
Vol.:(0123456789)

https://doi.org/10.1007/s10994-021-06119-y

1 3

Stronger data poisoning attacks break data sanitization
defenses

Pang Wei Koh1  · Jacob Steinhardt2 · Percy Liang1

© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Machine learning models trained on data from the outside world can be corrupted by data
poisoning attacks that inject malicious points into the models’ training sets. A common
defense against these attacks is data sanitization: first filter out anomalous training points
before training the model. In this paper, we develop three attacks that can bypass a broad
range of common data sanitization defenses, including anomaly detectors based on nearest
neighbors, training loss, and singular-value decomposition. By adding just 3% poisoned
data, our attacks successfully increase test error on the Enron spam detection dataset from
3 to 24% and on the IMDB sentiment classification dataset from 12 to 29%. In contrast,
existing attacks which do not explicitly account for these data sanitization defenses are
defeated by them. Our attacks are based on two ideas: (i) we coordinate our attacks to
place poisoned points near one another, and (ii) we formulate each attack as a constrained
optimization problem, with constraints designed to ensure that the poisoned points evade
detection. As this optimization involves solving an expensive bilevel problem, our three
attacks correspond to different ways of approximating this problem, based on influence
functions; minimax duality; and the Karush–Kuhn–Tucker (KKT) conditions. Our results
underscore the need to develop more robust defenses against data poisoning attacks.

Keywords  Data poisoning · Data sanitization · Anomaly detection · Security

Pang Wei Koh and Jacob Steinhardt contributed equally.

Editors: Daniel Fremont, Mykel Kochenderfer, Alessio Lomuscio, Dragos Margineantu, Cheng Soon-Ong.

 *	 Pang Wei Koh
	 pangwei@cs.stanford.edu

	 Jacob Steinhardt
	 jsteinhardt@berkeley.edu

	 Percy Liang
	 pliang@cs.stanford.edu

1	 Department of Computer Science, Stanford University, Stanford, USA
2	 Department of Statistics, UC Berkeley, Berkeley, USA

Machine Learning (2022) 111:1–47

 Received: 24 March 2020 / Revised: 30 September 2021 / Accepted: 27 October 2021 /
Published online: 24 November 2021

http://orcid.org/0000-0003-4330-6969
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06119-y&domain=pdf

	

1 3

1  Introduction

In high-stakes settings like autonomous driving (Gu et al., 2017), biometrics (Chen et al.,
2017), and cybersecurity (Rubinstein et al., 2009; Suciu et al., 2018), machine learning
(ML) systems need to be secure against attacks by malicious actors. Securing ML systems
is complicated by the fact that they are often trained on data obtained from the outside
world, which makes them especially vulnerable. By attacking this data collection process,
which could be as easy as creating a new user account, adversaries can inject malicious
data into the system and cause it to fail.

These data poisoning attacks are the focus of the present work. We consider attacks
against classifiers, wherein an attacker adds some small fraction of new training points to
degrade the performance of the trained classifier on a test set. Figure 1 illustrates this set-
ting: a model that might otherwise correctly classify most of the data (Fig. 1-Left) can be
made to learn a significantly different decision boundary by an attacker who injects just a
small amount of poisoned data (Fig. 1-Middle).

A common and often effective defense against data poisoning attacks is data sanitiza-
tion, which use anomaly detectors to filter out training points that look suspicious (Hodge
& Austin, 2004; Cretu et al., 2008; Paudice et al., 2018). Figure 1-Right illustrates a hypo-
thetical defense: by removing the anomalous poisoned data, the defender can learn the cor-
rect decision boundary. In our experiments, common data sanitization defenses were able
to defeat all of the existing data poisoning attacks we tested.

However, those attacks were naive in the sense that they did not explicitly try to evade
the data sanitization defenses. This is typical in the literature: attackers might be optimized
to act within an attack budget (Mei & Zhu, 2015b) and to only add points that belong to
the input domain (e.g., word counts in a document should be integer-valued (Nelson et al.,
2008; Newell et al., 2014), but not to evade defenses. Previous work has suggested that
attacks optimized for evading data sanitization can in fact evade some types of defenses
(Steinhardt et al., 2017), whereas attacks that are not optimized can be easily detected as
anomalies (Frederickson et al., 2018). This leads to the question of whether data sanitiza-
tion defenses are vulnerable to attackers who explicitly try to evade anomaly detection.

In this paper, we answer this question in the affirmative. We develop three data poi-
soning attacks that can simultaneously evade a broad range of common data sanitization

Fig. 1   Left: In the absence of any poisoned data, the defender can often learn model parameters 𝜃̂ that fit
the true data Dc well. Here, we show the decision boundary learned by a linear support vector machine on
synthetic data. Middle: However, the addition of poisoned data Dp can significantly change the learned 𝜃̂ ,
leading to high test error L(𝜃̂) . Right: By discarding outliers from D = Dc ∪Dp and then training on the
remaining Dsan , the defender can mitigate the effectiveness of the attacker. In this example, the defender dis-
cards all blue points outside the blue ellipse, and all red points outside the red ellipse (Color figure online)

Machine Learning (2022) 111:1–472

	

1 3

defenses, including anomaly detectors based on nearest neighbors, training loss, singular-
value decomposition, and the distance to class centroids. Our attacks are also able to deal
with integer constraints on the input, which naturally arise in domains like natural lan-
guage. For example, our attacks on a linear support vector machine increase test error on
the Enron spam detection dataset from 3 to 24% and on the IMDB sentiment classification
dataset from 12 to 29% by adding just 3% poisoned data, even in the presence of these data
sanitization defenses.

We adopt two strategies to evade data sanitization defenses. The first strategy is targeted
at defenses which use anomaly detectors that are highly sensitive to the presence of just a
few points: e.g., an anomaly detector that throws out points which are far from their near-
est neighbors will not recognize a point as anomalous if it is surrounded by a few other
points, even if that small group of points is far from the rest of the data. Intuitively, such
detectors tend to ‘overfit’ the training data. To evade these defenses, our attacks concen-
trate poisoned points in just a few distinct locations (Sect. 3). For example, poisoned data
placed in a tight cluster will evade the nearest-neighbor-based anomaly detector that throws
out points far away from other points. We show theoretically that we can concentrate all of
the attack mass on just a few distinct points (e.g., only 2 points for 2-class support vector
machines (SVMs) and logistic regression models) without any loss in attack effectiveness.

The second strategy is targeted at defenses which use anomaly detectors that are less
sensitive and tend to be highly parametric: e.g., an anomaly detector that throws out points
beyond some distance from the data centroid will not depend too much on the addition or
removal of a few points from the data, as long as the data centroid does not change sig-
nificantly. These defenses are more resistant to concentrated attacks, since they are less
sensitive to small changes in the data (in this paper, we consider only attacks that inject a
small fraction—3% or less—of poisoned data). To evade them, we formulate the attack as
a constrained optimization problem, where the objective is to maximize the test loss of the
model that the defender learns on the union of the clean and poisoned data; the optimiza-
tion variables are the locations of the poisoned points; and the constraints are imposed by
the defenses (such that a point that satisfies the constraints will be guaranteed to evade the
defenses).

Formulating a data poisoning attack as an optimization problem is a common technique,
first introduced in the context of support vector machines in Biggio et al. (2012b) and sub-
sequently refined by Mei and Zhu (2015b) and later work. The central difficulty is that the
bilevel problem—the attacker needs to reason about what model the defender would learn,
which in turn requires solving an inner optimization problem—is non-convex and intracta-
ble to solve exactly (Bard 1991), and even local methods like gradient ascent can be slow
(Koh & Liang, 2017). This is made even more challenging in our setting, compared to prior
work, because we have additional constraints that encode the defenses that the attacker
wishes to evade. To overcome this computational hurdle, we use two ideas:

1.	 We concentrate the attacks on a small number of distinct points. Beyond allowing us to
evade some data sanitization defenses, as discussed above, it also significantly improves
computational efficiency as we only need to optimize for the locations of a few distinct
points. We use this to speed up gradient ascent on the bilevel optimization problem,
leading to what we call the influence attack (Sect. 4.1).

2.	 The bilevel problem is expensive to solve because the effect of the optimization vari-
ables (poisoned points) on the objective (test loss) depends on the model parameters that
the defender learns on the poisoned data, an intermediate quantity that is expensive to

Machine Learning (2022) 111:1–47 3

	

1 3

compute. We break this dependency by first finding decoy parameters—model param-
eters that have high test error but low training error. Given fixed decoy parameters, we
can then efficiently find poisoned points that yield the decoy parameters when trained
on. We call this the KKT attack (Sect. 4.2), after the Karush–Kuhn–Tucker optimality
conditions that used to derive this attack. Furthermore, we use these decoy parameters to
adapt the attack introduced by Steinhardt et al. (2017), which in its original form is effi-
cient but cannot evade loss-based defenses; this leads to our min–max attack (Sect. 4.3).
These attacks mitigate some of the drawbacks of the influence attack, which is still too
computationally intensive to scale to large datasets and sometimes gets stuck in local
minima.

Finally, our study reveals several surprising facts about data poisoning:

1.	 Poisoned data does not have to look anomalous; if the poisoned points are carefully
coordinated, each poisoned point can appear normal, as in the above example of the
nearest-neighbor based anomaly detector.

2.	 Poisoned points need not have high loss under the poisoned model, so the defender
cannot simply throw out points that have high loss. For example, given fixed decoy
parameters, we can constrain our poisoned data to have low loss under those parameters.

3.	 Regularization reduces the effect that any single data point can have on the model and
is therefore tempting to use as a defense against data poisoning. However, increasing
regularization can actually make the defender more susceptible to attacks, because the
defender becomes less able to fit the small fraction of poisoned points.

The success of our data poisoning attacks against common anomaly-based data sanitiza-
tion defenses suggest that more work needs to be done on defending against data poison-
ing attacks. In particular, while anomaly detectors are well-suited to detect independently-
generated anomalous points (e.g., due to some noise process in nature), a robust defense
against data poisoning attacks will have to account for the ability of the attacker to place all
of their poisoned data points in a coordinated fashion.

Beyond the merits of our specific attacks, our results underscore a broader point: data
poisoning attacks need to account for defenses, and defenses correspondingly need to
account for attacks that are specifically targeted against them. Attacks that do not consider
defenses might work against a naive defender but be easily defeated by other defenses.
Similarly, defenses that are only tested against basic attacks might give a false sense of
security, as they might be broken by more determined and coordinated attackers.

2 � Problem setting and defenses

2.1 � General setting

We consider classification tasks. To simplify exposition, we focus on binary tasks, where
we seek to learn a model f� ∶ X → {−1,+1} , parametrized by � ∈ ℝ

d , that maps from
features x ∈ X to an output y ∈ {−1,+1} . A model f� is evaluated on a fixed test set
Dtest = {(xi, yi)}

ntest
i=1

 by its 0–1 test error L0-1(�;Dtest) , which is the proportion of Dtest that it
classifies wrongly:

Machine Learning (2022) 111:1–474

	

1 3

In the setting we consider, the defender aims to pick a 𝜃̂ with low test error L0-1(𝜃̂;Dtest) ,
while the attacker aims to mislead the defender into picking a 𝜃̂ with high L0-1(𝜃̂;Dtest) .
The attacker observes the test set Dtest as well as a clean training set Dc = {(xi, yi)}

n
i=1

 , and
chooses �n poisoned points Dp to add to Dc . The defender observes the combined training
set D = Dc ∪Dp consisting of the original n clean points and the �n additional poisoned
points; uses a data sanitization defense to remove anomalous points; and then learns 𝜃̂ from
the remaining data.

The attacker has several advantages: it knows the test set in advance (whereas the
defender does not); it knows the defender’s training procedure; and it also gets to observe
the clean training set Dc . In reality, the attacker might not have access to all of this infor-
mation. However, as defenders, we want to be robust even to attackers that might have
the above information (this is the principle of security by design; see, e.g., Biggio et al.
(2014)). For example, an attacker whose goal is to make the defender get a particular set of
predictions wrong (e.g., the attacker might want to cause a “fake news” classifier to classify
all websites from a certain domain as “real news”) would accordingly choose, and there-
fore get to observe, Dtest . In contrast, the defender might not know the attacker’s goal in
advance, and therefore would not have access to Dtest.

Attacker

–	 Input: Clean training data Dc and test data Dtest.
–	 Output: Poisoned training data Dp , with |Dp| = �|Dc|.
–	 Goal: Mislead defender into learning parameters 𝜃̂ with high test error L0-1(𝜃̂;Dtest).

Defender

–	 Input: Combined training data D = Dc ∪Dp.
–	 Output: Model parameters 𝜃̂.
–	 Goal: Learn model parameters 𝜃̂ with low test error L0-1(𝜃̂;Dtest) by filtering out poi-

soned points Dp.

Further assumptions in experiments In our experiments, we assume that f� is a linear clas-
sifier, i.e., f𝜃(x) = sign (𝜃⊤x) for binary tasks. We consider both binary and multi-class
classification. We also focus on indiscriminate attacks (Barreno et al., 2010), where the test
data Dtest is drawn from the same distribution as the clean training data Dc , and the attacker
tries to increase the average test error of the defender’s model under this underlying data
distribution. In Sect. 6.1, we show that the attacker can still construct strong indiscriminate
attacks even when they do not know the test data Dtest . Most of our methods are also appli-
cable to more general choices of Dtest ; we discuss this further in Sect. 7.

2.2 � Data sanitization defenses

To thwart the attacker, we assume the defender employs a data sanitization defense
(Cretu et al., 2008), which first removes anomalous-looking points from D = Dc ∪Dp
and then trains on the remaining points. The motivation is that intuitively, poisoned data
that looks similar to the clean data will not be effective in changing the learned model;

(1)L0-1(�;Dtest) =
1

|Dtest|
∑

(x,y)∈Dtest

�[f�(x) ≠ y].

Machine Learning (2022) 111:1–47 5

	

1 3

therefore, the attacker would want to place poisoned points that are somehow differ-
ent from the clean data. By discarding points that look too different (anomalous), the
defender can thus protect itself against attack. Ideally—as in the hypothetical Fig. 1—a
defense would discard the poisoned data Dp and leave the clean data Dc , so that the
defender learns model parameters 𝜃̂ that have low test error.

Defenses differ in how they judge points as being anomalous. To formalize this, we
represent each defense by a score function s� ∶ X × Y → ℝ that takes in a data point
(x, y) and returns a number representing how anomalous that data point is. This score
function is parametrized by anomaly detector parameters � that are derived from the
combination of the clean and poisoned training data D = Dc ∪Dp . As an example, in
what we call the L2 defense, the defender discards points in D that are far from their
respective class centroids. For this defense, � = (�+,�−) would represent the class cen-
troids in D and s�(x, y) = ‖x − �y‖2 would measure the distance of x to the centroid of
class y.

Concretely, a defender (B, s�) :

1.	 Fits the anomaly detector parameters � = B(D) , where B is a function that takes in a
dataset and returns a vector.

2.	 Constructs the feasible set F𝛽 = {(x, y) ∶ (x, y) ∈ X × Y with s𝛽(x, y) < 𝜏y} . The thresh-
old �y is chosen such that a desired fraction of points from each class are discarded.

3.	 Forms the sanitized training dataset Dsan = D ∩ F� by discarding all points that fall
outside the feasible set.

4.	 Finds the 𝜃̂ that minimizes the regularized training loss on Dsan :

 where � is a hyperparameter controlling regularization strength and � is a convex sur-
rogate for the 0/1-loss that f� incurs.

We consider 5 different defenses that span existing approaches to data sanitization and
anomaly detection:

–	 The L2 defense removes points far from their class centroids in L2 distance:

–	 The slab defense (Steinhardt et al., 2017) projects points onto the line between the
class centroids, then removes points too far from the centroids:

 The idea is to use only the relevant dimensions in feature space to find outliers. The L2
defense treats all dimensions equally, whereas the slab defense treats the vector between
the class centroids as the only relevant dimension.

–	 The loss defense discards points that are not well fit by a model trained (without any
data sanitization) on the full dataset D :

(2)𝜃̂ = argmin
𝜃

L(𝜃;Dsan)
def
= argmin

𝜃

𝜆

2
‖𝜃‖2

2
+

1

�Dsan�
�

(x,y)∈Dsan

�(𝜃;x, y),

�y = �D[x�y]
s�(x, y) = ‖x − �y‖2

𝛽y = �D[x|y]
s𝛽(x, y) =

|||(𝛽1 − 𝛽−1)
⊤(x − 𝛽y)

|||

Machine Learning (2022) 111:1–476

	

1 3

 It is similar to the trimmed loss defense proposed in the context of regression in Jag-
ielski et al. (2018). For a linear model, it is similar to the slab defense, except that the
relevant dimension is learned using the loss function instead of being fixed as the direc-
tion between the class centroids.

