
Vol.:(0123456789)

Machine Learning (2022) 111:147–172
https://doi.org/10.1007/s10994-021-06089-1

1 3

S.I.: LR 2020

Inductive logic programming at 30

Andrew Cropper1 · Sebastijan Dumančić2 · Richard Evans3 · Stephen H. Muggleton3

Received: 1 June 2021 / Revised: 6 August 2021 / Accepted: 27 September 2021 /
Published online: 9 November 2021
© The Author(s) 2021

Abstract
Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is
to induce a hypothesis (a logic program) that generalises given training examples and back-
ground knowledge. As ILP turns 30, we review the last decade of research. We focus on (i)
new meta-level search methods, (ii) techniques for learning recursive programs, (iii) new
approaches for predicate invention, and (iv) the use of different technologies. We conclude
by discussing current limitations of ILP and directions for future research.

Keywords Inductive logic programming · Relational learning · Program synthesis ·
Program induction

1 Introduction

Inductive logic programming (ILP) (Muggleton, 1991; Muggleton & De Raedt, 1994) is
a form of machine learning (ML). As with other forms of ML, the goal is to induce a
hypothesis that generalises training examples. However, whereas most forms of ML use
vectors/tensors to represent data, ILP uses logic programs (sets of logical rules). Moreover,
whereas most forms of ML learn functions, ILP learns relations.

Editors: Nikos Katzouris, Alexander Artikis, Luc De Raedt, Artur d’Avila Garcez, Ute Schmid,
Jay Pujara.

 * Andrew Cropper
 andrew.cropper@cs.ox.ac.uk

 Sebastijan Dumančić
 sebastijan.dumancic@cs.kuleuven.be

 Richard Evans
 richardevans@google.com

 Stephen H. Muggleton
 s.muggleton@imperial.ac.uk

1 University of Oxford, Oxford, UK
2 KU Leuven, Leuven, Belgium
3 Imperial College London, London, UK

http://orcid.org/0000-0002-4543-7199
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06089-1&domain=pdf

148 Machine Learning (2022) 111:147–172

1 3

To illustrate ILP1 suppose you want to learn a string transformation program from the
following examples:

Input Output

inductive e
logic c
programming g

Most forms of ML would use a table to represent these examples. Each row would be
an example. Each column would be a feature, such as a one-hot-encoding representation of
the string. By contrast, in ILP, we would represent these examples as logical atoms, such as
f([i,n,d,u,c,t,i,v,e], e), where f is the target predicate that we want to learn
(the relation to generalise). We would also provide auxiliary information as background
knowledge (BK), also represented as a logic program. For instance, we could provide BK
that contains logical definitions for string operations, such as empty(A), which holds
when the list A is empty; head(A,B), which holds when B is the head of the list A; and
tail(A,B), which holds when B is the tail of the list A. Given the aforementioned exam-
ples and BK, an ILP system could induce the hypothesis (a logic program):

Each line of the program is a rule. The first rule says that the relation f(A,B) holds
when the three literals tail(A,C), empty(C), and head(A,B) hold. In other words,
the first rule says that B is the last element of A when the tail of A is empty and B is the
head of A. The second rule is recursive and says that the relation f(A,B) holds when
the two literals tail(A,C) and f(C,B) hold. In other words, the second rule says that
f(A,B) holds when the same relation holds for the tail of A.

1.1 Why ILP?

Compared to most ML approaches, ILP has several attractive features (Cropper et al.,
2020a; Cropper & Dumancic, 2020a).

Data efficiency Many forms of ML are notorious for their inability to generalise from
small numbers of training examples, notably deep learning (Marcus, 2018; Chollet, 2019).
As Evans and Grefenstette (2018) point out, if we train a neural system to add numbers
with 10 digits, it might generalise to numbers with 20 digits, but when tested on numbers
with 100 digits, the predictive accuracy drastically decreases (Reed & de Freitas, 2016;
Kaiser & Sutskever, 2016). By contrast, ILP can induce hypotheses from small numbers of
examples, often from a single example (Lin et al., 2014; Muggleton et al., 2018a).

1 We do not introduce ILP in detail and refer the reader to the introductory paper of Cropper and Dumancic
(2020a) or the textbooks of Nienhuys-Cheng and Wolf (1997) and De Raedt (2008).

149Machine Learning (2022) 111:147–172

1 3

Background knowledge ILP learns using BK represented as a logic program. Using logic
programs to represent data allows ILP to learn with complex relational information, such
as constraints about causal networks (Inoue et al., 2013), the axioms of the event calculus
when learning to recognise events (Katzouris et al., 2015, 2016), and using a theory of
light to understand images (Muggleton et al., 2018a). Moreover, because hypotheses are
symbolic, hypotheses can be added to BK, and thus ILP systems naturally support lifelong
and transfer learning (Lin et al., 2014; Cropper, 2019, 2020).

Expressivity Because of the expressivity of logic programs, ILP can learn complex rela-
tional theories, such as cellular automata (Inoue et al., 2014; Evans et al., 2021), event cal-
culus theories (Katzouris et al., 2015, 2016), Petri nets (Bain & Srinivasan, 2018), answer
set programs (ASP) (Law et al., 2014), and general algorithms (Cropper & Morel, 2021a).
Because of the symbolic nature of logic programs, ILP can reason about hypotheses, which
allows it to learn optimal programs, such as minimal time-complexity programs (Cropper
& Muggleton, 2019) and secure access control policies (Law et al., 2020a).

Expainability Because of logic’s similarity to natural language, logic programs can be eas-
ily read by humans, which is crucial for explainable AI. For instance, Muggleton et al.,
(2018b) provide the first demonstration of ultra-strong ML (Michie, 1988), where a learned
hypothesis is expected to not only be accurate but to also demonstrably improve the perfor-
mance of a human when provided with the learned hypothesis.

1.2 Recent advances

Some of the aforementioned advantages come from developments in the last decade of
ILP research, which we survey in this paper.2 To aid the reader, we coarsely compare old
and new ILP systems, where new represents systems from the past decade. We use FOIL
(Quinlan, 1990), Progol (Muggleton, 1995), Aleph (Srinivasan, 2001), TILDE (Blockeel
& De Raedt, 1998), and HYPER (Bratko, 1999) as representative old systems and ILASP
(Law et al., 2014), Metagol (Cropper & Muggleton, 2016), �ILP (Evans & Grefenstette,
2018), and Popper (Cropper & Morel, 2021a) as representative new systems. This compar-
ison, shown in Table 1, is, of course, vastly oversimplified, and there are many exceptions.
In the rest of this paper, we survey these developments (each row in the table) in turn. After

Table 1 A simplified comparison
of old and new ILP systems

Old ILP New ILP

Search method Top-down and
bottom-up

Meta-level

Recursion Limited Yes
Predicate invention No Limited
Hypotheses First-order ASP, higher-

order, probabil-
istic

Optimality No Yes
Technology Prolog Prolog, ASP, NNs

2 This paper extends the paper of Cropper et al. (2020a).

150 Machine Learning (2022) 111:147–172

1 3

discussing these new ideas, we discuss recent application areas (Sect. 8) before concluding
by proposing directions for future research.

2 Search methods

The fundamental ILP problem is to efficiently search a large hypothesis space. Most older
ILP approaches search in either a top-down or bottom-up fashion. These methods rely
on notions of generality (typically using theta-subsumption (Plotkin, 1971)), where one
program is more general or more specific than another. A third new search approach has
recently emerged called meta-level ILP (Inoue et al., 2013; Muggleton et al., 2015; Inoue,
2016; Law et al., 2020b; Cropper & Morel, 2021a). We discuss these approaches in turn.

2.1 Top‑down and bottom‑up

Top-down approaches (Quinlan, 1990; Blockeel & De Raedt, 1998; Bratko, 1999) start
with a general hypothesis and then specialise it. HYPER, for instance, searches a tree in
which the nodes correspond to hypotheses and each child of a hypothesis in the tree is
more specific than or equal to its predecessor in terms of theta-subsumption. An advantage
of top-down approaches is that they can often learn recursive programs (although not all
do). A disadvantage is that they can be prohibitively inefficient because they can generate
many hypotheses that do not cover the examples.

Bottom-up approaches, by contrast, start with the examples and generalise them (Mug-
gleton, 1987; Muggleton & Buntine, 1988; Muggleton & Feng, 1990; Inoue et al., 2014).
For instance, Muggleton and Feng (1990) generalises pairs of examples based on relative
least-general generalisation (Nienhuys-Cheng & Wolf, 1997). Bottom-up approaches can
be seen as being data- or example-driven. An advantage of these approaches is that they
are typically fast. As Bratko (1999) points out, disadvantages include (i) they typically use
unnecessarily long hypotheses with many clauses, (ii) it is difficult for them to learn recur-
sive hypotheses and multiple predicates simultaneously, and (iii) they do not easily support
predicate invention.

Muggleton (1995), which inspired many other ILP approaches (Srinivasan, 2001; Ray,
2009; Ahlgren & Yuen, 2013; Schüller & Benz, 2018), combines both top-down and bot-
tom-up approaches. Starting with an empty program, Progol picks an uncovered positive
example to generalise. To generalise an example, Progol uses mode declarations to build
the bottom clause (Muggleton, 1995), the logically most-specific clause that explains the
example. The bottom clause bounds the search from below (the bottom clause) and above
(the empty set). Progol then uses an A* algorithm to generalise the bottom clause in a top-
down (general-to-specific) manner and uses the other examples to guide the search.

2.1.1 Meta‑level

Top-down and bottom-up approaches refine and revise a single hypothesis. A third
approach has recently emerged called meta-level ILP (Inoue et al., 2013; Muggleton et al.,

151Machine Learning (2022) 111:147–172

1 3

2015; Inoue, 2016; Law et al., 2020b; Cropper & Morel, 2021a; Patsantzis & Muggle-
ton, 2021). There is no standard definition for meta-level ILP. Most approaches encode the
ILP problem as a meta-level logic program, i.e. a program that reasons about programs.
Meta-level approaches then often delegate the search for a hypothesis to an off-the-shelf
solver (Corapi et al., 2011; Cropper & Muggleton, 2016; Law et al., 2014; Kaminski et al.,
2018; Schüller & Benz, 2018; Evans et al., 2021; Cropper & Morel, 2021a) after which
the meta-level solution is translated back to a standard solution for the ILP task. In other
words, instead of writing a procedure to search in a top-down or bottom-up manner, most
meta-level approaches formulate the learning problem as a declarative search problem. For
instance, ASPAL (Corapi et al., 2011) translates an ILP task into a meta-level ASP pro-
gram that describes every example and every possible rule in the hypothesis space. ASPAL
then delegates the search to an ASP system to find a subset of the rules that covers all the
positive but none of the negative examples.

