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Abstract
Hyper-Parameter Optimization (HPO) occupies a fundamental role in Deep Learning sys-
tems due to the number of hyper-parameters (HPs) to be set. The state-of-the-art of HPO 
methods are Grid Search, Random Search and Bayesian Optimization. The first two meth-
ods try all possible combinations and random combination of the HPs values, respectively. 
This is performed in a blind manner, without any information for choosing the new set 
of HPs values. Bayesian Optimization (BO), instead, keeps track of past results and uses 
them to build a probabilistic model mapping HPs into a probability density of the objec-
tive function. Bayesian Optimization builds a surrogate probabilistic model of the objec-
tive function, finds the HPs values that perform best on the surrogate model and updates it 
with new results. In this paper, we improve BO applied to Deep Neural Network (DNN) by 
adding an analysis of the results of the network on training and validation sets. This analy-
sis is performed by exploiting rule-based programming, and in particular by using Proba-
bilistic Logic Programming. The resulting system, called Symbolic DNN-Tuner, logically 
evaluates the results obtained from the training and the validation phase and, by applying 
symbolic tuning rules, fixes the network architecture, and its HPs, therefore improving per-
formance. We also show the effectiveness of the proposed approach, by an experimental 
evaluation on literature and real-life datasets.
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1 Introduction

Deep Neural Networks (DNNs) are very sensitive to the tuning of their hyper-parame-
ters (HPs). Different tunings of the same neural network can lead to completely different 
results. For this reason, Hyper-Parameter Optimization (HPOs) algorithms play an impor-
tant role in building Deep Learning models. These algorithms have shown good perfor-
mance (Bergstra et al. 2011), comparable with human experts.

This work aims at creating an algorithm to drive the training of DNNs, automatizing 
the choice of HPs and analysing the performance of each training experiment to obtain a 
network with better performance. The algorithm combines an automatic tuning approach 
with some tricks usually used in manual approaches (Montavon et al. 2012). For the auto-
matic approach we use Bayesian Optimization (BO) (Dewancker et al. 2015). This choice 
is motivated by the fact that tuning DNN is computationally expensive and the BO algo-
rithm limits the evaluations of the objective function (DNNs training and validation in this 
case) by spending more time in choosing the next set of HPs values.

The whole software was written in Python, using TensorFlow for each part regarding 
the neural networks, Scikit-Optimize for implementing BO and ProbLog for the symbolic 
part of the software. The implementation is described in detail in Fraccaroli et al. (2021).

The tricks used in manual approaches to solve problems are mapped into (non-deter-
ministic, and probabilistic) Symbolic Tuning Rules (STRs). These rules identify Tuning 
Actions (TAs), which have the purpose of editing the HPs search space, adding new HPs 
or updating the network structure without human intervention. All this is aimed at avoiding 
network problems like overfitting, underfitting or incorrect learning rate values and driving 
the whole learning process to better results.

Symbolic DNN-Tuner is composed by two main parts: a Neural Block that manages the 
neural network, the HPs search space and the application of the TAs, and a Symbolic Block 
(developed with Probabilistic Logic Programming PLP, and STRs in particular) that, on 
the basis of the network performance and computed metrics after each training, diagnoses 
problems and identifies the (most probable) TA to be applied on the network architecture. 
In the beginning, probabilistic weights of STRs are set manually, and then they are refined, 
after each training, via Learning from Interpretations (an inference available in PLP) based 
on the improvements obtained or not, for each TA applied in previous training.

Therefore, our approach is positioned in the domain of Neural Symbolic systems, since 
it automatically tunes the DNN architecture by exploiting PLP and Learning from Interpre-
tation, a kind of Inductive Logic Programming.

After a short discussion of preliminaries for a good understanding of the paper (Sect. 2), 
we introduce in Sect. 3 the main DNNs problems, the analysis done and the tuning rules 
used to improve the network architecture and performance. In Sect. 4 we present Symbolic 
DNN-Tuner with its building blocks and its execution pipeline. In Sect. 4.3 we present the 
symbolic section of Symbolic DNN-Tuner. More precisely, we show how, in the symbolic 
execution pipeline, Learning From Interpretation (LFI) is applied to learn the probabil-
ity of the tuning rules and therefore dynamically change the probabilistic logic program. 
Experimental results are described in Sect. 5, in order to show that our approach greatly 
improves the network performance with respect to BO, either for literature and real-case 
datasets. Related work are discussed in Sect. 6.
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2  Preliminaries

In this section, we review the preliminaries concepts, algorithm and approaches for a 
good understanding of the paper. We will deal with Bayesian Optimization (BO) like 
Hyper-parameters Optimization (HPO) algorithm (we will focus mainly on BO because 
is the HPO algorithm used in Symbolic DNN-Tuner), Probabilistic Logic Programming 
and Parameter Learning.

2.1  Bayesian optimization

Bayesian Optimization (BO) is an approach to optimize objective functions (f) which are 
very expensive and/or slow to optimize (Dewancker et al. 2015). The main idea behind 
this approach is to limit the time spent in the evaluation of f by spending more time 
choosing the new set of HPs values. BO builds a surrogate model of the objective func-
tion, quantifies the uncertainty in the surrogate using a regression model (e.g., Gaussian 
Process Regression) and uses an acquisition function to decide where to sample the new 
set of HPs (Frazier 2018). The focus of BO is solving the problem:

where the input x is in ℝd , d is the number of HPs and D is a search space which can be 
seen as a hyper-cube where each dimension is a hyper-parameter. Then, BO builds a proba-
bilistic model for f(x) and exploits this model to decide where to sample the next set of HPs 
values. The idea is to use all the information derived from previous evaluations of f(x) as a 
memory to make the next decision.

