3805–3849 3845

Several probabilistic programming languages have been used to define generative mod-
els of objects and scenes: both general-purpose languages such as WebPPL (Goodman and
Stuhlmüller 2014) (see, e.g., Ritchie (2016)) and languages specifically motivated by such
applications, namely Quicksand (Ritchie 2014) and Picture (Kulkarni et al. 2015). The latter
are in some sense the most closely-related to Scenic, although neither provides special-
ized syntax or semantics for dealing with geometry or dynamic behaviors (Picture also was
used only for inverse rendering, not data generation). The main advantage of Scenic over
these languages is that its domain-specific design permits concise representation of complex
scenarios and enables specialized sampling techniques.

Scenario description languages for autonomous driving. Recently, formal dynamic scenario
description languages have been proposed for the domain of autonomous driving. The Para-
cosm language (Majumdar et al. 2019) is used to model dynamic scenarios with a reactive
and synchronous model of computation. However, it is not a PPL, so it lacks probability
distributions and declarative constraints; it also does not provide constructs like Scenic’s
interrupts which allow easy customization of generic behavior models. The Measurable Sce-
nario Description Language (M-SDL) (Foretellix 2020) does provide declarative constraints,
as well as compositional features similar to those we introduced in this paper. However, com-
pared to both of these languages (which were introduced after the first version of this paper),
Scenic has several distinguishing features: (1) it provides a much higher-level, declarative
way of specifying geometric constraints; (2) it is fundamentally a probabilistic programming
language (as opposed to M-SDL where distributions are optional), and (3) it is not specific
to the autonomous driving domain (as demonstrated in Fremont et al. (2019, 2020)).

9 Conclusion

In this paper, we introduced Scenic, a probabilistic programming language for specifying
distributions over configurations of physical objects and the behaviors of dynamic agents.
We showed how Scenic can be used to generate synthetic data sets useful for a variety of
tasks in the design of robust ML-based cyber-physical systems. Specifically, we used Scenic
to generate specialized test sets and falsify a system, improve the robustness of a system by
emphasizing difficult cases in its training set, and generalize from individual failure cases to
broader scenarios suitable for retraining. In particular, by training on hard cases generated
by Scenic, we were able to boost the performance of a car detector neural network (given a
fixed training set size) significantly beyond what could be achieved by prior synthetic data
generation methods (Johnson-Roberson et al. 2017) not based on PPLs.

In future work we plan to conduct experiments applying Scenic to a variety of additional
domains, applications, and simulators. As wementioned in the Introduction, we have already
successfully applied Scenic to aircraft (Fremont et al. 2020), and we are currently inves-
tigating applications in further domains including underwater vehicles and indoor robots.
We also plan to extend the Scenic language itself in several directions, including allowing
user-defined specifiers and describing 3D scenes. Finally, we are exploring ways to com-
bine Scenic with automated analyses: in particular, reducing the human burden of writing
Scenic programs through algorithms for synthesizing or adapting such programs (e.g. Kim
et al. (2020)), and improving the efficiency of falsification by performing white-box analyses
of the system.

123

3846 Machine Learning (2023) 112:3805–3849

Acknowledgements The authors are grateful to Johnathan Chiu, Greg Crow, Francis Indaheng, Ellen Kalvan,
Kevin Li, Matthew Rhea, Jay Shenoy, Kesav Viswanadha, and Wilson Wu for helping to develop and
test Scenic libraries and simulator interfaces. The authors also thank Ankush Desai, Alastair Donald-
son, Andrew Gordon, Steve Lemke, Shalin Mehta, Jonathan Ragan-Kelley, Sriram Rajamani, and several
anonymous reviewers for helpful discussions and feedback. This work is supported in part by the National
Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1106400, NSF grants
CNS-1545126 (VeHICaL), CNS-1646208, CNS-1739816, and CCF-1837132, by DARPA contracts FA8750-
16-C0043 (Assured Autonomy) and FA8750-20-C-0156 (Symbiotic Design of Cyber-Physical Systems), by
BerkeleyDeepDrive, by Toyota through the iCyPhy center, and by TerraSwarm, one of six centers of STARnet,
a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