The main advantage of meta-level approaches is that they can more easily learn recur-
sive programs and optimal programs (Corapi et al., 2011; Law et al., 2014; Cropper &
Muggleton, 2016; Kaminski et al., 2018; Evans et al., 2021; Cropper & Morel, 2021a),
which we discuss in Sects. 3 and 6 respectively. Moreover, whereas classical ILP systems
were almost entirely based on Prolog, meta-level approaches use diverse techniques and
technologies, such as ASP solvers (Corapi et al., 2011; Law et al., 2014; Kaminski et al.,
2018; Cropper & Morel, 2021a; Evans et al., 2021), which we expand on in Sect. 7.

The development of meta-level ILP approaches has, therefore, diversified ILP from the
standard clause refinement approach of earlier ILP systems.

Most meta-level approaches encode the ILP learning task as a single static meta-level
program (Corapi et al., 2011; Law et al., 2014; Kaminski et al., 2018; Evans et al., 2021).

A major issue with this approach is that the meta-level program can be very large so
these approaches can struggle to scale to problems with non-trivial domains and programs
with large clauses.

Two related approaches try to overcome this limitation by continually revising the meta-
level program.

ILASP3 (Law, 2018) employs a counter-example-driven select-and-constrain loop.
ILASP3 first pre-computes every clause in the hypothesis space defined by a set of given
mode declarations (Muggleton, 1995). ILASP3 then starts its select-and-constrain loop.
With each iteration, ILASP3 uses an ASP solver to find the best hypothesis (a subset of the
rules) it can. If the hypothesis does not cover one of the examples, ILASP3 finds a reason
why and then generates constraints (boolean formulas over the rules) which it adds to the
meta-level program to guide subsequent search. Another way of viewing ILASP3 is that it
uses a counter-example-guided approach and translates an uncovered example e into a con-
straint that is satisfied if and only if e is covered.

Popper (Cropper & Morel, 2021a) adopts a similar approach but differs in that it (i) does
not precompute every possible rule in the hypothesis space, and (ii) translates a hypoth-
esis, rather than an uncovered example, into a set of constraints. Popper works in three
repeating stages: generate, test, and constrain. Popper first constructs a meta-level logic
program where its models correspond to hypotheses. In the generate stage, Popper asks
an ASP solver to find a model (a hypothesis). In the test stage, Popper tests the hypoth-
esis against the examples. A hypothesis fails when it is incomplete (does not entail all the
positive examples) or inconsistent (entails a negative example). If a hypothesis fails, Pop-
per learns constraints from the failure, which it then uses to restrict subsequent generate
stages. For instance, if a hypothesis is inconsistent, then Popper generates a generalisa-
tion constraint to prune all generalisations of the hypothesis and adds the constraint to the

152 Machine Learning (2022) 111:147–172

1 3

meta-level program, which eliminates models and thus prunes the hypothesis space. This
process repeats until Popper finds a complete and consistent program.

For more information about meta-level learning, we suggest the work of Inoue (2016)
and Law et al. (2020b).

3 Recursion

Learning recursive programs has long been considered a difficult problem for ILP (Mug-
gleton et al., 2012; Cropper & Dumancic, 2020a). The power of recursion is that an infinite
number of computations can be described by a finite recursive program (Wirth, 1985). To
illustrate the importance of recursion, reconsider the string transformation problem from
the introduction. Without recursion, an ILP system would need to learn a separate clause to
find the last element for each list of length n, such as this program for when n = 3 :

This program does not generalise to lists of arbitrary lengths. Moreover, most ILP sys-
tems would need examples of lists of each length to learn such a program. By contrast, an
ILP system that supports recursion can learn the compact program:

Because of the symbolic representation and the recursive nature, this program gener-
alises to lists of arbitrary length and which contain arbitrary elements (e.g. integers and
characters). In general, without recursion, it can be difficult for an ILP system to generalise
from small numbers of examples (Cropper et al., 2015).

Older ILP systems struggle to learn recursive programs, especially from small numbers
of training examples. A common limitation with existing approaches is that they rely on
bottom clause construction (Muggleton, 1995). In this approach, for each example, an ILP
system creates the most specific clause that entails the example and then tries to generalise
the clause to entail other examples. However, this sequential covering approach requires
examples of both the base and inductive cases. The classical ILP system FOIL (Quinlan,
1990) also struggles to learn recursive programs because it induces programs one clause at
a time.

Interest in recursion has resurged with the introduction of meta-interpretive learning
(MIL) (Muggleton et al., 2014, 2015; Cropper et al., 2020c) and the MIL system Metagol
(Cropper & Muggleton, 2016). The key idea of MIL is to use metarules (Cropper &

153Machine Learning (2022) 111:147–172

1 3

Tourret, 2020), or program templates, to restrict the form of inducible programs, and thus
the hypothesis space.3 A metarule is a higher-order clause. For instance, the chain metarule
is P(A,B) ← Q(A,C),R(C,B) , where the letters P, Q, and R denote higher-order variables
and A, B and C denote first-order variables. The goal of a MIL system, such as Metagol, is
to find substitutions for the higher-order variables. For instance, the chain metarule allows
Metagol to induce programs such as f(A,B):- tail(A,C),head(C,B).4 Metagol
induces recursive programs using recursive metarules, such as the tailrec metarule P(A,B)
← Q(A,C), P(C,B).

Following MIL, many meta-level ILP systems can learn recursive programs (Law et al.,
2014; Evans & Grefenstette, 2018; Kaminski et al., 2018; Cropper & Morel, 2021a). With
recursion, ILP systems can now generalise from small numbers of examples, often a single
example (Lin et al., 2014). Moreover, the ability to learn recursive programs has opened
up ILP to new application areas, including learning string transformations programs (Lin
et al., 2014), answer set grammars (Law et al., 2019), and general algorithms (Cropper &
Morel, 2021a).

4 Predicate invention

A key characteristic of ILP is the use of BK, which contains facts and rules (extensional
and intensional definitions) in the form of a logic program. For instance, when learning
string transformation programs, we may provide helper background relations, such as
head/2 and tail/2. For other domains, we may supply more complex BK, such as a
theory of light to understand images (Muggleton et al., 2018a) or higher-order operations,
such as map/3, filter/3, and fold/4, to solve programming puzzles (Cropper et al.,
2020c).

Choosing appropriate BK is crucial for good learning performance. ILP has tradition-
ally relied on hand-crafted BK, often designed by domain experts. This approach is limited
because obtaining suitable BK can be difficult and expensive. Indeed, the over-reliance on
hand-crafted BK is a common criticism of ILP (Evans & Grefenstette, 2018).

Rather than expecting a user to provide all the necessary BK, the goal of predicate
invention (PI) (Muggleton & Buntine, 1988; Stahl, 1995) is for an ILP system to automati-
cally invent new auxiliary predicate symbols. This idea is similar to when humans create
new functions when manually writing programs, to reduce code duplication or to improve
readability. Whilst PI has attracted interest since the beginnings of ILP (Muggleton &
Buntine, 1988), and has subsequently been repeatedly stated as a major challenge (Kok &
Domingos, 2007; Muggleton et al., 2012; Kramer, 2020), most ILP systems do not support
it, including classical systems, such as Progol (Muggleton, 1995), TILDE (Blockeel & De
Raedt, 1998), and Aleph (Srinivasan, 2001), and modern systems, such as ATOM (Ahlgren
& Yuen, 2013) and LFIT (Inoue et al., 2014).

3 The idea of using metarules to restrict the hypothesis space has been widely adopted by many approaches
(Wang et al., 2014; Albarghouthi et al., 2017; Rocktäschel & Riedel, 2017; Evans & Grefenstette, 2018;
Bain & Srinivasan, 2018; Kaminski et al., 2018). However, despite their now widespread use, there is little
work determining which metarules to use for a given learning task (Cropper & Tourret, 2020 is an excep-
tion), which future work must address.
4 Metagol can induce longer clauses though predicate invention, which is described in Sect. 4.

154 Machine Learning (2022) 111:147–172

1 3

A key challenge faced by ILP systems is deciding when and how to invent a new sym-
bol. As Kramer (1995) points out, PI is difficult because it is unclear how many arguments
an invented predicate should have, how the arguments should be ordered, etc. Several PI
approaches try to address this challenge, which we discuss in turn.

4.1 Placeholders

A classical approach to PI is to predefine invented symbols through mode declarations,
which (Leban et al., 2008) call placeholders. However, this placeholder approach is lim-
ited because it requires that a user manually specify the arity and argument types of
a symbol (Law et al., 2014), which rather defeats the point, or requires generating all
possible invented predicates (Evans & Grefenstette, 2018; Evans et al., 2021), which is
computationally expensive.

4.2 Metarules

Interest in automatic PI (where a user does not need to predefine an invented sym-
bol) has resurged with the introduction of MIL. MIL avoids the issues of older ILP
systems by using metarules to define the hypothesis space and in turn reduce the
complexity of inventing a new predicate symbol. For instance, the chain metarule
(P(A,B) ← Q(A,C),R(C,B)) allows Metagol to induce programs such as f(A,B):-
tail(A,C),tail(C,D), which would drop the first two elements from a list. To
induce longer clauses, such as to drop first three elements from a list, Metagol uses
the same metarule but invents a predicate symbol to chain their application, such as to
induce the program:

To learn this program, Metagol invents the predicate symbol inv1 and induces a
definition for it using the chain metarule. Metagol uses this new predicate symbol in the
definition for the target predicate f.