BO consists of two crucial components: the probabilistic regression model (e.g., 
Gaussian Process, see below) and the activation function. The first component provides 
a posterior probability distribution that captures the uncertainty in the surrogate model 
and the second determines the next point to evaluate. This is done by measuring the 
value that would be generated by the f(x) at this new point based on the posterior dis-
tribution (Frazier 2018). This activation function is also used for finding a good bal-
ance between Exploration and Exploitation. Exploration aims at selecting samples that 
eliminate the parts of the input search space that do not include the maximizer of the 
f(x), while Exploitation aims at selecting the sample closest to the optimum with a high 
probability (Jalali et al. 2012).

Gaussian Processes (GPs) are stochastic processes and prior distributions on func-
tions. GPs offers a non-parametric approach in that it finds a distribution over the pos-
sible functions f(x) that are consistent with the observed data. A GPs can be used for 
regression problems. Any finite set X = {x1, x2, ..., xn} induces a multivariate Gaussian 
distribution with n dimensions and a GP is completely determined by the mean function 
� and the covariance matrix K, f ∼ GP (�,K) (Rasmussen 2003; Snoek et al. 2012). The 
covariance matrix K is created by evaluating a covariance function (kernel) k at each 
pair of points xi , xj , K = k(xi, xj) . The kernel is chosen so that points xi and xj that are 
closer in the input space, have a larger correlation. In this way, it can be obtained that 
these points should have more similar function values than points that are far apart. For 
convenience, we assume that the prior mean is the zero function � = 0 and, for covari-
ance, a very popular choice is the squared exponential function

(1)max
x∈D

f (x)
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where parameters � determines the variation of function values from their mean and l 
describes how smooth a function is. Given sets X = {x1, x2, ..., xn}

T and Y = {y1, y2, ..., yn}
T 

of observed values, the aim is to predict the y value for a new point x. It can be shown 
that y is Gaussian distributed with mean � = �

TC−1Y  and variance �2 = k(x, x) − �
TC−1

�

(Bishop 2006; Riguzzi 2018). � is the column vector with elements k(xi, x) and C is com-
posed by elements Cij = k(xi, xj) + s2�ij where s2 is the variance of the random noise in 
the linear regression model y = f (x) + � and �ij is the Kronecker delta ( �ij = 1 if i ≠ j , 0 if 
i = j ). So, if s2 = 0 , C = K (see Eq. 2). In this way, it is possible to define a prior distribu-
tion over parameters instead of choosing values. For a complete and more precise overview 
of the Gaussian Process and its application to Machine Learning, see Rasmussen (2003).

The Acquisition function determines the next point to evaluate or, in our case, the next 
set of HPs values. There are many types of acquisition function but, the most commonly 
used is Expected Improvement (EI) (Frazier 2018; Jones et  al. 1998). EI defines a non-
negative expected improvement over the best previously observed target value at a given 
point x. Since we observe f, we can say that f ∗

n
= maxm≤n f (xm) is the optimal choice, i.e., 

the previously evaluated point with the largest value, where n is the number of times that 
we have evaluated f thus far. Now suppose that if we evaluate our function f at point x, we 
will observe f(x). After the evaluation of at the point x (f(x)), the value of the best observed 
point will be either f(x) or f ∗

n
 (clearly, it depends on who is greater than the other). The 

improvement in the value of the best observed point is:

for simplicity we can write this like [best]+ . We would like to choose an x that leads to 
maximum improvement, and we take the expected value of this improvement and choose x 
to maximize it. We can formalize all of them like as follows:

where En[⋅] is the expected value taken under the posterior distribution of f after having 
observed x1, ..., xn (Frazier 2018).

2.2  Probabilistic logic programming

Probabilistic Logic Programming (PLP) is a tool for reasoning on uncertain relational 
domains that is gaining popularity in Statistical Relational Artificial Intelligence (StarAI) 
due to its expressiveness and intuitiveness. PLP has been successfully applied to a variety 
of fields, such as natural language processing (Sato and Kubota 2015; Riguzzi et al. 2016; 
Fadja and Riguzzi 2017), bio-informatics (Mørk and Holmes 2012; De Raedt et al. 2007; 
Sato and Kameya 1997), link prediction in social networks (Meert et al. 2009), entity reso-
lution (Riguzzi 2014) and model checking (Gorlin et al. 2012).

We consider ProbLog (De  Raedt et  al. 2007) for the simplicity of its syntax and the 
availability of a Learning From Interpretation module (Sect. 2.3). Moreover, the fact that 
it is written in simplifies the integration within Symbolic DNN-Tuner, that is written in 

(2)k(xi, xj) = �
2exp

(
−

1

2l2
‖‖‖xi − xj

‖‖‖
2)

(3)best = max{0, f (x) − f ∗
n
}

(4)EIn(x) = En

[
[best]+

]

(5)EIn(x) = En

[
[f (x) − f ∗

n
]+
]
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Python as well. ProbLog is a PLP language under the distribution semantic (Sato 1995). 
A program that adopts a semantics of this type defines a probability distribution over nor-
mal logic programs called worlds. To define the probability of a query, this distribution is 
extended to a joint distribution of the query and the worlds and the probability of the query 
is obtained from the joint distribution by marginalization (Riguzzi 2018).

A ProbLog program consists of a set of clauses. Every clause ci is labelled with the 
probability pi . Listing 1 shows an example of ProbLog code.

A ProbLog program P = {p1 ∶∶ c1, p2 ∶∶ c2, .., pi ∶∶ cm} defines a probability distribu-
tion over logic program L = {c1, c2, ..., cm} and the aim of inference in ProbLog is to calcu-
late the probability that the query will succeed (De Raedt et al. 2007). With the reference at 
Listing 1, the three queries return the probability of 0.5, 0.6 and 0.3 for heads, heads2 
and twoHeads respectively.

ProbLog inference (Fierens et  al. 2015) works by generating all ground instances of 
clauses in the program the query depends on and transforming the clauses to a proposi-
tional formula. After that, the logic formula is compiled into a Sentential Decision Diagram 
(SDD) (Darwiche 2011). SDDs are a representation language for propositional knowledge 
bases. Then ProbLog evaluates the SDD bottom-up to calculate the success probability of 
the given query.

