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Abstract
Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is 
to induce a hypothesis (a logic program) that generalises given training examples and back-
ground knowledge. As ILP turns 30, we review the last decade of research. We focus on (i) 
new meta-level search methods, (ii) techniques for learning recursive programs, (iii) new 
approaches for predicate invention, and (iv) the use of different technologies. We conclude 
by discussing current limitations of ILP and directions for future research.

Keywords Inductive logic programming · Relational learning · Program synthesis · 
Program induction

1 Introduction

Inductive logic programming (ILP) (Muggleton, 1991; Muggleton & De Raedt, 1994) is 
a form of machine learning (ML). As with other forms of ML, the goal is to induce a 
hypothesis that generalises training examples. However, whereas most forms of ML use 
vectors/tensors to represent data, ILP uses logic programs (sets of logical rules). Moreover, 
whereas most forms of ML learn functions, ILP learns relations.
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To illustrate ILP1 suppose you want to learn a string transformation program from the 
following examples:

Input Output

inductive e
logic c
programming g

Most forms of ML would use a table to represent these examples. Each row would be 
an example. Each column would be a feature, such as a one-hot-encoding representation of 
the string. By contrast, in ILP, we would represent these examples as logical atoms, such as 
f([i,n,d,u,c,t,i,v,e], e), where f is the target predicate that we want to learn 
(the relation to generalise). We would also provide auxiliary information as background 
knowledge (BK), also represented as a logic program. For instance, we could provide BK 
that contains logical definitions for string operations, such as empty(A), which holds 
when the list A is empty; head(A,B), which holds when B is the head of the list A; and 
tail(A,B), which holds when B is the tail of the list A. Given the aforementioned exam-
ples and BK, an ILP system could induce the hypothesis (a logic program): 

Each line of the program is a rule. The first rule says that the relation f(A,B) holds 
when the three literals tail(A,C), empty(C), and head(A,B) hold. In other words, 
the first rule says that B is the last element of A when the tail of A is empty and B is the 
head of A. The second rule is recursive and says that the relation f(A,B) holds when 
the two literals tail(A,C) and f(C,B) hold. In other words, the second rule says that 
f(A,B) holds when the same relation holds for the tail of A.

1.1  Why ILP?

Compared to most ML approaches, ILP has several attractive features (Cropper et  al., 
2020a; Cropper & Dumancic, 2020a).

Data efficiency Many forms of ML are notorious for their inability to generalise from 
small numbers of training examples, notably deep learning (Marcus, 2018; Chollet, 2019). 
As Evans and Grefenstette (2018) point out, if we train a neural system to add numbers 
with 10 digits, it might generalise to numbers with 20 digits, but when tested on numbers 
with 100 digits, the predictive accuracy drastically decreases (Reed  & de Freitas, 2016; 
Kaiser & Sutskever, 2016). By contrast, ILP can induce hypotheses from small numbers of 
examples, often from a single example (Lin et al., 2014; Muggleton et al., 2018a).

1 We do not introduce ILP in detail and refer the reader to the introductory paper of Cropper and Dumancic 
(2020a) or the textbooks of Nienhuys-Cheng and Wolf (1997) and De Raedt (2008).
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Background knowledge ILP learns using BK represented as a logic program. Using logic 
programs to represent data allows ILP to learn with complex relational information, such 
as constraints about causal networks (Inoue et al., 2013), the axioms of the event calculus 
when learning to recognise events (Katzouris et  al., 2015, 2016), and using a theory of 
light to understand images (Muggleton et  al., 2018a). Moreover, because hypotheses are 
symbolic, hypotheses can be added to BK, and thus ILP systems naturally support lifelong 
and transfer learning (Lin et al., 2014; Cropper, 2019, 2020).

Expressivity Because of the expressivity of logic programs, ILP can learn complex rela-
tional theories, such as cellular automata (Inoue et al., 2014; Evans et al., 2021), event cal-
culus theories (Katzouris et al., 2015, 2016), Petri nets (Bain & Srinivasan, 2018), answer 
set programs (ASP) (Law et al., 2014), and general algorithms (Cropper & Morel, 2021a). 
Because of the symbolic nature of logic programs, ILP can reason about hypotheses, which 
allows it to learn optimal programs, such as minimal time-complexity programs (Cropper 
& Muggleton, 2019) and secure access control policies (Law et al., 2020a).

Expainability Because of logic’s similarity to natural language, logic programs can be eas-
ily read by humans, which is crucial for explainable AI. For instance, Muggleton et  al., 
(2018b) provide the first demonstration of ultra-strong ML (Michie, 1988), where a learned 
hypothesis is expected to not only be accurate but to also demonstrably improve the perfor-
mance of a human when provided with the learned hypothesis.

1.2  Recent advances

Some of the aforementioned advantages come from developments in the last decade of 
ILP research, which we survey in this paper.2 To aid the reader, we coarsely compare old 
and new ILP systems, where new represents systems from the past decade. We use FOIL 
(Quinlan, 1990), Progol (Muggleton, 1995), Aleph (Srinivasan, 2001), TILDE (Blockeel 
& De Raedt, 1998), and HYPER (Bratko, 1999) as representative old systems and ILASP 
(Law et al., 2014), Metagol (Cropper & Muggleton, 2016), �ILP (Evans & Grefenstette, 
2018), and Popper (Cropper & Morel, 2021a) as representative new systems. This compar-
ison, shown in Table 1, is, of course, vastly oversimplified, and there are many exceptions. 
In the rest of this paper, we survey these developments (each row in the table) in turn. After 

Table 1  A simplified comparison 
of old and new ILP systems

Old ILP New ILP

Search method Top-down and 
bottom-up

Meta-level

Recursion Limited Yes
Predicate invention No Limited
Hypotheses First-order ASP, higher-

order, probabil-
istic

Optimality No Yes
Technology Prolog Prolog, ASP, NNs

2 This paper extends the paper of Cropper et al. (2020a).
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discussing these new ideas, we discuss recent application areas (Sect. 8) before concluding 
by proposing directions for future research.

2  Search methods

The fundamental ILP problem is to efficiently search a large hypothesis space. Most older 
ILP approaches search in either a top-down or bottom-up fashion. These methods rely 
on notions of generality (typically using theta-subsumption (Plotkin, 1971)), where one 
program is more general or more specific than another. A third new search approach has 
recently emerged called meta-level ILP (Inoue et al., 2013; Muggleton et al., 2015; Inoue, 
2016; Law et al., 2020b; Cropper & Morel, 2021a). We discuss these approaches in turn.

2.1  Top‑down and bottom‑up

Top-down approaches (Quinlan, 1990; Blockeel & De Raedt, 1998; Bratko, 1999) start 
with a general hypothesis and then specialise it. HYPER, for instance, searches a tree in 
which the nodes correspond to hypotheses and each child of a hypothesis in the tree is 
more specific than or equal to its predecessor in terms of theta-subsumption. An advantage 
of top-down approaches is that they can often learn recursive programs (although not all 
do). A disadvantage is that they can be prohibitively inefficient because they can generate 
many hypotheses that do not cover the examples.