A side-effect of this metarule-driven approach is that problems are forced to be
decomposed into reusable solutions. For instance, to learn a program that drops the first
four elements of a list, Metagol learns the following program, where the invented predi-
cate symbol inv1 is used twice:

PI has been shown to help reduce the size of target programs, which in turn reduces
sample complexity and improves predictive accuracy (Cropper, 2019). Several new ILP
systems support PI using a metarule-guided approach (Evans & Grefenstette, 2018;
Kaminski et al., 2018; Hocquette & Muggleton, 2020).

155Machine Learning (2022) 111:147–172

1 3

4.3 Pre/post‑processing

Metarule-driven PI approaches perform PI during the learning task. A recent trend
is to perform PI as a pre/post-processing step to improve knowledge representation
(Dumančić & Blockeel, 2017; Dumančić et al., 2019; Cropper, 2019; Hocquette &
Muggleton, 2020).

CUR2LED (Dumančić & Blockeel, 2017) performs PI by clustering constants and rela-
tions in the provided BK, turning each identified cluster into a new BK predicate. The key
insight of CUR2LED is not to use a single similarity measure, but rather a set of vari-
ous similarities. This choice is motivated by the fact that different similarities are useful
for different tasks, but in the unsupervised setting the task itself is not known in advance.
CUR2LED performs PI by producing different clusterings according to the features of the
objects, community structure, and so on.

ALPs (Dumančić et al., 2019) perform PI using an auto-encoding principle: they learn
an encoding logic program that maps the provided data to a new, compressive latent rep-
resentation (defined in terms of the invented predicates), and a decoding logic program
that can reconstruct the provided data from its latent representation. This approach shows
improved performance on supervised tasks, even though the PI step is task-agnostic.

Knorf (Dumancic et al., 2020) pushes the idea of ALPs even further. Knorf compresses
a program by removing redundancies in it. If the learnt program contains invented predi-
cates, Knorf revises them and introduces new ones that would lead to a smaller program.
The refactored program is smaller in size and contains less redundancy in clauses, both of
which lead to improved performance. The authors experimentally demonstrate that refac-
toring improves learning performance in lifelong learning and that Knorf substantially
reduces the size of the BK program, reducing the number of literals in a program by 50%
or more.

4.4 Lifelong learning

An approach to acquiring BK is to learn it in a lifelong learning setting. The general idea
is to reuse knowledge gained from solving one problem to help solve a different problem.

MetagolDF is an ILP system (Lin et al., 2014) which given a set of tasks, uses Metagol
to try to learn a solution for each task using at most one clause. If Metagol finds a solu-
tion for a task, it adds the solution to the BK and removes the task from the set. MetagolDF
then asks Metagol to find solutions for the rest of the tasks but can now (i) use an addi-
tional clause, and (ii) reuse solutions from previously solved tasks. This process repeats
until MetagolDF solves all the tasks or reaches a maximum program size. In this approach,
MetagolDF automatically identifies easier problems, learn programs for them, and then
reuses the solutions to help learn programs for more difficult problems. The authors experi-
mentally show that their multi-task approach performs substantially better than a single-
task approach because learned programs are frequently reused and leads to a hierarchy of
induced programs.

MetagolDF saves all learned programs (including invented predicates) to the BK, which
can be problematic because too much irrelevant BK is detrimental to learning performance
(Srinivasan et al., 2003). To address this problem, Forgetgol (Cropper, 2020) introduces
the idea of forgetting. In this approach, Forgetgol continually grows and shrinks its hypoth-
esis space by adding and removing learned programs to and from its BK. The authors show

156 Machine Learning (2022) 111:147–172

1 3

that forgetting can reduce both the size of the hypothesis space and the sample complexity
of an ILP learner when learning from many tasks.

4.5 Limitations

The aforementioned techniques have improved the ability of ILP to invent high-level con-
cepts. However, PI is still difficult and there are many challenges to overcome, notably that
(i) many systems struggle to perform PI at all, and (ii) those that do support PI mostly need
much user-guidance, such as metarules to restrict the space of invented symbols or that a
user specifies the arity and argument types of invented symbols. There are notable excep-
tions. Ferilli (2016) describe an PI approach based on the ideal of specialising a theory to
account for negative examples, similar to early work in non-monotonic ILP (Bain & Mug-
gleton, 1992). poppi (Cropper & Morel, 2021b) is an ILP system that supports automatic
predicate invention, i.e. does not require metarules nor requires a user to predefine invented
symbols.

By developing better approaches for PI, we can make progress on existing challenging
problems. For instance, in inductive general game playing (IGGP) (Cropper et al., 2020b),
the task is to learn the symbolic rules of games from observations of gameplay, such as
learning the rules of connect four. The target solutions, which come from the general game
playing competition (Genesereth & Björnsson, 2013), often contain auxiliary predicates.
For instance, the rules for connect four are defined in terms of definitions for lines which
are themselves defined in terms of columns, rows, and diagonals. Although these auxiliary
predicates are not strictly necessary to learn the target solution, inventing such predicates
significantly reduces the size of the solution, which in turn makes them easier to learn.
Although new methods for PI can invent high-level concepts, they are not yet sufficiently
powerful enough to perform well on the IGGP dataset. Making progress in this area would
constitute a major advancement in ILP.

5 Hypotheses

ILP systems have traditionally induced definite and normal logic programs, typically rep-
resented as Prolog programs. A recent development has been to use different hypothesis
representations.

5.1 Datalog

Datalog is a syntactical subset of Prolog which disallows complex terms as arguments of
predicates and imposes restrictions on the use of negation.

Datalog is a truly declarative language, whereas in Prolog reordering clauses can change
the program. Moreover, Datalog query is guaranteed to terminate, though this guarantee
is at the expense of not being a Turing-complete language, which Prolog is. Several works
(Albarghouthi et al., 2017; Evans & Grefenstette, 2018; Kaminski et al., 2018) induce
Datalog programs. The general motivation for reducing the expressivity of the representa-
tion language from Prolog to Datalog is to allow the problem to be encoded as a satisfiabil-
ity problem, particularly to leverage recent developments in SAT and SMT. We discuss the
advantages of this approach more in Sect. 7.1.

157Machine Learning (2022) 111:147–172

1 3

5.2 Answer set programming

ASP (Gebser et al., 2012a) is a logic programming paradigm based on the stable model
semantics of normal logic programs that can be implemented using the latest advances in SAT
solving technology. Law et al. (2018) discuss some of the advantages of learning ASP pro-
grams, rather than Prolog programs, which we reiterate. When learning Prolog programs, the
procedural aspect of SLD-resolution must be taken into account. For instance, when learning
Prolog programs with negation, programs must be stratified; otherwise, they may loop under
certain conditions. By contrast, as ASP is a truly declarative language, no such consideration
needs to be taken into account when learning ASP programs. Compared to Datalog and Pro-
log, ASP supports additional language constructs, such as disjunction in the head of a clause,
choice rules, and hard and weak constraints. A key difference between ASP and Prolog is
semantics. A definite logic program has only one model (the least Herbrand model). By con-
trast, an ASP program can have one, many, or even no stable models (answer sets). Due to its
non-monotonicity, ASP is particularly useful for expressing common-sense reasoning (Law,
2018).

To illustrate the benefits of learning ASP programs, we reuse an example from Law et al.
(2020b). Given a sufficient examples of Hamiltonian graphs, ILASP (Law et al., 2014) can
learn a program to definite them:

This program illustrates useful language features of ASP. The first rule is a choice rule,
which means that an atom can be true. In this example, the rule indicates that there can be an
in edge from the vertex V1 to V0. The last two rules are hard constraints, which essentially
enforce integrity constraints. The first hard constraint states that it is impossible to have a node
that is not reachable. The second hard constraint states that it is impossible to have a vertex
with two in edges from distinct nodes. For more information about ASP we recommend the
book by Gebser et al. (2012a).

Approaches to learning ASP programs can mostly be divided into two categories: brave
learners, which aim to learn a program such that at least one answer set covers the examples,
and cautious learners, which aim to find a program which covers the examples in all answer
sets. ILASP is notable because it supports both brave and cautious learning, which are both
needed to learn some ASP programs (Law et al., 2018). Moreover, ILASP differs from most
Prolog-based ILP systems because it learns ASP programs, including programs with normal
rules, choice rules, and both hard and weak constraints, which classical ILP systems cannot.
Learning ASP programs allows for ILP to be used for new problems, such as inducing answer
set grammars (Law et al., 2019).

5.3 Higher‑order programs

Imagine learning a droplasts program, which removes the last element of each sublist in a
list, e.g. [alice,bob,carol] ↦ [alic,bo,caro]. Given suitable input data, Metagol can learn
this first-order recursive program:

158 Machine Learning (2022) 111:147–172

1 3

Although semantically correct, the program is verbose. To learn smaller programs,
Metagolho (Cropper et al., 2020c) extends Metagol to support learning higher-order pro-
grams, where predicate symbols can be used as terms. For instance, for the same droplasts
problem, Metagolho learns the higher-order program:

To learn this program, Metagolho invents the predicate symbol f1, which is used twice
in the program: as term in the map(A,B,f1) literal and as a predicate symbol in the
f1(A,B) literal. Compared to the first-order program, this higher-order program is
smaller because it uses map/3 (predefined in the BK) to abstract away the manipulation of
the list and to avoid the need to learn an explicitly recursive program (recursion is implicit
in map/3). Metagolho has been shown to reduce sample complexity and learning times and
improve predictive accuracies (Cropper et al., 2020c).

5.4 Probabilistic logic programs

A major limitation of logical representations, such as Prolog and its derivatives, is the
implicit assumption that the BK is perfect. That is, most ILP systems assume that atoms
are true or false, leaving no room for uncertainty. This assumption is problematic if data is
noisy, which is often the case.