2.3  Parameter learning

The ProbLog system (Dries et  al. 2015) includes a Parameter Learning algorithm (LFI-
ProbLog algorithm) (Gutmann et al. 2011) that learns the parameters of ProbLog programs 
from partial interpretations. Generally, one is interested in the maximum likelihood param-
eters given the training data. This can be formalized as follows:

Definition 1 (LFI-ProbLog learning problem) Given a ProbLog program P contain-
ing probabilistic facts with unknown parameters (probabilistic weights) and a set 
E = {I1,… , IT} of interpretations (the training examples), find the value of the parameters 
� of P that maximize the likelihood of the examples, i.e., solve

argmax
�

P(E) = argmax
�

T∏
t=1

P(q(It))
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where partial interpretation I  can be written like I =
⟨
It, If

⟩
 where atoms in It are true 

and those in If  are false. I  can be associated with conjunction q(I) = ∧a∈It
a ∨ ∧a∈If

∼ a . 
So, given a ProbLog program and a series of partial interpretations I  and evidence q(I) , 
the goal is to find the maximum likelihood parameters. Now, we need to pay attention to 
interpretations (the training examples) when computing argmax

�
P(E) . If we have com-

plete interpretations, the parameters (probabilistic weights) can be computed by relative 
frequency. If some interpretations in E are partial, instead, an EM algorithm (Dempster 
et al. 1977) must be used (Gutmann et al. 2011; Riguzzi 2018). For a more complete and 
precise reading on PLP and PLP Parameter Learning, see Riguzzi (2018). For a more 
detailed description of the application of LFI in Symbolic DNN-Tuner, see Listing 3 in 
Sect. 4.3.

3  DNNs training problems and countermeasures

Experts in DNN training have identified several problems that can be encountered, see 
Montavon et al. (2012) and Ngn et al. (2017). Here we list them together with the appro-
priate countermeasures mapped into Tuning Actions (TAs). Table 1 shows the association 
between symptoms and diagnosed problems. Table 2 shows the association between the 
problems and the corresponding TAs with the acronyms used in Sect. 5 for the description 
of the experiments.

3.1  Overfitting

Overfitting is the lack of generalization ability of the model. This happens when the model 
adapts too much to the training data, not generalizing and therefore not working correctly 
on the validation data (Ngn et al. 2017). Diagnosing overfitting is relatively easy by moni-
toring the performance of the network during both training and validation. Symbolic DNN-
Tuner checks the difference between training and validation phase for both the accuracy 
and loss, in order to identify any possible gap. A significant gap between the two phases is 
a clear symptom of overfitting.

When overfitting is diagnosed, Symbolic DNN-Tuner applies two possible TAs, as 
shown in Table 2: Regularization (van Laarhoven 2017) and Batch Normalization (Ioffe 

Table 1  Symptoms and related 
problems

Symptoms Problem

Gap between accuracy in training and validation Overfitting
Gap between loss in training and validation Overfitting
High loss Underfitting
Low accuracy Underfitting
Loss trend analysis Increasing loss
Fluctuation of the loss Fluctuating loss
Evaluation of the shape of the loss Low learning rate

High learning rate
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and Szegedy 2015), Increase Dropout (Srivastava et  al. 2014) and Data Augmentation 
(Shorten and Khoshgoftaar 2019).

3.2  Underfitting

Underfitting happens when the model is not able to learn and fails in both training and 
validation phases (Ngn et  al. 2017). In order to detect underfitting, Symbolic DNN-
Tuner measures the accuracy and the loss in the validation phases. If, at a certain itera-
tion, the loss is greater than a manually predetermined threshold and accuracy is lower 
than another manually predetermined threshold, Symbolic DNN-Tuner diagnoses under-
fitting. These two thresholds are dynamically increased as the algorithm progresses. 
This allows Symbolic DNN-Tuner to become increasingly demanding as iterations 
progress.

For fixing underfitting, there are different TAs (Table 2). Apart from decreasing the 
learning rate, the remaining TAs aim at increasing the learning capability of the net-
work. Besides increasing the number of neurons and the addition of fully connected 
layers which are self explicative, we may add a convolutional block composed of a 
sequence of two convolutional layers followed by a pooling and dropout layer.

3.3  Increasing loss

Symbolic DNN-Tuner uses Early Stopping, so, if at a certain iteration the loss starts 
growing, this means that the learning rate is probability too high. In this case, Symbolic 
DNN-Tuner applies a TA that aims at reducing the learning rate’s search space by elimi-
nating all values that are larger than the last chosen.

Table 2  Problem - TA associations

Problem Tuning Actions (TAs) Acronyms

Overfitting Regularization and Batch Normalization reg_l2 & batch_norm
Increase dropout inc_dropout
Data augmentation data_augm

Underfitting Decrease the learning rate decr_lr
Increase the number of neurons inc_neurons
Addition of fully connected layers new_fc_layer
Addition of convolutional blocks new_conv_layer

Increasing loss Decrease the learning rate decr_lr_inc_loss
Fluctuating loss Increase the batch size inc_batch_size

Decrease the learning rate decr_lr_fl
Low learning rate Increase learning rate inc_lr
High learning rate Decrease learning rate dec_lr
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3.4  Fluctuating loss

The oscillation in the loss is usually due to the batch size. When the batch size is 1, 
oscillation can occur and the loss will be noisy. When the batch size is the complete 
dataset, the oscillation will be minimal because each update of the gradient should 
improve the loss function monotonically (unless the learning rate is set too high).

When this behaviour is detected, a TA that aims at shrinking the batch size’s search 
space is applied, to make sure larger values are selected in the next iterations.

3.5  Management of the learning rate

For the correct management of the learning rate, we exploit the relation between the loss and 
the learning rate (Ou et al. 2019), as can be seen in Fig. 1. From the trend of the loss, Sym-
bolic DNN-Tuner can diagnose if the learning rate is too high or too low.

For doing this, the algorithm computes the integral of the loss and the line between the 
initial and the final loss, that is AUL and AULL respectively. Then the absolute difference 
between the two is computed. The next step is to check whether the difference is greater or 
less than two thresholds as you can see in Eq. 8.