Author Contributions DJF and SAS conceived of Scenic, scene/scenario improvisation, and the applications
reported in this paper. DJF led the design of Scenic, guided by SAS andwith input from the other authors. DJF
implemented the language. SG and TD developed some of the pruning algorithms, and the library allowing
Scenic to read the GTAV map. XY implemented the GTAV plugin to import Scenic scenes and capture the
resulting data. TD and DJF designed the GTAV experiments and ran them with XY. EK designed and ran the
CARLA experiments, and helped design and implement the library for dynamic driving scenarios. DJF, TD,
XY, and SAS wrote the conference version of the paper (Fremont et al. 2019) in consultation with SG; the
new material in this extended version was written by DJF and EK. SAS and ASV supervised the project and
revised both versions of the paper.

Funding See Acknowledgements above.

Availability of data and materials Software and documentation for generating the datasets used in this paper
can be found in the Scenic repository (see below).

Declarations

Conflict of interest DJF is a guest editor of the special issue in which this article appears; he was recused from
all matters related to this paper. Otherwise, the authors have no conflicts of interest to declare that are relevant
to the content of this article.

Code availability The Scenic implementation is open-source; its code, as well as code for all Scenic programs
used in this paper, can be found at https://github.com/BerkeleyLearnVerify/Scenic.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F., Schulman, J., & Mané, D. (2016). Concrete problems
in AI safety. CoRR. arXiv:abs/1606.06565

Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys,
4, 40–79. https://doi.org/10.1214/09-SS054

Azad, A. S., Kim, E., Wu, Q., Lee, K., Stoica, I., Abbeel, P., Seshia, S. A. (2021). Scenic4rl: Programmatic
modeling and generation of reinforcement learning environments. CoRR. arXiv:abs/2106.10365

Baidu. (2020). Apollo. https://apollo.auto/
Broy, M., Jonsson, B., Katoen, J. P., Leucker, M., & Pretschner, A. (2005). Model-based testing of reactive

systems: Advanced lectures (lecture notes in computer science). Springer.

123

https://github.com/BerkeleyLearnVerify/Scenic
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1606.06565
https://doi.org/10.1214/09-SS054
http://arxiv.org/abs/2106.10365
https://apollo.auto/

Machine Learning (2023) 112:3805–3849 3847

Claret, G., Rajamani, S. K., Nori, A. V., Gordon, A. D., & Borgström, J. (2013). Bayesian inference using
data flow analysis. In Proceedings of the 2013 9th joint meeting on foundations of software engineering
(pp. 92–102). ACM.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open urban driving
simulator. In Conference on robot learning, CoRL (pp. 1–16).

Dreossi, T., Donzé, A., & Seshia, S. A. (2017). Compositional falsification of cyber-physical systems with
machine learning components. In NASA formal methods, NFM (pp. 357–372). https://doi.org/10.1007/
978-3-319-57288-8_26

Dreossi, T., Fremont, D. J., Ghosh, S., Kim, E., Ravanbakhsh, H., Vazquez-Chanlatte, M., & Seshia, S. A.
(2019). VerifAI: A toolkit for the formal design and analysis of artificial intelligence-based systems. In
I. Dillig, & S. Tasiran (Eds.), Computer aided verification—31st international conference, CAV 2019,
New York City, NY, USA, July 15–18, 2019, proceedings, part I, lecture notes in computer science (Vol.
11561, pp. 432–442). Springer. https://doi.org/10.1007/978-3-030-25540-4_25

Dreossi, T., Ghosh, S., Yue, X., Keutzer, K., Sangiovanni-Vincentelli, A. L., & Seshia, S. A. (2018).
Counterexample-guided data augmentation. In J. Lang (Ed.), Proceedings of the 27th international joint
conference on artificial intelligence, IJCAI 2018, July 13–19, 2018, Stockholm, Sweden (pp. 2071–2078).
ijcai.org. https://doi.org/10.24963/ijcai.2018/286

Dreossi, T., Jha, S.,&Seshia, S.A. (2018). Semantic adversarial deep learning. In 30th international conference
on computer aided verification (CAV).