ILP systems have limited capabilities for dealing with noise. If a perfect program is
not in the hypothesis space, the most common strategy is to find a program that covers
as many positive and as few negative examples as possible. Though this approach helps
us handle mislabelled examples, is not a good way for dealing with observational noise
generally. The limitations of the approach become obvious when examples are structured
(e.g., complex relations, images, or lists) rather than simple labels. Consider the example in
Fig. 1, in which we want to learn a program drawing simple images spelling “ILP”. Each
of the examples displays a clear concept but with some alterations: every image contains

Fig. 1 ILP systems struggle with structured examples that exhibit observational noise. All three examples
clearly spell the word “ILP”, with some alterations: 3 noisy pixels, shifted and elongated letters. If we
would be to learn a program that simply draws “ILP” in the middle of the picture, without noisy pixels and
elongated letters, that would be a correct program

159Machine Learning (2022) 111:147–172

1 3

three ‘noisy’ pixels: the second example has the first letter shifted to the left, while the
arc in the letter “P” is elongated in the third example. All of these alterations are noise
and not something we want our program to explicitly represent—the ground truth program
is the one that draws ”ILP” in the middle of the figure, without any noise. However, ILP
systems based on entailment would consider a solution to be correct only if it models all
of the noisy aspects. An ILP system capable of handling such noise is Brute (Cropper &
Dumančić, 2020b), which uses a distance to the target solution (e.g., pixel distance in case
of images) as an optimisation criterion instead of entailment.

The most principle way of handling noise is to integrating probabilistic aspects into log-
ical representations so that uncertainties in data can be directly modelled. This integration
is the focus of statistical relational artificial intelligence (StarAI) (De Raedt & Kersting,
2008; De Raedt et al., 2016). In essence, StarAI hypothesis representations extend BK with
probabilities or weights indicating the degree of confidence in the correctness of parts of
BK. StarAI is a big and prolific field; for that reason, we will not cover it in entirety but
rather briefly introduce the main ideas that overcome limitations of logic programming-
based ILP systems.

Generally, StarAI techniques are based on two ideas: distribution semantics and maxi-
mum entropy. Distribution semantics approaches (Sato, 1995), including Problog (De
Raedt et al., 2007) and PRISM (Sato & Kameya, 2001), explicitly annotate uncertainties in
BK. To allow such annotation, they extend Prolog with two primitives for stochastic execu-
tion: probabilistic facts and annotated disjunctions. Probabilistic facts are the most basic
stochastic primitive and they take the form of logical facts labelled with a probability p.
Each probabilistic fact represents a Boolean random variable that is true with probability
p and false with probability 1 − p . For instance, the following probabilistic fact states
that there is 1% chance of an earthquake in Naples.

An alternative interpretation of this statement is that 1% of executions of the proba-
bilistic program would observe an earthquake. The second type of stochastic primitive is
an annotated disjunction. Whereas probabilistic facts introduce non-deterministic behav-
iour on the level of facts, annotated disjunctions introduce non-determinism on the level of
clauses. Annotated disjunctions allow for multiple literals in the head, where only one of
the head literals can be true at a time. For instance, the following annotated disjunction
states that a ball can be either green, red, or blue, but not a combination of colours:

By contrast, maximum entropy approaches annotate uncertainties only at the level of a
logical theory. That is, they assume that the predicates in the BK are labelled as either true
or false, but the label may be incorrect. These approaches are not based on logic program-
ming, but rather on first-order logic. Consequently, the underlying semantics are different:
rather than consider proofs, these approaches consider models or groundings of a theory.
This difference primarily changes what uncertainties represent. For instance, Markov Logic
Networks (MLN) (Richardson & Domingos, 2006) represent programs as a set of weighted
clauses. The weights in MLN do not correspond to probabilities of a formula being true

160 Machine Learning (2022) 111:147–172

1 3

but, intuitively, to a log odds between a possible world (an interpretation) where the clause
is true and a world where the clause is false. For instance, a clause that is true in 80% of the
worlds would have a weight of 1.386 (log 0.8

0.2
)

The techniques from learning such probabilistic programs are typically direct extensions
of ILP techniques. For instance, ProbFOIL (De Raedt et al., 2015) extends FOIL (Quinlan,
1990) with probabilistic clauses. Similarly, SLIPCOVER (Bellodi & Riguzzi, 2015) is a
bottom-up approach, similar to Aleph (Srinivasan, 2001) and Progol (Muggleton, 1995).
Huynh and Mooney (2008) use Aleph to find interesting clauses and then learn the cor-
responding weights. Kok and Domingos (2009) use relational pathfinding over BK to iden-
tify useful clauses. That is, they interpret the BK as a hypergraph in which constants form
vertices and atoms form hyper-edges and perform random walks. Frequently occurring
walks, or their subparts, are then turned into clauses. Such random walks could be seen as
an approximate way to construct bottom clauses.

It is worth noting that StarAI also considers an alternative learning problem—that
of learning the probabilistic parameters of a given program. We do not survey these
approaches here as the problem is different in nature from the ILP problem: whereas ILP
searches from a program solving the tasks, parameter learning methods assume that such
program is given.

6 Optimality

There are often multiple (sometimes infinitely many) hypotheses that explain the data.
Deciding which hypothesis to choose has long been a difficult problem. Many systems aim
for maximum classification accuracy. For instance, Aleph, by default, aims to maximum
coverage of each clause it adds to a hypothesis, where coverage is measured as P − N ,
where P and N are the number of positive and negative examples covered by the clause
respectively. Note that Aleph supports various evaluation metrics, such as compression,
measured as P − N − L + 1 , where P and N are as before and L is the number of literals in
the clause. However, older ILP systems are typically not guaranteed to induce optimal pro-
grams/theories. A key reason for this limitation was that most search techniques learned a
single clause at a time, leading to the construction of sub-programs that are sub-optimal in
terms of program size and coverage. For instance, Aleph offers no guarantee of optimality
with respect to the program size and coverage.

Newer ILP systems try to address this limitation. As with the ability to learn recursive
programs, the main development is to take a global view of the induction task by using
meta-level search techniques. In other words, rather than induce a single clause at a time
from a single example, the idea is to induce multiple clauses from multiple examples. For
instance, ILASP uses ASP’s optimisation abilities to provably learn the program with the
fewest literals. ILASP3 (Law, 2018) adopts a similar approach to account for noise.

The ability to learn optimal programs opens up ILP to new problems. For instance,
learning efficient logic programs has long been considered a difficult problem in ILP
(Muggleton & De Raedt, 1994; Muggleton et al., 2012), mainly because there is no declar-
ative difference between an efficient program, such as mergesort, and an inefficient pro-
gram, such as bubble sort. To address this issue, Metaopt (Cropper & Muggleton, 2019)
extends Metagol to support learning efficient programs. Metaopt maintains a cost during
the hypothesis search and uses this cost to prune the hypothesis space. To learn minimal
time complexity logic programs, Metaopt minimises the number of resolution steps. For

161Machine Learning (2022) 111:147–172

1 3

instance, imagine trying to learn a find duplicate program, which finds any duplicate ele-
ment in a list e.g. [p,r,o,g,r,a,m] ↦ r, and [i,n,d,u,c,t,i,o,n] ↦ i. Given suitable input data,
Metagol can induce the program:

This program goes through the elements of the list checking whether the same element
exists in the rest of the list. Given the same input, Metaopt induces the program:

This program first sorts the input list and then goes through the list to check whether for
duplicate adjacent elements. Although larger, both in terms of clauses and literals, the pro-
gram learned by Metaopt is more efficient O(n log n) than the program learned by Metagol
O(n2) . Metaopt has been shown to learn efficient robot strategies, efficient time complexity
logic programs, and even efficient string transformation programs.

FastLAS (Law et al., 2020a) is an ASP-based ILP system that takes as input a custom
scoring function and computes an optimal solution with respect to the given scoring func-
tion when learning non-recursive programs without PI. The authors show that this approach
allows a user to optimise domain-specific performance metrics on real-world datasets, such
as access control policies.

7 Technologies

Older ILP systems mostly use Prolog for reasoning. Recent work considers using different
technologies.

7.1 Constraint satisfaction and satisfiability

There have been tremendous recent advances in SAT (Heule et al., 2016). To lever-
age these advances, much recent work in ILP uses related techniques, notably ASP
(Corapi et al., 2011; Muggleton et al., 2014; Law et al., 2014; Katzouris et al., 2015,
2016; Schüller & Benz, 2018; Kaminski et al., 2018; Evans et al., 2021; Cropper &
Morel, 2021a). The main motivations for using ASP are to leverage (i) the language
benefits of ASP (Sect. 5.2), and (ii) the efficiency and optimisation techniques of mod-
ern ASP solvers, such as CLASP (Gebser et al., 2012b), which supports conflict propa-
gation and learning. With similar motivations, other approaches encode the ILP prob-
lem as SAT (Ahlgren & Yuen, 2013) or SMT (Albarghouthi et al., 2017) problems.
These approaches have been shown able to reduce learning times compared to stand-
ard Prolog-based approaches. However, some unresolved issues remain. A key issue is
that most approaches encode an ILP problem as a single (often very large) satisfiability

162 Machine Learning (2022) 111:147–172

1 3

problem. These approaches therefore often struggle to scale to very large problems
(Cropper et al., 2020c), although preliminary work attempts to tackle this issue (Crop-
per & Morel, 2021a).

7.2 Neural networks

With the rise of deep learning, several approaches have explored using gradient-based
methods to learn logic programs. These approaches all replace discrete logical reason-
ing with a relaxed version that yields continuous values reflecting the confidence of the
conclusion.

The various neural approaches can be characterised along four orthogonal dimen-
sions. The first dimension is whether the neural network implements forward or back-
ward inference. While some (Rocktäschel & Riedel, 2017) use backward (goal-directed)
chaining with a neural implementation of unification, most approaches (Evans & Gre-
fenstette, 2018; Yang et al., 2017; Dong et al., 2019a) use forward chaining. The second
dimension is whether the network is designed for big data problems (Yang et al., 2017;
Rocktäschel & Riedel, 2017) or for data-efficient learning from a handful of data items
(Evans & Grefenstette, 2018). Few neural systems to date are capable of handling both
big data and small data, with the notable exception of Dong et al. (2019a). The third
dimension is whether the neural system jointly learns embeddings (mapping symbolic
constants to continuous vectors) along with the logical rules (Rocktäschel & Riedel,
2017). The advantage of jointly learning embeddings is that it enables fuzzy unification
between constants that are similar but not identical. The challenge for these approaches
that jointly learn embeddings is how to generalize appropriately to constants that have
not been seen at training time. The fourth dimension is whether or not the neural sys-
tem is designed to allow explicit human-readable logical rules to be extracted from the
weights of the network. While most neural ILP systems (Yang et al., 2017; Rocktäschel
& Riedel, 2017; Evans & Grefenstette, 2018) do produce explicit logic programs, some
Dong et al. (2019a) do not. It is perhaps moot whether implicit systems that do not pro-
duce explicit programs count as ILP systems at all—but note that even in the implicit
neural systems, the weight sharing of the neural net is designed to achieve strong gener-
alisation by performing the same computation on all tuples of objects.