–	 The SVD defense assumes that the clean data lies in some low-rank subspace, and that
poisoned data therefore will have a large component out of this subspace (Rubinstein
et al. 2009). Let X be the data matrix, with the i-th row containing xi , the features of the
i-th training point. Then:

 In our experiments, we choose the smallest k such that the normalized Frobenius
approximation error (i.e., the normalized sum of the squared singular values) is < 0.05.

–	 The k-NN defense removes points that are far from their k nearest neighbors (e.g., Fred-
erickson et al. (2018)).

 In our experiments, we set k = 5.
Note that � is sometimes a simple set of summary statistics of the dataset (e.g., in the
L2 and slab defenses), while at other times � can be the entire dataset (e.g., in the k-NN
defense). We will handle these two types of defenses separately, as we discuss in Sect. 3.

The feasible set F� encodes both the defenses and the input constraints of the dataset,
since F𝛽 ⊆ X × Y and the input domain X only includes valid points. Thus, the defender
will eliminate all input points that do not obey the input constraints of the dataset.

� = argmin ��D[��(x, y)]

s�(x, y) = ��(x, y).

𝛽 = Matrix of top k right singular vectors of X

s𝛽(x, y) = ‖(I − 𝛽𝛽⊤)x‖2

� = Dc ∪Dp

s�(x, y) = Distance to k-th nearest neighbor in �

Machine Learning (2022) 111:1–47 7

	

1 3

3 � Attack framework

In this paper, we take on the role of the attacker. Recall that we are given a set of n clean
training points Dc and a test set Dtest , and our goal is to come up with a set of �n poisoned
training points Dp such that a defender following the procedure in Sect. 2.2 will choose
model parameters 𝜃̂ that incur high test error L(𝜃̂) . The difficulty lies in choosing poisoned
points Dp that will both lead to high test error and also avoid being flagged as anomalous.

In this section, we describe our general approach to crafting attacks that can evade
anomaly detectors. As mentioned in Sect. 1, we can roughly group anomaly detectors into
two categories: those that are more sensitive to the data and tend to ‘overfit’ (like the k-NN
defense), and those that are less sensitive to the data and tend to ‘underfit’ because they
make strong parametric assumptions (like the L2 defense). In Sect. 3.1, we discuss how we
can use concentrated attacks to evade defenses in the first group. In Sect. 3.2, we formulate
the constrained optimization problem that we use to evade defenses in the second group.
Finally, in Sect. 3.3, we introduce a randomized rounding procedure to handle problem set-
tings where the input features are constrained to be integers.

3.1 � Concentrated attacks

To bypass anomaly detectors that are sensitive to small changes in the data, we rely on
the simple observation that poisoned data that is concentrated on a few locations tends
to appear normal to anomaly detectors. For example:

–	 For the k-NN defense and other similar nonparametric detectors, this is trivially true:
if several poisoned points are placed very near each other, then by definition, the dis-
tances to their nearest neighbors will be small.

–	 For the SVD defense, it is more likely that the low-rank representation of D will
include the poisoned points, reducing their out-of-projection components.

–	 For the loss defense, if the poisoned points are concentrated in a similar location, the
model will have more incentive to fit those points (because fitting one of them would
imply fitting all of them, which would reduce the training loss more than fitting a
single isolated point).

A potential issue for the attacker is that being constrained to place points in concen-
trated groups might make the attack less effective, in the sense of requiring more poi-
soned points to make the defender learn some target parameters. For example, it might
be the case that a more efficient attack would involve spreading out each poisoned point
throughout the feasible set.

Fortunately for the attacker, we show that if the feasible sets for each class are con-
vex, and if the defender is using a 2-class SVM or logistic regression model, then the
above scenario will not occur. Instead, we would only need two distinct points (one per
class) to realize any attack:

Theorem 1  (2 points suffice for 2-class SVMs and logistic regression) Consider a defender
that learns a 2-class SVM or logistic regression model by first discarding all points outside
a fixed feasible set F and then minimizing the average (regularized) training loss. Suppose
that for each class y = −1,+1, the feasible set Fy

def
={x ∶ (x, y) ∈ F} is a convex set. If a

parameter 𝜃̂ is attainable by any set of ñ poisoned points Dp = {(x̃1, ỹ1),… , (x̃ñ, ỹñ)} ⊆ F  ,

Machine Learning (2022) 111:1–478

	

1 3

then there exists a set of at most ñ poisoned points D̃p (possibly with fractional copies) that
also attains 𝜃̂ but only contains 2 distinct points, one from each class.

More generally, the above statement is true for any margin-based model with loss of
the form �(𝜃;x, y) = c(−y𝜃⊤x), where c ∶ ℝ → ℝis a convex, monotone increasing, and
twice-differentiable function, and the ratio of second to first derivatives c��∕c�is monotone
non-increasing.

Remark 1  If the attacker concentrates all of the poisoned points in only two distinct loca-
tions, we will trivially evade the k-NN defense. The remaining defenses—L2, slab, loss,
and SVD—all have convex feasible sets, so the conditions of the theorem hold. One tech-
nicality is that in reality, the feasible set will not remain fixed as the theorem assumes: if an
attack Dp is collapsed into a different attack D̃p with at most 2 distinct points, the feasible
set F� will also change. However, as discussed above, it will tend to change in a way that
makes the poisoned points feasible, so if the original attack Dp was already feasible, the
new attack D̃p will likely also be feasible.

We defer the full proof to “Appendix 1”. As a short proof sketch, the proof consists of
two parts. We first relate the number of distinct points necessary to achieve an attack to the
geometry of the set of gradients of points within the feasible set, using the notion of Car-
athéodory numbers from convex geometry. We then show, for the specific losses consid-
ered above (the hinge and logistic loss), that this set of feasible gradients has the necessary
geometry. Our method is general and can be extended to different loss functions and fea-
sible sets; we provide one such extension, to a multi-class SVM setting, in “Appendix 1”.

One objection to attacks with only two distinct poisoned points is that they can be eas-
ily defeated by a defender that throws out repeated points. However, the attacker can add a
small amount of random noise to fuzz up poisoned points without sacrificing the concen-
trated nature of the attack. Randomized rounding, which we use to handle datasets with
integer input constraints in Sect. 3.3, is a version of this procedure.

3.2 � Constrained optimization

Anomaly detectors that are more robust to small changes in the training data, such as those
that rely on simple sufficient statistics of the data, tend to be less vulnerable to concentrated
attacks. In our setting, the L2 and slab defenses in particular are not fooled by concentrated
attacks: the class centroid, which is used in both defenses, cannot be moved too much by an
� fraction of poisoned points if � is small and the clean training data Dc is well-clustered,
since poisoned points that are too far away would be filtered out by the L2 defense.

To handle these defenses, we formulate the attacker’s goal as a constrained optimization
problem:

(3)

maximize
Dp

L0-1(𝜃̂;Dtest)

s.t. |Dp| = 𝜖|Dc|, (𝜖 fraction of poisoned points)

where 𝛽 = B(Dc ∪Dp) (F𝛽 is fit on clean and poisoned data)

𝜃̂
def
= argmin 𝜃L

(
𝜃;(Dc ∪Dp) ∩ F𝛽

)
. (Defender trains on remaining data)

Machine Learning (2022) 111:1–47 9

1 3

The first **constraint corresponds to the attacker only being able to add in an � fraction
of poisoned points; the second constraint corresponds to the defender fitting the anom-
aly detector on the entire training set Dc ∪Dp ; and the final equality corresponds to the
defender learning model parameters 𝜃̂ that minimize training loss.

To make this problem more tractable, we make three approximations:

1.	 We assume that the defender does not discard any clean points. Thus, if all poisoned
points are constrained to lie within the feasible set F� and therefore evade sanitization,
then the defender trains on the entirety of D = Dc ∪Dp.1

2.	 We break the dependence of the feasible set F� on the poisoned data Dp by fixing the
anomaly detector � = B(Dc) on the clean data. This is a reasonable approximation for
the L2 and slab defenses, as their feasible sets depend only on the class centroids, which
are very stable with respect to small amounts of poisoned data Dp.

3.	 Finally, as is standard, we replace the 0–1 test error L0-1(𝜃̂;Dtest) with its convex sur-
rogate L(𝜃̂;Dtest)

def
=�Dtest

�(𝜃̂;x, y) , which is continuous and easier to optimize.

These approximations let us rewrite the attacker’s goal as the following optimization
problem:

This constrained optimization formulation has been used in prior work (e.g., Steinhardt
et al., 2017), and despite the approximations, it is still a bilevel problem that is non-convex
and intractable to solve exactly (Bard, 1991, 1999). Our contribution in this regard is devel-
oping more effective and computationally efficient ways of solving it, which will be the
focus of Sect. 4.

Instead of fixing the feasible set based on only the clean data, � = B(Dc) , we can also
adopt an iterative optimization approach, where we alternate between optimizing over Dp
for a fixed � , and then updating � to reflect the new Dp (Algorithm 1). This iterative optimi-
zation procedure is guaranteed to make progress so long as the poisoned points Dp remain
valid even after re-fitting � . In Sect. 5.4, we show that this slightly improves the attacks
obtained, though it is not necessary to obtain effective attacks.

3.3 � Handling integer input constraints with randomized rounding

Each of the three data poisoning attacks that we will develop use some form of gradient
descent on the poisoned points to solve the attacker’s optimization problem (4). How-
ever, gradient descent cannot be directly applied in settings where the input features are

(4)

maximize
Dp

L(𝜃̂;Dtest)

s.t. |Dp| = 𝜖|Dc|
Dp ⊆ F𝛽

where 𝜃̂
def
= argmin 𝜃L(𝜃;Dc ∪Dp)

𝛽 = B(Dc).

1  This favors the defender, since we do not consider the case in which a savvy attacker might place poi-
soned points in such a way as to cause the defender to throw out particularly good points in Dc and therefore
learn a bad model.

Machine Learning (2022) 111:1–4710

	

1 3

constrained to be non-negative integers (e.g., with bag-of-word models in natural language
tasks).

To handle this, Steinhardt et al. (2017) relaxed the integrality constraint to allow non-neg-
ative real-valued points, and then performed randomized rounding on these real-valued points
to obtain integer-valued points:

1.	 Solve the optimization problem (4) while allowing all poisoned points (x, y) ∈ Dp to
have real-valued x.

2.	 Then, for each (x, y) ∈ Dp , we construct a rounded x̂ as follows: for each coordinate i,
x̂i = ⌈xi⌉ with probability xi − ⌊xi⌋ , and x̂i = ⌊xi⌋ otherwise. This procedure preserves
the mean: �[x̂] = x.

However, this approach can produce poisoned points that get detected by data sanitization
defenses. We adopt their approach but introduce two techniques to avoid detection:

Repeated points In high dimensions, randomized rounding can result in poisoned points
that are far away from each other. This can make the poisoned points vulnerable to being fil-
tered out by the defender, as they would no longer be concentrated in a few distinct locations
(Sect. 3.1). To address this, we adopt a heuristic of repeating poisoned points r times after
rounding (keeping the overall fraction of poisoned data, � , the same). This means that we find
�n∕r poisoned points {x1, x2,… , x�n∕r} , do randomized rounding to get {x̂1, x̂2,… , x̂𝜖n∕r} , and
then form the multiset Dp by taking the union of r copies of this set. In practice, we find that
setting r = 2 or 3 works well. This heuristic better concentrates the poisoned points while still
preserving their expected mean �[x̂].

Linear programming (LP) relaxation for the L2 defense Randomized rounding vio-
lates the L2 constraint used in the L2 defense. Recall that in the L2 defense, we wish to
play points (x, y) such that ‖x − �y‖2 ≤ �y , where �y is the mean of class y and �y is some
threshold (Sect. 2.2). The issue is Jensen’s inequality: since the L2 norm is convex,
�[‖x̂ − 𝜇y‖2] ≥ ‖�[x̂] − 𝜇y‖2 = ‖x − 𝜇y‖2 . This means that even if we control the norm of
the continuous x by having ‖x − �y‖2 ≤ �y , we could still have the randomly-rounded x̂ violate
this constraint on expectation: �[‖x̂ − 𝜇y‖2] > 𝜏y.

Steinhardt et al. (2017) deal with this problem by setting �y conservatively, so that x̂ might
avoid detection even if ‖x̂ − 𝜇y‖2 > ‖x − 𝜇y‖2 . However, the conservative threshold reduces
the attacker’s options, resulting in a less effective attack. Instead, our approach is to control

Machine Learning (2022) 111:1–47 11

1 3

the expected squared norm �[‖x̂ − 𝜇y‖22] : if �[‖x̂ − 𝜇y‖22] < 𝜏2
y
 , then by Jensen’s inequality,

�[‖x̂ − 𝜇y‖2] < 𝜏y . To compute the expected squared norm, we first write

Note that �[‖x̂‖2
2
] can in general be substantially larger than ‖x‖2

2
 due to the variance from

rounding. We can compute �[‖x̂‖2
2
] explicitly as

While the function f (x)
def
= x(⌈x⌉ + ⌊x⌋) − ⌈x⌉⌊x⌋ looks complicated, intuitively, we expect

f(x) to be close to x2 . Indeed, as Fig. 2 shows, it is a piecewise-linear function where the k-
th piece linearly interpolates between k2 and (k + 1)2 , and we can write it as the maximum
over a set of linear equations:

Thus, when solving the attacker optimization (Eq. (4)) for datasets with
non-negative integer constraints, we replace the standard L2 feasible set
F� = {(x, y) ∶ ‖x − �y‖2 ≤ �2 and x ∈ �≥0} with the modified constraint set

If we approximate the infinite maximum in (7) by its first M terms, then the correspond-
ing approximation of FLP can be represented via a linear program. In our experiments,
we choose M adaptively for each coordinate i to be equal to the largest value that xi
attains across the dataset. This formulation allows us to express the L2 norm constraint
�[‖x̂ − 𝜇y‖22] ≤ 𝜏2

y
 as a set of linear constraints on the continuous x, allowing us to control

the expected L2 norm of the poisoned points after rounding.
Randomized rounding has some negative impact: it makes attacks less concentrated, as

discussed above, and can also result in a few unlucky poisoned points getting filtered by
other defenses (e.g., by the loss defense if the rounding happens to increase the loss on the
point). Another advantage of the above LP relaxation is that in practice, the linear con-
straints tend to lead to nearly-integer x, which further reduces the negative impact of hav-
ing to do randomized rounding.

(5)�[‖x̂ − 𝜇y‖22] = �[‖x̂‖2
2
] − 2⟨x,𝜇y⟩ + ‖𝜇y‖22.

(6)�[‖x̂‖2
2
] =

d�
i=1

xi(⌈xi⌉ + ⌊xi⌋) − ⌈xi⌉⌊xi⌋.

(7)f (x) =
∞

max
k=0

(2k + 1)x − k(k + 1).

(8)FLP = {(x, y) ∶ �[‖x̂ − 𝜇y‖22] ≤ 𝜏2
y
and x ∈ �≥0}.

Fig. 2   Plot of �[‖x̂‖2
2
] = f (x)

against x for scalar x 

Machine Learning (2022) 111:1–4712

	

1 3

4 � Specific attacks

In this section, we introduce three different methods for efficiently solving the attacker’s
optimization problem (Eq. (4)) and generating an attack. As discussed in Sect. 3, these
methods all generate concentrated attacks within our constrained optimization framework
and use the randomized rounding procedure when necessary. We start with the influence
attack in Sect. 4.1, which is direct but computationally slower, and then introduce the KKT
and min–max attacks in Sects. 4.2and 4.3, which both use the idea of decoy parameters to
speed up the attack.

4.1 � The influence attack

Recall that solving Eq. (4) involves finding poisoned data Dp that maximizes the defender’s
test loss L(𝜃̂;Dtest) for a fixed feasible set F� . The influence attack tackles this problem via
projected gradient ascent.

At a high level, we can find a local maximum of Eq. (4) by iteratively taking gradient steps
on the features of each poisoned point in Dp , projecting each point onto the feasible set F�
after each iteration. This type of gradient-based data poisoning attack was first studied in the
context of SVMs by Biggio et al. (2012b), and has subsequently been extended to linear and
logistic regression (Mei and Zhu, 2015b), topic modeling (Mei & Zhu, 2015a), collaborative
filtering (Li et al., 2016), and neural networks (Koh & Liang, 2017; Yang et al., 2017; Muñoz-
González et al. 2017). We call this projected gradient ascent method the influence attack after
Koh and Liang (2017), who use influence functions to compute this gradient. Our method
builds upon previous work by incorporating the techniques mentioned in Sect. 3—concentrat-
ing the attack and using randomized rounding with the LP relaxation.