DuPont. (2012). Global automotive color popularity report. https://web.archive.org/web/
20130818022236/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/
DuPont2012ColorPopularity.pdf

Elmas, T.,Burnim, J.,Necula,G.,&Sen,K. (2013).CONCURRIT:Adomain specific language for reproducing
concurrency bugs. In: Proceedings of the 34th ACM SIGPLAN conference on programming language
design and implementation, PLDI ’13 (pp. 153–164). Association for ComputingMachinery. https://doi.
org/10.1145/2491956.2462162

Filipowicz, A., Liu, J., & Kornhauser, A. (2017). Learning to recognize distance to stop signs using the virtual
world of grand theft auto 5. Tech. rep., Princeton University.

Fisher, M., Ritchie, D., Savva, M., Funkhouser, T., & Hanrahan, P. (2012). Example-based synthesis of 3d
object arrangements. In ACM SIGGRAPH 2012, SIGGRAPH Asia ’12.

Foretellix. (2020). Measurable scenario description language. https://www.foretellix.com/wp-content/
uploads/2020/07/M-SDL_LRM_OS.pdf

Fremont, D., Yue, X., Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A. L., & Seshia, S. A. (2018). Scenic:
Language-based scene generation. Tech. Rep. UCB/EECS-2018-8, EECS Department, University of
California. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-8.html

Fremont, D. J. (2019). Algorithmic improvisation. Ph.D. thesis, University of California. https://escholarship.
org/uc/item/3812m6wx

Fremont, D. J., Chiu, J., Margineantu, D. D., Osipychev, D., & Seshia, S. A. (2020). Formal analysis and
redesign of a neural network-based aircraft taxiing systemwith VerifAI. In 32nd international conference
on computer aided verification (CAV).

Fremont, D. J., Donzé, A., Seshia, S. A., & Wessel, D. (2015). Control improvisation. In 35th IARCS annual
conference on foundation of software technology and theoretical computer science (FSTTCS), LIPIcs
(Vol. 45, pp. 463–474).

Fremont, D. J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A. L., & Seshia, S. A. (2019). Scenic:
A language for scenario specification and scene generation. In K. S. McKinley, & K. Fisher (Eds.), Pro-
ceedings of the 40th ACM SIGPLAN conference on programming language design and implementation
(PLDI) (pp. 63–78). ACM. https://doi.org/10.1145/3314221.3314633

Fremont, D. J., Kim, E., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A. L., & Seshia, S. A. (2020).
Scenic: A language for scenario specification and data generation. https://arxiv.org/abs/2010.06580

Fremont, D. J., Kim, E., Pant, Y. V., Seshia, S. A., Acharya, A., Bruso, X., Wells, P., Lemke, S., Lu, Q., &
Mehta, S. (2020). Formal scenario-based testing of autonomous vehicles: From simulation to the real
world. In 2020 IEEE intelligent transportation systems conference, ITSC 2020 (pp. 913–920). IEEE.
arxiv:2003.07739

Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? the Kitti vision benchmark
suite. In Computer vision and pattern recognition, CVPR (pp. 3354–3361). https://doi.org/10.1109/
CVPR.2012.6248074

Goldberg, A., & Robson, D. (1983). Smalltalk-80: The language and its implementation. Addison-Wesley.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.

(2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–
2680).

123

https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-319-57288-8_26
https://doi.org/10.1007/978-3-030-25540-4_25
https://doi.org/10.24963/ijcai.2018/286
https://web.archive.org/web/20130818022236/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf
https://web.archive.org/web/20130818022236/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf
https://web.archive.org/web/20130818022236/http://www2.dupont.com/Media_Center/en_US/color_popularity/Images_2012/DuPont2012ColorPopularity.pdf
https://doi.org/10.1145/2491956.2462162
https://doi.org/10.1145/2491956.2462162
https://www.foretellix.com/wp-content/uploads/2020/07/M-SDL_LRM_OS.pdf
https://www.foretellix.com/wp-content/uploads/2020/07/M-SDL_LRM_OS.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-8.html
https://escholarship.org/uc/item/3812m6wx
https://escholarship.org/uc/item/3812m6wx
https://doi.org/10.1145/3314221.3314633
https://arxiv.org/abs/2010.06580
http://arxiv.org/abs/2003.07739
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074