Currently, most neural approaches to ILP require the use of metarules or templates
to make the search space tractable and fail to support predicate invention, recursion and
abduction. This severely limits the applicability of these approaches, as the user can-
not always be expected to provide suitable and complete background knowledge and
metarules for a new problem. The only approach that avoids the use of metarules or
templates is Neural Logic Machines (Dong et al., 2019a), and the only one to fully inte-
grate neural net learning with predicate invention, recursion, and abduction is Abduc-
tive Meta-Interpretive Learning (Dai & Muggleton, 2021).

8 Applications

We now survey recent application areas for ILP.

163Machine Learning (2022) 111:147–172

1 3

Scientific discovery Perhaps the most prominent application of ILP is in scientific discov-
ery. ILP has, for instance, been used to identify and predict ligands (substructures responsi-
ble for medical activity) (Kaalia et al., 2016) and infer missing pathways in protein signal-
ling networks (Inoue et al., 2013). There has been much recent work on applying ILP in
ecology (Bohan et al., 2011, 2017; Tamaddoni-Nezhad et al., 2014). For instance, Bohan
et al. (2011) use ILP to generate plausible and testable hypotheses for trophic relations
(‘who eats whom’) from ecological data.

Program analysis Due to the expressivity of logic programs as a representation lan-
guage, ILP systems have found successful applications in software design. ILP systems
have proven effective in learning SQL queries (Albarghouthi et al., 2017; Sivaraman
et al., 2019), programming language semantics (Bartha & Cheney, 2019), and code search
(Sivaraman et al., 2019).

Robotics Robotics applications often require incorporating domain knowledge or impos-
ing certain requirements on the learnt programs. For instance, The Robot Engineer (Sam-
mut et al., 2015) uses ILP to design tools for robots and even complete robots, which are
tests in simulations and real-world environments. Metagolo (Cropper & Muggleton, 2015)
learns robot strategies considering their resource efficiency and Antanas et al. (2015) rec-
ognise graspable points on objects through relational representations of objects.

Vision Background knowledge is also valuable in Computer Vision. Recent work Muggle-
ton et al. (2018a) demonstrated that Logical Vision, which employs MIL, can outperform
state-of-the-art statistical machine learning in particular image recognition tasks, given
general Newtonian physics background knowledge concerning reflection of light.

Games Inducing game rules has a long history in ILP, where chess has often been the
focus (Muggleton et al., 2009). Legras et al., (2018) show that Aleph and TILDE can out-
perform an SVM learner in the game of Bridge. Law et al. (2014) use ILASP to induce the
rules for Sudoku and show that this more expressive formalism allows for game rules to
be expressed more compactly. Cropper et al. (2020b) introduce the ILP problem of induc-
tive general game playing: the problem of inducing game rules from observations, such as
Checkers, Sokoban, and Connect Four. Muggleton and Hocquette (2019) show the MIL
system MIGO consistently outperforms deep reinforcement learning for both Noughts-and-
Crosses and Hexapawn.

Data curation and transformation Another successful application of ILP is in data cura-
tion and transformation, which is again largely because ILP can learn executable programs.
The most prominent example of such tasks is string transformations, such as the exam-
ple given in the introduction. There is much interest in this topic, largely due to success
in synthesising programs for end-user problems, such as string transformations in Micro-
soft Excel (Gulwani, 2011). String transformations have become a standard benchmark
for recent ILP papers (Lin et al., 2014; Cropper et al., 2020c; Cropper, 2019; Cropper &
Dumančić, 2020b). Other transformation tasks include extracting values from semi-struc-
tured data (e.g. XML files or medical records), extracting relations from ecological papers,
and spreadsheet manipulation (Cropper et al., 2015).

164 Machine Learning (2022) 111:147–172

1 3

Learning from trajectories Learning from interpretation transitions (LFIT) (Inoue et al.,
2014) automatically constructs a model of the dynamics of a system from the observation
of its state transitions. Given time-series data of discrete gene expression, it can learn gene
interactions, thus allowing to explain and predict states changes over time (Ribeiro et al.,
2020). LFIT has been applied to learn biological models, like Boolean Networks, under
several semantics: memory-less deterministic systems (Inoue et al., 2014; Ribeiro & Inoue,
2014), and their multi-valued extensions (Ribeiro et al., 2015; Martínez et al., 2016). Mar-
tínez et al. (2016) combine LFIT with a reinforcement learning algorithm to learn proba-
bilistic models with exogenous effects (effects not related to any action) from scratch. The
learner was notably integrated with a robot to perform the task of clearing the tableware on
a table. In this task external agents interacted, people brought new tableware continuously
and the manipulator robot had to cooperate with mobile robots to take the tableware to the
kitchen. The learner was able to learn a usable model in just five episodes of 30 action exe-
cutions. Evans et al. (2021) apply the Apperception Engine to explain sequential data, such
as cellular automata traces, rhythms and simple nursery tunes, image occlusion tasks, game
dynamics, and sequence induction intelligence tests. Surprisingly, they show that their sys-
tem can achieve human-level performance on the sequence induction intelligence tests in
the zero-shot setting (without having been trained on lots of other examples of such tests,
and without hand-engineered knowledge of the particular setting). At a high level, these
systems take the unique selling point of ILP systems (the ability to strongly generalise from
a handful of data), and apply it to the self-supervised setting, producing an explicit human-
readable theory that explains the observed state transitions.

9 Summary and future work

In a survey paper from a decade ago, Muggleton et al. (2012) proposed directions for future
research. In the decade since, there have been major advances on many of the topics, nota-
bly in predicate invention (Sect. 4), using higher-order logic as a representation language
(Sect. 4.2) and to represent hypotheses (Sect. 5.3), and applications in learning actions and
strategies (Sect. 8). Despite the advances, there are still many limitations in ILP that future
work should address.

9.1 Limitations and future research

Better systems Muggleton et al. (2012) argue that a problem with ILP is the lack of well-
engineered tools. They state that whilst over 100 ILP systems have been built, less than a
handful of systems can be meaningfully used by ILP researchers. In the decade since the
authors highlighted this problem, little progress has been made: most ILP systems are not
easy to use. In other words, ILP systems are still notoriously difficult to use and you often
need a PhD in ILP to use any of the tools. Even then, it is still often only the develop-
ers of a system that know how to properly use it. By contrast, driven by industry, other
forms of ML now have reliable and well-maintained implementations, such as PyTorch and
TensorFlow, which has helped drive research. A frustrating issue with ILP systems is that
they use many different language biases or even different syntax for the same biases. For
instance, the way of specifying a learning task in Progol, Aleph, TILDE, and ILASP varies
considerably despite them all using mode declarations, If it is difficult for ILP researchers

165Machine Learning (2022) 111:147–172

1 3

to use ILP tools, then what hope do non-ILP researchers have? For ILP to be more widely
adopted both inside and outside of academia, we must develop more standardised, user-
friendly, and better-engineered tools.

Language biases As Cropper et al. (2020a) state, one major issue with ILP is choosing
an appropriate language bias. For instance, Metagol uses metarules (Sect. 4.2) to restrict
the syntax of hypotheses and thus the hypothesis space. If a user can provide suitable
metarules, then Metagol is extremely efficient. However, if a user cannot provide suitable
metarules (which is often the case), then Metagol is almost useless. This same brittleness
applies to ILP systems that employ mode declarations (Muggleton, 1995). In theory, a user
can provide very general mode declarations, such as only using a single type and allow-
ing unlimited recall. In practice, however, weak mode declarations often lead to very poor
performance. For good performance, users of mode-based systems often need to manually
analyse a given learning task to tweak the mode declarations, often through a process of
trial and error. Moreover, if a user makes a small mistake with a mode declaration, such
as giving the wrong argument type, then the ILP system is unlikely to find a good solu-
tion. Even for ILP experts, determining a suitable language bias is often a frustrating and
time-consuming process. We think the need for an almost perfect language bias is severely
holding back ILP from being widely adopted. By contrast, there are some neural net archi-
tectures (e.g. the transformer; Vaswani et al., 2017) that can be applied successfully to a
large range of diverse problems without requiring any domain-specific tuning. We think
that an important direction for future work in ILP is to develop techniques for automati-
cally identifying suitable language biases. Although there is some work on mode learning
(McCreath & Sharma, 1995; Ferilli et al., 2004; Picado et al., 2017, 2021) and work on
identifying suitable metarules (Cropper & Tourret, 2020), this area of research is largely
under-researched.

Better datasets Interesting problems, alongside usable systems, drive research and attract
interest in a research field. This relationship is most evident in the deep learning com-
munity which has, over a decade, grown into the largest AI community. This community
growth has been supported by the constant introduction of new problems, datasets, and
well-engineered tools. Challenging problems that push the state-of-the-art to its limits
are essential to sustain progress in the field; otherwise, the field risks stagnation through
only small incremental progress. ILP has, unfortunately, failed to deliver on this front:
most research is still evaluated on 20-year old datasets. Most new datasets that have been
introduced often come from toy domains and are designed to test specific properties of the
introduced technique. To an outsider, this sends a message that ILP is not applicable to
real-world problems. We think that the ILP community should learn from the experiences
of other AI communities and put significant efforts into developing datasets that identify
limitations of existing methods as well as showcase potential applications of ILP. After all,
it is no coincidence that SAT solving performance increased dramatically after the intro-
duction of the SAT solving competitions (Järvisalo et al., 2012).