4.1.1 � The basic influence attack

First, we review the basic influence attack, borrowing from the presentation in Koh and Liang
(2017). Our goal is to perform gradient ascent on each poisoned point (x̃, ỹ) ∈ Dp to maximize
the test loss L(𝜃̂;Dtest) . The influence-basic algorithm (Algorithm 2) iteratively computes the
gradient 𝜕L

𝜕x̃
 for each poisoned point (x̃, ỹ) ∈ Dp , moves each point in the direction of its gradi-

ent, and then projects each point back onto the feasible set F� . We only optimize over the
input features x̃ ; since the labels ỹ are discrete, we cannot compute gradients on them. Instead,
we fix the labels ỹ at the beginning of the algorithm, grid searching over the fraction of posi-
tive versus negative labels. We provide more implementation details in “Appendix 2.1”.

Computing the gradient The difficulty in computing the gradient of the test loss
L(𝜃̂;Dtest) w.r.t. each x̃ in Dp is that L depends on x̃ only through the model parameters 𝜃̂ ,
which is a complicated function of Dp . The influence attack uses a closed-form estimate
of 𝜕𝜃̂

𝜕x̃
 , which measures how much the model parameters 𝜃̂ change with a small change to x̃ .

The desired derivative 𝜕L
𝜕x̃

 can then be computed via the chain rule: 𝜕L
𝜕x̃

=
𝜕L

𝜕𝜃̂

𝜕𝜃̂

𝜕x̃
.

The quantity 𝜕L
𝜕𝜃̂

 is the average gradient of the test loss, which we denote as g𝜃̂,Dtest
 for

convenience, and it can be computed straightforwardly as

(9)g𝜃̂,Dtest

def
=
𝜕L

𝜕𝜃̂
=

1

|Dtest|
∑

(x,y)∈Dtest

∇�(𝜃̂;x, y).

Machine Learning (2022) 111:1–47 13

1 3

Calculating 𝜕𝜃̂
𝜕x̃

 is more involved, but a standard result (see, e.g., Section 2.2 of Koh and
Liang (2017)) gives the expression

where H𝜃̂ is the Hessian of the training loss at 𝜃̂:

Combining Eqs. (9) to (11), the gradient of the test loss w.r.t. an attack point x̃ is

Projecting onto the feasible set To prevent the poisoned points from being sanitized, we
project each poisoned point (x̃, ỹ) ∈ Dp onto the feasible set F� . The projection is well-
defined for the L2 and slab defenses, as their feasible sets are convex, and finding the pro-
jection is a convex optimization problem that can be solved efficiently by a general-purpose
convex solver. When the x̃ ’s are constrained to take on integer values, the influence-basic
attack uses the vanilla randomized rounding procedure described in Sect. 3.3 (without the
repeated points heuristic or linear programming relaxation).

4.1.2 � Improvements to the basic algorithm

We introduce the influence attack, which improves upon the influence-basic attack in two
ways. First, it incorporates randomized rounding with the LP relaxation, as described in
Sect. 3.3. Second, it concentrates the attack (Sect. 3.1), which makes the attack stronger
and more computationally efficient. The influence-basic attack optimizes over each of the
�n poisoned points separately, which is slow and results in poisoned points that are often
quite far from each other (because of differences in initialization), leaving them vulner-
able to being detected as anomalies. As Theorem 1 shows, we can modify the algorithm to
instead only consider copies of two distinct points (x̃+, 1) and (x̃−,−1) , one from each class,

(10)𝜕𝜃̂

𝜕x̃
= −H−1

𝜃̂

𝜕2�(𝜃̂;x̃, ỹ)

𝜕𝜃̂ 𝜕x̃
,

(11)H𝜃̂

def
=𝜆I +

1

|Dc ∪Dp|
∑

(x,y)∈Dc∪Dp

𝜕2�(𝜃̂;x, y)

𝜕𝜃̂2
.

𝜕L(𝜃̂)

𝜕x̃
= −g⊤

𝜃̂,Dtest

H−1

𝜃̂

𝜕2�(𝜃̂;x̃, ỹ)

𝜕𝜃̂ 𝜕x̃
.

Machine Learning (2022) 111:1–4714

	

1 3

without any loss in potential attack effectiveness. This is faster, as at each iteration, we only
need to compute the gradients and do the projection twice (vs. �n times). Moreover, the
resulting attack is by construction concentrated on only two distinct points, helping it evade
detection.

However, even after these improvements, the influence attack is slow especially in high
dimensions: each iteration of gradient descent requires computing an expensive inverse
Hessian-vector product (10) and a projection onto the feasible set. Moreover, the influence
attack relies on local optimization and can sometimes get stuck in poor local minima, even
when the underlying model loss is convex. To mitigate these shortcomings, we propose the
KKT attack, which we discuss next.

4.2 � The KKT attack

The KKT attack is based on the observation that the attacker’s optimization problem (4)
is difficult to solve because the optimization variable Dp only affects the objective (test
loss L(𝜃̂;Dtest) ) through the model parameters 𝜃̂ , which are themselves a complicated
function of Dp . In general, we do not know what 𝜃̂ would lead to an attack that is both
effective and realizable; but if we did know which 𝜃̂ we were after, then the attacker’s
optimization problem simplifies to finding Dp such that 𝜃̂ = argmin 𝜃L(𝜃;Dc ∪Dp) . As
we will show in this section, this simplified problem can be solved much more effi-
ciently than the original bilevel problem.

The KKT attack has two parts:

1.	 Using fast heuristics to find decoy parameters �decoy that we want the defender to learn,
and then

2.	 Finding poisoned data Dp that tricks the defender into learning those decoy parameters
�decoy.

The name of this attack comes from the use of the Karush–Kuhn–Tucker (KKT) first-
order necessary conditions for optimality in the second step.

4.2.1 � Finding decoy parameters �decoy

Good decoy parameters, from the perspective of the attacker, should have high test error
while still being achievable by some poisoned data Dp . Decoy parameters that have a
high loss on the clean data Dc are unlikely to be achievable by an � fraction of poisoned
data Dp , since it is likely that there exist other parameters that would have a lower train-
ing loss on the combined data Dc ∪Dp and would therefore be learned instead by the
defender.

Machine Learning (2022) 111:1–47 15

1 3

Our heuristic is to augment the clean data Dc with a dataset Dflip comprising label-
flipped examples from Dtest , and then find the parameters �decoy that minimize the train-
ing loss on this modified training set Ddecoy = Dc ∪Dflip (Algorithm 3). The idea is that
since the decoy parameters �decoy were trained on Ddecoy , which incorporates flipped
points from Dtest , it might achieve high test loss. At the same time, the following infor-
mal argument suggests that on the clean data Dc , the decoy parameters �decoy are likely to
be not much worse than the optimal parameters for the clean data, �c . By construction,

Rearranging terms, this implies that

where the last inequality comes from the non-negativity of the loss L. The second term on
the right-hand side, L(�c;Dflip) , is likely to be small: Dflip comprises of points that origi-
nally had a high loss under �c before their labels were flipped (which implies that their
label-flipped versions are likely to have a lower loss), and we can choose |Dflip| to be small
compared to |Dc| . Thus, the average loss L(�decoy;Dc) of the decoy parameters �decoy on the
clean data Dc is not likely to be too much higher than L(�c;Dc) , which is the best possible
average loss on Dc within the model family.

By varying the loss threshold � and number of repeats r used in Algorithm 3, we
obtain different candidates for �decoy . As we will discuss next, finding an attack Dp for
each candidate �decoy is fast, so we simply generate a set of candidate decoy parameters
and try all of them, picking the �decoy that achieves the highest test loss.

4.2.2 � Attacking with known �decoy

For given decoy parameters �decoy , the next step for the attacker is to find poisoned data
Dp such that Dp evades data sanitization and �decoy minimizes the overall training loss
over both Dp and the clean data Dc . We can formulate this task as the following optimi-
zation problem:

|Dc| ⋅ L(�decoy;Dc) + |Dflip| ⋅ L(�decoy;Dflip) = |Ddecoy| ⋅ L(�decoy;Ddecoy)

≤ |Ddecoy| ⋅ L(�c;Ddecoy)

= |Dc| ⋅ L(�c;Dc) + |Dflip| ⋅ L(�c;Dflip).

L(�decoy;Dc) ≤ L(�c;Dc) +
|Dflip|
|Dc| ⋅

(
L(�c;Dflip) − L(�decoy;Dflip)

)

≤ L(�c;Dc) +
|Dflip|
|Dc| ⋅ L(�c;Dflip),

Machine Learning (2022) 111:1–4716

	

1 3

Since �decoy is pre-specified, we can rewrite the inner optimization as a simple equal-
ity. Specifically, if the loss � is strictly convex and differentiable in � , we can rewrite the
condition

as the equivalent KKT optimality condition

If the loss � is not differentiable, e.g., the hinge loss, we can replace this with a similar
subgradient condition.

Since the first term in (13) is fixed and does not depend on the optimization variable
Dp , we can treat it as a constant:

Rewriting (13) as g𝜃decoy,Dc
+

1

�Dc�
∑

(x̃,ỹ)∈Dp
∇𝜃�(𝜃decoy;x̃, ỹ) = 0 and substituting it into (12)

gives us

If this optimization problem (14) has a solution, we can find it by solving the equivalent
norm-minimization problem

which moves the KKT constraint into the objective, relying on the fact that the norm of a
vector is minimized when the vector is 0.

Next, we make use of Theorem 1, which shows that for the binary classification prob-
lems we consider, we can concentrate our attacks by placing all of the poisoned points at two

(12)

find Dp

s.t. |Dp| = 𝜖|Dc|
Dp ⊆ F𝛽

𝜃decoy = argmin 𝜃L(𝜃;Dc ∪Dp).

𝜃decoy = argmin 𝜃L(𝜃;Dc ∪Dp)

= argmin 𝜃

∑
(x,y)∈Dc

�(𝜃;x, y) +
∑

(x̃,ỹ)∈Dp

�(𝜃;x̃, ỹ)

(13)
∑

(x,y)∈Dc

∇𝜃�(𝜃decoy;x, y) +
∑

(x̃,ỹ)∈Dp

∇𝜃�(𝜃decoy;x̃, ỹ) = 0.

g�decoy,Dc

def
=

1

|Dc|
∑

(x,y)∈Dc

∇��(�decoy;x, y).

(14)

find Dp

s.t. |Dp| = 𝜖|Dc|
Dp ⊆ F𝛽

g𝜃decoy,Dc
+

1

|Dc|
∑

(x̃,ỹ)∈Dp

∇𝜃�(𝜃decoy;x̃, ỹ) = 0.

(15)

minimize
Dp

‖‖‖g𝜃decoy,Dc
+

1

|Dc|
∑

(x̃,ỹ)∈Dp

∇𝜃�(𝜃decoy;x̃, ỹ)
‖‖‖
2

2

s.t. |Dp| = 𝜖|Dc|
Dp ⊆ F𝛽 ,

Machine Learning (2022) 111:1–47 17

1 3

distinct locations x̃+ and x̃− without any loss in attack effectiveness. If we let �+ ⋅ n and �− ⋅ n
be the number of positive and negative poisoned points added, respectively, we can write (15)
as

For general losses, this optimization problem is non-convex but can be solved by local
methods like gradient descent. In our experiments, the defender uses the hinge loss
�(𝜃;x, y) = max(0, 1 − y𝜃⊤x) and applies �2 regularization with regularization parameter �
((2), Sect. 2.2). This setting allows us to further rewrite (16) as the following:

where the first two constraints ensure that (x̃+, 1) and (x̃−,−1) are both support vectors.
This problem is convex when the feasible set F� is convex and �+ and �− are fixed; since F�
is convex in our setting, we can grid search over �+ and �− and call a generic solver for the
resulting convex problem. Pseudocode is given in Algorithm 4.

Evading the loss defense Defenses like the loss defense have feasible sets that depend
on the model parameters 𝜃̂ that the defender learns, which in turn depend on the poisoned
points. This dependence makes it difficult for the attacker to explicitly constrain their poi-
soned points to lie within such feasible sets. In the influence attack, we relied on concen-
trated attacks (Sect. 3.1) to evade the loss defense. This approach is empirically effective,
but it relies to some extent on luck, as the attacker cannot guarantee that its poisoned points
will have low loss.

One advantage of decoy parameters is that they give attackers a computationally tracta-
ble handle on parameter-dependent defenses like the loss defense. With decoy parameters,
the attacker can approximately specify the feasible set F� independently of the learned
parameters 𝜃̂ , since we know that if the attack works, the learned parameters 𝜃̂ should be

(16)

minimize
x̃+,x̃−,𝜖+,𝜖−

‖‖g𝜃decoy,Dc
+ 𝜖+∇𝜃�(𝜃decoy;x̃+, 1) + 𝜖−∇𝜃�(𝜃decoy;x̃−,−1)

‖‖22
s.t. 𝜖+ + 𝜖− = 𝜖

(x̃+, 1), (x̃−,−1) ∈ F𝛽 .

(17)

minimize
x̃+,x̃−,𝜖+,𝜖−

‖‖g𝜃decoy,Dc
− 𝜖+x̃+ + 𝜖−x̃− + 𝜆𝜃decoy

‖‖22
s.t. 1 − 𝜃⊤x̃+ ≥ 0

1 + 𝜃⊤x̃+ ≥ 0

𝜖+ + 𝜖− = 𝜖

(x̃+, 1), (x̃−,−1) ∈ F𝛽 ,

Machine Learning (2022) 111:1–4718

	

1 3

close to the decoy parameters �decoy . For example, we can handle the loss defense by add-
ing the constraint �(𝜃decoy;x̃, ỹ) < 𝜏ỹ to the feasible set F�.

4.3 � Improved min–max attack

Our third and final attack is the min–max attack, which improves on what we call the
min–max-basic attack from prior work (Steinhardt et al., 2017). The min–max attack relies
on the same decoy parameters introduced in Sect. 4.2, but unlike the influence and KKT
attacks, it naturally handles multi-class problems without a grid search, and it does not
require convexity of the feasible set. Its drawback is assuming that the clean data Dc and
the test data Dtest are drawn from the same distribution (i.e., that the attacker is performing
an indiscriminate attack; see Sects. 2and 7).

4.3.1 � The min–max‑basic attack

We start by reviewing the min–max-basic attack, as it was introduced in Steinhardt et al.
(2017). Recall that the attacker’s goal is to find poisoned points Dp that maximize the test
loss L(𝜃̂;Dtest) that the defender incurs, where the parameters 𝜃̂ are chosen to minimize the
training loss L(𝜃̂;Dc ∪Dp) (Eq. (4)). As we discussed in Sects. 3.2, 4.1, and 4.2, the bilevel
nature of this optimization problem—maximizing the loss involves an inner minimization
to find the parameters 𝜃̂—makes it difficult to solve.

The key insight in Steinhardt et al. (2017) was that we can make this problem tractable
by replacing the test loss L(𝜃̂;Dtest) with the training loss L(𝜃̂;Dc ∪Dp) . This substitution
changes the bilevel problem into a saddle-point problem—i.e., one that can be expressed in
the form minu maxv f (u, v)—that can be solved efficiently via gradient descent.

To do so, we first approximate the average test loss with the average clean training loss:

This approximation only works in the setting where the test data Dtest is drawn from the
same distribution as the (clean) training data Dc , and relies on the training set being suf-
ficiently big and the model being appropriately regularized, such that test loss is similar
to training loss. Next, we make use of the non-negativity of the loss to upper bound the
average clean training loss with the average combined loss on the clean and poisoned data:

where, as usual, � is the relative ratio of poisoned points � = |Dp|
|Dc|.

By combining (18) and (19), we can approximately upper-bound the average test loss
L(�;Dtest) by (1 + �) times the average loss on the combined training data L(�;Dc ∪Dp) .
Instead of directly optimizing for L(�;Dtest) as the attacker (Eq. (4)), we can therefore opti-
mize for L(�;Dc ∪Dp) , which gives us

(18)L(�;Dtest) ≈ L(�;Dc).

(19)L(�;Dc) ≤ L(�;Dc) + �L(�;Dp) = (1 + �)L(�;Dc ∪Dp),

maximize
Dp⊆F𝛽

L(𝜃;Dc ∪Dp)

where 𝜃̂
def
= argmin 𝜃L(𝜃;Dc ∪Dp).

Machine Learning (2022) 111:1–47 19

	

1 3

The advantage of this formulation is that the outer maximization and inner minimiza-
tion are over the same function L(�;Dc ∪Dp) , which lets us rewrite it as the saddle-point
problem

When the loss � is convex, we can solve (20) by swapping min and max and solving the
resulting problem min𝜃 maxDp⊆F𝛽

L(𝜃;Dc ∪Dp) , which expands out to

This problem is convex when the loss � is convex, and we can solve it via subgradient
descent by iteratively finding (x̃, ỹ) ∈ F𝛽 that maximizes �(𝜃;x̃, ỹ) , then taking the subgradi-
ent of the outer expression w.r.t. (x̃, ỹ).