Bottom-up approaches, by contrast, start with the examples and generalise them (Mug-
gleton, 1987; Muggleton & Buntine, 1988; Muggleton & Feng, 1990; Inoue et al., 2014). 
For instance, Muggleton and Feng (1990) generalises pairs of examples based on relative 
least-general generalisation (Nienhuys-Cheng & Wolf, 1997). Bottom-up approaches can 
be seen as being data- or example-driven. An advantage of these approaches is that they 
are typically fast. As Bratko (1999) points out, disadvantages include (i) they typically use 
unnecessarily long hypotheses with many clauses, (ii) it is difficult for them to learn recur-
sive hypotheses and multiple predicates simultaneously, and (iii) they do not easily support 
predicate invention.

Muggleton (1995), which inspired many other ILP approaches (Srinivasan, 2001; Ray, 
2009; Ahlgren & Yuen, 2013; Schüller & Benz, 2018), combines both top-down and bot-
tom-up approaches. Starting with an empty program, Progol picks an uncovered positive 
example to generalise. To generalise an example, Progol uses mode declarations to build 
the bottom clause (Muggleton, 1995), the logically most-specific clause that explains the 
example. The bottom clause bounds the search from below (the bottom clause) and above 
(the empty set). Progol then uses an A* algorithm to generalise the bottom clause in a top-
down (general-to-specific) manner and uses the other examples to guide the search.

2.1.1  Meta‑level

Top-down and bottom-up approaches refine and revise a single hypothesis. A third 
approach has recently emerged called meta-level ILP (Inoue et al., 2013; Muggleton et al., 
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2015; Inoue, 2016; Law et  al., 2020b; Cropper & Morel, 2021a; Patsantzis & Muggle-
ton, 2021). There is no standard definition for meta-level ILP. Most approaches encode the 
ILP problem as a meta-level logic program, i.e.  a program that reasons about programs. 
Meta-level approaches then often delegate the search for a hypothesis to an off-the-shelf 
solver (Corapi et al., 2011; Cropper & Muggleton, 2016; Law et al., 2014; Kaminski et al., 
2018; Schüller & Benz, 2018; Evans et al., 2021; Cropper & Morel, 2021a) after which 
the meta-level solution is translated back to a standard solution for the ILP task. In other 
words, instead of writing a procedure to search in a top-down or bottom-up manner, most 
meta-level approaches formulate the learning problem as a declarative search problem. For 
instance, ASPAL (Corapi et al., 2011) translates an ILP task into a meta-level ASP pro-
gram that describes every example and every possible rule in the hypothesis space. ASPAL 
then delegates the search to an ASP system to find a subset of the rules that covers all the 
positive but none of the negative examples.

The main advantage of meta-level approaches is that they can more easily learn recur-
sive programs and optimal programs (Corapi et  al., 2011; Law et  al., 2014; Cropper & 
Muggleton, 2016; Kaminski et  al., 2018; Evans et  al., 2021; Cropper & Morel, 2021a), 
which we discuss in Sects. 3 and 6 respectively. Moreover, whereas classical ILP systems 
were almost entirely based on Prolog, meta-level approaches use diverse techniques and 
technologies, such as ASP solvers (Corapi et al., 2011; Law et al., 2014; Kaminski et al., 
2018; Cropper & Morel, 2021a; Evans et al., 2021), which we expand on in Sect. 7.

The development of meta-level ILP approaches has, therefore, diversified ILP from the 
standard clause refinement approach of earlier ILP systems.

Most meta-level approaches encode the ILP learning task as a single static meta-level 
program (Corapi et al., 2011; Law et al., 2014; Kaminski et al., 2018; Evans et al., 2021).

A major issue with this approach is that the meta-level program can be very large so 
these approaches can struggle to scale to problems with non-trivial domains and programs 
with large clauses.

Two related approaches try to overcome this limitation by continually revising the meta-
level program.

ILASP3 (Law, 2018) employs a counter-example-driven select-and-constrain loop. 
ILASP3 first pre-computes every clause in the hypothesis space defined by a set of given 
mode declarations (Muggleton, 1995). ILASP3 then starts its select-and-constrain loop. 
With each iteration, ILASP3 uses an ASP solver to find the best hypothesis (a subset of the 
rules) it can. If the hypothesis does not cover one of the examples, ILASP3 finds a reason 
why and then generates constraints (boolean formulas over the rules) which it adds to the 
meta-level program to guide subsequent search. Another way of viewing ILASP3 is that it 
uses a counter-example-guided approach and translates an uncovered example e into a con-
straint that is satisfied if and only if e is covered.

Popper (Cropper & Morel, 2021a) adopts a similar approach but differs in that it (i) does 
not precompute every possible rule in the hypothesis space, and (ii) translates a hypoth-
esis, rather than an uncovered example, into a set of constraints. Popper works in three 
repeating stages: generate, test, and constrain. Popper first constructs a meta-level logic 
program where its models correspond to hypotheses. In the generate stage, Popper asks 
an ASP solver to find a model (a hypothesis). In the test stage, Popper tests the hypoth-
esis against the examples. A hypothesis fails when it is incomplete (does not entail all the 
positive examples) or inconsistent (entails a negative example). If a hypothesis fails, Pop-
per learns constraints from the failure, which it then uses to restrict subsequent generate 
stages. For instance, if a hypothesis is inconsistent, then Popper generates a generalisa-
tion constraint to prune all generalisations of the hypothesis and adds the constraint to the 
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meta-level program, which eliminates models and thus prunes the hypothesis space. This 
process repeats until Popper finds a complete and consistent program.

For more information about meta-level learning, we suggest the work of Inoue (2016) 
and Law et al. (2020b).

3  Recursion

Learning recursive programs has long been considered a difficult problem for ILP (Mug-
gleton et al., 2012; Cropper & Dumancic, 2020a). The power of recursion is that an infinite 
number of computations can be described by a finite recursive program (Wirth, 1985). To 
illustrate the importance of recursion, reconsider the string transformation problem from 
the introduction. Without recursion, an ILP system would need to learn a separate clause to 
find the last element for each list of length n, such as this program for when n = 3 : 

This program does not generalise to lists of arbitrary lengths. Moreover, most ILP sys-
tems would need examples of lists of each length to learn such a program. By contrast, an 
ILP system that supports recursion can learn the compact program: 

Because of the symbolic representation and the recursive nature, this program gener-
alises to lists of arbitrary length and which contain arbitrary elements (e.g. integers and 
characters). In general, without recursion, it can be difficult for an ILP system to generalise 
from small numbers of examples (Cropper et al., 2015).