Figures 2, 3 and 4 shows the difference between the AUL and AULL in the three main cases 
of good, high and low learning rate. R changes considerably depending on the shape of the 

(6)AUL =∫ loss AULL = ∫ line

(7)R =|AULL − AUL|

(8)Problems =

⎧
⎪⎨⎪⎩

too_large_lr if R >
3AULL

4

too_small_lr if R <
AULL

4

good_lr otherwise

Fig. 1  Relation between loss and 
learning rate
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(a) AUL (b) AUL

Fig. 2  AUL (light yellow area) and difference displayed in Eq. 7 (yellow area) when learning rate is good 
(Color figure online)

(a) AUL (b) AUSL

Fig. 3  AUL (light yellow area) and difference displayed in Eq. 7 (yellow area) when learning rate is high 
(Color figure online)

(a) AUSL (b) AUSL

Fig. 4  AUL (light yellow area) and difference displayed in Eq. 7 (yellow area) when learning rate is low 
(Color figure online)
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loss and therefore depending on the learning rate. When the diagnosis is too_large_lr , a 
TA that removes large values from the learning rates search space is applied. On the con-
trary, when the diagnosis is too_small_lr , a TA that removes the small values from the 
learning rates search space is applied.

4  Symbolic DNN‑tuner

Symbolic DNN-Tuner is a system to drive the training of a Deep Neural Network, analys-
ing the performance of each training experiment and automatizing the choice of HPs to 
obtain a network with better performance. It only requires an initial definition of the net-
work architecture, a space of values for the HPs to be optimized and the dataset for train-
ing and validation. The system starts with a given set of rules with default weights (which 
change by LFI, after each training and diagnosis phase). These rules are written in PLP, 
and implement Table 2. A sample of these rules is given in Listing 2 and Listing 4.

Symbolic DNN-Tuner exploits BO for the choice of HPs and applies a performance 
analysis at the end of each training and validation session in order to identify possible prob-
lems such as overfitting, underfitting or incorrect learning rate configurations as described 
in Sect. 3.

By analyzing the behaviour of the network, it is possible to identify some problems 
(e.g., overfitting, underfitting, etc.) that BO is not able to avoid because it works only with 
a single metrics (validation loss or accuracy, training loss or accuracy). When Symbolic 
DNN-Tuner diagnoses these problems, it changes the search space of HP values or the 
architecture of the network by appling TAs to drive the DNN to a better solution.

4.1  Architecture

Symbolic DNN-Tuner is composed by two main parts: a Neural Block that manages the 
neural network, the HPs search space and the application of the TAs, and a Symbolic 
Block(where STRs are implemented in Probabilistic Logic Programming, PLP for short) 
that, on the basis of the network performance and computed metrics after each training, 
diagnoses problems and identifies the (most probable) TAs to be applied on the network 
architecture.

In the beginning, probabilistic weights of STRs are set manually, and then they are 
refined, after each training, via Learning from Interpretations (LFI) on the basis of the 
improvements obtained or not, for each TA applied in previous training. The schema of 
Symbolic DNN-Tuner and of its blocks is shown in Fig. 5.

STRs are probabilistic rules that map problems into resolutive actions (TAs) as defined 
in Table 2, and their weights are learned by LFI (Gutmann et al. 2011).
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4.2  Algorithm

At each iteration, Symbolic DNN-Tuner trains and validates the neural network means of 
BO. Once training and validation have been done, the algorithm checks if the training and 
validation have achieved better results than the previous training (the training of the neural 
network performed in the previous iteration of Symbolic DNN-Tuner) in terms of accuracy 
and loss (line 12 in Algorithm 1). This improvement check is used to build the training 
set for LFI. In fact, at each iteration, a new point is added to the training set for LFI and 
parameter learning is rerun. Then, the new weights of the STRs are placed in the symbolic 
program and the diagnosis starts. The symbolic analysis (line 22 in Algorithm 1) returns 
the TAs to be applied to the network architecture and/or HPs search space.

After each training, the BO status is saved, so that we can resume it for the new training 
of the network in the next iteration of Symbolic DNN-Tuner. The importance of starting 
a new training with a resumed BO status is that BO works by maintaining some kind of 
memory of the experience of past training and, in this way, it will choose the HPs values 
in an optimized way. This is possible only if the HPs search space or the neural network 
architecture has not changed.

Fig. 5  Symbolic DNN-Tuner execution pipeline with Neural Block and Symbolic Block. In the Figure is 
shown the Symbolic DNN-Tuner’s pipeline and the steps between Neural and Symbolic block
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Due to the sequential application of the TAs, there are some possible dangerous feed-
back loops. This problem can occur specifically with the TAs for the management of the 
learning rate (increasing and decreasing of the learning rate) or with the TAs to fix the 
underfitting. Thanks to the management described in Sect. 3.5, possible loops on learning 
rate are avoided. For TAs to fix the underfitting, thresholds have been set to prevent loops 
that lead to too large networks.

Algorithms 1 encapsulates the whole Symbolic DNN-Tuner’s process. With BOs and 
BOr we refer respectively to the functions that applies BO from scratch and BO with 
resumed status respectively. With S, M, n and PM we refer respectively to the search space 
of HPs values, initial neural network, number of cycles of the algorithm and the Proba-
bilistic Model coded into Symbolic DNN-Tuner. Iteration is the counter of the iteration of 
Symbolic DNN-Tuner. Ckpt is a checkpoint of the Bayesian Algorithm that can be used to 
restore the state of the BO.

BOs , receiving S and M or NewM, returns the checkpoint of the BO, the results 
of the evaluation of the trained network in terms of loss and accuracy R (R is the tuple 
(Acc,  Loss)) and the history H of the loss and accuracy in both training and validation. 
BOr , receiving the new restricted search space NewS, the new neural network model NewM 
and Ckpt, perform the same computation as BOs but starting from a checkpoint rather than 
from scratch.