To solve the inner problem of finding (x̃, ỹ) ∈ F𝛽 that maximizes �(𝜃;x̃, ỹ) , we note that
if the model is margin-based, i.e., �(𝜃;x̃, ỹ) = c(−y𝜃⊤x) for some monotone increasing func-
tion c (which is the case for SVMs and logistic regression), then maximizing �(𝜃;x̃, ỹ) is
equivalent to minimizing the margin y𝜃⊤x . For a fixed ỹ , we can solve the convex problem

To find the (x̃, ỹ) ∈ F𝛽 that maximizes the loss �(𝜃;x̃, ỹ) , we therefore enumerate over the
possible choices of ỹ , solving the above convex problem for each ỹ , and pick the one that
gives the smallest (most negative) margin.

Steinhardt et al. (2017) show that if (21) is minimized incrementally via �n iterations
of gradient descent, then we can form a strong attack Dp out of the corresponding set of �n
maximizers {(x̃, ỹ)} . Pseudocode is given in Algorithm 5.

This algorithm automatically handles class balance, since at each iteration it chooses to
add either a positive or negative point; it can thus handle multi-class attacks without addi-
tional difficulty, unlike the KKT or influence attacks. Moreover, unlike the influence attack,
it avoids solving the expensive bilevel optimization problem.

(20)max
Dp⊆F𝛽

min
𝜃

L(𝜃̂;Dc ∪Dp).

(21)min
𝜃

�
𝜆(1 + 𝜖)

2
‖𝜃‖2

2
+

1

�Dc�
�

(x,y)∈Dc

�(𝜃;x, y) + 𝜖 max
(x̃,ỹ)∈F𝛽

�(𝜃;x̃, ỹ)
�
.

minimize
x̃

ỹ𝜃⊤x̃

s.t. (x̃, ỹ) ∈ F𝛽 .

Machine Learning (2022) 111:1–4720

	

1 3

4.3.2 � Improvements to the basic algorithm

We improve the min–max-basic attack by incorporating the decoy parameters introduced
in Sect. 4.2 (Algorithm 3). The problem with the min–max-basic attack, which repeat-
edly adds the highest-loss point that lies in the feasible set F� , is that at low � , the attack
might end up picking poisoned points Dp that are not fit well by the model, i.e., with high
L(𝜃̂;Dp) . These points could still lead to a high combined loss L(𝜃̂;Dc ∪Dp) , but such an
attack would be ineffective for two reasons:

1.	 If the poisoned points have high loss compared to the clean points, they are likely to be
filtered by the loss defense.

2.	 Even if the poisoned points are not filtered out, the loss on the clean data L(𝜃̂;Dc) might
still be low, implying that the test loss would also be low. Such a scenario could happen
if there is no model that fits both the poisoned points Dp and the clean points Dc well;
since � is small, overall training loss could then be minimized by fitting Dc well at the
expense of Dp.

We therefore want to keep the loss on the poisoned points, L(𝜃̂;Dp) , small. To do so, we
use the decoy parameters �decoy from Sect. 4.2 (Algorithm 3), augmenting the feasible set
F� with the constraint

for some fixed threshold � . At each iteration, the attacker thus searches for poisoned points
(x̃, ỹ) that maximize loss under the current parameters � while having low loss under the
decoy parameters �decoy . This procedure addresses the two issues above:

1.	 If the learned parameters are driven towards �decoy , the poisoned points in Dp will have
low loss due to the constraint (22), and hence will not get filtered by the loss defense.

2.	 Adding poisoned points with high loss under the current parameters but low loss under
the decoy parameters �decoy is likely to drive the learned parameters towards �decoy .
In turn, this will increase the test loss, since �decoy is chosen to have high test loss
Sect. 4.2.1.

(22)�(�decoy;x, y) ≤ �,

Table 1   Characteristics of the datasets we consider, together with the base test errors that an SVM achieves
on them (with regularization parameters � selected by validation). The input covariates for Enron and
IMDB must be non-negative integers

a We used the multi-class SVM formulation in Crammer and Singer (2002) with no explicit regularization
for the 10-class MNIST dataset. We used AdaGrad (Duchi et al., 2010), which provides implicit regulariza-
tion, as the optimizer.

Dataset Classes n n
test

d Base Error Input constraints

Enron 2 4137 1035 511 2.9% (� = 0.09) �≥0

IMDB 2 25000 25000 89527 11.9% (� = 0.01) �≥0

MNIST 10 60000 10000 784 7.5%a [0, 1]
MNIST-1-7 2 13007 2163 784 0.7% (� = 0.01) [0, 1]
Dogfish 2 1800 600 2048 1.3% (� = 1.10) �

Machine Learning (2022) 111:1–47 21

1 3

We find that empirically, the min–max-basic attack naturally yields attacks that are quite
concentrated. For datasets with integer input constraints, we additionally use the linear pro-
gramming relaxation and repeated points heuristic (Sect. 3.3). Altogether, these changes to
the min–max-basic attack yield what we call the min–max attack.

5 � Experiments: attackers with complete information

5.1 � Datasets

Our experiments focus on two binary classification datasets. Summaries of each dataset are
given in Table 1, including the number of training points n, the dimension of each point d,
and the base accuracy of an SVM trained only on the clean data.

1.	 The Enron spam classification text dataset (Metsis et al., 2006), which requires input
to be non-negative and integer valued, as each feature represents word frequency. The
Enron dataset has n ≈ d and a relatively low base error of 3.0%.

2.	 The IMDB sentiment classification text dataset (Maas et al., 2011), which similarly
requires input to be non-negative and integer valued. Compared to the other datasets,
the IMDB dataset has significantly larger n and d, presenting computational challenges.
It also has n ≪ d and is not as linearly separable, with a high base error of 11.9%.

In addition, we use the standard 10-class MNIST dataset (LeCun et al., 1998) as an illustra-
tion of a multi-class setting.

These datasets are considered in Steinhardt et al. (2017), which also studied data poi-
soning. In “Appendix 3”, we also consider experiments on the other two datasets studied
in that work: MNIST-1-7, a binary version of MNIST (LeCun et al., 1998), and Dogfish
(Koh & Liang, 2017). These datasets were shown by Steinhardt et al. (2017) to have some
certificates of defensibility using the L2 and slab defenses, and indeed, our attacks were not
as effective on them as they were for the other datasets above.

5.2 � Setup

We used the non-iterative version of Algorithm 1 to carry out the data poisoning attacks. We
assumed that the attacker has limited control over the training data: in our experiments, we
allowed the attacker to only add up to � = 3% poisoned data, and we set the data sanitization
threshold � such that the defender removes p = 5% of the training data from each class after
training its anomaly detector on the combined clean and poisoned dataset Dc ∪Dp.

As the attacker’s goal is to increase test error regardless of which defense is deployed
against it, we evaluated an attack Dp by running each of the 5 defenses in Sect. 2.2 separately
against it, and measuring the minimum increase in test error it achieves over all of the defenses.

We optimized each attack against all of the defenses. Specifically, for the influence
attack, we took the feasible set F� to be the intersection of the feasible sets under the L2
and slab defenses, plus any additional input constraints that each dataset imposed. For the
KKT and min–max attacks, we used the decoy parameters to expand the feasible set F� to
incorporate the loss defense as well. We relied on concentrated attacks to evade the remain-
ing defenses.

Machine Learning (2022) 111:1–4722

	

1 3

For the binary classification tasks, we used support vector machines (SVMs) with the
hinge loss �(𝜃;x, y) = max(0, 1 − y𝜃⊤x) and with L2 regularization, fixing the regulariza-
tion parameter via cross-validation on the clean data.2 For the multi-class task, we used
the multi-class SVM formulation in Crammer and Singer (2002). Further implementation
details of our attacks are in “Appendix 2”.

5.3 � Comparing attacks on Enron and IMDB

We tested all three attacks on the Enron spam classification dataset, and the KKT and
min–max attack on the IMDB sentiment classification dataset (which was too large to run
the influence attack on). All of the attacks were successful, with the KKT and min–max
attack achieving slightly higher test error than the influence attack on the Enron dataset
(Fig. 3-Left). As each defense is evaluated separately against the attack, we plot a bar for
each defense. However, our attacks are constructed to avoid all of the defenses; this simu-
lates the fact that the attacker might not know which defense will be deployed ahead of
time, and therefore strives to evade all of them.

For the KKT and min–max attacks, successful attacks did not need to exactly reach the
decoy parameters; in fact, trying to get to ambitious (i.e., high test error but unattaina-
ble) decoy parameters could sometimes outperform exactly reaching unambitious decoy

Fig. 3   The KKT and min–max attacks give slightly higher test error than the influence attack on the Enron
dataset. Moreover, they are more computationally efficient, and can be run on the larger and higher-dimen-
sional IMDB dataset

Fig. 4   The test error achieved by
the different attacks (against the
L2 defense), versus the number
of minutes taken to generate the
attacks. Each step increase in test
error represents the processing of
one choice of decoy parameters
(for the KKT and min–max
attacks) or 10 gradient steps (for
the influence attack)

2  In practice, the defender does not have access to the clean data, so its regularization parameter will be
chosen based on the full dataset Dc ∪Dp . However, our framework assumes that the attacker knows the
regularization parameter in advance. This is a potential disadvantage for the defender. In Sect. 6.2, we study
what happens if the attacker does not know exactly how much regularization the defender will use.

Machine Learning (2022) 111:1–47 23

	

1 3

parameters. (Of course, the ideal choice of decoy parameters would have high test error but
also be attainable.)

Timing
We measured the speed of each attack against the Enron dataset by running them

each on 2 cores of an Intel Xeon E5 processor. Additionally, the influence attack used a
GeForce GTX Titan X for GPU-based calculations. Despite not using a GPU, the KKT and
min–max attacks were significantly faster: while the influence attack took 286 min to reach
17% error, the KKT attack only took 27 s (Fig. 4). The min–max attack took 28 min to
process its first decoy parameter, which gave 23.0% error. The main computational bottle-
neck for the influence attack is the inverse Hessian-vector product calculation in Eq. (10).
In contrast, the other two attacks solve convex subproblems (as opposed to the non-convex
problem that the influence attack is doing gradient descent on) and admit more efficient
general-purpose convex optimization solvers.

5.4 � Iterative optimization

The above experiments simply fix the feasible set F� based on the clean training data, as
described in Sect. 3.2. To study the effect of refining the attacks by iteratively F� (Algo-
rithm 1), we ran an iterative version of the influence attack against the Enron dataset. Fig-
ure 5 shows that iterative optimization does only slightly better: at the low levels of � that
we chose, the attack does not shift the centroids of the data that much, and therefore the
feasible set F� for both the L2 and slab defenses stay somewhat constant.

One perspective on iterative optimization in our setting is that it is targeting the slab
defense by trying to rotate the vector between the two class centroids; as Steinhardt et al.

Fig. 5   Iteratively updating the
feasible set F� increases test
error by a few percentage points
on the Enron dataset (with
� = 3% poisoned data), compared
to fixing the feasible set based on
just the clean data Dc

Fig. 6   Ablative study of the changes we made to the influence attack, evaluated on the Enron dataset. Left:
results of the influence** attack. Middle: results of the influence attack, without the linear programming
(LP) relaxation described in Sect. 3.3. Right: results of the influence-basic attack, which does not use the
LP relaxation nor a concentrated attack

Machine Learning (2022) 111:1–4724

	

1 3

(2017) show, at large � (e.g., � = 0.3 , which is 10 times larger than what we consider), this
vector can be significantly changed by the poisoned points, whereas the L2 feasible set
is harder to perturb.3 On the Enron dataset and at the low � settings that we consider, the
slab defense only decreases test error by a few percentage points, so iterative optimization
only increases test loss by a few percentage points. To illustrate this point, we ran an attack
with � = 0.3 on the MNIST-1-7 dataset: the influence attack without iterative optimization
achieved an increase in test error of only 1.1%, while the influence attack with iterative
optimization achieved a larger increase in test error of 7.5%.

5.5 � Ablations for the influence attack

We studied the effect of the two improvements made to the influence-basic attack—the lin-
ear programming (LP) relaxation and the concentration of the attack—on the Enron data-
set. Removing the linear programming (LP) relaxation decreased the achieved test error by
a few percentage points (Fig. 6-Left vs. Mid). Further removing the concentrated attack
decreased test error substantially (Fig. 6-Right). The influence-basic attack is still opti-
mized to evade the L2 and slab defenses, but because its poisoned points are not concen-
trated, many of them get filtered out by the loss and SVD defenses. Consequently, it does
not manage to increase test error beyond 11% under those defenses.

5.6 � Ablations for the min–max attack

To measure the effect of using decoy parameters in the min–max attack, we ran the
min–max-basic attack from Steinhardt et al. (2017), augmented with the linear program-
ming relaxation and repeated points heuristic. (The unaugmented version of the min–max-
basic attack from Steinhardt et al. (2017) performs worse.) In contrast to the min–max
attack, the min–max-basic attack gets defeated by the loss defense (test error 10.0%, Fig. 7).
As discussed in Sect. 4.3.2, without the constraints imposed by the decoy parameters, the

Fig. 7   The use of decoy param-
eters allows the min–max attack
to evade the loss defense

3  Note that our influence attacks on MNIST-1-7 at high � are considerably weaker than the attacks in Stein-
hardt et al. (2017), which uses a specialized semi-definite program that relies on poisoning the anomaly
detector (i.e., placing poisoned points to move the class centroids in a way that renders the slab defense
ineffective). They achieve an increase in test error of 39% for � = 0.3 . The high-� setting is not our focus in
this paper, since it is less realistic; this performance gap could be a result of poor step size tuning or initiali-
zation on our part, or it could signify a weakness in the applicability of iterative optimization and/or gradi-
ent descent to the high-� setting.

Machine Learning (2022) 111:1–47 25

1 3

poisoned points found by the min–max-basic attack have high loss and consequently get
filtered out by the loss defense.

5.7 � Attacks on multi‑class tasks with the min–max attack on MNIST

Finally, one advantage of the min–max attack is that it works on a variety of input domains
X × Y and non-convex feasible sets F𝛽 ⊂ X × Y , so long as we can still efficiently solve
max(x,y)∈F�

�(�;x, y) . In particular, for multi-class problems, the min–max attack can search
over different choices of ỹ for each poisoned point (x̃, ỹ) , whereas the influence and KKT
attacks require us to grid search over the relative proportion of the different classes. As we
need k(k − 1) distinct points to carry out any data poisoning attack against a k-class SVM
(Proposition 4 in “Appendix 1”), this grid search would take time exponential in k2.

We illustrate a multi-class attack by running the min–max attack on the 10-class MNIST
dataset (LeCun et al. 1998). Using � = 3% poisoned data, the min–max attack obtains
15.2% test error against the L2 defense and 13.7% test error against the loss defense, dem-
onstrating a high-leverage attack in a multi-class setting (Fig. 8).

Fig. 8   The min–max attack
scales to handle multi-class
attacks, as it automatically
chooses the class balance /
relative proportion of poisoned
points. Here, we show that the
min–max attack can increase test
error on the MNIST dataset to
13.7% with � = 3% poisoned data

Fig. 9   The performance of each attack when the test data Dtest is unknown and the attack is optimized
against the training data (left columns) versus in the setting where Dtest is known (right columns)

Machine Learning (2022) 111:1–4726

	

1 3

6 � Experiments: attackers with incomplete information

In Sect. 5, we saw that the influence, KKT, and min–max attacks are effective if the
attacker has complete information about the model and defenses that the defender is using.
In this section, we study transferability—are these attacks still effective when the attacker
does not have complete information about the defender? Specifically, we use the Enron
dataset to explore what happens when the attacker does not have knowledge of 1) the test
set (i.e., they only see the train set); 2) the amount of regularization that the defender uses;
3) their optimization algorithm; and 4) their loss function.

In general, our attacks are still effective under these changes, with the min–max attack
generally being the most robust and the influence attack being the least. However, the loss
defense poses problems for all three attacks when the optimization algorithm or the loss
function are changed, suggesting that attackers should set conservative thresholds against
the loss defense.

6.1 � Unobserved test data

An attacker might not have a specific test set in mind; for example, they might aim to make
the defender incur high expected loss on test points from the same distribution as the train-
ing set. For such an attacker, optimizing specifically for some known test data Dtest might
not translate into an effective attack on a different sample of test data. We tested if our
attacks would still be effective if the attacker only knew the clean training data Dc but not
the test data Dtest.4 Specifically, we generated attacks by simply using Dc in place of Dtest
(i.e., we optimized for high error on the training data Dc).