Relevance New methods for predicate invention (Sect. 4) have improved the abilities of
ILP systems to invent high-level concepts. These techniques raise the potential for ILP
to be used in lifelong learning settings. However, inventing and acquiring new BK could
lead to a problem of too much BK, which can overwhelm an ILP system (Srinivasan et al.,
2003; Cropper, 2020). On this issue, a key under-explored topic is that of relevancy. Given

166 Machine Learning (2022) 111:147–172

1 3

a new induction problem with large amounts of BK, how does an ILP system decide which
BK is relevant? One emerging technique is to train a neural network to score how relevant
programs are in the BK and to then only use BK with the highest score to learn programs
(Balog et al., 2017; Ellis et al., 2018). However, the empirical efficacy of this approach has
yet to be demonstrated. Moreover, these approaches have only been demonstrated on small
amounts of BK and it is unclear how they scale to BK with thousands of relations. Without
efficient methods of relevance identification, it is unclear how efficient lifelong learning
can be achieved.

Handling mislabelled and ambiguous data A major open question in ILP is how best to
handle noisy and ambiguous data. Neural ILP systems (Rocktäschel & Riedel, 2017; Evans
& Grefenstette, 2018) are designed from the start to robustly handle mislabelled data.
Although there has been work in recent years on designing ILP systems that can handle
noisy mislabelled data, there is much less work on the even harder and more fundamen-
tal problem of designing ILP systems that can handle raw ambiguous data. ILP systems
typically assume that the input has already been preprocessed into symbolic declarative
form (typically, a set of ground atoms representing positive and negative examples). But
real-world input does not arrive in symbolic form. Consider e.g. a robot with a video cam-
era, where the raw input is a sequence of pixel images. Converting each pixel image into
a set of ground atoms is a challenging non-trivial achievement that should not be taken
for granted. For ILP systems to be widely applicable in the real world, they need to be
redesigned so they can handle raw ambiguous input from the outset (Evans & Grefenstette,
2018; Dong et al., 2019b).

Probabilistic ILP Real-world data is often noisy and uncertain. Extending ILP to deal with
such uncertainty substantially broadens its applicability. While StarAI is receiving growing
attention, learning probabilistic programs from data is still largely under-investigated due
to the complexity of joint probabilistic and logical inference. When working with probabil-
istic programs, we are interested in the probability that a program covers an example, not
only whether the program covers the example. Consequently, probabilistic programs need
to compute all possible derivations of an example, not just a single one. Despite added
complexity, probabilistic ILP opens many new challenges. Most of the existing work on
probabilistic ILP considers the minimal extension of ILP to the probabilistic setting, by
assuming that either (i) BK facts are uncertain, or (ii) that learned clauses need to model
uncertainty. These assumptions make it possible to separate structure from uncertainty
and simply reuse existing ILP techniques. Following this minimal extension, the existing
work focuses on discriminative learning in which the goal is to learn a program for a sin-
gle target relation. However, a grand challenge in probabilistic programming is generative
learning. That is, learning a program describing a generative process behind the data, not
a single target relation. Learning generative programs is a significantly more challenging
problem, which has received very little attention in probabilistic ILP.

Explainability Explainability is one of the claimed advantages of a symbolic representa-
tion. Recent work Muggleton et al. (2018b) and Ai et al. (2020) evaluates the comprehensi-
bility of ILP hypotheses using Michie’s Michie (1988) framework of ultra-strong machine
learning, where a learned hypothesis is expected to not only be accurate but to also demon-
strably improve the performance of a human being provided with the learned hypothesis.
Muggleton et al. (2018b) empirically demonstrate improved human understanding directly

167Machine Learning (2022) 111:147–172

1 3

through learned hypotheses. However, given the demonstration of both beneficial and
harmful effects of explainability (Ai et al., 2020) more work is required to better under-
stand the conditions under which this can be achieved, especially given the rise of PI.

Unifying ILP with neural methods It has often been noted (Evans & Grefenstette, 2018)
that the strengths and weaknesses of neural networks and ILP are complementary: neural
networks (1) scale to huge datasets, (2) are robust to mislabelled data, (3) are robust to
ambiguous (raw, undiscretised) data, but (4) are very data hungry, (5) often struggle to
generalise outside the training distribution, and (6) are uninterpretable. ILP systems, by
contrast (1) often fail to scale to large datasets, (2) sometimes fail to handle mislabelled
data, (3) almost always fail to handle raw undiscretised data, but (4) are very data efficient,
(5) often generalise well outside the training distribution, and (6) produce human-readable
programs. Given that the strengths and weaknesses of the two approaches are complemen-
tary, many people have advocated some sort of unification of the two (De Raedt et al.,
2016; Garcez & Lamb, 2020; Evans & Grefenstette, 2018). There is much activity in this
area, and much work still to do to produce a truly convincing unification of these very dif-
ferent paradigms.

9.2 Summary

As ILP approaches 30, we think that the advances made in the last decade, surveyed in this
paper, have opened up new areas of research for ILP to explore. Moreover, we hope that the
next decade sees developments on the numerous limitations we have discussed so that ILP
can have a significant impact on AI.

Author contributions AC wrote Sects. 1–7, and 9. SD wrote Sects. 4.3, 5.4, and 8. RE wrote Sects. 7.2, 8,
and 9. SM wrote Sect. 9.

Funding Not applicable.

Availability of data and materials Not applicable.

Code availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not

168 Machine Learning (2022) 111:147–172

1 3

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Ahlgren, J., & Yuen, S. Y. (2013). Efficient program synthesis using constraint satisfaction in inductive
logic programming. The Journal of Machine Learning Research, 14(1), 3649–3682.

Ai, L., Muggleton, S., Hocquette, C., Gromowski, M., & Schmid, U. (2020). Beneficial and harmful explan-
atory machine learning. Machine Learning, 110, 695–721.

Albarghouthi, A., Koutris, P., Naik, M., & Smith, C. (2017). Constraint-based synthesis of datalog pro-
grams. In 23rd international conference on principles and practice of constraint programming, CP
2017. Lecture notes in computer science (Vol. 10416, pp. 689–706). Springer.

Antanas, L., Moreno, P., & De Raedt, L. (2015). Relational kernel-based grasping with numerical features.
In 25th international conference on inductive logic programming, ILP 2015. Lecture notes in com-
puter science (Vol. 9575, pp. 1–14). Springer.

Bain, M., & Muggleton, S. (1992). Non-monotonic learning. In Inductive logic programming (pp. 145–161).
Academic Press.

Bain, M., & Srinivasan, A. (2018). Identification of biological transition systems using meta-interpreted
logic programs. Machine Learning, 107(7), 1171–1206.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., & Tarlow, D. (2017). Deepcoder: Learning to
write programs. In 5th international conference on learning representations, ICLR 2017. OpenRe-
view.net.

Bartha, S., & Cheney, J. (2019). Towards meta-interpretive learning of programming language semantics. In
29th international conference on inductive logic programming, ILP 2019. Lecture notes in computer
science (Vol. 11770, pp. 16–25). Springer.

Bellodi, E., & Riguzzi, F. (2015). Structure learning of probabilistic logic programs by searching the clause
space. Theory and Practice of Logic Programming, 15(2), 169–212.

Blockeel, H., & De Raedt, L. (1998). Top-down induction of first-order logical decision trees. Artificial
Intelligence, 101(1–2), 285–297.

Bohan, D. A., Caron-Lormier, G., Muggleton, S., Raybould, A., & Tamaddoni-Nezhad, A. (2011). Auto-
mated discovery of food webs from ecological data using logic-based machine learning. PLoS
ONE, 6(12), e29028.

Bohan, D. A., Vacher, C., Tamaddoni-Nezhad, A., Raybould, A., Dumbrell, A. J., & Woodward, G.
(2017). Next-generation global biomonitoring: Large-scale, automated reconstruction of ecologi-
cal networks. Trends in Ecology & Evolution, 32(7), 477–487.

Bratko, I. (1999). Refining complete hypotheses in ILP. In 9th international workshop on inductive logic
programming, ILP-99. Lecture notes in computer science (Vol. 1634, pp. 44–55). Springer.

Chollet, F. (2019). On the measure of intelligence. CoRR, arXiv: 1911. 01547
Corapi, D., Russo, A., & Lupu, E.(2011). Inductive logic programming in answer set programming. In

21st international conference on inductive logic programming, ILP 2011. Lecture notes in com-
puter science (Vol. 7207, pp. 91–97). Springer.

Cropper, A. (2019). Playgol: Learning programs through play. In Proceedings of the twenty-eighth inter-
national joint conference on artificial intelligence, IJCAI 2019 (pp. 6074–6080). ijcai.org.

Cropper, A. (2020). Forgetting to learn logic programs. In The thirty-fourth AAAI conference on artifi-
cial intelligence (pp. 3676–3683). AAAI Press.

Cropper, A., & Dumancic, S. (2020a). Inductive logic programming at 30: A new introduction. CoRR,
arxiv: org/ abs/ 2008. 07912

Cropper, A., & Dumančić, S. (2020b). Learning large logic programs by going beyond entailment. In
Proceedings of the twenty-ninth international joint conference on artificial intelligence, IJCAI
2020 (pp. 2073–2079). ijcai.org.

Cropper, A., & Morel, R. (2021a). Learning programs by learning from failures. Machine Learning,
110(4), 801–856. https:// doi. org/ 10. 1007/ s10994- 020- 05934-z.

Cropper, A., & Morel, R. (2021b). Predicate invention by learning from failures. CoRR, arxiv: org/ abs/
2104. 14426

Cropper, A., & Muggleton, S. H. (2015). Learning efficient logical robot strategies involving compos-
able objects. In Proceedings of the twenty-fourth international joint conference on artificial intel-
ligence, IJCAI 2015 (pp. 3423–3429). AAAI Press.

Cropper, A., & Muggleton, S. H. (2016). Metagol system. https:// github. com/ metag ol/ metag ol

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1911.01547
http://arxiv.org/org/abs/2008.07912
https://doi.org/10.1007/s10994-020-05934-z
http://arxiv.org/org/abs/2104.14426
http://arxiv.org/org/abs/2104.14426
https://github.com/metagol/metagol

169Machine Learning (2022) 111:147–172

1 3

Cropper, A., & Muggleton, S. H. (2019). Learning efficient logic programs. Machine Learning, 108(7),
1063–1083.