Older ILP systems struggle to learn recursive programs, especially from small numbers 
of training examples. A common limitation with existing approaches is that they rely on 
bottom clause construction (Muggleton, 1995). In this approach, for each example, an ILP 
system creates the most specific clause that entails the example and then tries to generalise 
the clause to entail other examples. However, this sequential covering approach requires 
examples of both the base and inductive cases. The classical ILP system FOIL (Quinlan, 
1990) also struggles to learn recursive programs because it induces programs one clause at 
a time.

Interest in recursion has resurged with the introduction of meta-interpretive learning 
(MIL) (Muggleton et al., 2014, 2015; Cropper et al., 2020c) and the MIL system Metagol 
(Cropper & Muggleton, 2016). The key idea of MIL is to use metarules (Cropper & 



153Machine Learning (2022) 111:147–172 

1 3

Tourret, 2020), or program templates, to restrict the form of inducible programs, and thus 
the hypothesis space.3 A metarule is a higher-order clause. For instance, the chain metarule 
is P(A,B) ← Q(A,C),R(C,B) , where the letters P, Q, and R denote higher-order variables 
and A, B and C denote first-order variables. The goal of a MIL system, such as Metagol, is 
to find substitutions for the higher-order variables. For instance, the chain metarule allows 
Metagol to induce programs such as f(A,B):- tail(A,C),head(C,B).4 Metagol 
induces recursive programs using recursive metarules, such as the tailrec metarule P(A,B) 
← Q(A,C), P(C,B).

Following MIL, many meta-level ILP systems can learn recursive programs (Law et al., 
2014; Evans & Grefenstette, 2018; Kaminski et al., 2018; Cropper & Morel, 2021a). With 
recursion, ILP systems can now generalise from small numbers of examples, often a single 
example (Lin et al., 2014). Moreover, the ability to learn recursive programs has opened 
up ILP to new application areas, including learning string transformations programs (Lin 
et al., 2014), answer set grammars (Law et al., 2019), and general algorithms (Cropper & 
Morel, 2021a).

4  Predicate invention

A key characteristic of ILP is the use of BK, which contains facts and rules (extensional 
and intensional definitions) in the form of a logic program. For instance, when learning 
string transformation programs, we may provide helper background relations, such as 
head/2 and tail/2. For other domains, we may supply more complex BK, such as a 
theory of light to understand images (Muggleton et al., 2018a) or higher-order operations, 
such as map/3, filter/3, and fold/4, to solve programming puzzles (Cropper et al., 
2020c).

Choosing appropriate BK is crucial for good learning performance. ILP has tradition-
ally relied on hand-crafted BK, often designed by domain experts. This approach is limited 
because obtaining suitable BK can be difficult and expensive. Indeed, the over-reliance on 
hand-crafted BK is a common criticism of ILP (Evans & Grefenstette, 2018).

Rather than expecting a user to provide all the necessary BK, the goal of predicate 
invention (PI) (Muggleton & Buntine, 1988; Stahl, 1995) is for an ILP system to automati-
cally invent new auxiliary predicate symbols. This idea is similar to when humans create 
new functions when manually writing programs, to reduce code duplication or to improve 
readability. Whilst PI has attracted interest since the beginnings of ILP (Muggleton & 
Buntine, 1988), and has subsequently been repeatedly stated as a major challenge (Kok & 
Domingos, 2007; Muggleton et al., 2012; Kramer, 2020), most ILP systems do not support 
it, including classical systems, such as Progol (Muggleton, 1995), TILDE (Blockeel & De 
Raedt, 1998), and Aleph (Srinivasan, 2001), and modern systems, such as ATOM (Ahlgren 
& Yuen, 2013) and LFIT (Inoue et al., 2014).

3 The idea of using metarules to restrict the hypothesis space has been widely adopted by many approaches 
(Wang et  al., 2014; Albarghouthi et  al., 2017; Rocktäschel & Riedel, 2017; Evans & Grefenstette, 2018; 
Bain & Srinivasan, 2018; Kaminski et al., 2018). However, despite their now widespread use, there is little 
work determining which metarules to use for a given learning task (Cropper & Tourret, 2020 is an excep-
tion), which future work must address.
4 Metagol can induce longer clauses though predicate invention, which is described in Sect. 4.
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A key challenge faced by ILP systems is deciding when and how to invent a new sym-
bol. As Kramer (1995) points out, PI is difficult because it is unclear how many arguments 
an invented predicate should have, how the arguments should be ordered, etc. Several PI 
approaches try to address this challenge, which we discuss in turn.

4.1  Placeholders

A classical approach to PI is to predefine invented symbols through mode declarations, 
which (Leban et al., 2008) call placeholders. However, this placeholder approach is lim-
ited because it requires that a user manually specify the arity and argument types of 
a symbol (Law et  al., 2014), which rather defeats the point, or requires generating all 
possible invented predicates (Evans & Grefenstette, 2018; Evans et al., 2021), which is 
computationally expensive.

4.2  Metarules

Interest in automatic PI (where a user does not need to predefine an invented sym-
bol) has resurged with the introduction of MIL. MIL avoids the issues of older ILP 
systems by using metarules to define the hypothesis space and in turn reduce the 
complexity of inventing a new predicate symbol. For instance, the chain metarule 
( P(A,B) ← Q(A,C),R(C,B) ) allows Metagol to induce programs such as f(A,B):- 
tail(A,C),tail(C,D), which would drop the first two elements from a list. To 
induce longer clauses, such as to drop first three elements from a list, Metagol uses 
the same metarule but invents a predicate symbol to chain their application, such as to 
induce the program: 

To learn this program, Metagol invents the predicate symbol inv1 and induces a 
definition for it using the chain metarule. Metagol uses this new predicate symbol in the 
definition for the target predicate f.

A side-effect of this metarule-driven approach is that problems are forced to be 
decomposed into reusable solutions. For instance, to learn a program that drops the first 
four elements of a list, Metagol learns the following program, where the invented predi-
cate symbol inv1 is used twice: 

PI has been shown to help reduce the size of target programs, which in turn reduces 
sample complexity and improves predictive accuracy (Cropper, 2019). Several new ILP 
systems support PI using a metarule-guided approach (Evans & Grefenstette, 2018; 
Kaminski et al., 2018; Hocquette & Muggleton, 2020).
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4.3  Pre/post‑processing

Metarule-driven PI approaches perform PI during the learning task. A recent trend 
is to perform PI as a pre/post-processing step to improve knowledge representation 
(Dumančić & Blockeel, 2017; Dumančić et  al., 2019; Cropper, 2019; Hocquette & 
Muggleton, 2020).

CUR2LED (Dumančić & Blockeel, 2017) performs PI by clustering constants and rela-
tions in the provided BK, turning each identified cluster into a new BK predicate. The key 
insight of CUR2LED is not to use a single similarity measure, but rather a set of vari-
ous similarities. This choice is motivated by the fact that different similarities are useful 
for different tasks, but in the unsupervised setting the task itself is not known in advance. 
CUR2LED performs PI by producing different clusterings according to the features of the 
objects, community structure, and so on.