Figure 9 shows the test error that the resulting attacks incurred on Dtest , compared with
attacks that assume knowledge of Dtest , as used in the rest of the paper. Overall, the attacks
still significantly increase test error even without knowing Dtest . However, the influence
attack is comparatively less effective when the test dataset is not known (reaching 10.9%
test error instead of 18.3% test error). In contrast, the KKT (16.5% vs. 22.6% test error)
and min–max attacks (19.0% vs 23.7% test error) are more robust to using the training data

Fig. 10   The effect of changing the defender’s regularization strength on the test error achieved by each
attack. The attacker’s regularization is fixed at � = 0.09

4  A different setting is if the attacker knows the test data Dtest but not the clean training data Dc . For exam-
ple, the attacker might only have access to a similarly distributed but distinct dataset D′

c
 . As our attacks

depend on the clean training data primarily through the average gradient of the loss computed over Dc , we
expect that swapping Dc with D′

c
 should not matter for sufficiently large training sets.

Machine Learning (2022) 111:1–47 27

	

1 3

in place of the test data. These results suggest that the influence attack, which explicitly
optimizes for loss on the test set, overfits more strongly to the test set compared to the KKT
and min–max attacks, which rely on the test set mainly through the construction of decoy
parameters.

A variant of the above setting is when the attacker does not know the exact test data
Dtest but nonetheless has access to some validation data Dval from the same distribution,
as well as the training data Dc . In this setting, the attacker could optimize an attack against
Dval ; we expect that doing so will result in an attack that is more effective than optimizing
against the training data Dc , as we do above, though still slightly less effective than opti-
mizing against Dtest itself.

6.2 � Regularization

Do attacks that are optimized for one level of regularization still work well at other levels
of regularization? Recall that the defender uses L2 regularization with the hyperparameter
� controlling the amount of regularization (Eq. (2)); in particular, we use � = 0.09 for the
Enron dataset (Table 1). To test the effect of the defender’s choice of � , we varied it from
0.009 to 0.9 while keeping the attacker’s � constant at 0.09. Figure 10 shows the results:

–	 Against the L2 defense, test error generally increased with L2 regularization strength
(Fig. 10-Left). The L2 feasible set depends only on the location of the poisoned points
and not on the model parameters that the defender learns. Thus, the test error changes
because the defender learns a different set of parameters given exactly the same set of
poisoned points, and not because a different set of poisoned points get filtered out by
the defenses.

–	 The amount of regularization had different effects on each attack’s effectiveness against
the L2 defense. The influence attack became less effective as we reduced defender regu-
larization ( < 10% test error against the L2 defense at � = 0.009 ), while the min–max
attack was robust to changes in defender regularization ( 22% test error at � = 0.009).

–	 Increasing regularization can make the loss defense more effective (Fig. 10-Right).
The loss feasible set is sensitive to changes in the model parameters that the
defender learns, so some poisoned points that evaded this defense under the origi-
nal model (with � = 0.09 ) are now detected under the changed model.

–	 Unlike the other attacks, the min–max attack initially gets more effective against
the loss defense as defender regularization is increased from � = 0.09 . We suspect
that this is due to the min–max attack using a fixed loss threshold � (see Eq. (22) in
Sect. 4.3.2) that is more conservative than the KKT attack (which uses an adaptive
threshold based on the quantiles of the loss under the decoy parameters) and the
influence attack (which solely relies on concentrated attacks to overcome the loss
defense).

These results imply that attackers should optimize for lower levels of regularization, in
case the defender uses a lower level (and conversely, it suggests that defenders might
want to use lower levels of regularization than they might otherwise). Attackers using
decoy parameters might also decide to set their loss thresholds more conservatively.

Machine Learning (2022) 111:1–4728

	

1 3

These results also suggest that the data poisoning attacks are not exploiting over-
fitting. If that were the case, we would expect increasing regularization to decrease
overfitting and thus reduce attack effectiveness. Instead, we observe the opposite: the
defender generally suffers when increasing regularizatio, as it is harder for the defend-
er’s model to fit both the poisoned training points and clean training points well, and if
the clean training points are not fit well, the test error will consequently increase.

We note that Demontis et al. (2019) studied the transferability of gradient-based
data poisoning attacks for image recognition and found that attacks were more effec-
tive when the defender used less regularization. The differences from our work is that
they assumed that there are no defenses (i.e., the only constraint on the attacker is to
generate a valid image) and that there are a small number of training points relative to
dimension (e.g., n = 500 for a binary MNIST classification problem).

6.3 � Optimization and loss function

In our previous experiments, we assumed that the defender would learn the model
parameters 𝜃̂ that globally minimized training loss. In practice, defenders might use
stochastic optimization and/or early stopping, leading to parameters 𝜃̂ that are close to
but not exactly at the optimum.

Figure 11-Left shows the results of our attacks on a defender that learned a model
by doing a single pass of stochastic gradient descent over the dataset (i.e., each sample
is looked at exactly once). We also tested how an attacker using the hinge loss would
fare against a defender who uses the logistic loss (Fig. 11-Right). All three attacks
stayed effective against all of the defenses except the loss defense, which managed to
significantly reduce the damage inflicted by the attacker.

As in Sect. 6.2, these results suggest that attackers should use a conservative loss
threshold to harden their attacks against loss-based defenses. It also suggests that the
attacker’s ability to evade loss-based defenses is especially sensitive (relative to other
defenses) to getting the defender’s model correct.

Fig. 11   With the significant exception of the loss defense, the attack results are robust to shifts in the opti-
mization algorithm (from an exact solution to a single pass of stochastic gradient descent) and the loss func-
tion (from the hinge loss to the logistic loss)

Machine Learning (2022) 111:1–47 29

	

1 3

7 � Related work

In this section, we discuss other attack settings and defense strategies that have been stud-
ied in the literature. For broad surveys on this topic, see e.g., Barreno et al. (2010), Biggio
et al. (2014), Gardiner and Nagaraja (2016), Papernot et al. (2016b), and Vorobeychik and
Kantarcioglu (2018).

7.1 � Attacks

Label-flip attacks The attacks presented in this work control both the label ỹ and input
features x̃ of the poisoned points. Attacks that only control the label ỹ are known as label-
flip attacks. In a typical label-flip attack, the attacker gets to change some � fraction of the
labels y of the training set but is unable to change the features x (Biggio et al., 2011; Xiao
et al., 2012, 2015). We experimented with a variant of the label flip attack described in
Xiao et al. (2012), where we allowed the attacker to pick examples from the test set, flip
their labels, and add them to the training set (“Appendix 4”). We found that this attack,
though fast to run, was significantly less effective than our proposed attacks; control of x̃
seems to be necessary to carry out high-leverage attacks in the presence of data sanitization
defenses.

Targeted versus indiscriminate attacks In our experiments, the attacker sought to increase
error on a test set Dtest that was drawn from the same distribution as the clean training data
Dc . This type of attack is known as an indiscriminate attack (Barreno et al., 2010) and is
akin to a denial-of-service attack.

Indiscriminate attacks seek to change the predictions of the learned model on a good
fraction of the entire data distribution and therefore require substantial changes to the
model. This makes indiscriminate attacks statistically interesting, as they get at fundamen-
tal properties of the model: how might an attacker that only controls 1% of the training data
bring about a 10% increase in test error?

A different type of attack is a targeted attack, in which the attacker seeks to cause errors
on specific test examples or small sub-populations of test examples (Gu et al., 2017; Chen
et al., 2017; Burkard & Lagesse, 2017; Koh & Liang, 2017; Shafahi et al., 2018; Suciu
et al., 2018). For example, an attacker might seek to have all of the emails that they send
marked as non-spam while leaving other emails unaffected; or an attacker might seek to
cause a face recognition system to recognize their face as that of a particular victim’s (as
in Biggio et al. (2012a) and Biggio et al. (2013), which build off the attacks in Kloft and
Laskov (2012)). Targeted attackers only seek to change the predictions of the model on
a small number of instances, and therefore might be able to add in 50 poisoned training
points to cause an error on a single test point (Shafahi et al., 2018). Targeted attacks are
well-motivated from a security perspective: attackers might only care about a subset of the
model’s prediction, and targeted attacks require less control over the training set and are
therefore easier to carry out.

The influence and KKT attacks in Sects. 4.1 and 4.2 do not make any assumptions on
the nature of the test set Dtest , and can therefore handle the targeted attack setting without
modification. In contrast, the min–max attack in Sect. 4.3 assumes that the training error
is a good approximation to the test error, and is thus only appropriate in the indiscriminate
attack setting.

Machine Learning (2022) 111:1–4730

	

1 3

Backdoor attacks A backdoor attack is a targeted attack that seeks to cause examples that
contain a specific backdoor pattern, e.g., a bright sticker (Gu et al., 2017) or a particu-
lar type of sunglasses (Chen et al., 2017), to be misclassified. Backdoor attacks work by
superimposing the chosen backdoor pattern onto particular training examples from a given
class, which causes the model to associate the backdoor pattern with that class (and there-
fore misclassify, at test time, examples of a different class that also contain the backdoor
pattern). The attackers in Gu et al. (2017) and Chen et al. (2017) do not need to know the
model that the defender is using; in fact, the attacker in Chen et al. (2017) does not even
need any knowledge of the training set, instead adding examples from a external dataset.
These weaker assumptions on attacker capabilities are common in targeted attacks. In con-
trast, the indiscriminate attacks that we develop in this paper make use of knowledge of the
model and the training set in order to have high leverage.

Clean-label attacks Clean-label attacks are attacks that “do not require control over the
labeling function; the poisoned training data appear to be labeled correctly according to an
expert observer” (Shafahi et al., 2018). Not requiring control over labeling makes it easier
for the attacker to practically conduct such an attack, as the attacker only needs to introduce
the unlabeled poisoned data into the general pool of data (e.g., uploading poisoned images
or sending poisoned emails, as Shafahi et al., 2018 discusses) and wait for the defender to
label and ingest the poisoned data.

The backdoor attacks discussed above are examples of clean-label attacks, provided the
backdoor pattern is chosen to be innocuous enough to avoid human suspicion. Another way
of constructing clean-label attacks is by constraining the poisoned points to be close, in
some metric, to a clean training point of the same class; Shafahi et al. (2018) does this with
the �2 norm, while Suciu et al. (2018) and Koh and Liang (2017) use the �∞ norm.

Our attacks are not clean-label attacks, in that the poisoned points will not necessarily
be labeled as the correct class by a human expert. On the other hand, our poisoned points
are designed to evade detection by automatic outlier detectors; note that “clean-label”
points can fool human experts but still look like statistical outliers.

Adversarial examples and test-time attacks The bulk of recent research in machine learn-
ing security has focused on test-time attacks, where the attacker perturbs the test example
to obtain a desired classification, leaving the training data and the model unchanged. This
line of research was sparked by the striking discovery that test images could be perturbed
in a visually-imperceptible way and yet fool state-of-the-art neural network image clas-
sifiers (Szegedy et al., 2014; Goodfellow et al. 2015; Carlini et al., 2016; Kurakin et al.,
2016; Papernot et al., 2016a, 2017; Moosavi-Dezfooli et al., 2016). Designing models that
are robust to such attacks, as well as coming up with more effective attacks, is an active
area of research (Papernot et al., 2016c; Madry et al., 2017; Tramèr et al., 2017; Wong &
Kolter, 2018; Raghunathan et al., 2018; Sinha et al., 2018; Athalye et al., 2018; Papernot &
McDaniel, 2018).

In contrast to these test-time attacks, data poisoning attacks are train-time attacks: the
attacker leaves the test example unchanged, and instead perturbs the training data so as to
affect the learned model. Data poisoning is less well-studied, and compared to test-time
attacks, it is harder to both attack and defend in the data poisoning setting: data poisoning
attacks have to depend on the entire training set, whereas test-time attacks only depend on
the learned parameters; and common defense techniques against test-time attacks, such as
’adversarial training’ (Goodfellow et al., 2015), do not have analogues in the data poison-
ing setting.

Machine Learning (2022) 111:1–47 31

	

1 3

7.2 � Defenses

In the literature, effective defenses typically require additional information than the defend-
ers we consider in this paper, e.g., having a labeled set of outliers or having a trusted
dataset.

Using labeled outlier data and other training metadata If the defender has access to data
that has been labeled as ‘normal’ versus ‘outlier’, then outlier detection can be treated as
a standard supervised classification problem (Hodge & Austin, 2004). For example, an
online retailer might have a set of transactions that had been previously labeled as fraudu-
lent, and could train a separate outlier detection model to detect and throw out other fraud-
ulent-looking transactions from the dataset. One drawback is that in an adversarial set-
ting there is no assumption that future poisoned points might look like previous poisoned
points. Such methods are therefore more suited for detecting outliers caused by natural
noise processes rather than adversaries.

Instead of directly using ‘normal’ versus ‘outlier’ labels, defenders can instead rely on
other types of training metadata. For example, Cretu et al. (2008)—which introduced the
term ‘data sanitization’ in the context of machine learning—uses information on the time
at which each training point was added to the training set. The intuition is that “in a train-
ing set spanning a sufficiently large time interval, an attack or an abnormality will appear
only in small and relatively confined time intervals” (Cretu et al., 2008).

Using trusted data Other defense methods rely on having a trusted subset T of the training
data that only contains clean data (obtained for example by human curation). One example
is the Reject on Negative Impact (RONI) defense proposed by Nelson et al. (2008), which
was one of the first papers studying data poisoning attacks and defenses. The RONI defense
iterates over training points (x, y) and rejects points if the model learned on just the trusted
data T is significantly different from the model learned on T ∪ {(x, y)} . Another example
is the outlier detector introduced in Paudice et al. (2018), which operates similarly to our
k-NN defense except that it measures distances only to the points in the trusted subset.

Having a trusted dataset makes it easier for the defender, though such a dataset might be
expensive or even impossible to collect; if the defender has enough resources to collect a
large amount of trusted data, then they can train a model on only the trusted data, solving the
problem of data poisoning. The question of whether a small amount of trusted data is suf-
ficient for defeating attackers while maintaining high overall performance (i.e., not rejecting
clean training points that are not similar to the trusted data) is an open one. Finally, defenses
that rely on trusted data are particularly vulnerable to attackers that manage to compromise
the trusted data (e.g., through clean-label attacks that escape human notice).

High-dimensional robust estimation The theoretical computer science community has
studied robust estimators in high dimensions, which seek to work well even in the presence
of outliers (Kearns & Li, 1993). A key issue is that many traditional robust estimators incur
a
√
d increase in error in d dimensions. This theoretical insight aligns with the empirical

results in this paper showing that it is often possible to attack classifiers with only a small
fraction of poisoned data.

Motivated by these issues, Klivans et al. (2009) and later Awasthi et al. (2014) and
Diakonikolas et al. (2017b) design robust classification algorithms that avoid the poor
dimension-dependence of traditional estimators, although only under strong distribu-
tional assumptions such as log-concavity. Separately, Lai et al. (2016) and Diakonikolas

Machine Learning (2022) 111:1–4732

	

1 3

et al. (2016) designed robust procedures for mean estimation, which again required strong
distributional assumptions. Later work (Charikar et al. 2017; Diakonikolas et al. 2017a;
Steinhardt et al. 2018) showed how to perform mean estimation under much more mild
assumptions, and Diakonikolas et al. (2017a) showed that their procedure could yield
robust estimates in practice. In recent concurrent work, Diakonikolas et al. (2018) showed
that robust estimation techniques can be adapted to classification and used this to design a
practical algorithm that appears more robust than many traditional alternatives. It would be
interesting future work to attack this latter algorithm in order to better vet its robustness.

Certified defensesSteinhardt et al. (2017) explore the task of provably certifying defenses,
i.e., computing a dataset-dependent upper bound on the maximum test loss that an attacker
can cause the defender to incur. Their method—from which we adopt the min–max-basic
attack—shows that the L2 and slab defenses are sufficient for defending models trained on
the MNIST-1-7 and Dogfish datasets but cannot certifiably protect models trained on the
Enron and IMDB datasets, which matches with our experimental results. Open questions
are whether our improvements to the min–max-basic (e.g., decoy parameters) can be used
in their framework to derive tighter upper bounds on attack effectiveness, and whether the
other defenses (e.g., the loss defense) can be incorporated into their framework.

8 � Discussion

In this paper, we developed three distinct attacks that could evade data sanitization defenses
while significantly increasing test error on the Enron and IMDB datasets. The influence
attack directly optimizes for increasing the test loss through gradient ascent on the poi-
soned points; the KKT attack chooses poisoned points to achieve pre-determined decoy
parameters; and the min–max attack efficiently solves for the poisoned points that maxi-
mize train loss, as a proxy for test loss.