Cropper, A., & Tourret, S. (2020). Logical reduction of metarules. Machine Learning, 109(7),
1323–1369.

Cropper, A., Tamaddoni-Nezhad, A., & Muggleton, S. H. (2015). Meta-interpretive learning of data
transformation programs. In 25th international conference on inductive logic programming, ILP
2015. Lecture notes in computer science (Vol. 9575, pp 46–59). Springer.

Cropper, A., Dumančić, S., & Muggleton, S. H. (2020a). Turning 30: New ideas in inductive logic pro-
gramming. In Proceedings of the twenty-ninth international joint conference on artificial intelli-
gence, IJCAI 2020 (pp. 4833–4839). ijcai.org.

Cropper, A., Evans, R., & Law, M. (2020b). Inductive general game playing. Machine Learning, 109(7),
1393–1434.

Cropper, A., Morel, R., & Muggleton, S. (2020c). Learning higher-order logic programs. Machine
Learning, 109(7), 1289–1322.

Dai, W. Z., & Muggleton, S. H. (2021). Abductive knowledge induction from raw data. In Proceedings
of the 35th conference on artificial intelligence (IJCAI 2021), IJCAI (in Press).

De Raedt, L. (2008). Logical and relational learning. Cognitive technologies. Springer.
De Raedt, L., Dries, A., Thon, I., den Broeck, G. V., & Verbeke, M. (2015). Inducing probabilistic rela-

tional rules from probabilistic examples. In Proceedings of the twenty-fourth international joint
conference on artificial intelligence, IJCAI 2015 (pp. 1835–1843). AAAI Press.

De Raedt, L., & Kersting, K. (2008). Probabilistic inductive logic programming (pp. 1–27). Springer.
De Raedt, L., Kersting, K., Natarajan, S., & Poole, D. (2016). Statistical relational artificial intelli-

gence: Logic, probability, and computation. Synthesis lectures on artificial intelligence and
machine learning. Morgan & Claypool Publishers.

De Raedt, L., Kimmig, A., & Toivonen, H. (2007). Problog: A probabilistic prolog and its application in
link discovery. In IJCAI 2007, Proceedings of the 20th international joint conference on artificial
intelligence, Hyderabad, India, January 6–12, 2007, pp. 2462–2467.

Dong, H., Mao, J., Lin, T., Wang, C., Li, L., & Zhou, D. (2019a). Neural logic machines. In ICLR.
Dong, H., Mao, J., Lin, T., Wang, C., Li, L., & Zhou, D. (2019b). Neural logic machines. In 7th interna-

tional conference on learning representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019,
OpenReview.net. https:// openr eview. net/ forum? id= B1xY- hRctX

Dumančić, S., & Blockeel, H. (2017) . Clustering-based relational unsupervised representation learning
with an explicit distributed representation. In Proceedings of the twenty-sixth international joint con-
ference on artificial intelligence, IJCAI 2017 (pp. 1631–1637). ijcai.org.

Dumancic, S., Guns, T., & Cropper, A. (2020). Knowledge refactoring for inductive program synthesis. In
AAAI.

Dumančić, S., Guns, T., Meert, W., & Blockeel, H. (2019). Learning relational representations with auto-
encoding logic programs. In Proceedings of the twenty-eighth international joint conference on artifi-
cial intelligence, IJCAI 2019 (pp. 6081–6087). ijcai.org.

Ellis, K., Morales, L., Sablé-Meyer, M., Solar-Lezama, A., & Tenenbaum, J. (2018). Learning libraries of
subroutines for neurally-guided Bayesian program induction. NeurIPS, 2018, 7816–7826.

Evans, R., & Grefenstette, E. (2018). Learning explanatory rules from noisy data. Journal of Artificial Intel-
ligence Research, 61, 1–64.

Evans, R., Hernández-Orallo, J., Welbl, J., Kohli, P., & Sergot, M. (2021). Making sense of sensory input.
Artificial Intelligence, 293, 103438.

Ferilli, S. (2016). Predicate invention-based specialization in inductive logic programming. Journal of Intel-
ligent Information Systems. https:// doi. org/ 10. 1007/ s10844- 016- 0412-9.

Ferilli, S., Esposito, F., Basile, T. M. A., & Mauro, N. D. (2004). Automatic induction of first-order logic
descriptors type domains from observations. In 14th international conference on inductive logic pro-
gramming, ILP 2004. Lecture notes in computer science (Vol. 3194, pp. 116–131). Springer.

Garcez, Ad., & Lamb, L. C. (2020). Neurosymbolic ai: The 3rd wave. arXiv preprint arXiv: 2012. 05876
Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012a). Answer set solving in practice. Synthesis

lectures on artificial intelligence and machine learning. Morgan & Claypool Publishers.
Gebser, M., Kaufmann, B., & Schaub, T. (2012b). Conflict-driven answer set solving: From theory to prac-

tice. Artificial Intelligence, 187, 52–89.
Genesereth, M. R., & Björnsson, Y. (2013). The international general game playing competition. AI Maga-

zine, 34(2), 107–111.
Gulwani, S. (2011). Automating string processing in spreadsheets using input-output examples. In Proceed-

ings of the 38th ACM SIGPLAN-SIGACT symposium on principles of programming languages, POPL
2011 (pp. 317–330). ACM.

https://openreview.net/forum?id=B1xY-hRctX
https://doi.org/10.1007/s10844-016-0412-9
http://arxiv.org/abs/2012.05876

170 Machine Learning (2022) 111:147–172

1 3

Heule, M. J. H., Kullmann, O., & Marek, V. W. (2016). Solving and verifying the boolean pythagorean
triples problem via cube-and-conquer. In N. Creignou & D. L. Berre (Eds.), 19th international con-
ference on theory and applications of satisfiability testing—SAT 2016, Bordeaux, France, July 5–8,
2016, Proceedings. Lecture notes in computer science (Vol. 9710, pp. 228–245). Springer. https:// doi.
org/ 10. 1007/ 978-3- 319- 40970-2_ 15

Hocquette, C., & Muggleton, S. H. (2020). Complete bottom-up predicate invention in meta-interpretive
learning. In Proceedings of the twenty-ninth international joint conference on artificial intelligence,
IJCAI 2020 (pp. 2312–2318). ijcai.org.

Huynh, T. N., & Mooney, R. J. (2008). Discriminative structure and parameter learning for Markov logic
networks. In Proceedings of the 25th international conference on machine learning (pp. 416–423).
Association for Computing Machinery. https:// doi. org/ 10. 1145/ 13901 56. 13902 09

Inoue, K. (2016). Meta-level abduction. FLAP, 3(1), 7–36.
Inoue, K., Doncescu, A., & Nabeshima, H. (2013). Completing causal networks by meta-level abduction.

Machine Learning, 91(2), 239–277.
Inoue, K., Ribeiro, T., & Sakama, C. (2014). Learning from interpretation transition. Machine Learning,

94(1), 51–79.
Järvisalo, M., Le Berre, D., Roussel, O., & Simon, L. (2012). The international sat solver competitions. Ai

Magazine, 33(1), 89–92.
Kaalia, R., Srinivasan, A., Kumar, A., & Ghosh, I. (2016). ILP-assisted de novo drug design. Machine

Learning, 103(3), 309–341.
Kaiser, L., & Sutskever, I. (2016). Neural gpus learn algorithms. In 4th international conference on learning

representations, ICLR 2016.
Kaminski, T., Eiter, T., & Inoue, K. (2018). Exploiting answer set programming with external sources for

meta-interpretive learning. Theory and Practice of Logic Programming, 18(3–4), 571–588.
Katzouris, N., Artikis, A., & Paliouras, G. (2015). Incremental learning of event definitions with inductive

logic programming. Machine Learning, 100(2–3), 555–585.
Katzouris, N., Artikis, A., & Paliouras, G. (2016). Online learning of event definitions. Theory and Practice

of Logic Programming, 16(5–6), 817–833.
Kok, S., & Domingos, P. (2009). Learning Markov logic network structure via hypergraph lifting. In Pro-

ceedings of the 26th international conference on machine learning (pp. 505–512). Association for
Computing Machinery. https:// doi. org/ 10. 1145/ 15533 74. 15534 40

Kok, S., & Domingos, P. M. (2007). Statistical predicate invention. In Machine Learning, Proceedings of
the twenty-fourth international conference (ICML 2007), ACM international conference proceeding
series (Vol. 227, pp. 433–440). ACM.

Kramer, S. (1995). Predicate invention: A comprehensive view. Rapport technique OFAI-TR-95-32, Aus-
trian Research Institute for Artificial Intelligence.

Kramer, S. (2020). A brief history of learning symbolic higher-level representations from data (and a curi-
ous look forward). In Proceedings of the twenty-ninth international joint conference on artificial
intelligence, IJCAI 2020 (pp. 4868–4876). ijcai.org.

Law, M. (2018). Inductive learning of answer set programs. PhD thesis, Imperial College London, UK.
Law, M., Russo, A., & Broda, K.(2014). Inductive learning of answer set programs. In 14th European con-

ference on logics in artificial intelligence, JELIA 2014. Lecture notes in computer science (Vol. 8761,
pp. 311–325). Springer.

Law, M., Russo, A., & Broda, K. (2018). The complexity and generality of learning answer set programs.
Artificial Intelligence, 259, 110–146.

Law, M., Russo, A., Bertino, E., Broda, K., & Lobo, J. (2019). Representing and learning grammars in
answer set programming. In The thirty-third AAAI conference on artificial intelligence, AAAI 2019
(pp. 2919–2928). AAAI Press.

Law, M., Russo, A., Bertino, E., Broda, K., & Lobo, J .(2020a) . Fastlas: Scalable inductive logic program-
ming incorporating domain-specific optimisation criteria. In The thirty-fourth AAAI conference on
artificial intelligence, AAAI 2020 (pp. 2877–2885). AAAI Press.

Law, M., Russo, A., & Broda, K. (2020b). The ilasp system for inductive learning of answer set programs.
The Association for Logic Programming Newsletter.