The results R are stored in the database DB. Improve is a boolean value indicating 
whether there was an improvement over the previous iteration. PM is updated by the Learn-
ing From Interpretation (LearnFromInt) function after each iteration of the algorithm. This 
step can be applied after the first iteration of the whole algorithm because we need to have 
the SymbolicDiagnosis and SymbolicTuning to performing the LearnFromInt function and 
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learn the weights of the STRs. These two variables are obtained from the previous tuning 
step of the algorithm. The LearnFromInt and SymbolicAnalysis functions from line 19 of 
Algorithm 1 will be explained in detail in the next section. AUL and AULL will be use-
ful for the analysis of the learning rate. NewM and NewsS are the new model and the new 
restricted search space obtained after the application of the TA, respectively.

4.3  Symbolic section

The Symbolic Block performs LearnFromInt and SymbolicAnalysis function in Algo-
rithm 1. This block analyses the network metrics (R, H, AUL and AULL in Algorithm 1), 
producing a diagnosis and, from this, returns the TAs to be applied. In the following, we 
describe in more detail how STRs have been implemented in PLP and how their weights 
are calibrated by exploiting LFI.

The Symbolic Block, is composed of a PLP program with three parts: Facts, Diagnosis 
and Tuning (FACTS, DIAGNOSIS and TUNING sections in Listing 4). A sample program 
is shown in Listing 4. The whole logic program is dynamically created by the union of 
these three parts at each iteration of the Algorithm 1, as can be seen in Fig. 6. Facts memo-
rizes R, H, AUL and AULL obtained from the Neural Block (arc 1 in Fig. 6). The Diagnosis 
section encapsulates the code for diagnosing the DNNs behaviour problems. Finally, the 
Tuning section is composed by the STRs. Facts, Diagnosis and Tuning form the symbolic 
program. Thanks to ProbLog inference, we can query this program and obtain the TAs (arc 
3 in Fig. 6). And finally, TAs are passed to the Neural Block and applied on the DNN struc-
ture or the HPs search space.

Each STR encapsulates a TA associated with a problem (see the associations in 
Table 2). TAs and problems of Table 2 are mapped into arguments of symbolic tunining 
rules, occurring in their head and body, respectively, as shown in Listing 2. Each STR has 
a weight which determines the probability of application of its TA, in case the associated 
problem is diagnosed. In the Tuning section, each STR is a rule such as those described in 
Listing 2.

Listing 2 shows a subset of all STRs (see Tuning section in Listing 4 for a complete ver-
sion of Listing 2). The problem(...) predicate is defined in the Diagnosis section of 
the Symbolic Block, see Listing 4.

The probabilistic weights are learned from the experience (evidences) gained from pre-
vious iterations. This experience becomes the set of training examples for the LFI pro-
gram. Then, the LFI program is composed of two parts: the program and the evidences 
obtained from the ImprovementChecker module, as shown in Listing 3:
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This file is built dynamically at each iteration of Algorithm 1. After each training, Sym-
bolic DNN-Tuner checks the improvement of the network with the ImprovementChecker mod-
ule. The improvement (Improve in the Algorithm 1) is a Boolean value and it is used to build 
the evidence. The aim is to reward with greater probability those TAs that have led to improve-
ments. In detail, in Fig. 7 we can see that, starting from a program like Listing 3, learning the 
parameters of this program, we can obtain the new values of probability of applying the TA. 
After that, we can update the probability in the head of the STRs. In this way, Symbolic DNN-
Tuner can learn which TA was better and consequently favours it over the others.

Fig. 6  Symbolic Block of Symbolic DNN-Tuner. The numbers mark the order of execution
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Finally, with the complete and updated symbolic program, we can use Prob-
Log inference and query the program for the probabilities of given query atoms, say, 
query(problem(_)) and query(action(_)). For clarity, an extract of ProbLog 
code is provided in Listing 4.

In the rest of this Section, we show an extract of ProbLog code used in Symbolic 
DNN-Tuner.

Fig. 7  Learning From Interpre-
tation pipeline. In the middle 
rectangle, in blue, we can see the 
learned parameters after the LFI 
(Color figure online)
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Listing 4 shows a portion of the logic program of Symbolic DNN-Tuner. The first 
part contains the Facts. They describe the history of the accuracy and the loss during 
training phase and validation phase (a([]), l([]) and va([]) and vl([]) respec-
tively). itacc() and itloss() are two threshold used to diagnose underfitting (see 
Sect. 3).

The Diagnosis section contains some utility functions and examples of clauses used 
for the analysis applied to Facts. The clauses are used to catch some gaps between train-
ing and validation phases of accuracy and loss, and to identify if loss is too high or 
accuracy too low. With these clauses, we can identify the problems encountered through 
the clauses found in the Problems section.

At the end, there are the STRs containing the tuning actions (TAs) (Tuning section), 
each with its probability in the head of the clauses. For example, if gap_tr_te_acc 
or gap_tr_te_loss is true, this means that there is a gap between training and val-
idation accuracy or loss larger than 0.2 (e.g., training accuracy is 0.8 and validation 
accuracy is 0.5). This means that problem(overfitting) is true, then overfitting is 
diagnosed and the clauses with body true are the following in the Listing 5:
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By querying the program with query(problem(_)) and query(action(_)) 
we retrieve the problems and the TAs. In this case we retrieve overfitting with 
query(problem(_)) and L2 regularization, increment dropout and data augmentation 
each with its probability of application with query(actions(_)).

5  Experiments

In this section we present the results obtained from the various experiments. The code is 
available at https:// github. com/ miche leFra ccaro li/ Symbo lic_ DNN- Tuner. git. Symbolic 
DNN-Tuner was tested on three different datasets: CIFAR10 [25], CIFAR100 [26] and 
CIMA_CIM, and compared to classic BO. On CIFAR10, Symbolic DNN-Tuner was also 
compared with Efficient Neural Architecture Search (ENAS) (Pham et  al. 2018), Differ-
entiable Architecture Search (DARTS) (Liu et  al. 2018) and Autokeras1 which is one of 
the most widely used AutoML systems (Jin et al. 2019). The ENAS experiments exploits 
the micro search space and macro search space (Pham et al. 2018). All NAS algorithms 
was implemented with Neural Network Intelligence (NNI)2 toolkit provided by Microsoft, 
except Autokeras. In these experiments, Convolutional Neural Networks (CNNs) were 
used as DNNs.