We summarize the relative merits of these attacks in Table 2. The influence attack is
direct but slow, less effective against model-based defenses (such as the loss defense), and
less robust. The KKT attack is much faster, at least in our setting where it can heavily
exploit convexity; however, its reliance on decoy parameters is also a limitation, as our
heuristic for generating decoy parameters might fail under more sophisticated defenses.
The min–max attack shares the same reliance on decoy parameters and is slower than the
KKT attack, and it only works in the indiscriminate setting, but it is more robust and can
handle multi-class settings more efficiently.

Table 2   Comparison of attacks.
Enron test error is reported at
� = 3% , and the time taken is
how long each attack took to
reach 17% Enron test error

Attack Enron test
error (%)

Time taken Pros and cons

Influence 18.3 286 min + No need to find �decoy
− Slow
− Less transferable
− Does not handle loss defense

KKT 22.5 27s + �decoy handles loss defense
Min–max 23.7 28 min + �decoy handles loss defense

+ Handles multi-class setting
− Assumes indiscriminate attack

Machine Learning (2022) 111:1–47 33

	

1 3

We expect that more sophisticated data sanitization defenses could defeat the attacks
developed in this paper, which did not account for them. However, these defenses might
in turn be broken by attacks that are specifically geared for those defenses. The results
in this paper show that data poisoning defenses need to be tested against attackers that
are designed to evade them. We end by discussing some directions for future work.

What makes datasets and models attackable? The effectiveness of our attacks vary signifi-
cantly from dataset to dataset (e.g., linear models trained on the Enron and IMDB datasets
are more vulnerable than linear models trained on the MNIST-1-7 and Dogfish datasets).
What conditions make certain models on certain datasets attackable, but not others? This
is an open question; we speculate that linear models on the Enron and IMDB datasets are
easier to attack because they have higher dimensionality and are less linearly separable, but
this question deserves more study.

Non-convex models One limitation of our attacks is that they rely on the attacker and
defender being able to find the model parameters � that globally minimize the training loss.
This is a reasonable assumption if the loss is convex, but most models in practice today
are non-convex. Analysis of attack algorithms in the non-convex setting is substantially
more difficult, e.g., a poisoning attack that works against a neural net trained with a given
random seed might fail when the random seed is changed, or a single poisoned point might
cause the defender to get stuck at a very bad local minimum. The attacks that we present
in this paper can, at least empirically, be applied in some form to non-convex models. For
example, in the influence attack, we can still move poisoned data points along the gradi-
ent of the test loss. It is an open question whether our attacks remain effective in the non-
convex setting.

Strategies for stronger defenses How might we build stronger defenses that are robust
against determined attackers? We outline several approaches, as well as potential
difficulties.

One strategy would be to try to design better outlier detectors—perhaps the L2 and
slab defenses provide too crude a measure of whether a point is realistic, and sophisti-
cated generative models such as generative adversarial nets (Goodfellow et al., 2014)
could better rule out poisoned data. We are skeptical of this approach, as there are many
natural distributions (such as multivariate Gaussians) where even a perfect generative
model cannot prevent an adversary from substantially skewing empirical statistics of
the data (see Steinhardt, 2018, Section 1.3). The existence of adversarial test examples
for image classifiers (Szegedy et al., 2014; Goodfellow et al., 2015) also weights against
this approach, since such examples are generated using a method for inducing high
loss under a target model. This method could likely be adapted for use in the min–max
attack, as the the main sub-routine in that attack involves generating examples that
induce high loss under a target model.

A different strategy is to learn multiple models on different (random or otherwise) sub-
sets of data, in the hopes that the data will be relatively clean at least on some subsets
(Fischler & Bolles, 1981; Kearns & Li, 1993; Cretu et al., 2008). In general, these methods
are variants of loss-based defenses, in that they assume that poisoned points tend to be
poorly fit by the model, and could therefore still be vulnerable to attacks that specifically
target loss-based defenses. Especially with larger models and datasets, these methods also
incur the additional computational cost from needing to fit multiple models.

Machine Learning (2022) 111:1–4734

	

1 3

Another strategy rests on the observation that if we could directly minimize the 0–1 test
error (rather than using a convex proxy), then an adversary controlling an �-fraction of the
data could always induce at most additional �

1−�
 error, at least on the training set.5 The key

issue with convex proxies for the 0/1-loss is that they are unbounded and so an adversary can
cause the loss on Dp to be very large. One could perhaps do better by using non-convex but
bounded proxies for the 0/1-loss, which would make optimization of the training loss more
difficult, but might pay off with higher robustness. However, it also opens up a new avenue
for attack—the attacker could try to push the learner towards a bad local minimum. There are
also known hardness results for even approximately minimizing the 0/1-loss (Feldman et al.,
2009; Guruswami & Raghavendra, 2009), but it is possible that they do not apply in practice.

Finally, as noted in Sect. 7, there is recent work seeking to design estimators that are
provably robust to adversarial training data under suitable distributional assumptions. Dia-
konikolas et al. (2018) recently presented a practical implementation of these methods for
classification and regression tasks and showed promising initial results. Their method itera-
tively removes points with outlying gradients and refits the model, and can be viewed as a
more sophisticated version of an iterative loss-based defense; Liu et al. (2017) and Jagiel-
ski et al. (2018) also present similar iterative algorithms for the regression setting. We view
provable security under a well-defined threat model as the gold standard, and encourage
further work along this direction (see Li (2018) or Steinhardt (2018) for two recent over-
views). There appears to be plenty of room both to improve the practical implementation of
this family of defenses and to devise new theoretically-grounded procedures.

Appendix 1: How many distinct points are needed for data poisoning
attacks?

Consider some attack Dp which makes a defender learn model parameters 𝜃̂ . Under what
conditions does there exist some other attack D′

p
 that contains at most as many points

( |Dp| ≥ |D′
p
| ), but with fewer distinct points (i.e., D′

p
 contains repeated copies of points)?

If the attacker could place poisoned points at arbitrary locations, and if the model’s
loss function is unbounded (as is the case in most models, e.g., SVMs or logistic regres-
sion), then very few poisoned points (distinct or otherwise) are generally needed since
the attacker can get high leverage over the model by placing a poisoned point far away.
However, in our setting, the attacker is constrained to play poisoned points that are in
the feasible set F .

In this section, we provide a general method for finding the minimum number of dis-
tinct points necessary for achieving any attack, given a model with a strictly convex loss
function and some feasible set F  . We show that for binary SVMs and logistic regres-
sion, if F is convex for each class—as is the case for the L2, slab, loss, and SVD—then
only 2 distinct points are necessary.

As a high-level sketch, our proof proceeds as follows:

1.	 (Proposit ion 1) We consider the set of scaled feasible gradients
G𝜃̂

def
={𝛼∇𝜃�(𝜃̂;x, y) ∶ 0 ≤ 𝛼 ≤ 1, (x, y) ∈ F} . This set corresponds to the gradients of

all feasible points, scaled by some 0 ≤ � ≤ 1 . We show that the number of distinct points

5  To see this, note that the 0/1-loss of �∗ averaged across Dc ∪Dp is at most at most � larger than across Dc ,
so any 𝜃̂ outperforming �∗ can only have slightly higher loss than 𝜃̂ across Dc.

Machine Learning (2022) 111:1–47 35

	

1 3

needed for an attack relates to the geometry of this set G𝜃̂ . In particular, if G𝜃̂ is convex
for each class, then only 2 points are needed.

2.	 (Proposition 2) We check that for SVMs, G𝜃̂ is convex for each class if the original fea-
sible set F is convex for each class.

3.	 (Proposition 3) More generally, we establish conditions under which differentiable mar-
gin-based losses have G𝜃̂ convex for each class, and we show that logistic regression
satisfies these conditions.

For convenience, in the sequel we will assume that these models are trained by finding

In other words, the degree of regularization is not explicitly affected by the total number of
data points |Dc| + |Dp| . Moreover, the overall loss is strictly convex due to regularization,
even if �(�;x, y) is only convex (and not strictly convex) in � , as is the case with the hinge
loss. We also assume that Dp ⊆ F (otherwise, the poisoned points will simply be thrown
out by the defender).

We start by establishing the equivalence between the number of distinct points
needed to poison a given model and the geometry of the set of feasible gradients of that
model.

Definition 1  The Carathéodory number of a set G ⊆ ℝ
n is the smallest number c such that

each g̃ ∈ conv(G) can be written as a convex combination of at most c points in G . (Each g̃
may be a convex combination of a different set of c points.)

Proposition 1  Consider a defender who learns a model by first discarding all points out-
side a fixed feasible set F  , and then finding the parameters that minimize a strictly con-
vex loss �(�;x, y) averaged over the training set. If a parameter 𝜃̂ is attainable by any set
of ñ poisoned points Dp = {(x̃1, ỹ1),… , (x̃ñ, ỹñ)} ⊆ F  , then there exists a set D̃p that also
attains 𝜃̂ with at most ñ poisoned points but only contains c distinct points (with a poten-
tially fractional number of repeats of each point), where c is the Carathéodory number of
the set of possible scaled gradients G𝜃̂

def
={𝛼∇𝜃�(𝜃̂;x, y) ∶ 0 ≤ 𝛼 ≤ 1, (x, y) ∈ F}.

Remark 2  If �(�;x, y) is not differentiable in � , we obtain an equiva-
lent result by considering the subgradient sets ��� . In this case, we can define
G𝜃̂

def
={𝛼g ∶ 0 ≤ 𝛼 ≤ 1, g ∈

⋃
(x,y)∈F 𝜕𝜃�(𝜃̂;x, y)} . For clarity in the following proof, we will

assume that �(�;x, y) is differentiable, but the argument for the non-differentiable case is
almost identical.

Proof  Assume that we are given a set of n clean training points Dc and a set of ñ poisoned
points Dp . Without loss of generality, we assume that each poisoned point (x̃, ỹ) ∈ Dp lies
in the feasible set F (otherwise, the poisoned point will be filtered out and have no effect).

The defender learns parameters 𝜃̂ that minimize the training loss

(23)𝜃̂ = argmin
𝜃∈Θ

𝜆

2
‖𝜃‖2

2
+

�
(x,y)∈Dc

�(𝜃;x, y) +
�

(x̃,ỹ)∈Dp

�(𝜃;x̃, ỹ).

Machine Learning (2022) 111:1–4736

	

1 3

Since 𝜃̂ is a minimum of the loss, we have that

where ∇𝜃�(𝜃̂;x, y) denotes the gradient of the loss at the point (x, y) with parameters 𝜃̂.
Our goal is to find the minimum number of distinct points c such that given any clean

dataset Dc , attack Dp , and consequent model parameters 𝜃̂ , we can find some other attack
D̃p with at most c distinct points such that D̃p also makes the defender learn 𝜃̂ . The key
observation is that because the loss is strictly convex (by assumption), (25) is a necessary
and sufficient condition for the defender to learn 𝜃̂ . In particular, if we define
g
def
=
∑

(x̃,ỹ)∈Dp
∇𝜃�(𝜃̂;x̃, ỹ) , then any other attack D̃p that satisfies g =

∑
(x̃,ỹ)∈D̃p

∇𝜃�(𝜃̂;x̃, ỹ)

—note that we have D̃p in place of Dp—will also make the defender learn 𝜃̂.
What values can g take on? Since g

def
=
∑

(x̃,ỹ)∈Dp
∇𝜃�(𝜃̂;x̃, ỹ) by construction, and each

point (x̃, ỹ) in Dp lies in the feasible set F  , we know that the normalized vector g̃
def
=g∕ñ

(where ñ is the number of points in D̃p ) is contained in the convex hull conv(G𝜃̂) , where G𝜃̂
is the set of scaled gradients that are possible in the feasible set,
G𝜃̂

def
={𝛼∇𝜃�(𝜃̂;x, y) ∶ 0 ≤ 𝛼 ≤ 1, (x, y) ∈ F}.6
Now, say we can find c points g1, g2,… , gc ∈ G𝜃̂ such that g̃ is a convex combination

of these points (i.e., g̃ ∈ 𝛾1g1 + 𝛾2g2 +⋯ + 𝛾kgc , with �i ≥ 0 and
∑

i �i = 1 ). Since each
point gi ∈ G𝜃̂ can be written as 𝛼i∇𝜃�(𝜃̂;x̃i, ỹi) for some (x̃i, ỹi) ∈ F with 0 ≤ �i ≤ 1 , we can
construct a dataset D̃p comprising 𝛼1𝛾1ñ copies of (x̃1, ỹ1) , 𝛼2𝛾2ñ copies of (x̃2, ỹ2) , and so
on, such that g = ñg̃ = ñ

∑c

i=1
𝛼i𝛾i∇𝜃�(𝜃̂;x̃i, ỹi) . This constructed dataset D̃p will therefore

attain 𝜃̂ with only c distinct points, and since
∑c

i=1
�i�i ≤ 1 , the total weight of all of these

points will be less than or equal to ñ.
We thus want to find the smallest number c such that for any g̃ ∈ conv(G𝜃̂) , we can write

g̃ as a convex combination of at most c points in G𝜃̂ . This is the definition of the Carathéo-
dory number of G𝜃̂ , as desired.

	� ◻

Proposition 1 tells us that to find the number of distinct points required for data poison-
ing attacks on a given model and feasible set, it suffices to find the Carathéodory number
of the set of feasible gradients of that model. Finding the Carathéodory number of a set is
a well-studied problem (see, e.g., Bárány and Karasev (2012), or Mirrokni et al. (2015) for
an approximate version of the problem). In our setting, each feasible set can be written as
the union of a small number of convex sets, which simplifies the analysis of its Carathéo-
dory number. We start by establishing the following lemma:

Lemma 1  If a set G is the union of k convex sets, G = G1 ∪ G2 ∪⋯Gk where each Gi is con-
vex, then the Carathéodory number of G is at most k.

(24)
𝜆

2
‖𝜃‖2

2
+

�
(x,y)∈Dc

�(𝜃;x, y) +
�

(x̃,ỹ)∈Dp

�(𝜃;x̃, ỹ).

(25)0 = 𝜆𝜃̂ +
∑

(x,y)∈Dc

∇𝜃�(𝜃̂;x, y) +
∑

(x̃,ỹ)∈Dp

∇𝜃�(𝜃̂;x̃, ỹ),

6  g is actually contained in the convex hull of the unscaled gradient set {∇𝜃�(𝜃̂;x, y) ∶ (x, y) ∈ F} , which is
a subset of the scaled gradient set, so the above proof also goes through if we consider the unscaled gradi-
ent set in place of the scaled gradient set. However, as we will see later in this section, adding the � scaling
term reduces the Carathéodory number, which gives a stronger result.

Machine Learning (2022) 111:1–47 37

	

1 3

Proof  Pick any g̃ ∈ conv(G) . By construction, we can write g̃ =
∑k

i=1

∑ni
j=1

𝛼ijxij where
xij ∈ Gi , �ij ≥ 0 , and

∑
i

∑
j �ij = 1 . Since the Gi are convex sets, we can find x̃i ∈ Gi ⊆ G

such that x̃i =
∑ni

j=1
𝛼ijxij∕

∑ni
j=1

𝛼ij , allowing us to write g̃ =
∑k

i=1

�∑ni
j=1

𝛼ij

�
x̃i . Since any

g̃ ∈ conv(G) can be written as the convex combination of at most k points in G , the Car-
athéodory number of G is k.

	� ◻

We use this lemma to establish the Carathéodory number of the set of scaled gradients
for a binary SVM.

Proposition 2  Consider the setting of Proposition 1, and let the loss function be the �2

-regularized hinge loss on data with binary labels. Suppose that for each class y = −1,+1,
the feasible set Fy

def
={x ∶ (x, y) ∈ F} is a convex set. Then the Carathéodory number of

G𝜃̂

def
={𝛼g ∶ 0 ≤ 𝛼 ≤ 1, g ∈

⋃
(x,y)∈F 𝜕𝜃�(𝜃̂;x, y)} is at most 2, independent of 𝜃̂.

Proof  Recall that in a binary SVM, the loss on an individual point is given by

For convenience, we have folded the regularization term into the loss on each point.
From Proposition 1, we want to find the Carathéodory number of the set of all possible

scaled (sub)gradients of poisoned points G
def
={𝛼g ∶ 0 ≤ 𝛼 ≤ 1, g ∈

⋃
(x,y)∈F 𝜕𝜃�(𝜃̂;x, y)} .

For a binary SVM, the subgradient sets are:

Plugging this into the expression for G𝜃̂ , we get that

which we can rewrite as the union of two convex sets, one for each class:

By Lemma 1, the Carathéodory number of G𝜃̂ is at most 2, regardless of what 𝜃̂ is.
	� ◻

More generally, we can bound the Carathéodory number of the set of scaled gradients
for a particular class of convex, differentiable, margin-based losses.

