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Abstract
Neural networks serve as effective controllers in a variety of complex settings due to their 
ability to represent expressive policies. The complex nature of neural networks, however, 
makes their output difficult to verify and predict, which limits their use in safety-critical 
applications. While simulations provide insight into the performance of neural network 
controllers, they are not enough to guarantee that the controller will perform safely in all 
scenarios. To address this problem, recent work has focused on formal methods to verify 
properties of neural network outputs. For neural network controllers, we can use a dynam-
ics model to determine the output properties that must hold for the controller to operate 
safely. In this work, we develop a method to use the results from neural network verifi-
cation tools to provide probabilistic safety guarantees on a neural network controller. We 
develop an adaptive verification approach to efficiently generate an overapproximation of 
the neural network policy. Next, we modify the traditional formulation of Markov decision 
process model checking to provide guarantees on the overapproximated policy given a sto-
chastic dynamics model. Finally, we incorporate techniques in state abstraction to reduce 
overapproximation error during the model checking process. We show that our method 
is able to generate meaningful probabilistic safety guarantees for aircraft collision avoid-
ance neural networks that are loosely inspired by Airborne Collision Avoidance System X 
(ACAS X), a family of collision avoidance systems that formulates the problem as a par-
tially observable Markov decision process (POMDP).

Editors: Daniel Fremont, Alessio Lomuscio, Dragos Margineantu, Cheng Soon-Ong.

 * Sydney M. Katz 
 smkatz@stanford.edu

 Kyle D. Julian 
 kjulian3@stanford.edu

 Christopher A. Strong 
 castrong@stanford.edu

 Mykel J. Kochenderfer 
 mykel@stanford.edu

1 Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA
2 Department of Electrical Engineering, Stanford University, Stanford, CA, USA

http://orcid.org/0000-0001-8376-5145
http://orcid.org/0000-0002-6247-1874
http://orcid.org/0000-0002-8914-6852
http://orcid.org/0000-0002-7238-9663
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06065-9&domain=pdf


2904 Machine Learning (2023) 112:2903–2931

1 3

Keywords Neural network controller · Verification · Model checking · Safety

1 Introduction

Neural networks provide a means to represent complex control policies, making them par-
ticularly useful in complicated problem domains where an agent must make decisions over 
a large input space (Mnih et al. 2015). Recently, neural networks have been proposed as 
controllers in safety-critical applications such as aircraft collision avoidance and auton-
omous driving (Julian et  al. 2016, 2019a; Bouton 2020; Pan et  al. 2017). Using neural 
networks in these settings presents major challenges. Due to the inherent complexity and 
unpredictable nature of neural networks, they are difficult to certify for use in safety-critical 
applications. Performance in Monte Carlo simulations is not enough to guarantee that the 
network will provide safe actions in all scenarios. To this end, recent work in formal meth-
ods has resulted in tools for verifying properties of neural networks (Katz et al. 2017, 2019; 
Wang et al. 2018; Tjeng et al. 2017). Given a bounded input set, these tools provide guar-
antees on characteristics of the output set.

Using neural network verification tools to prove properties in this manner represents 
a step towards the ability to certify neural networks as safe; however, these works sim-
ply check input-output properties specified by a human designer without considering the 
closed-loop behavior of the system. In order to guarantee safety for neural network con-
trollers, there is a need for a more principled approach to selecting the properties that a 
neural network must satisfy for safe operation. By taking into account a dynamic model, 
we can create a closed-loop system that describes the effect of the neural network control-
ler’s actions on its environment. We can then use this system to better understand what 
constitutes a “safe” neural network output. Previous work has evaluated the safety of the 
closed-loop system using various forms of reachability analysis (Julian and Kochenderfer 
2019b, a; Huang et  al. 2019; Xiang and Johnson 2018; Xiang et  al. 2018, 2019; Dutta 
et al. 2019; Ivanov et al. 2019; Clavière et al. 2020; Lopez et al. 2021). One limitation of 
the reachability approaches used in previous work is their inability to properly account for 
stochasticity in the system dynamics, which is present in many real-world systems. For 
instance, a number of the approaches assume no uncertainty in the dynamics model when 
computing reachable sets (Clavière et al. 2020; Lopez et al. 2021). While other work takes 
into account this uncertainty by overapproximating the system dynamics, the binary nature 
of the output of this analysis does not properly reflect the stochastic nature of the dynamics 
model (Julian and Kochenderfer 2019a). In particular, this analysis simply flags states as 
reachable without specifying the likelihood of reaching them. Therefore, even if the prob-
ability of reaching an unsafe state is extremely low, this technique would mark the overall 
system as unsafe.

In this work, instead of determining solely whether unsafe states are reachable, we 
develop a method that takes as input a stochastic dynamics model and provides proba-
bilistic safety guarantees on the closed-loop system. Similar to Julian and Kochenderfer 
(2019b), we divide the input space into small cells and run each input region through a 
neural network verification tool (Julian and Kochenderfer 2019a, b). Using the results of 
the neural network verification tool to define an action space, we formulate the closed-
loop verification problem as a Markov decision process (MDP). This formulation allows 
us to draw upon techniques from MDP model checking to approximate the probability of 
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reaching an unsafe state from any particular cell given a probabilistic model of the dynam-
ics (Baier and Katoen 2008; Lahijanian et al. 2011; Bouton et al. 2020; Bouton 2020).