3848 Machine Learning (2023) 112:3805–3849

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. CoRR.
arXiv:1412.6572

Goodman, N., Mansinghka, V. K., Roy, D., Bonawitz, K., Tenenbaum, J. B. (2008). Church: A universal
language for generative models. In Uncertainty in artificial intelligence 24 (UAI) (pp. 220–229).

Goodman, N. D., Stuhlmüller, A. (2014). The design and implementation of probabilistic programming lan-
guages. Retrieved July 11, 2018, from http://dippl.org

Gordon, A. D., Henzinger, T. A., Nori, A. V., & Rajamani, S. K. (2014). Probabilistic programming. In FOSE
2014 (pp. 167–181). ACM.

Gupta, A., Vedaldi, A., & Zisserman, A. (2016). Synthetic data for text localisation in natural images. In
Computer vision and pattern recognition, CVPR (pp. 2315–2324). https://doi.org/10.1109/CVPR.2016.
254

Jaderberg,M., Simonyan,K., Vedaldi, A.,&Zisserman,A. (2014). Synthetic data and artificial neural networks
for natural scene text recognition. CoRR. arXiv:abs/1406.2227

Jiang, C., Qi, S., Zhu, Y., Huang, S., Lin, J., Yu, L. F., Terzopoulos, D., & Zhu, S. C. (2018). Configurable
3d scene synthesis and 2d image rendering with per-pixel ground truth using stochastic grammars.
International Journal of Computer Vision, 1–22.

Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S. N., Rosaen, K., & Vasudevan, R. (2017). Driving in
the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In Interna-
tional conference on robotics and automation, ICRA (pp. 746–753). https://doi.org/10.1109/ICRA.2017.
7989092

Jung, A. (2018). imgaug. https://github.com/aleju/imgaug
Kim, E., Gopinath, D., Pasareanu, C. S., & Seshia, S. A. (2020). A programmatic and semantic approach

to explaining and debugging neural network based object detectors. In 2020 IEEE/CVF conference on
computer vision and pattern recognition, CVPR 2020 (pp. 11125–11134). IEEE. https://doi.org/10.1109/
CVPR42600.2020.01114

Koymans, R. (1990). Specifying real-time properties with metric temporal logic. Real-Time Systems, 2(4),
255–299.

Kulkarni, T., Kohli, P., Tenenbaum, J. B., & Mansinghka, V. K. (2015). Picture: A probabilistic programming
language for scene perception. In IEEE conference on computer vision and pattern recognition (CVPR)
(pp. 4390–4399).

Laminar Research. (2019). X-plane 11. https://www.x-plane.com/
Liang, X., Hu, Z., Zhang, H., Gan, C., & Xing, E. P. (2017). Recurrent topic-transition GAN for visual

paragraph generation. ArXiv preprint. arXiv:1703.07022
Liebelt, J., & Schmid, C. (2010). Multi-view object class detection with a 3d geometric model. In Computer

vision and pattern recognition, CVPR (pp. 1688–1695). https://doi.org/10.1109/CVPR.2010.5539836
Majumdar, R., Mathur, A. S., Pirron, M., Stegner, L., & Zufferey, D. (2019). Paracosm: A language and tool

for testing autonomous driving systems. CoRR. arxiv:1902.01084
Marchesi, M. (2017). Megapixel size image creation using generative adversarial networks. ArXiv preprint

(2017). arXiv:1706.00082
Michel, O. (2004). Webots: Professional mobile robot simulation. International Journal of Advanced Robotic

Systems, 1(1), 39–42.
Milch, B., Marthi, B., & Russell, S. (2004). Blog: Relational modeling with unknown objects. In ICML 2004

workshop on statistical relational learning and its connections to other fields (pp. 67–73).
Moosavi-Dezfooli, S., Fawzi, A., & Frossard, P. (2016). Deepfool: A simple and accurate method to fool deep

neural networks. In Computer Vision and Pattern Recognition, CVPR (pp. 2574–2582). https://doi.org/
10.1109/CVPR.2016.282

Müller, P., Wonka, P., Haegler, S., Ulmer, A., & Gool, L. V. (2006). Procedural modeling of buildings. ACM
Transactions Graphics, 25(3), 614–623. https://doi.org/10.1145/1141911.1141931

Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., & Shurek, G. (2006). Constraint-based
random stimuli generation for hardware verification. In Proc. of AAAI (pp. 1720–1727).