ALPs (Dumančić et al., 2019) perform PI using an auto-encoding principle: they learn 
an encoding logic program that maps the provided data to a new, compressive latent rep-
resentation (defined in terms of the invented predicates), and a decoding logic program 
that can reconstruct the provided data from its latent representation. This approach shows 
improved performance on supervised tasks, even though the PI step is task-agnostic.

Knorf (Dumancic et al., 2020) pushes the idea of ALPs even further. Knorf compresses 
a program by removing redundancies in it. If the learnt program contains invented predi-
cates, Knorf revises them and introduces new ones that would lead to a smaller program. 
The refactored program is smaller in size and contains less redundancy in clauses, both of 
which lead to improved performance. The authors experimentally demonstrate that refac-
toring improves learning performance in lifelong learning and that Knorf substantially 
reduces the size of the BK program, reducing the number of literals in a program by 50% 
or more.

4.4  Lifelong learning

An approach to acquiring BK is to learn it in a lifelong learning setting. The general idea 
is to reuse knowledge gained from solving one problem to help solve a different problem.

MetagolDF is an ILP system (Lin et al., 2014) which given a set of tasks, uses Metagol 
to try to learn a solution for each task using at most one clause. If Metagol finds a solu-
tion for a task, it adds the solution to the BK and removes the task from the set. MetagolDF 
then asks Metagol to find solutions for the rest of the tasks but can now (i) use an addi-
tional clause, and (ii) reuse solutions from previously solved tasks. This process repeats 
until MetagolDF solves all the tasks or reaches a maximum program size. In this approach, 
MetagolDF automatically identifies easier problems, learn programs for them, and then 
reuses the solutions to help learn programs for more difficult problems. The authors experi-
mentally show that their multi-task approach performs substantially better than a single-
task approach because learned programs are frequently reused and leads to a hierarchy of 
induced programs.

MetagolDF saves all learned programs (including invented predicates) to the BK, which 
can be problematic because too much irrelevant BK is detrimental to learning performance 
(Srinivasan et  al., 2003). To address this problem, Forgetgol (Cropper, 2020) introduces 
the idea of forgetting. In this approach, Forgetgol continually grows and shrinks its hypoth-
esis space by adding and removing learned programs to and from its BK. The authors show 
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that forgetting can reduce both the size of the hypothesis space and the sample complexity 
of an ILP learner when learning from many tasks.

4.5  Limitations

The aforementioned techniques have improved the ability of ILP to invent high-level con-
cepts. However, PI is still difficult and there are many challenges to overcome, notably that 
(i) many systems struggle to perform PI at all, and (ii) those that do support PI mostly need 
much user-guidance, such as metarules to restrict the space of invented symbols or that a 
user specifies the arity and argument types of invented symbols. There are notable excep-
tions. Ferilli (2016) describe an PI approach based on the ideal of specialising a theory to 
account for negative examples, similar to early work in non-monotonic ILP (Bain & Mug-
gleton, 1992). poppi (Cropper & Morel, 2021b) is an ILP system that supports automatic 
predicate invention, i.e. does not require metarules nor requires a user to predefine invented 
symbols.

By developing better approaches for PI, we can make progress on existing challenging 
problems. For instance, in inductive general game playing (IGGP) (Cropper et al., 2020b), 
the task is to learn the symbolic rules of games from observations of gameplay, such as 
learning the rules of connect four. The target solutions, which come from the general game 
playing competition (Genesereth & Björnsson, 2013), often contain auxiliary predicates. 
For instance, the rules for connect four are defined in terms of definitions for lines which 
are themselves defined in terms of columns, rows, and diagonals. Although these auxiliary 
predicates are not strictly necessary to learn the target solution, inventing such predicates 
significantly reduces the size of the solution, which in turn makes them easier to learn. 
Although new methods for PI can invent high-level concepts, they are not yet sufficiently 
powerful enough to perform well on the IGGP dataset. Making progress in this area would 
constitute a major advancement in ILP.

5  Hypotheses

ILP systems have traditionally induced definite and normal logic programs, typically rep-
resented as Prolog programs. A recent development has been to use different hypothesis 
representations.

5.1  Datalog

Datalog is a syntactical subset of Prolog which disallows complex terms as arguments of 
predicates and imposes restrictions on the use of negation.

Datalog is a truly declarative language, whereas in Prolog reordering clauses can change 
the program. Moreover, Datalog query is guaranteed to terminate, though this guarantee 
is at the expense of not being a Turing-complete language, which Prolog is. Several works 
(Albarghouthi et  al., 2017; Evans & Grefenstette, 2018; Kaminski et  al., 2018) induce 
Datalog programs. The general motivation for reducing the expressivity of the representa-
tion language from Prolog to Datalog is to allow the problem to be encoded as a satisfiabil-
ity problem, particularly to leverage recent developments in SAT and SMT. We discuss the 
advantages of this approach more in Sect. 7.1.
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5.2  Answer set programming

ASP (Gebser et  al., 2012a) is a logic programming paradigm based on the stable model 
semantics of normal logic programs that can be implemented using the latest advances in SAT 
solving technology. Law et al. (2018) discuss some of the advantages of learning ASP pro-
grams, rather than Prolog programs, which we reiterate. When learning Prolog programs, the 
procedural aspect of SLD-resolution must be taken into account. For instance, when learning 
Prolog programs with negation, programs must be stratified; otherwise, they may loop under 
certain conditions. By contrast, as ASP is a truly declarative language, no such consideration 
needs to be taken into account when learning ASP programs. Compared to Datalog and Pro-
log, ASP supports additional language constructs, such as disjunction in the head of a clause, 
choice rules, and hard and weak constraints. A key difference between ASP and Prolog is 
semantics. A definite logic program has only one model (the least Herbrand model). By con-
trast, an ASP program can have one, many, or even no stable models (answer sets). Due to its 
non-monotonicity, ASP is particularly useful for expressing common-sense reasoning (Law, 
2018).

To illustrate the benefits of learning ASP programs, we reuse an example from Law et al. 
(2020b). Given a sufficient examples of Hamiltonian graphs, ILASP (Law et al., 2014) can 
learn a program to definite them: 

This program illustrates useful language features of ASP. The first rule is a choice rule, 
which means that an atom can be true. In this example, the rule indicates that there can be an 
in edge from the vertex V1 to V0. The last two rules are hard constraints, which essentially 
enforce integrity constraints. The first hard constraint states that it is impossible to have a node 
that is not reachable. The second hard constraint states that it is impossible to have a vertex 
with two in edges from distinct nodes. For more information about ASP we recommend the 
book by Gebser et al. (2012a).

Approaches to learning ASP programs can mostly be divided into two categories: brave 
learners, which aim to learn a program such that at least one answer set covers the examples, 
and cautious learners, which aim to find a program which covers the examples in all answer 
sets. ILASP is notable because it supports both brave and cautious learning, which are both 
needed to learn some ASP programs (Law et al., 2018). Moreover, ILASP differs from most 
Prolog-based ILP systems because it learns ASP programs, including programs with normal 
rules, choice rules, and both hard and weak constraints, which classical ILP systems cannot. 
Learning ASP programs allows for ILP to be used for new problems, such as inducing answer 
set grammars (Law et al., 2019).