Proposition 3  (Carathéodory number of G for margin-based losses) Consider the setting
of Proposition 1 on binary data, and let the loss function be �(𝜃;x, y) = c(−y𝜃⊤x) , where
c ∶ ℝ → ℝ is a convex, monotone increasing, and twice-differentiable function. Suppose
that the ratio of the second to the first derivative of c, c��∕c� is a monotone non-increasing
function, and that for each class y = −1,+1, the feasible set Fy

def
={x ∶ (x, y) ∈ F} is a con-

vex set. Then the Carathéodory number of G𝜃̂

def
={𝛼∇𝜃�(𝜃̂;x, y) ∶ 0 ≤ 𝛼 ≤ 1, (x, y) ∈ F} is at

most 2, independent of 𝜃̂.

(26)�(𝜃;x, y) = max(0, 1 − y𝜃⊤x).

(27)𝜕𝜃�(𝜃̂;x, y) =

⎧
⎪⎨⎪⎩

{0}, if y𝜃⊤x > 1

{−𝛾yx ∶ 0 ≤ 𝛾 ≤ 1} if y𝜃⊤x = 1

{−yx} if y𝜃⊤x < 1.

(28)G𝜃̂ = {−𝛼yx ∶ 0 ≤ 𝛼 ≤ 1, (x, y) ∈ F, y𝜃⊤x ≤ 1},

G𝜃̂ = {−𝛼x ∶ 0 ≤ 𝛼 ≤ 1, (x,+1) ∈ F+1, 𝜃
⊤x ≤ 1} ∪ {𝛼x ∶ 0 ≤ 𝛼 ≤ 1, (x,−1) ∈ F−1,−𝜃

⊤x ≤ 1}.

Machine Learning (2022) 111:1–4738

	

1 3

Proof  We can write G𝜃̂ as the union of two sets G𝜃̂,+1 and G𝜃̂,−1 , one for each class, where
G𝜃̂,y

def
={𝛼∇𝜃�(𝜃̂;x, y) ∶ 0 ≤ 𝛼 ≤ 1, x ∈ Fy} . To show that the Carathéodory number of G𝜃̂ is

at most 2, it suffices to show that each class set G𝜃̂,y is convex and then apply Lemma 1.
Pick 𝜃̂ arbitrarily and fix y to be −1 or +1 . To check that G𝜃̂,y is convex, it suffices to

check that for each possible choice of x1 and x2 in Fy and 0 ≤ � ≤ 1 , there exists some
x̃ ∈ Fy and 0 ≤ � ≤ 1 such that

Since our loss function has the form �(𝜃;x, y) = c(−y𝜃⊤x) , we have that

where c′ is the derivative of c. Substituting this into (29) and cancelling out the −y terms on
both sides gives us the equivalent condition

To satisfy the above condition, we will take

which in turn implies that

Since x̃ is a convex combination of x1 and x2 , the convexity of Fy implies that x̃ ∈ Fy , so it
remains to check that 0 ≤ � ≤ 1.7 Moreover, since c is monotone increasing by assumption,
c′ is positive, and therefore � is positive. It remains to check that � ≤ 1.

First, note that log c�(⋅) is a concave function, as its derivative c��∕c� is monotone non-
increasing by assumption. For notational convenience, let s1

def
= − y𝜃⊤x1 and s2

def
= − y𝜃⊤x2 ,

and let T
def
= �c�(s1) + (1 − �)c�(s2) . We then have that

Exponentiating both sides and rearranging gives us

(29)𝛼∇𝜃�(𝜃̂;x̃, y) = 𝛾∇𝜃�(𝜃̂;x1, y) + (1 − 𝛾)∇𝜃�(𝜃̂;x2, y).

(30)∇𝜃�(𝜃̂;x, y) = c�(−y𝜃⊤x)(−yx),

(31)𝛼c�(−y𝜃⊤x̃)x̃ = 𝛾c�(−y𝜃⊤x1)x1 + (1 − 𝛾)c�(−y𝜃⊤x2)x2.

(32)x̃ =
𝛾c�(−y𝜃⊤x1)

𝛾c�(−y𝜃⊤x1) + (1 − 𝛾)c�(−y𝜃⊤x2)
x1 +

(1 − 𝛾)c�(−y𝜃⊤x2)

𝛾c�(−y𝜃⊤x1) + (1 − 𝛾)c�(−y𝜃⊤x2)
x2,

(33)𝛼 =
𝛾c�(−y𝜃⊤x1) + (1 − 𝛾)c�(−y𝜃⊤x2)

c�(−y𝜃⊤x̃)
.

log c�(−y𝜃⊤x̃) = log c�
(
𝛾c�(s1)s1 + (1 − 𝛾)c�(s2)s2

T

)

≥ (𝛾c�(s1)∕T) log c
�(s1) + ((1 − 𝛾)c�(s2)∕T) log c

�(s2) (Jensen’s)

= (𝛾c�(s1)∕T) log
𝛾c�(s1)∕T

𝛾
+ ((1 − 𝛾)c�(s2)∕T) log

(1 − 𝛾)c�(s2)∕T

𝛾
+ log T

≥ logT (non-negativity of KL divergence)

𝛼 =
T

c�(−y𝜃⊤x̃)
≤ 1.

7  Note that since 𝛼c�(−y𝜃⊤x̃) is a scalar, so for (31) to hold, x̃ needs to point in the same direction as
𝛾c�(−y𝜃⊤x1)x1 + (1 − 𝛾)c�(−y𝜃⊤x2)x2 . Moreover, since we need x̃ to be in Fy , we want x̃ to be a convex
combination of x1 and x2 . This choice of x̃ is the only choice that satisfies these two considerations.

Machine Learning (2022) 111:1–47 39

	

1 3

The above argument shows that G𝜃̂,y is a convex set. Since we picked 𝜃̂ and y arbitrarily, we
can apply Lemma 1 to conclude that G𝜃̂ = G𝜃̂,+1 ∪ G𝜃̂,−1 has Carathéodory number at most 2
regardless of 𝜃̂ . 	� ◻

Corollary 1  (Carathéodory number of G for logistic regression) Consider a logistic regres-
sion model in the setting of Proposition 3, where �(𝜃;x, y) = log(1 + exp(−y𝜃⊤x)). Then
the Carathéodory number of G𝜃̂

def
={𝛼∇𝜃�(𝜃̂;x, y) ∶ 0 ≤ 𝛼 ≤ 1, (x, y) ∈ F} is at most 2, inde-

pendent of 𝜃̂.

Proof  In logistic regression, we have that c(v) = log(1 + exp(v)) ; c�(v) = �(v) where � is
the sigmoid function, �(v)

def
=

1

1+exp(−v)
 ; and c��(v) = �(v)(1 − �(v)) . Thus, c

′′

c′
 is a monotone

decreasing function, and c is convex, monotone increasing, and twice-differentiable, so
Proposition 3 applies. 	� ◻

We can collect all of the above results into the following theorem, which appears in
the main text.

Theorem 1(2 points suffice for 2-class SVMs and logistic regression) Consider a
defender that learns a 2-class SVM or logistic regression model by first discarding all
points outside a fixed feasible set F and then minimizing the average (regularized) train-
ing loss. Suppose that for each class y = −1,+1 , the feasible set Fy

def
={x ∶ (x, y) ∈ F}

is a convex set. If a parameter 𝜃̂ is attainable by any set of ñ poisoned points
Dp = {(x̃1, ỹ1),… , (x̃ñ, ỹñ)} ⊆ F  , then there exists a set of at most ñ poisoned points D̃p
(possibly with fractional copies) that also attains 𝜃̂ but only contains 2 distinct points,
one from each class.

More generally, the above statement is true for any margin-based model with loss of
the form �(𝜃;x, y) = c(−y𝜃⊤x) , where c ∶ ℝ → ℝ is a convex, monotone increasing, and
twice-differentiable function, and the ratio of second to first derivatives c��∕c� is mono-
tone non-increasing.

Proof  From Proposition 2 (SVMs), Proposition 3 (margin-based losses), and Corollary 1
(logistic regression), we have that the Carathéodory number of G𝜃̂ (the set of scaled pos-
sible gradients) for each of these models is at most 2, regardless of 𝜃̂ . By Proposition 1, we
conclude that only 2 distinct points are necessary. In particular, since G𝜃̂ can be represented
in each of these cases as the union of two convex sets, one for each class, we need 1 distinct
point from each class to realize any data poisoning attack. 	� ◻

The general approach of finding the Carathéodory number of the set of scaled possible
gradient can be applied to other models beyond those that we consider in this paper. As one
example, we can extend the above approach to the setting of a multi-class SVM:

Proposition 4  (k(k − 1) distinct points suffice for a k-class SVM) Consider the setting of
Proposition 2, but with a k-class SVM. If a parameter 𝜃̂ is attainable by any set of ñ poi-
soned points Dp = {(x̃1, ỹ1),… , (x̃ñ, ỹñ)} ⊆ F , then there exists a set of at most ñ poisoned

Machine Learning (2022) 111:1–4740

	

1 3

points D̃p that also attains 𝜃̂, but that only has k − 1 distinct values of x̃ for each distinct ỹ,
for a total of k(k − 1) distinct points.

Proof  We follow the multi-class SVM formulation described in Crammer and Singer
(2002), which has parameters � = [�1;�2;… ;�k] ∈ ℝ

kd for each class y = 1, 2,… , k , where
d is the dimensionality of the feature space X  . The loss on an individual point is given by

This reduces to the above formulation for a binary (2-class) SVM by setting �−1 = −�+1.
Let ix,y = argmaxi≠y 𝜃

⊤
i
x , and let x(i) = [0,… , 0,

⏟⏟⏟
(i−1)d zeroes

x, 0,… , 0
⏟⏟⏟

(n−i)d zeroes

] . Without loss of general-

ity, we can ignore subgradients and take ∇��(�;x, y) = −x(y) + x(ix,y) , following a similar
argument to that used in Proposition 2.

Define Gi,j = {−�x(i) + �x(j) ∶ 0 ≤ � ≤ 1, (x, i) ∈ F} . We have that G𝜃̂ =
⋃k

i=1

⋃k

j≠i
Gi,j ,

and since each Gi,j is a convex set, by Lemma 1, the Carathéodory number of G is at most
k(k − 1) . 	� ◻

Appendix 2: Attack implementation details

Appendix 2.1: The influence attack

The following details apply to both the influence-basic and influence attacks.
Smoothed hinge loss In our setting, the loss �(�;x, y) is the hinge loss max(0, 1 − y𝜃⊤x) .

One issue is that this loss is piecewise linear, which means that its gradient is zero or one,
and its Hessian zero, almost everywhere. As a result, the gradient of the test loss L w.r.t. x̃
—which involves an inverse-Hessian-gradient-product, as in (10)—gives a poor indication
of which directions to perturb x̃ , and can easily get stuck. To mitigate this problem, we fol-
low Koh and Liang (2017) and smooth the hinge loss for the purposes of computing the
gradient (the actual training of the model is still done using the hinge loss). Specifically, we
replace it with the function �smooth(𝜃;x, y) = 𝛿 log(1 + exp(

1−y𝜃⊤x

𝛿
)) for some small � . The

function �smooth converges to � as � → 0 , but has derivatives of all orders whenever 𝛿 > 0 .
We note that there are other ways to get around the non-differentiability of the hinge loss.
For example, Biggio et al. (2012b), Mei and Zhu (2015b), and their subsequent work make
use of the dual formulation of SVMs to derive the required gradient, under the assump-
tion that the set of support vectors (defined as training points that are exactly at the hinge)
remain unchanged by the gradient update. For our purposes, we expect that such methods
would perform similarly if the step size of the gradient update is small enough.

Computing inverse Hessian-vector products To efficiently compute 𝜕𝜃̂
𝜕x̃

 in (10), we follow
Koh and Liang (2017) and use a combination of fast Hessian-vector products (Pearlmutter
1994) and a conjugate gradient solver (Martens, 2010); see also Agarwal et al. (2016) and
Muñoz-González et al. (2017) for other tractable approaches. We select the step size � by
trying a range of options and selecting the best-performing one on the test set (since, in our
setting, the attacker knows the test set in advance).

(34)�(𝜃;x, y) = max(0, 1 − 𝜃⊤
y
x +max

i≠y
𝜃⊤
i
x).

Machine Learning (2022) 111:1–47 41

	

1 3

Choosing the labels of poisoned points For the influence-basic attack, we initialize both
x̃i and ỹi through random label flips on the training set. In other words, we select �n data
points from the clean data Dc uniformly at random, with replacement, to flip and add to
the poisoned data Dp . We only consider data points that would still lie in F� after the label
flip. For the influence attack, there is only one distinct positive poisoned point x̃+ and one
distinct negative poisoned point x̃− . We weight these two points inversely proportionally
to the class balance: i.e., if there are P positive and N negative points in Dc , then we place
N

P+N
⋅ � weight on (x̃+, 1) and P

P+N
⋅ � weight on (x̃−,−1) . This maintains the same class bal-

ance, on average, as the label flip initialization for the influence-basic attack.

Appendix 2.2: The KKT attack

Generating decoy parameters For each dataset, we first generated candidate decoy parame-
ters as in Sect. 4.2.1—adding r copies of each test point whose flipped label has loss
greater than � . For Enron, we swept over r ∈ {1, 2, 3, 5, 8, 12, 18, 25, 33} and � set to the qth
quantile of the loss (over the flipped test set), for q ∈ {0.05, 0.10,… , 0.55} . This yielded
99 candidates �decoy ; for efficiency we removed all parameters that had lower test error and
higher training loss than some other candidate �′

decoy
 . This left us with 48 parameters total.

For IMDB, we applied a similar procedure but took r ∈ {1, 2, 3, 4, 5} and
q ∈ {0.1, 0.2,… , 0.6} ; this yielded 18 candidates after pruning (we sought fewer candi-
dates for IMDB because it is bigger and slower to attack).

Choosing the labels of poisoned points Given the fraction of poisoned data � = 3% , for
each set of decoy parameters, we grid searched over 7 different ratios of positive versus
negative poisoned points, ranging from �+ = 3%, �− = 0% to �+ = 0%, �− = 3%.

Appendix 2.3: The min–max attack

Loss defense threshold To evade the loss defense, we used the threshold � = 0.25 across all
experiments. The results were fairly robust to this choice of threshold.

Multi-class training For the MNIST dataset, we trained the multi-class SVM with AdaGrad
(Duchi et al., 2010), with a batch size of 20, step size � = 0.02 , and 3 passes over the training data.

Fig. 12   The influence attack successfully drives test error on the Enron dataset from 3 to 23% with just
� = 3% poisoned data, and on the Dogfish dataset from 1 to 8%, but does not manage to significantly affect
the MNIST-1-7 dataset

Machine Learning (2022) 111:1–4742

	

1 3

Appendix 3: Experiments on MNIST‑1‑7 and Dogfish

In this section, we study the effectiveness of the influence attack on the following two
datasets:

1.	 The MNIST-1-7 image dataset (LeCun et al., 1998), which requires each input feature
to lie within the interval [0, 1] (representing normalized pixels). It is derived from the
standard 10-class MNIST dataset by taking just the images labeled ‘1’ or ‘7’. It is easily
linearly separable: an SVM achieves 0.7% error on the clean data.

2.	 The Dogfish image dataset (Koh & Liang, 2017), which has no input constraints; its
features are neural network representations, which for the purposes of this paper we
allow to take any value in ℝd . Compared to the MNIST-1-7 dataset (where n ≫ d ),
the Dogfish dataset has n ≈ d , allowing attackers to potentially exploit overfitting. The
Dogfish dataset also has a low base error of 1.3%.

As discussed in Sect. 5, Steinhardt et al. (2017) showed that the L2 and slab defenses are
certifiably effective at defending the MNIST-1-7 dataset, and to a lesser extent the Dogfish
dataset, for low values of � . The results in Fig. 12 are consistent with this: with � = 3% , the
influence attack increases Dogfish test error from 1 to 8% and does not appreciably affect
MNIST-1-7 test error. In contrast, it drives test error on the Enron dataset from 3 to 23%.

Appendix 4: Label flip attacks

Label flip attacks are a popular strategy in the literature for executing data poisoning
attacks (Biggio et al., 2011; Xiao et al., 2012, 2015). In a label flip attack, the attacker is
given a set of real data Dpool = {(x̃i, ỹi)}

npool

i=1
 . To form the poisoned data Dp , the attacker

chooses �n points (possibly repeated) from Dpool and flips their labels.
Many ways of choosing which points to flip have been proposed (see Xiao et al., 2015

for a review). Here, we consider the alfa attack from Xiao et al. (2012). alfa seeks to add
points that have a high loss under the original (clean) model �∗

def
= argmin �L(�;Dc) but a

low loss under the final (poisoned) model 𝜃̂
def
= argmin 𝜃L(𝜃;Dc ∪Dp) . Concretely, it solves:

Fig. 13   Results of the alfa attack
on the Enron dataset and L2
defense

Machine Learning (2022) 111:1–47 43

	

1 3

We adapt the original alfa attack to our setting in the following two ways:

1.	 We constrain all poisoned points in Dp to lie in the feasible set F�.
2.	 We set Dpool = Dtest ; that is, the attacker gets to add points from the flipped test set.