Nguyen, A. M., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily fooled: High confidence
predictions for unrecognizable images. InComputer vision and pattern recognition, CVPR (pp. 427–436).
https://doi.org/10.1109/CVPR.2015.7298640

Nori, A.V., Hur, C.K., Rajamani, S. K.,&Samuel, S. (2014). R2:An efficientMCMCsampler for probabilistic
programs. In AAAI (pp. 2476–2482).

Pei, K., Cao, Y., Yang, J., & Jana, S. (2017). Deepxplore: Automated whitebox testing of deep learning sys-
tems. In Symposium on operating systems principles, SOSP (pp. 1–18). https://doi.org/10.1145/3132747.
3132785

123

http://arxiv.org/abs/1412.6572
http://dippl.org
https://doi.org/10.1109/CVPR.2016.254
https://doi.org/10.1109/CVPR.2016.254
http://arxiv.org/abs/1406.2227
https://doi.org/10.1109/ICRA.2017.7989092
https://doi.org/10.1109/ICRA.2017.7989092
https://github.com/aleju/imgaug
https://doi.org/10.1109/CVPR42600.2020.01114
https://doi.org/10.1109/CVPR42600.2020.01114
https://www.x-plane.com/
http://arxiv.org/abs/1703.07022
https://doi.org/10.1109/CVPR.2010.5539836
http://arxiv.org/abs/1902.01084
http://arxiv.org/abs/1706.00082
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1109/CVPR.2016.282
https://doi.org/10.1145/1141911.1141931
https://doi.org/10.1109/CVPR.2015.7298640
https://doi.org/10.1145/3132747.3132785
https://doi.org/10.1145/3132747.3132785

Machine Learning (2023) 112:3805–3849 3849

Ritchie, D. (2014). Quicksand: A lightweight embedding of probabilistic programming for procedural mod-
eling and design. In 3rd NIPS workshop on probabilistic programming. https://dritchie.github.io/pdf/qs.
pdf

Ritchie, D. (2016). Probabilistic programming for procedural modeling and design. Ph.D. thesis, Stanford
University. https://purl.stanford.edu/vh730bw6700

Rockstar Games. (2015). Grand theft auto v. Windows PC version. https://www.rockstargames.com/games/
info/V

Rong, G., Shin, B. H., Tabatabaee, H., Lu, Q., Lemke, S., Možeiko, M., Boise, E., Uhm, G., Gerow,M., Mehta,
S., Agafonov, E., Kim, T. H., Sterner, E., Ushiroda, K., Reyes, M., Zelenkovsky, D., Kim, S. (2020).
LGSVL simulator: A high fidelity simulator for autonomous driving. arxiv:2005.03778

Ros, G., Sellart, L., Materzynska, J., Vázquez, D., & López, A. M. (2016). The SYNTHIA dataset: A large
collection of synthetic images for semantic segmentation of urban scenes. InComputer vision and pattern
recognition, CVPR (pp. 3234–3243). https://doi.org/10.1109/CVPR.2016.352

Rubinstein, R. Y., & Kroese, D. P. (2004). The cross-entropy method: A unified approach to combinatorial
optimization, Monte-Carlo simulation, and machine learning. Springer. https://doi.org/10.1007/978-1-
4757-4321-0

Russell, S., Dietterich, T., Horvitz, E., Selman, B., Rossi, F., Hassabis, D., Legg, S., Suleyman, M., George,
D., & Phoenix, S. (2015). Letter to the editor: Research priorities for robust and beneficial artificial
intelligence: An open letter. AI Magazine, 36, 4.