5.3  Higher‑order programs

Imagine learning a droplasts program, which removes the last element of each sublist in a 
list, e.g. [alice,bob,carol] ↦ [alic,bo,caro]. Given suitable input data, Metagol can learn 
this first-order recursive program: 
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Although semantically correct, the program is verbose. To learn smaller programs, 
Metagolho (Cropper et  al., 2020c) extends Metagol to support learning higher-order pro-
grams, where predicate symbols can be used as terms. For instance, for the same droplasts 
problem, Metagolho learns the higher-order program: 

To learn this program, Metagolho invents the predicate symbol f1, which is used twice 
in the program: as term in the map(A,B,f1) literal and as a predicate symbol in the 
f1(A,B) literal. Compared to the first-order program, this higher-order program is 
smaller because it uses map/3 (predefined in the BK) to abstract away the manipulation of 
the list and to avoid the need to learn an explicitly recursive program (recursion is implicit 
in map/3). Metagolho has been shown to reduce sample complexity and learning times and 
improve predictive accuracies (Cropper et al., 2020c).

5.4  Probabilistic logic programs

A major limitation of logical representations, such as Prolog and its derivatives, is the 
implicit assumption that the BK is perfect. That is, most ILP systems assume that atoms 
are true or false, leaving no room for uncertainty. This assumption is problematic if data is 
noisy, which is often the case.

ILP systems have limited capabilities for dealing with noise. If a perfect program is 
not in the hypothesis space, the most common strategy is to find a program that covers 
as many positive and as few negative examples as possible. Though this approach helps 
us handle mislabelled examples, is not a good way for dealing with observational noise 
generally. The limitations of the approach become obvious when examples are structured 
(e.g., complex relations, images, or lists) rather than simple labels. Consider the example in 
Fig. 1, in which we want to learn a program drawing simple images spelling “ILP”. Each 
of the examples displays a clear concept but with some alterations: every image contains 

Fig. 1  ILP systems struggle with structured examples that exhibit observational noise. All three examples 
clearly spell the word “ILP”, with some alterations: 3 noisy pixels, shifted and elongated letters. If we 
would be to learn a program that simply draws “ILP” in the middle of the picture, without noisy pixels and 
elongated letters, that would be a correct program
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three ‘noisy’ pixels: the second example has the first letter shifted to the left, while the 
arc in the letter “P” is elongated in the third example. All of these alterations are noise 
and not something we want our program to explicitly represent—the ground truth program 
is the one that draws ”ILP” in the middle of the figure, without any noise. However, ILP 
systems based on entailment would consider a solution to be correct only if it models all 
of the noisy aspects. An ILP system capable of handling such noise is Brute (Cropper & 
Dumančić, 2020b), which uses a distance to the target solution (e.g., pixel distance in case 
of images) as an optimisation criterion instead of entailment.

The most principle way of handling noise is to integrating probabilistic aspects into log-
ical representations so that uncertainties in data can be directly modelled. This integration 
is the focus of statistical relational artificial intelligence (StarAI) (De Raedt & Kersting, 
2008; De Raedt et al., 2016). In essence, StarAI hypothesis representations extend BK with 
probabilities or weights indicating the degree of confidence in the correctness of parts of 
BK. StarAI is a big and prolific field; for that reason, we will not cover it in entirety but 
rather briefly introduce the main ideas that overcome limitations of logic programming-
based ILP systems.

Generally, StarAI techniques are based on two ideas: distribution semantics and maxi-
mum entropy. Distribution semantics approaches (Sato, 1995), including Problog (De 
Raedt et al., 2007) and PRISM (Sato & Kameya, 2001), explicitly annotate uncertainties in 
BK. To allow such annotation, they extend Prolog with two primitives for stochastic execu-
tion: probabilistic facts and annotated disjunctions. Probabilistic facts are the most basic 
stochastic primitive and they take the form of logical facts labelled with a probability p. 
Each probabilistic fact represents a Boolean random variable that is true with probability 
p and false with probability 1 − p . For instance, the following probabilistic fact states 
that there is 1% chance of an earthquake in Naples. 

An alternative interpretation of this statement is that 1% of executions of the proba-
bilistic program would observe an earthquake. The second type of stochastic primitive is 
an annotated disjunction. Whereas probabilistic facts introduce non-deterministic behav-
iour on the level of facts, annotated disjunctions introduce non-determinism on the level of 
clauses. Annotated disjunctions allow for multiple literals in the head, where only one of 
the head literals can be true at a time. For instance, the following annotated disjunction 
states that a ball can be either green, red, or blue, but not a combination of colours: 

By contrast, maximum entropy approaches annotate uncertainties only at the level of a 
logical theory. That is, they assume that the predicates in the BK are labelled as either true 
or false, but the label may be incorrect. These approaches are not based on logic program-
ming, but rather on first-order logic. Consequently, the underlying semantics are different: 
rather than consider proofs, these approaches consider models or groundings of a theory. 
This difference primarily changes what uncertainties represent. For instance, Markov Logic 
Networks (MLN) (Richardson & Domingos, 2006) represent programs as a set of weighted 
clauses. The weights in MLN do not correspond to probabilities of a formula being true 



160 Machine Learning (2022) 111:147–172

1 3

but, intuitively, to a log odds between a possible world (an interpretation) where the clause 
is true and a world where the clause is false. For instance, a clause that is true in 80% of the 
worlds would have a weight of 1.386 ( log 0.8

0.2
)

The techniques from learning such probabilistic programs are typically direct extensions 
of ILP techniques. For instance, ProbFOIL (De Raedt et al., 2015) extends FOIL (Quinlan, 
1990) with probabilistic clauses. Similarly, SLIPCOVER (Bellodi & Riguzzi, 2015) is a 
bottom-up approach, similar to Aleph (Srinivasan, 2001) and Progol (Muggleton, 1995). 
Huynh and Mooney (2008) use Aleph to find interesting clauses and then learn the cor-
responding weights. Kok and Domingos (2009) use relational pathfinding over BK to iden-
tify useful clauses. That is, they interpret the BK as a hypergraph in which constants form 
vertices and atoms form hyper-edges and perform random walks. Frequently occurring 
walks, or their subparts, are then turned into clauses. Such random walks could be seen as 
an approximate way to construct bottom clauses.

It is worth noting that StarAI also considers an alternative learning problem—that 
of learning the probabilistic parameters of a given program. We do not survey these 
approaches here as the problem is different in nature from the ILP problem: whereas ILP 
searches from a program solving the tasks, parameter learning methods assume that such 
program is given.