Intuitively, adding flipped versions of test points to the training set should cause the
model to wrongly classify those test points, in line with the attacker’s goal of increasing
the model’s loss on the test set.

We evaluated this variant of alfa on the Enron dataset. To make it easier for the attacker,
we only considered the L2 defense. Our implementation of the alfa attack was not able to
increase the test error much, achieving a 2% increase in test error with � = 3% (Fig. 13).
In contrast, the attacks we introduce in the main text achieve an increase in test error of
15–20%, despite having to deal with more sophisticated defenses. Our conclusion is that
only modifying the labels ỹ , as in label flip attacks, does not give the attacker much power
relative to being able to modify x̃ as well.

Acknowledgements  We are grateful to Steve Mussmann, Zhenghao Chen, Marc Rasi, Robin Jia, and our
anonymous reviewers for helpful comments and discussion.

Author Contributions  PWK, JS, and PL conceptualized the project and wrote the paper. PWK and JS imple-
mented the experiments.

Funding  This work was partially funded by an Open Philanthropy Project Award. PWK was supported by
the Facebook Fellowship Program. JS was supported by the Fannie and John Hertz Foundation Fellowship.

Availability of data and code  Code and data for replicating our experiments are available at https://​github.​
com/​kohpa​ngwei/​data-​poiso​ning-​journ​al-​relea​se.

References

Agarwal, N., Bullins, B., & Hazan, E. (2016). Second order stochastic optimization in linear time. arXiv:​
16020​3943

Athalye, A., Carlini, N.&, Wagner, D. (2018). Obfuscated gradients give a false sense of security: Circum-
venting defenses to adversarial examples. In International conference on machine learning (ICML).

Awasthi, P., Balcan, M. F., & Long, P. M. (2014). The power of localization for efficiently learning linear
separators with noise. In Symposium on theory of computing (STOC) (pp. 449–458).

Bárány, I., & Karasev, R. (2012). Notes about the Carathéodory number. Discrete & Computational Geom-
etry, 48(3), 783–792.

Bard, J. F. (1999). Practical bilevel optimization: Algorithms and applications. Springer.
Bard, J. F. (1991). Some properties of the bilevel programming problem. Journal of Optimization Theory

and Applications, 68(2), 371–378.
Barreno, M., Nelson, B., Joseph, A. D., & Tygar, J. D. (2010). The security of machine learning. Machine

Learning, 81(2), 121–148.

maximize
Dp

L(𝜃̂;Dp) − L(𝜃∗;Dp)

s.t. |Dp| = 𝜖|Dc|
(x̃,−ỹ) ∈ Dpool ∀(x̃, ỹ) ∈ Dp

𝜃̂ = argmin 𝜃L(𝜃;Dc ∪Dp)

Machine Learning (2022) 111:1–4744

https://github.com/kohpangwei/data-poisoning-journal-release
https://github.com/kohpangwei/data-poisoning-journal-release
http://arxiv.org/abs/160203943
http://arxiv.org/abs/160203943

	

1 3

Biggio, B., Didaci, L., Fumera, G., & Roli, F. (2013). Poisoning attacks to compromise face templates. In
2013 international conference on biometrics (ICB) (pp. 1–7)

Biggio, B., Fumera, G., Roli, F., & Didaci, L. (2012a). Poisoning adaptive biometric systems. In Joint IAPR
international workshops on statistical techniques in pattern recognition (SPR) and structural and syn-
tactic pattern recognition (SSPR) (pp. 417–425).

Biggio, B., Nelson, B., & Laskov, P. (2012b). Poisoning attacks against support vector machines. In Interna-
tional conference on machine learning (ICML) (pp. 1467–1474).

Biggio, B., Fumera, G., & Roli, F. (2014). Security evaluation of pattern classifiers under attack. IEEE
Transactions on Knowledge and Data Engineering, 26(4), 984–996.

Biggio, B., Nelson, B., & Laskov, P. (2011). Support vector machines under adversarial label noise. ACML,
20, 97–112.

Burkard, C., & Lagesse, B. (2017). Analysis of causative attacks against SVMs learning from data streams.
In International workshop on security and privacy analytics.

Carlini, N., Mishra, P., Vaidya, T., Zhang, Y., Sherr, M., Shields, C., Wagner, D. & Zhou, W. (2016). Hidden
voice commands. In: USENIX security.

Charikar, M., Steinhardt, J., & Valiant, G. (2017). Learning from untrusted data. In Symposium on theory of
computing (STOC).

Chen, X., Liu, C., Li, B., Lu, K., & Song, D. (2017). Targeted backdoor attacks on deep learning systems
using data poisoning. arXiv:​17120​5526

Crammer, K., & Singer, Y. (2002). On the learnability and design of output codes for multiclass problems.
Machine Learning, 47(2), 201–233.

Cretu, G. F., Stavrou, A., Locasto, M. E., Stolfo, S. J., & Keromytis, A. D. (2008). Casting out demons:
Sanitizing training data for anomaly sensors. In IEEE symposium on security and privacy (pp. 81–95).

Demontis, A., Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-Rotaru, C., & Roli, F. (2019).
Why do adversarial attacks transfer? Explaining transferability of evasion and poisoning attacks. In
28th USENIX security symposium (USENIX security 19) (pp. 321–338).

Diakonikolas, I., Kamath, G., Kane, D., Li, J., Moitra, A., & Stewart, A. (2016). Robust estimators in high
dimensions without the computational intractability. In Foundations of computer science (FOCS).

Diakonikolas, I., Kamath, G., Kane, D.M., Li, J., Steinhardt, J., & Stewart, A. (2018). Sever: A robust meta-
algorithm for stochastic optimization. arXiv:​18030​2815

Diakonikolas, I., Kamath, G., Kane, D., Lim J., Moitra, A., & Stewart, A. (2017a). Being robust (in high
dimensions) can be practical. arXiv.

Diakonikolas, I., Kane, D. M., & Stewart, A. (2017b). Learning geometric concepts with nasty noise. arXiv.
Duchi, J., Hazan, E., & Singer, Y. (2010). Adaptive subgradient methods for online learning and stochastic

optimization. In Conference onlearning theory (COLT).
Feldman, V., Gopalan, P., Khot, S., & Ponnuswami, A. K. (2009). On agnostic learning of parities, monomi-

als, and halfspaces. SIAM Journal on Computing, 39(2), 606–645.
Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with appli-

cations to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.
Frederickson, C., Moore, M., Dawson, G., & Polikar, R. (2018). Attack strength vs. detectability dilemma in

adversarial machine learning. In 2018 international joint conference on neural networks (IJCNN) (pp.
1–8).

Gardiner, J., & Nagaraja, S. (2016). On the security of machine learning in malware C&C detection: A sur-
vey. ACM Computing Surveys (CSUR),49(3)**

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Ben-
gio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems
(NeurIPS).

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial examples. In
International conference on learning representations (ICLR).

Gu, T., Dolan-Gavitt, B., Garg, S. (2017). Badnets: Identifying vulnerabilities in the machine learning
model supply chain. arXiv:​17080​6733

Guruswami, V., & Raghavendra, P. (2009). Hardness of learning halfspaces with noise. SIAM Journal on
Computing, 39(2), 742–765.

Hodge, V., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review,
22(2), 85–126.

Jagielski, M., Oprea, A., Biggio, B., Liu, C., Nita-Rotaru, C., & Li, B. (2018). Manipulating machine learn-
ing: Poisoning attacks and countermeasures for regression learning. In 2018 IEEE symposium on secu-
rity and privacy (SP) (pp. 19–35).

Kearns, M., & Li, M. (1993). Learning in the presence of malicious errors. SIAM Journal on Computing,
22(4), 807–837.

Machine Learning (2022) 111:1–47 45

http://arxiv.org/abs/171205526
http://arxiv.org/abs/180302815
http://arxiv.org/abs/170806733

	

1 3

Klivans, A. R., Long, P. M., & Servedio, R. A. (2009). Learning halfspaces with malicious noise. Journal of
Machine Learning Research (JMLR), 10, 2715–2740.

Kloft, M., & Laskov, P. (2012). Security analysis of online centroid anomaly detection. Journal of Machine
Learning Research (JMLR), 13, 3681–3724.

Koh, P. W., & Liang, P. (2017). Understanding black-box predictions via influence functions. In Interna-
tional conference on machine learning (ICML).

Kurakin, A., Goodfellow, I., & Bengio, S. (2016). Adversarial examples in the physical world. arXiv.
Lai, K. A., Rao, A. B., & Vempala, S. (2016). Agnostic estimation of mean and covariance. In Foundations

of computer science (FOCS).
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document rec-

ognition. Proceedings of the IEEE, 86(11), 2278–2324.
Li, J. (2018). Principled approaches to robust machine learning and beyond. Ph.D. thesis, Massachusetts

Institute of Technology.
Li, B., Wang, Y., Singh, A., & Vorobeychik, Y. (2016). Data poisoning attacks on factorization-based col-

laborative filtering. In Advances in neural information processing systems (NeurIPS).
Liu, C., Li, B., Vorobeychik, Y., & Oprea, A. (2017). Robust linear regression against training data poison-

ing. In Proceedings of the 10th ACM workshop on artificial intelligence and security (pp. 91–102).
Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,&Potts, C. (2011). Learning word vectors for

sentiment analysis. In Association for computational linguistics (ACL)
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2017). Towards deep learning models resist-

ant to adversarial attacks (published at ICLR 2018). arXiv.
Martens, J. (2010). Deep learning via hessian-free optimization. In International conference on machine

learning (ICML) (pp. 735–742).
Mei, S., & Zhu, X. (2015a). The security of latent Dirichlet allocation. In Artificial intelligence and statis-

tics (AISTATS).
Mei, S., & Zhu, X. (2015b). Using machine teaching to identify optimal training-set attacks on machine

learners. In Association for the advancement of artificial intelligence (AAAI).
Metsis, V., Androutsopoulos, I., & Paliouras, G. (2006). Spam filtering with naive Bayes—Which naive

Bayes? CEAS, 17, 28–69.
Mirrokni, V., Leme, R. P., Vladu, A., & Wai Wong, S.C. (2015). Tight bounds for approximate Carathéo-

dory and beyond. arXiv:​15120​8602.
Moosavi-Dezfooli, S. M., Fawzi, A., & Frossard, P. (2016). Deepfool: a simple and accurate method to fool

deep neural networks. In Computer vision and pattern recognition (CVPR) (pp. 2574–2582).
Muñoz-González, L., Biggio, B., Demontis, A., Paudice, A., Wongrassamee, V., Lupu, E. C., & Roli, F.

(2017). Towards poisoning of deep learning algorithms with back-gradient optimization. In Proceed-
ings of the 10th ACM workshop on artificial intelligence and security (pp. 27–38).

Nelson, B., Barreno, M., Chi, F. J., Joseph, A. D., Rubinstein, B. I., Saini, U., et al. (2008). Exploiting
machine learning to subvert your spam filter. LEET, 8, 1–9.

Newell, A., Potharaju, R., Xiang, L., & Nita-Rotaru, C. (2014). On the practicality of integrity attacks on
document-level sentiment analysis. In Workshop on artificial intelligence and security (AISec) (pp.
83–93)

Papernot, N., & McDaniel, P. (2018). Deep k-nearest neighbors: Towards confident, interpretable and
robust deep learning. arXiv:​18030​4765

Papernot, N., McDaniel, P., & Goodfellow, I. (2016a). Transferability in machine learning: from phenomena
to black-box attacks using adversarial samples. arXiv.

Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, B. Z., & Swami, A. (2017). Practical black-box
attacks against machine learning. In Asia conference on computer and communications security (pp.
506–519).

Papernot, N., McDaniel, P., Sinha, A., & Wellman, M. (2016b). Towards the science of security and privacy
in machine learning. arXiv.

Papernot, N., McDaniel, P., Wu, X., Jha, S., & Swami, A. (2016c). as a defense to adversarial perturbations
against deep neural networks. In IEEE symposium on security and privacy (pp. 582–597).

Paudice, A., Muñoz-González, L., Gyorgy, A., & Lupu, E. C. (2018). Detection of adversarial training
examples in poisoning attacks through anomaly detection. arXiv:​18020​3041

Pearlmutter, B. A. (1994). Fast exact multiplication by the Hessian. Neural Computation, 6(1), 147–160.
Raghunathan, A., Steinhardt, J., & Liang, P. (2018). Certified defenses against adversarial examples. In

International conference on learning representations (ICLR).
Rubinstein, B., Nelson, B., Huang, L., Joseph, A. D., Lau, S. H., Rao, S., Taft, N., & Tygar, J. (2009). Certi-

fied defenses against adversarial examples. In International conference on learning representations
(ICLR).

Machine Learning (2022) 111:1–4746

http://arxiv.org/abs/151208602
http://arxiv.org/abs/180304765
http://arxiv.org/abs/180203041

	

1 3

Shafahi, A., Huang, W. R., Najibi, M., Suciu, O., Studer, C., Dumitras, T., & Goldstein, T. (2018). Poison
Frogs! Targeted clean-label poisoning attacks on neural networks. arXiv:​18040​0792

Sinha, A., Namkoong, H., & Duchi, J. (2018). Certifiable distributional robustness with principled adver-
sarial training. In International conference on learning representations (ICLR).

Steinhardt, J. (2018). Robust learning: Information theory and algorithms. Ph.D. thesis, Stanford University.
Steinhardt, J., Charikar, M., & Valiant, G. (2018). Resilience: A criterion for learning in the presence of

arbitrary outliers. In Innovations in theoretical computer science (ITCS).
Steinhardt, J., Koh, P. W., & Liang, P. (2017). Certified defenses for data poisoning attacks. In Advances in

neural information processing systems (NeurIPS).
Suciu, O., Mărginean, R., Kaya, Y., III, H. D., & Dumitraş, T. (2018). When does machine learning fail?

generalized transferability for evasion and poisoning attacks. arXiv:​18030​6975
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., & Fergus, R. (2014). Intrigu-

ing properties of neural networks. In International Conference on Learning Representations (ICLR).
Tramèr, F., Kurakin, A., Papernot, N., Boneh, D., & McDaniel, P. (2017). Ensemble adversarial training:

Attacks and defenses. arXiv:​17050​7204
Vorobeychik, Y., & Kantarcioglu, M. (2018). Adversarial machine learning. Machine Learning, 12(3),

1–169.
Wong, E., & Kolter, J. Z. (2018). Provable defenses against adversarial examples via the convex outer adver-

sarial polytope. In International conference on machine learning (ICML).
Xiao, H., Xiao, H., & Eckert, C. (2012). Adversarial label flips attack on support vector machines. In Euro-

pean conference on artificial intelligence.
Xiao, H., Biggio, B., Nelson, B., Xiao, H., Eckert, C., & Roli, F. (2015). Support vector machines under

adversarial label contamination. Neurocomputing, 160, 53–62.
Yang, C., Wu, Q., Li, H., & Chen, Y. (2017). Generative poisoning attack method against neural networks.

arXiv.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Machine Learning (2022) 111:1–47 47

http://arxiv.org/abs/180400792
http://arxiv.org/abs/180306975
http://arxiv.org/abs/170507204

	Stronger data poisoning attacks break data sanitization defenses
	Abstract
	1 Introduction
	2 Problem setting and defenses
	2.1 General setting
	2.2 Data sanitization defenses

	3 Attack framework
	3.1 Concentrated attacks
	3.2 Constrained optimization
	3.3 Handling integer input constraints with randomized rounding

	4 Specific attacks
	4.1 The influence attack
	4.1.1 The basic influence attack
	4.1.2 Improvements to the basic algorithm

	4.2 The KKT attack
	4.2.1 Finding decoy parameters
	4.2.2 Attacking with known

	4.3 Improved min–max attack
	4.3.1 The min–max-basic attack
	4.3.2 Improvements to the basic algorithm

	5 Experiments: attackers with complete information
	5.1 Datasets
	5.2 Setup
	5.3 Comparing attacks on Enron and IMDB
	5.4 Iterative optimization
	5.5 Ablations for the influence attack
	5.6 Ablations for the min–max attack
	5.7 Attacks on multi-class tasks with the min–max attack on MNIST

	6 Experiments: attackers with incomplete information
	6.1 Unobserved test data
	6.2 Regularization
	6.3 Optimization and loss function

	7 Related work
	7.1 Attacks
	7.2 Defenses

	8 Discussion
	Acknowledgements
	References