CIFAR10 contains 60000 32x32 color images divided in 10 classes. In this experi-
ment we have used CIFAR10 with 50000 training images and 10000 validation images. 
CIFAR100 is the same of CIFAR10 but divided in 100 classes instead of 10. CIMA_CIM 
is a dataset provided by CIMA S.P.A3 with 3200 training images and 640 of validation 
images of size 256x128. These images are facsimiles of Euro-like banknotes. CIMA_CIM 
has 16 classes that represent the denomination and orientation of the banknote (e.g., 5_
front, 5_rear, 10_front, 10_rear, etc).

All experiments were performed on the GALILEO cluster provided by Cineca,4 
equipped with Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz and Nvidia K80 GPUs. For 
each experiment, early stopping was set. Each experiment had a fixed duration of 8 hours. 
This means that Symbolic DNN-Tuner, BO and the NASs algorithms run for 8 hours con-
secutively at most.

The first experiment was performed using the CIFAR10 dataset. Symbolic DNN-Tuner 
and BO start with a neural network with two blocks composed by two convolutional lay-
ers, a max-pooling layer, a dropout and two fully connected layers separated by a dropout 
layer, the second fully connected layer is the output. The initial hyper-parameters to be set 
by the algorithm are the number of the neurons in the convolutional and fully connected 

1 Autokeras: https:// autok eras. com.
2 NNI: https:// www. micro soft. com/ en- us/ resea rch/ proje ct/ neural- netwo rk- intel ligen ce.
3 CIMA: http:// www. cima- cash- handl ing. com/ it.
4 Cineca: https:// www. cineca. it.

https://github.com/micheleFraccaroli/Symbolic_DNN-Tuner.git
https://autokeras.com
https://www.microsoft.com/en-us/research/project/neural-network-intelligence
http://www.cima-cash-handling.com/it
https://www.cineca.it
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layers, the values of the Dropout layers, the learning rate, the batch size, the activation 
functions and the optimizator. The size of the search space depends on hyper-parameter. 
The domains of HPs are as follows. The size of the first and second convolutional layers 
are between 16 and 64 and between 64 and 128 respectively. The domains of the rate of 
dropout for the first and second convolutional layers are [0.002,0.3] and [0.03,0.5] respec-
tively. The size of the fully connected layers is between 256 and 512. The domain of the 
learning rate is [ 10−5,10−1 ]. The choice for the activation functions are: ReLU, ELU and 
SELU. The choice for optimizers are: Adam, Adamax, RMSprop and Adadelta. For ENAS 
(Pham et al. 2018, Sect. 3.2) and DARTS (Liu et al. 2018, Appendix A.1.1), NNI uses the 
default search space in the original paper for CIFAR10. Autokeras starts with three-layers 
CNN. Each convolutional layer is actually a convolutional block of a ReLU layer, a batch-
normalization layer, the convolutional layer, and a pooling layer. All the convolutional lay-
ers are with kernel size equal to three, stride equal to one, and number of filters equal to 64 
(Jin et al. 2019).

In Table 3 (in bold the best result) we show the results of the execution of Symbolic 
DNN-Tuner for every iteration: accuracy and loss in both phases, the diagnosis of this iter-
ation and the TAs for the next iteration (i.e., the results of step 2 is the result of the applica-
tion of TA of step 1). As can be seen, the TA reg_l2 & batch_norm to fix the overfit-
ting is always applied regardless of other TA once overfitting is diagnosed. This is because 
using a regularization and a batch normalization in any case does not lead to worsening.

In Table 4 (in bold the best result) we show the results of the application of standard BO 
on the same network and same dataset of the previous experiment. Figure 8 compares the 
best results of Symbolic DNN-Tuner and BO on CIFAR10 graphically.

Table 5 show a recap of the experiments performed on the dataset CIFAR10. It com-
pares Symbolic DNN-Tuner with standard BO, ENAS with both Macro and Micro search 
space, DARTS and Autokeras. Only DARTS and Autokeras outperform Symbolic DNN-
Tuner in 8 hours of execution on CIFAR10.

From the CIFAR10 experiment, we can see that Symbolic DNN-Tuner does not always 
obtain the networks with the best performances but, unlike the BO and NAS methods, 
Symbolic DNN-Tuner guarantees an explanation of the actions it performs during its oper-
ation as shown in Table 3. At each iteration, we can see that a certain TA is applied to 
address a certain problem that is identified during the diagnosis phase.

The second experiment was performed on the CIFAR100 dataset. The initial network is 
the same as in the previous experiment. Tables 6 and 7 show the progression of Symbolic 
DNN-Tuner and BO respectively (in bold the best results), and Fig. 9 compares the best 
results of Symbolic DNN-Tuner and BO graphically. Table 6 shows that the increase in the 
number of classes w.r.t. the number of images in the dataset leads to a worsening of the 
quality of the training in terms of accuracy and loss. By comparing Table 6 and Table 7 it 
can be seen how Symbolic DNN-Tuner outperform BO in terms of both accuracy and loss 
on CIFAR100.

The last two experiments was performed on the CIMA_CIM dataset. This was used to 
test Symbolic DNN-Tuner on an industrial, real case. To make this experiment as simi-
lar as possible to a production environment, the CIMA_CIM validation dataset has been 
degraded. In this experiment, in 8 hours, both Symbolic DNN-Tuner and BO have per-
formed more than fifty trainings, then, for simplicity, only the best trainings from the 
experiment will be shown for both systems.