6  Optimality

There are often multiple (sometimes infinitely many) hypotheses that explain the data. 
Deciding which hypothesis to choose has long been a difficult problem. Many systems aim 
for maximum classification accuracy. For instance, Aleph, by default, aims to maximum 
coverage of each clause it adds to a hypothesis, where coverage is measured as P − N , 
where P and N are the number of positive and negative examples covered by the clause 
respectively. Note that Aleph supports various evaluation metrics, such as compression, 
measured as P − N − L + 1 , where P and N are as before and L is the number of literals in 
the clause. However, older ILP systems are typically not guaranteed to induce optimal pro-
grams/theories. A key reason for this limitation was that most search techniques learned a 
single clause at a time, leading to the construction of sub-programs that are sub-optimal in 
terms of program size and coverage. For instance, Aleph offers no guarantee of optimality 
with respect to the program size and coverage.

Newer ILP systems try to address this limitation. As with the ability to learn recursive 
programs, the main development is to take a global view of the induction task by using 
meta-level search techniques. In other words, rather than induce a single clause at a time 
from a single example, the idea is to induce multiple clauses from multiple examples. For 
instance, ILASP uses ASP’s optimisation abilities to provably learn the program with the 
fewest literals. ILASP3 (Law, 2018) adopts a similar approach to account for noise.

The ability to learn optimal programs opens up ILP to new problems. For instance, 
learning efficient logic programs has long been considered a difficult problem in ILP 
(Muggleton & De Raedt, 1994; Muggleton et al., 2012), mainly because there is no declar-
ative difference between an efficient program, such as mergesort, and an inefficient pro-
gram, such as bubble sort. To address this issue, Metaopt (Cropper & Muggleton, 2019) 
extends Metagol to support learning efficient programs. Metaopt maintains a cost during 
the hypothesis search and uses this cost to prune the hypothesis space. To learn minimal 
time complexity logic programs, Metaopt minimises the number of resolution steps. For 
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instance, imagine trying to learn a find duplicate program, which finds any duplicate ele-
ment in a list e.g. [p,r,o,g,r,a,m] ↦ r, and [i,n,d,u,c,t,i,o,n]  ↦ i. Given suitable input data, 
Metagol can induce the program: 

This program goes through the elements of the list checking whether the same element 
exists in the rest of the list. Given the same input, Metaopt induces the program: 

This program first sorts the input list and then goes through the list to check whether for 
duplicate adjacent elements. Although larger, both in terms of clauses and literals, the pro-
gram learned by Metaopt is more efficient O(n log n) than the program learned by Metagol 
O(n2) . Metaopt has been shown to learn efficient robot strategies, efficient time complexity 
logic programs, and even efficient string transformation programs.

FastLAS (Law et al., 2020a) is an ASP-based ILP system that takes as input a custom 
scoring function and computes an optimal solution with respect to the given scoring func-
tion when learning non-recursive programs without PI. The authors show that this approach 
allows a user to optimise domain-specific performance metrics on real-world datasets, such 
as access control policies.

7  Technologies

Older ILP systems mostly use Prolog for reasoning. Recent work considers using different 
technologies.

7.1  Constraint satisfaction and satisfiability

There have been tremendous recent advances in SAT (Heule et  al., 2016). To lever-
age these advances, much recent work in ILP uses related techniques, notably ASP 
(Corapi et  al., 2011; Muggleton et  al., 2014; Law et  al., 2014; Katzouris et  al., 2015, 
2016; Schüller & Benz, 2018; Kaminski et  al., 2018; Evans et  al., 2021; Cropper & 
Morel, 2021a). The main motivations for using ASP are to leverage (i) the language 
benefits of ASP (Sect. 5.2), and (ii) the efficiency and optimisation techniques of mod-
ern ASP solvers, such as CLASP (Gebser et al., 2012b), which supports conflict propa-
gation and learning. With similar motivations, other approaches encode the ILP prob-
lem as SAT (Ahlgren & Yuen, 2013) or SMT (Albarghouthi et  al., 2017) problems. 
These approaches have been shown able to reduce learning times compared to stand-
ard Prolog-based approaches. However, some unresolved issues remain. A key issue is 
that most approaches encode an ILP problem as a single (often very large) satisfiability 
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problem. These approaches therefore often struggle to scale to very large problems 
(Cropper et al., 2020c), although preliminary work attempts to tackle this issue (Crop-
per & Morel, 2021a).

7.2  Neural networks

With the rise of deep learning, several approaches have explored using gradient-based 
methods to learn logic programs. These approaches all replace discrete logical reason-
ing with a relaxed version that yields continuous values reflecting the confidence of the 
conclusion.

The various neural approaches can be characterised along four orthogonal dimen-
sions. The first dimension is whether the neural network implements forward or back-
ward inference. While some (Rocktäschel & Riedel, 2017) use backward (goal-directed) 
chaining with a neural implementation of unification, most approaches (Evans & Gre-
fenstette, 2018; Yang et al., 2017; Dong et al., 2019a) use forward chaining. The second 
dimension is whether the network is designed for big data problems (Yang et al., 2017; 
Rocktäschel & Riedel, 2017) or for data-efficient learning from a handful of data items 
(Evans & Grefenstette, 2018). Few neural systems to date are capable of handling both 
big data and small data, with the notable exception of Dong et  al. (2019a). The third 
dimension is whether the neural system jointly learns embeddings (mapping symbolic 
constants to continuous vectors) along with the logical rules (Rocktäschel & Riedel, 
2017). The advantage of jointly learning embeddings is that it enables fuzzy unification 
between constants that are similar but not identical. The challenge for these approaches 
that jointly learn embeddings is how to generalize appropriately to constants that have 
not been seen at training time. The fourth dimension is whether or not the neural sys-
tem is designed to allow explicit human-readable logical rules to be extracted from the 
weights of the network. While most neural ILP systems (Yang et al., 2017; Rocktäschel 
& Riedel, 2017; Evans & Grefenstette, 2018) do produce explicit logic programs, some 
Dong et al. (2019a) do not. It is perhaps moot whether implicit systems that do not pro-
duce explicit programs count as ILP systems at all—but note that even in the implicit 
neural systems, the weight sharing of the neural net is designed to achieve strong gener-
alisation by performing the same computation on all tuples of objects.

Currently, most neural approaches to ILP require the use of metarules or templates 
to make the search space tractable and fail to support predicate invention, recursion and 
abduction. This severely limits the applicability of these approaches, as the user can-
not always be expected to provide suitable and complete background knowledge and 
metarules for a new problem. The only approach that avoids the use of metarules or 
templates is Neural Logic Machines (Dong et al., 2019a), and the only one to fully inte-
grate neural net learning with predicate invention, recursion, and abduction is Abduc-
tive Meta-Interpretive Learning (Dai & Muggleton, 2021).