Leban, G., Zabkar, J., & Bratko, I. (2008). An experiment in robot discovery with ILP. In 18th international
conference inductive logic programming, ILP 2008. Lecture notes in computer science (Vol. 5194, pp.
77–90). Springer.

Legras, S., Rouveirol, C., & Ventos, V. (2018) . The game of bridge: A challenge for ILP. In 28th interna-
tional conference inductive logic programming, ILP 2018. Lecture notes in computer science (Vol.
11105, pp. 72–87). Springer.

https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1145/1390156.1390209
https://doi.org/10.1145/1553374.1553440

171Machine Learning (2022) 111:147–172

1 3

Lin, D., Dechter, E., Ellis, K., Tenenbaum, J. B., & Muggleton, S. (2014). Bias reformulation for one-
shot function induction. In ECAI 2014—21st European Conference on Artificial Intelligence, 18–22
August 2014, frontiers in artificial intelligence and applications (Vol. 263, pp. 525–530). IOS Press.

Marcus, G. (2018). Deep learning: A critical appraisal. CoRR, arXiv: 1801. 00631
Martínez, D., Alenyà, G., Torras, C., Ribeiro, T., & Inoue, K. (2016). Learning relational dynamics of sto-

chastic domains for planning. In Proceedings of the twenty-sixth international conference on auto-
mated planning and scheduling, ICAPS 2016 (pp. 235–243). AAAI Press.

McCreath, E., & Sharma, A. (1995). Extraction of meta-knowledge to restrict the hypothesis space for ilp
systems. In Eighth Australian joint conference on artificial intelligence, pp. 75–82.

Michie, D. (1988). Machine learning in the next five years. In D. H. Sleeman (Ed.), Proceedings of the
third European Working Session on Learning, EWSL 1988 (pp. 107–122). Turing Institute, Pitman
Publishing.

Muggleton, S. (1987). Duce, an oracle-based approach to constructive induction. In Proceedings of the 10th
International joint conference on artificial intelligence (pp. 287–292). Morgan Kaufmann.

Muggleton, S. (1991). Inductive logic programming. New Generation Computing, 8(4), 295–318.
Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing, 13(3 & 4), 245–286.
Muggleton, S., & Buntine, W. L. (1988). Machine invention of first order predicates by inverting resolu-

tion. In Machine Learning, Proceedings of the fifth international conference on machine learning (pp.
339–352). Morgan Kaufmann.

Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. The Journal of
Logic Programming, 19(20), 629–679.

Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P. A., Inoue, K., & Srinivasan, A. (2012). ILP
turns 20—Biography and future challenges. Machine Learning, 86(1), 3–23.

Muggleton, S., Dai, W., Sammut, C., Tamaddoni-Nezhad, A., Wen, J., & Zhou, Z. (2018a). Meta-interpre-
tive learning from noisy images. Machine Learning, 107(7), 1097–1118.

Muggleton, S., & Feng, C. (1990). Efficient induction of logic programs. In First international workshop on
algorithmic learning theory, ALT ’90, pp. 368–381.

Muggleton, S., & Hocquette, C. (2019). Machine discovery of comprehensible strategies for simple games
using meta-interpretive learning. New Generation Computing, 37, 203–217.

Muggleton, S. H., Lin, D., Pahlavi, N., & Tamaddoni-Nezhad, A. (2014). Meta-interpretive learning:
Application to grammatical inference. Machine Learning, 94(1), 25–49.

Muggleton, S. H., Lin, D., & Tamaddoni-Nezhad, A. (2015). Meta-interpretive learning of higher-order
dyadic Datalog: Predicate invention revisited. Machine Learning, 100(1), 49–73.

Muggleton, S., Paes, A., Costa, V. S., & Zaverucha, G. (2009). Chess revision: Acquiring the rules
of chess variants through FOL theory revision from examples. In 19th international conference
inductive logic programming, ILP 2009. Lecture notes in computer science (Vol. 5989, pp. 123–
130). Springer.

Muggleton, S. H., Schmid, U., Zeller, C., Tamaddoni-Nezhad, A., & Besold, T. R. (2018b). Ultra-strong
machine learning: Comprehensibility of programs learned with ILP. Machine Learning, 107(7),
1119–1140.

Nienhuys-Cheng, S. H., & Wolf, R. (1997). Foundations of inductive logic programming. Springer.
Patsantzis, S., & Muggleton, S. (2021). Top program construction and reduction for polynomial time

meta-interpretive learning. Machine Learning, 110, 755–778.
Picado, J., Termehchy, A., Fern, A., & Pathak, S. (2017). Towards automatically setting language bias

in relational learning. In Proceedings of the 1st workshop on Data Management for End-to-End
Machine Learning, DEEM@SIGMOD 2017 (pp. 3:1–3:4). ACM.

Picado, J., Termehchy, A., Fern, A., Pathak, S., Ilango, P., & Davis, J. (2021). Scalable and usable rela-
tional learning with automatic language bias. In G. Li, Z. Li, S. Idreos, & D. Srivastava (Eds.),
SIGMOD ’21: International Conference on Management of Data, Virtual Event, China, June
20–25, 2021 (pp. 1440–1451). ACM. https:// doi. org/ 10. 1145/ 34480 16. 34572 75

Plotkin, G. (1971). Automatic methods of inductive inference. PhD thesis, Edinburgh University.
Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.
Ray, O. (2009). Nonmonotonic abductive inductive learning. Journal of Applied Logic, 7(3), 329–340.
Reed, S. E., & de Freitas, N. (2016). Neural programmer-interpreters. In 4th international conference on

learning representations, ICLR 2016.
Ribeiro, T., & Inoue, K. (2014). Learning prime implicant conditions from interpretation transition. In

24th international conference on inductive logic programming, ILP 2014. Lecture notes in com-
puter science (Vol. 9046, pp. 108–125). Springer.

Ribeiro, T., Folschette, M., Magnin, M., & Inoue, K. (2020). Learning any semantics for dynamical sys-
tems represented by logic programs. Working paper or preprint.

http://arxiv.org/abs/1801.00631
https://doi.org/10.1145/3448016.3457275

172 Machine Learning (2022) 111:147–172

1 3

Ribeiro, T., Magnin, M., Inoue, K., & Sakama, C. (2015) Learning multi-valued biological models
with delayed influence from time-series observations. In 14th IEEE international conference on
machine learning and applications, ICMLA 2015 (pp. 25–31). IEEE.

Richardson, M., & Domingos, P. M. (2006). Markov logic networks. Machine Learning, 62(1–2), 107–
136. https:// doi. org/ 10. 1007/ s10994- 006- 5833-1.

Rocktäschel, T., & Riedel, S. (2017). End-to-end differentiable proving. In Advances in neural informa-
tion processing systems 30: Annual conference on neural information processing systems 2017,
4–9 December 2017, pp. 3788–3800.

Sammut, C., Sheh, R., Haber, A., & Wicaksono, H. (2015). The robot engineer. In Late breaking papers
of the 25th international conference on inductive logic programming, CEUR Workshop Proceed-
ings (Vol. 1636, pp. 101–106). CEUR-WS.org.

Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In L. Ster-
ling (Ed.), Logic programming, Proceedings of the twelfth international conference on logic pro-
gramming, Tokyo, Japan, June 13–16, 1995 (pp. 715–729). MIT Press.

Sato, T., & Kameya, Y. (2001). Parameter learning of logic programs for symbolic-statistical modeling.
Journal of Artificial Intelligence Research, 15, 391–454. https:// doi. org/ 10. 1613/ jair. 912.

Schüller, P., & Benz, M. (2018). Best-effort inductive logic programming via fine-grained cost-based
hypothesis generation—The inspire system at the inductive logic programming competition.
Machine Learning, 107(7), 1141–1169.

Sivaraman, A., Zhang, T., den Broeck, G. V., & Kim, M. (2019). Active inductive logic programming for
code search. In Proceedings of the 41st international conference on software engineering, ICSE
2019 (pp. 292–303). IEEE/ACM.

Srinivasan, A. (2001). The ALEPH manual. Machine Learning at the Computing Laboratory, Oxford
University.

Srinivasan, A., King, R. D., & Bain, M. (2003). An empirical study of the use of relevance information
in inductive logic programming. The Journal of Machine Learning Research, 4, 369–383.

Stahl, I. (1995). The appropriateness of predicate invention as bias shift operation in ILP. Machine
Learning, 20(1–2), 95–117.

Tamaddoni-Nezhad, A., Bohan, D., Raybould, A., & Muggleton, S.(2014). Towards machine learning of
predictive models from ecological data. In 24th international conference on inductive logic program-
ming, ILP 2014. Lecture notes in computer science (Vol. 9046, pp. 154–167). Springer.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin,
I. (2017). Attention is all you need. In Advances in neural information processing systems, pp.
5998–6008.

Wang, W. Y., Mazaitis, K., & Cohen, W. W. (2014). Structure learning via parameter learning. In Proceed-
ings of the 23rd ACM international conference on conference on information and knowledge manage-
ment, CIKM 2014 (pp. 1199–1208). ACM.

Wirth, N. (1985). Algorithms and data structures. Prentice Hall.
Yang, F., Yang, Z., & Cohen, W. W. (2017). Differentiable learning of logical rules for knowledge base rea-

soning. In NIPS 2017.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1007/s10994-006-5833-1
https://doi.org/10.1613/jair.912

	Inductive logic programming at 30
	Abstract
	1 Introduction
	1.1 Why ILP?
	1.2 Recent advances

	2 Search methods
	2.1 Top-down and bottom-up
	2.1.1 Meta-level

	3 Recursion
	4 Predicate invention
	4.1 Placeholders
	4.2 Metarules
	4.3 Prepost-processing
	4.4 Lifelong learning
	4.5 Limitations

	5 Hypotheses
	5.1 Datalog
	5.2 Answer set programming
	5.3 Higher-order programs
	5.4 Probabilistic logic programs

	6 Optimality
	7 Technologies
	7.1 Constraint satisfaction and satisfiability
	7.2 Neural networks

	8 Applications
	9 Summary and future work
	9.1 Limitations and future research
	9.2 Summary

	References