Saheb-Djahromi, N. (1978). Probabilistic LCF. In Mathematical foundations of computer science (pp. 442–
451). Springer.

Seshia, S. A., Sadigh, D., & Sastry, S. S. (2016). Towards verified artificial intelligence. ArXiv e-prints.
Stark, M., Goesele, M., & Schiele, B. (2010). Back to the future: Learning shape models from 3d CAD data.

In British machine vision conference, BMVC (pp. 1–11). https://doi.org/10.5244/C.24.106
Sutton, M., Greene, A., & Amini, P. (2007). Fuzzing: Brute force vulnerability discovery. Addison-Wesley.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2014). Intriguing

properties of neural networks. In International conference on learning representations (ICLR).
Szegedy, C., Zaremba,W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., & Fergus, R. (2013). Intriguing

properties of neural networks. CoRR. arxiv:1312.6199
Thorn, E., Kimmel, S., & Chaka, M. (2018). A framework for automated driving system testable cases and

scenarios. Tech. Rep. DOT HS 812 623, National Highway Traffic Safety Administration. https://www.
nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017). Domain randomization for
transferring deep neural networks from simulation to the real world. In International conference on
intelligent robots and systems, IROS (pp. 23–30). https://doi.org/10.1109/IROS.2017.8202133

Vazquez, D., Lopez, A. M., Marin, J., Ponsa, D., & Geronimo, D. (2014). Virtual and real world adaptation for
pedestrian detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(4), 797–809.

Wong, S. C., Gatt, A., Stamatescu, V., & McDonnell, M. D. (2016). Understanding data augmentation for
classification: when to warp? In Digital image computing: Techniques and applications (DICTA), 2016
international conference on (pp. 1–6). IEEE.

Wood, F., Meent, J. W., & Mansinghka, V. (2014). A new approach to probabilistic programming inference.
In Artificial intelligence and statistics (pp. 1024–1032).

Wu, B., Iandola, F. N., Jin, P. H., & Keutzer, K. (2017). Squeezedet: Unified, small, low power fully convolu-
tional neural networks for real-time object detection for autonomous driving. In Conference on computer
vision and pattern recognition workshops, CVPR workshops (pp. 446–454). https://doi.org/10.1109/
CVPRW.2017.60

Xu, Y., Jia, R., Mou, L., Li, G., Chen, Y., Lu, Y., & Jin, Z. (2016). Improved relation classification by deep
recurrent neural networks with data augmentation. ArXiv preprint. arXiv:1601.03651

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://dritchie.github.io/pdf/qs.pdf
https://dritchie.github.io/pdf/qs.pdf
https://purl.stanford.edu/vh730bw6700
https://www.rockstargames.com/games/info/V
https://www.rockstargames.com/games/info/V
http://arxiv.org/abs/2005.03778
https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.1007/978-1-4757-4321-0
https://doi.org/10.1007/978-1-4757-4321-0
https://doi.org/10.5244/C.24.106
http://arxiv.org/abs/1312.6199
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/CVPRW.2017.60
https://doi.org/10.1109/CVPRW.2017.60
http://arxiv.org/abs/1601.03651

	Scenic: a language for scenario specification and data generation
	Abstract
	1 Introduction
	2 Using PPLs to design and analyze ML-based cyber-physical systems
	3 The basic Scenic language
	4 Dynamic and compositional scenarios
	4.1 Dynamic scenarios
	4.2 Compositional scenarios

	5 Syntax of Scenic
	5.1 Data types
	5.2 Expressions
	5.3 Specifiers
	5.4 Statements

	6 Semantics and concrete scenario generation
	6.1 Semantics of Scenic
	6.2 Domain-specific sampling techniques

	7 Experiments
	7.1 Experimental setup
	7.2 Testing and falsification
	7.2.1 Testing a perception module
	7.2.2 Falsifying a dynamic closed-loop system

	7.3 Training on rare events
	7.4 Debugging failures

	8 Related work
	9 Conclusion
	Acknowledgements
	References