8  Applications

We now survey recent application areas for ILP.
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Scientific discovery Perhaps the most prominent application of ILP is in scientific discov-
ery. ILP has, for instance, been used to identify and predict ligands (substructures responsi-
ble for medical activity) (Kaalia et al., 2016) and infer missing pathways in protein signal-
ling networks (Inoue et al., 2013). There has been much recent work on applying ILP in 
ecology (Bohan et al., 2011, 2017; Tamaddoni-Nezhad et al., 2014). For instance, Bohan 
et  al. (2011) use ILP to generate plausible and testable hypotheses for trophic relations 
(‘who eats whom’) from ecological data.

Program analysis Due to the expressivity of logic programs as a representation lan-
guage, ILP systems have found successful applications in software design. ILP systems 
have proven effective in learning SQL queries (Albarghouthi et  al., 2017; Sivaraman 
et al., 2019), programming language semantics (Bartha & Cheney, 2019), and code search 
(Sivaraman et al., 2019).

Robotics Robotics applications often require incorporating domain knowledge or impos-
ing certain requirements on the learnt programs. For instance, The Robot Engineer (Sam-
mut et al., 2015) uses ILP to design tools for robots and even complete robots, which are 
tests in simulations and real-world environments. Metagolo (Cropper & Muggleton, 2015) 
learns robot strategies considering their resource efficiency and Antanas et al. (2015) rec-
ognise graspable points on objects through relational representations of objects.

Vision Background knowledge is also valuable in Computer Vision. Recent work Muggle-
ton et al. (2018a) demonstrated that Logical Vision, which employs MIL, can outperform 
state-of-the-art statistical machine learning in particular image recognition tasks, given 
general Newtonian physics background knowledge concerning reflection of light.

Games Inducing game rules has a long history in ILP, where chess has often been the 
focus (Muggleton et al., 2009). Legras et al., (2018) show that Aleph and TILDE can out-
perform an SVM learner in the game of Bridge. Law et al. (2014) use ILASP to induce the 
rules for Sudoku and show that this more expressive formalism allows for game rules to 
be expressed more compactly. Cropper et al. (2020b) introduce the ILP problem of induc-
tive general game playing: the problem of inducing game rules from observations, such as 
Checkers, Sokoban, and Connect Four. Muggleton and Hocquette (2019) show the MIL 
system MIGO consistently outperforms deep reinforcement learning for both Noughts-and-
Crosses and Hexapawn.

Data curation and transformation Another successful application of ILP is in data cura-
tion and transformation, which is again largely because ILP can learn executable programs. 
The most prominent example of such tasks is string transformations, such as the exam-
ple given in the introduction. There is much interest in this topic, largely due to success 
in synthesising programs for end-user problems, such as string transformations in Micro-
soft Excel (Gulwani, 2011). String transformations have become a standard benchmark 
for recent ILP papers (Lin et al., 2014; Cropper et al., 2020c; Cropper, 2019; Cropper & 
Dumančić, 2020b). Other transformation tasks include extracting values from semi-struc-
tured data (e.g. XML files or medical records), extracting relations from ecological papers, 
and spreadsheet manipulation (Cropper et al., 2015).
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Learning from  trajectories Learning from interpretation transitions (LFIT) (Inoue et  al., 
2014) automatically constructs a model of the dynamics of a system from the observation 
of its state transitions. Given time-series data of discrete gene expression, it can learn gene 
interactions, thus allowing to explain and predict states changes over time (Ribeiro et al., 
2020). LFIT has been applied to learn biological models, like Boolean Networks, under 
several semantics: memory-less deterministic systems (Inoue et al., 2014; Ribeiro & Inoue, 
2014), and their multi-valued extensions (Ribeiro et al., 2015; Martínez et al., 2016). Mar-
tínez et al. (2016) combine LFIT with a reinforcement learning algorithm to learn proba-
bilistic models with exogenous effects (effects not related to any action) from scratch. The 
learner was notably integrated with a robot to perform the task of clearing the tableware on 
a table. In this task external agents interacted, people brought new tableware continuously 
and the manipulator robot had to cooperate with mobile robots to take the tableware to the 
kitchen. The learner was able to learn a usable model in just five episodes of 30 action exe-
cutions. Evans et al. (2021) apply the Apperception Engine to explain sequential data, such 
as cellular automata traces, rhythms and simple nursery tunes, image occlusion tasks, game 
dynamics, and sequence induction intelligence tests. Surprisingly, they show that their sys-
tem can achieve human-level performance on the sequence induction intelligence tests in 
the zero-shot setting (without having been trained on lots of other examples of such tests, 
and without hand-engineered knowledge of the particular setting). At a high level, these 
systems take the unique selling point of ILP systems (the ability to strongly generalise from 
a handful of data), and apply it to the self-supervised setting, producing an explicit human-
readable theory that explains the observed state transitions.

9  Summary and future work

In a survey paper from a decade ago, Muggleton et al. (2012) proposed directions for future 
research. In the decade since, there have been major advances on many of the topics, nota-
bly in predicate invention (Sect. 4), using higher-order logic as a representation language 
(Sect. 4.2) and to represent hypotheses (Sect. 5.3), and applications in learning actions and 
strategies (Sect. 8). Despite the advances, there are still many limitations in ILP that future 
work should address.

9.1  Limitations and future research

Better systems Muggleton et al. (2012) argue that a problem with ILP is the lack of well-
engineered tools. They state that whilst over 100 ILP systems have been built, less than a 
handful of systems can be meaningfully used by ILP researchers. In the decade since the 
authors highlighted this problem, little progress has been made: most ILP systems are not 
easy to use. In other words, ILP systems are still notoriously difficult to use and you often 
need a PhD in ILP to use any of the tools. Even then, it is still often only the develop-
ers of a system that know how to properly use it. By contrast, driven by industry, other 
forms of ML now have reliable and well-maintained implementations, such as PyTorch and 
TensorFlow, which has helped drive research. A frustrating issue with ILP systems is that 
they use many different language biases or even different syntax for the same biases. For 
instance, the way of specifying a learning task in Progol, Aleph, TILDE, and ILASP varies 
considerably despite them all using mode declarations, If it is difficult for ILP researchers 
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to use ILP tools, then what hope do non-ILP researchers have? For ILP to be more widely 
adopted both inside and outside of academia, we must develop more standardised, user-
friendly, and better-engineered tools.

Language biases As Cropper et  al. (2020a) state, one major issue with ILP is choosing 
an appropriate language bias. For instance, Metagol uses metarules (Sect. 4.2) to restrict 
the syntax of hypotheses and thus the hypothesis space. If a user can provide suitable 
metarules, then Metagol is extremely efficient. However, if a user cannot provide suitable 
metarules (which is often the case), then Metagol is almost useless. This same brittleness 
applies to ILP systems that employ mode declarations (Muggleton, 1995). In theory, a user 
can provide very general mode declarations, such as only using a single type and allow-
ing unlimited recall. In practice, however, weak mode declarations often lead to very poor 
performance. For good performance, users of mode-based systems often need to manually 
analyse a given learning task to tweak the mode declarations, often through a process of 
trial and error. Moreover, if a user makes a small mistake with a mode declaration, such 
as giving the wrong argument type, then the ILP system is unlikely to find a good solu-
tion. Even for ILP experts, determining a suitable language bias is often a frustrating and 
time-consuming process. We think the need for an almost perfect language bias is severely 
holding back ILP from being widely adopted. By contrast, there are some neural net archi-
tectures (e.g. the transformer; Vaswani et al., 2017) that can be applied successfully to a 
large range of diverse problems without requiring any domain-specific tuning. We think 
that an important direction for future work in ILP is to develop techniques for automati-
cally identifying suitable language biases. Although there is some work on mode learning 
(McCreath & Sharma, 1995; Ferilli et al., 2004; Picado et al., 2017, 2021) and work on 
identifying suitable metarules (Cropper & Tourret, 2020), this area of research is largely 
under-researched.