In the first experiment on the CIMA_CIM dataset, both Symbolic DNN-Tuner and BO 
starts with a small neural network with only one convolutional block and, at the end of the 
network, two fully connected layers divided by a dropout layer, the second fully connected 
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layer being the output. The results are shown in Fig.  10. In this experiment, Symbolic 
DNN-Tuner starts with the network previously described and ends with a network with 
two convolutional blocks (two convolutional layers, a max-pooling layer and dropout at 
the end) and at the end of the network, four fully connected layers plus a dropout layer and 
a fully connected layer for the output. BO, instead, keeps the same network because is not 
able to modify the architecture of the network. The network obtained with Symbolic DNN-
Tuner shows a irregular behaviour in the first part of training that is more fluctuating than 
the one obtained with BO. After the 25th training cycle, we note how the network obtained 
by Symbolic DNN-Tuner shows a higher accuracy and a lower loss than that obtained by 
BO (Fig. 10).

In the second experiment on the CIMA_CIM dataset, Symbolic DNN-Tuner pro-
duces the same network as the first experiment on this dataset. BO, instead, starts with 
a neural network with two blocks composed by two convolutional layers, a max-pool-
ing layer, a dropout and two fully connected layers separated by a dropout layer, the 
second fully connected layer being the output. The results are shown in Fig. 11. As in 
the previous experiment, Symbolic DNN-Tuner shows a behaviour in the first part of 
training that is more fluctuating than the one obtained with BO. The network obtained 
by BO shows the best results around the 10th training cycle. After that, it begins to 
deteriorate showing evident signs of overfitting (Fig. 11).

In all the performed experiments, it can be seen that Symbolic DNN-Tuner shows 
better results by analysing the performance of each network that it trains. See Figs. 10 
and 11.

6  Related work

In the Machine Learning automation scenario, we can distinguish two main work areas: 
the HPO algorithm and the Neural Architecture Search (NAS) algorithm (Elsken et al. 
2018). The first works only on the HPs that govern the main settings of Machine Learn-
ing systems (including Deep Learning) for the training phases. The latter works mainly 
on the DNNs architecture.

In the field of Deep Learning, the state-of-the-art of HPO algorithm are: Grid Search, 
Random Search and BO. Grid search (Yu and Zhu 2020) is the basic method for the 
HPO. It performs exhaustive research (also called brute-force research) on the user-
specified HPs search space. This algorithm performs new training for each combina-
tion of the HPs and each training is independent of the others. This allows it to run in 
parallel and guarantees to find the optimal configuration but, Grid Search suffers from 
the curse of dimensionality. This problem arises because the computational resources 
increase exponentially with the number of hyper-parameters to set (Yu and Zhu 2020). 
The application of this algorithm with the actual DNNs is correlated with the huge 
amount of HPs to set (then a huge number of possible configuration) and to the dimen-
sion of the modern DNNs architecture which could take a long time to complete the 
training phase. This rise a time problem.

Random Search (Bergstra and Bengio 2012) performs a random search over the used 
defined HPs search space. Random search leads to better results than the previous algo-
rithm due to the predetermined budget (the searching process stops when this budget is 
reached). Random search may perform better especially when some HPs are not uniformly 
distributed (Yu and Zhu 2020). Unlike the Grid Search, this algorithm does not guarantee 
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to achieve the optimum, but it requires less computational time while finding a reasonably 
good model in most cases (Bergstra and Bengio 2012).

BO is a Sequential Model-Based Optimization (SMBO) algorithm aimed at finding the 
global optimum with the minimum number of trials. Its success in optimizing the HPs of 
DNNs is because BO limits the number of training of DNNs spending more time choosing 
the next set of HPs to try. For a most detailed description of BO see Sect. 2. In literature, 
there are works that apply this kind of HPO algorithm to DNNs (Korichi et al. 2019; Snoek 
et al. 2012; Bertrand et al. 2017).

NAS is the process of automating the design of DNNs architectures. It is strictly 
correlated to HPO and AutoML. NAS methods have outperformed manually designed 
architectures (Real et  al. 2019; Zoph et  al. 2018). In literature, there are different 
approaches to discover new neural architectures. Given a search space for a NAS, that 

Table 3  CIFAR10 - Symbolic DNN-Tuner

Bold values indicate the best results

Step Training Validation Diagnosis TA

Accuracy Loss Accuracy Loss

1 0.9315 0.1958 0.793 0.7004 overfitting reg_l2 & batch_norm
data_augm

underfitting inc_neurons
2 0.943 0.1648 0.8812 0.3658 overfitting reg_l2 & batch_norm

data_augm
floating_loss inc_batch_size

3 0.8715 0.365 0.8364 0.4968 underfitting inc_neurons
floating_loss decr_lr

4 0.9565 0.1287 0.8578 0.4742 overfitting reg_l2 & batch_norm
data_augm

floating_loss decr_lr
5 0.8967 0.2946 0.8759 0.3711 floating_loss decr_lr
6 0.8902 0.3129 0.8655 0.3916 floating_loss decr_lr
7 0.9435 0.1678 0.8692 0.3900 overfitting reg_l2 & batch_norm

data_augm
underfitting inc_neurons
floating_loss decr_lr

8 0.9549 0.1348 0.8768 0.4021 overfitting reg_l2 & batch_norm
data_augm

floating_loss decr_lr
9 0.9699 0.0999 0.8731 0.408 overfitting reg_l2 & batch_norm

data_augm
underfitting inc_neurons
floating_loss decr_lr

10 0.9741 0.07971 0.8836 0.3925 overfitting reg_l2 & batch_norm
data_augm

underfitting inc_neurons
floating_loss decr_lr



645Machine Learning (2022) 111:625–650 

1 3

is which neural architectures a NAS approach might discover, there are different search 
strategies can be used to explore the space of neural architectures. These strategies 
include: random search, BO (Jin et al. 2019), reinforcement learning (Pham et al. 2018), 
gradient-based methods (Liu et al. 2018) and evolutionary algorithms (Real et al. 2019; 
Elsken et al. 2018). The three main concepts of NAS are: Search Space, Search Strategy 
and Performance Estimation Strategy. Search Space refers to all possible architectures 
that can be generated by the NAS. Search Strategy refers to the methods to explore the 
search space with the canonical exploration-exploitation trade-off. Performance Esti-
mation Strategy refers to the methods to measure the performance of the built neural 