Better datasets Interesting problems, alongside usable systems, drive research and attract 
interest in a research field. This relationship is most evident in the deep learning com-
munity which has, over a decade, grown into the largest AI community. This community 
growth has been supported by the constant introduction of new problems, datasets, and 
well-engineered tools. Challenging problems that push the state-of-the-art to its limits 
are essential to sustain progress in the field; otherwise, the field risks stagnation through 
only small incremental progress. ILP has, unfortunately, failed to deliver on this front: 
most research is still evaluated on 20-year old datasets. Most new datasets that have been 
introduced often come from toy domains and are designed to test specific properties of the 
introduced technique. To an outsider, this sends a message that ILP is not applicable to 
real-world problems. We think that the ILP community should learn from the experiences 
of other AI communities and put significant efforts into developing datasets that identify 
limitations of existing methods as well as showcase potential applications of ILP. After all, 
it is no coincidence that SAT solving performance increased dramatically after the intro-
duction of the SAT solving competitions (Järvisalo et al., 2012).

Relevance New methods for predicate invention (Sect.  4) have improved the abilities of 
ILP systems to invent high-level concepts. These techniques raise the potential for ILP 
to be used in lifelong learning settings. However, inventing and acquiring new BK could 
lead to a problem of too much BK, which can overwhelm an ILP system (Srinivasan et al., 
2003; Cropper, 2020). On this issue, a key under-explored topic is that of relevancy. Given 
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a new induction problem with large amounts of BK, how does an ILP system decide which 
BK is relevant? One emerging technique is to train a neural network to score how relevant 
programs are in the BK and to then only use BK with the highest score to learn programs 
(Balog et al., 2017; Ellis et al., 2018). However, the empirical efficacy of this approach has 
yet to be demonstrated. Moreover, these approaches have only been demonstrated on small 
amounts of BK and it is unclear how they scale to BK with thousands of relations. Without 
efficient methods of relevance identification, it is unclear how efficient lifelong learning 
can be achieved.

Handling mislabelled and ambiguous data A major open question in ILP is how best to 
handle noisy and ambiguous data. Neural ILP systems (Rocktäschel & Riedel, 2017; Evans  
&  Grefenstette, 2018) are designed from the start to robustly handle mislabelled data. 
Although there has been work in recent years on designing ILP systems that can handle 
noisy mislabelled data, there is much less work on the even harder and more fundamen-
tal problem of designing ILP systems that can handle raw ambiguous data. ILP systems 
typically assume that the input has already been preprocessed into symbolic declarative 
form (typically, a set of ground atoms representing positive and negative examples). But 
real-world input does not arrive in symbolic form. Consider e.g. a robot with a video cam-
era, where the raw input is a sequence of pixel images. Converting each pixel image into 
a set of ground atoms is a challenging non-trivial achievement that should not be taken 
for granted. For ILP systems to be widely applicable in the real world, they need to be 
redesigned so they can handle raw ambiguous input from the outset (Evans & Grefenstette, 
2018; Dong et al., 2019b).

Probabilistic ILP Real-world data is often noisy and uncertain. Extending ILP to deal with 
such uncertainty substantially broadens its applicability. While StarAI is receiving growing 
attention, learning probabilistic programs from data is still largely under-investigated due 
to the complexity of joint probabilistic and logical inference. When working with probabil-
istic programs, we are interested in the probability that a program covers an example, not 
only whether the program covers the example. Consequently, probabilistic programs need 
to compute all possible derivations of an example, not just a single one. Despite added 
complexity, probabilistic ILP opens many new challenges. Most of the existing work on 
probabilistic ILP considers the minimal extension of ILP to the probabilistic setting, by 
assuming that either (i) BK facts are uncertain, or (ii) that learned clauses need to model 
uncertainty. These assumptions make it possible to separate structure from uncertainty 
and simply reuse existing ILP techniques. Following this minimal extension, the existing 
work focuses on discriminative learning in which the goal is to learn a program for a sin-
gle target relation. However, a grand challenge in probabilistic programming is generative 
learning. That is, learning a program describing a generative process behind the data, not 
a single target relation. Learning generative programs is a significantly more challenging 
problem, which has received very little attention in probabilistic ILP.

Explainability Explainability is one of the claimed advantages of a symbolic representa-
tion. Recent work Muggleton et al. (2018b) and Ai et al. (2020) evaluates the comprehensi-
bility of ILP hypotheses using Michie’s Michie (1988) framework of ultra-strong machine 
learning, where a learned hypothesis is expected to not only be accurate but to also demon-
strably improve the performance of a human being provided with the learned hypothesis. 
Muggleton et al. (2018b) empirically demonstrate improved human understanding directly 
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through learned hypotheses. However, given the demonstration of both beneficial and 
harmful effects of explainability (Ai et al., 2020) more work is required to better under-
stand the conditions under which this can be achieved, especially given the rise of PI.

Unifying ILP with neural methods It has often been noted (Evans & Grefenstette, 2018) 
that the strengths and weaknesses of neural networks and ILP are complementary: neural 
networks (1) scale to huge datasets, (2) are robust to mislabelled data, (3) are robust to 
ambiguous (raw, undiscretised) data, but (4) are very data hungry, (5) often struggle to 
generalise outside the training distribution, and (6) are uninterpretable. ILP systems, by 
contrast (1) often fail to scale to large datasets, (2) sometimes fail to handle mislabelled 
data, (3) almost always fail to handle raw undiscretised data, but (4) are very data efficient, 
(5) often generalise well outside the training distribution, and (6) produce human-readable 
programs. Given that the strengths and weaknesses of the two approaches are complemen-
tary, many people have advocated some sort of unification of the two (De Raedt et  al., 
2016; Garcez & Lamb, 2020; Evans &  Grefenstette, 2018). There is much activity in this 
area, and much work still to do to produce a truly convincing unification of these very dif-
ferent paradigms.

9.2  Summary

As ILP approaches 30, we think that the advances made in the last decade, surveyed in this 
paper, have opened up new areas of research for ILP to explore. Moreover, we hope that the 
next decade sees developments on the numerous limitations we have discussed so that ILP 
can have a significant impact on AI.
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