Table 4  CIFAR10 - Bayesian 
Optimization

Bold values indicate the best results

Step Training Validation

Accuracy Loss Accuracy Loss

1 0.9762 0.06377 0.7776 1.046
2 0.09708 2.307 0.1 2.3078
3 0.1008 4.107 0.1 3.72
4 0.9133 0.2379 0.7655 0.9343
5 0.09874 2.303 0.1 2.303
6 0.7834 0.618 0.7404 0.7616
7 0.09842 2.303 0.1 2.303
8 0.1008 8.641 0.1 3.377
9 0.7599 0.6915 0.718 0.8171
10 0.888 0.3272 0.7824 0.8229
11 0.9609 0.1094 0.7758 1.036
12 0.6628 0.9813 0.6419 1.037
13 0.102 2.337 0.1 2.329
14 0.7411 0.7453 0.7327 0.7729
15 0.8633 0.378 0.7809 0.7518

Fig. 8  Best results of Symbolic DNN-Tuner and Bayesian Optimization on CIFAR10
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network (Elsken et al. 2018). We can group the NAS in two families: the classical NAS 
and the one-shot NAS (Bender et al. 2018). Classical NAS uses the traditional search 
space approach, where each generated DNN runs as an independent run. One-shot NAS 

Table 5  CIFAR10 - Comparison 
algorithms

Algorithms Val. accuracy Val. loss

Symbolic DNN-Tuner 0.8836 0.3925
Bayesian Opt. 0.7824 0.8229
ENAS Macro search 0.4520 1.6540
ENAS Micro search 0.4887 1.6711
DARTS 0.9554 0.1526
Autokeras 0.9458 0.2507

Table 6  CIFAR100 - Symbolic DNN-Tuner

Bold values indicate the best results

Step Training validation Diagnosis STR

Accuracy Loss Accuracy Loss

1 0.7121 1.039 0.4067 2.624 overfitting reg_l2 & batch_norm
underfitting data_augm

inc_neurons
2 0.7199 0.98 0.6238 1.443 overfitting reg_l2 & batch_norm

underfitting data_augm
floating_loss inc_neurons

inc_batch_size
3 0.7953 0.6752 0.6496 1.33 underfitting inc_neurons

underfitting data_augm
floating_loss inc_neurons

inc_batch_size
4 0.8353 0.5786 0.6056 1.548 overfitting reg_l2 & batch_norm

underfitting data_augm
inc_neurons

5 0.6656 1.157 0.6324 1.309 underfitting inc_neurons
floating_loss inc_batch_size

6 0.6852 1.068 0.6425 1.299 overfitting reg_l2 & batch_norm
underfitting data_augm

inc_neurons
floating_loss inc_batch_size

7 0.663 1.156 0.6362 1.324 underfitting inc_neurons
floating_loss inc_batch_size
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algorithms use weight sharing among models in neural architecture search space to train 
a supernet. That supernet embraces many options for the final design rather than gen-
erating and training several DNNs independently and uses this to select better models. 
This type of algorithms reduces computational resource compared to the classical NAS 
algorithm and are differentiable, allowing the use of gradient descent to optimize them. 
The state-of-the-art of one-shot NAS are: Efficient Neural Architecture Search (ENAS) 
(Pham et al. 2018), Differentiable Architecture Search (DARTS) (Liu et al. 2018), Sin-
gle Path One-Shot (SPOS) (Guo et al. 2019) and ProxylessNAS (Cai et al. 2018).

Table 7  CIFAR100 - Bayesian 
Optimization

Bold values indicate the best results

Step Training Validation

Accuracy Loss Accuracy Loss

1 9.62e − 3 5.628 1e − 2 5.691
2 0.475 2.017 0.4065 2.391
3 9.62e − 3 4.935 1e − 2 4.768
4 9.86e − 3 5.087 1e − 2 5.035
5 0.4634 2.061 0.4247 2.26
6 0.4981 1.911 0.4107 2.365
7 0.9612 0.13 0.4487 3.446
8 9.82e − 3 4.698 1e − 2 4.685
9 0.8432 0.5023 0.4594 2.524
10 0.7943 0.7538 0.4216 2.633
11 0.8226 0.5973 0.3923 2.956
12 0.8304 0.5655 0.3869 3.729
13 0.692 1.056 0.4901 2.079
14 0.8143 0.6264 0.4472 2.692
15 0.9771 0.08094 0.4483 3.766

Fig. 9  Best results of Symbolic DNN-Tuner and Bayesian Optimization on CIFAR100
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7  Conclusions

We have presented a system to automatically drive the training of a Deep Neural Net-
work, by automatizing the choice of hyper-parameters in order to obtain a network with 
the best possible performance. This was achieved by combining Bayesian Optimization 
with an analysis of the network performance implemented by exploiting rule-based pro-
gramming. In particular, tuning rules have been implemented in the ProbLog language, 
and their weights calibrated — after each training — by exploiting Learning from Inter-
pretation. Symbolic DNN-Tuner thus exploits probabilistic symbolic rules that iden-
tify, after each training, the most appropriate tuning actions in response to diagnosed 
problems. These tuning actions restrict the hyper-parameters search space and/or update 
the network architecture without any human intervention. The experiments show that 
Symbolic DNN-Tuner performs better than standard Bayesian Optimization in terms of 

Fig. 10  Best results of Symbolic DNN-Tuner and Bayesian Optimization on CIMA_CIM dataset in the the 
part one of the experiment

Fig. 11  Best results of Symbolic DNN-Tuner and Bayesian Optimization on CIMA_CIM dataset in the part 
two of the experiment
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accuracy and loss, and also provides an explanation of the possible reasons for network 
malfunctioning.
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