We modify the model checking formulation to ensure an overapproximation of the 
probabilities and outline both online and offline methods to reduce overapproximation 
error. Specifically, we develop an adaptive verification method that addresses limitations 
mentioned in previous work to efficiently divide the input region into cells (Julian and 
Kochenderfer 2019a). We show that this method better approximates the decision bounda-
ries of the neural network and processes the input space faster than a naïve approach to 
state space partition. We further reduce overapproximation error by using ideas from state 
abstraction to split safety-critical regions of the state space during the solving process 
(Munos and Moore 2002). Our contributions are summarized as follows.

• We show how to adapt techniques in MDP model checking to generate probabilistic 
safety guarantees on neural network controllers operating in environments with sto-
chastic dynamics.

• We create a method to obtain an overapproximated neural network policy using exist-
ing neural network verification tools. Specifically, we introduce an adaptive verification 
approach to automatically partition the input space in a way that reduces overapproxi-
mation error.

• We show how to use techniques in state abstraction to reduce overapproximation error 
in the estimated probability during the model checking process.

We apply our method to aircraft collision avoidance neural networks and show that we can 
use it to provide meaningful safety guarantees on a neural network controller.

2  Background

In this work, we formulate the closed-loop verification problem as a Markov decision pro-
cess (MDP) and use this formulation to apply techniques in probabilistic model checking 
to evaluate the safety of a neural network controller. This section outlines the necessary 
background on MDPs and probabilistic model checking.

2.1  Markov decision process

An MDP is a way of encoding a sequential decision making problem where an agent’s 
action at each time step depends only on its current state (Kochenderfer 2015). An MDP 
is defined by the tuple (S,A, T ,R, �) , where S is the state space, A is the action space, 
T(s, a, s�) is the probability of transitioning to state s′ given that we are in state s and take 
action a, R(s, a) is the reward for taking action a in state s, and � is the discount factor. 
Using this formulation, we can solve for a policy � that maps states to actions. To do so, 
we define an action-value function Q(s, a) that represents the discounted sum of expected 
future rewards when taking action a from state s. The optimal action-value function Q∗(s, a) 
can be found using a form of dynamic programming called value iteration. Value iteration 
relies on iterative updates using the Bellman equation (Bellman 1952):

(1)Q∗(s, a) = R(s, a) + �

∑

s�∈S

T(s, a, s�)max
a�∈A

Q∗(s�, a�)
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We can extract the policy from the action-value function by simply choosing the action 
with the maximum value at state s:

2.2  Probabilistic model checking

Probabilistic model checking for MDPs has been well studied and often involves determin-
ing the probability of satisfying a property expressed using Linear Temporal Logic (LTL) 
(Baier and Katoen 2008; Lahijanian et al. 2011; Bouton et al. 2020). An LTL formula con-
sists of atomic propositions connected by logical or temporal operators (Baier and Katoen 
2008). Our goal is to assign a probability Pr�(s) of satisfying the LTL specification to each 
state s ∈ S . For any LTL formula, this computation reduces to a reachability problem for a 
set of states B (Baier and Katoen 2008; Bouton 2020). In traditional MDP model checking, 
we seek to find the maximum probability of reaching states in B while following policy � 
from each state s ∈ S . This probability can be written recursively as

for all states s ∉ B . All states s ∈ B are assigned a probability of one.
Equation (3) can also be written in a form that is analogous to the action-value function 

in Eq. (1) to represent the probability of satisfying the LTL formula when action a is taken 
from state s as follows

Noting the similarity between Eqs.  (1) and (4), we can solve for the probabilities using 
value iteration. The problem reduces to solving for the value function of an MDP with a 
modified reward function to represent probabilities (Bouton et al. 2020; Bouton 2020). The 
immediate reward is one for being in a state in B and zero for being in any other state.

3  Approach

We assume that we are given a neural network controller that represents the value func-
tion for an MDP policy � , which maps points in a bounded input space S to an action in 
the action space A . We also assume that we are given a stochastic dynamics model in the 
form of a transition model T(s� ∣ s, a) and a safety specification on the closed-loop system 
written in the form of an LTL formula. Using this information, our goal is to determine 
the probability that the neural network controller satisfies this specification from each state 
s ∈ S . If the input space S were discrete, we could directly apply the technique outlined 
in Sect. 2.2 to determine these probabilities. However, because neural network controllers 
typically take in a continuous range of states, we must introduce approximations into the 
model checking process to handle the continuous input space.

We make these approximations by partitioning the input space S into a finite number of 
smaller regions called cells, c ∈ C , and modifying the model checking process to work with 
cells rather than states. We break the problem into two steps. The first step involves using a 

(2)�(s) = argmax
a∈A

Q∗(s, a)

(3)Pr�(s) =
∑

s�∈S

T(s� ∣ s,�(s))Pr�(s�)

(4)Pr�(s, a) =
∑

s�∈S

T(s� ∣ s, a)Pr�(s�,�(s�))
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neural network verification tool to obtain an overapproximated neural network policy �̃� that 
operates on cells in C . Using this policy, the second step uses probabilistic model checking 
to generate an overapproximated probability of reaching an unsafe state from each cell in C . 
For both steps, we develop techniques to reduce overapproximation error in the estimated 
probabilities, which we outline in Sect. 4.

Figure 1 shows a simple example of a slippery continuum world that will be used to aid 
in our explanations of each step of our approach. In this example, the agent’s objective is to 
reach a point within a set of goal states represented by the green region in the upper right 
corner without falling into a pit in the center of the world represented by the red region. 
The agent can select from four actions: up, down, left, or right. Because the world is slip-
pery, taking an action results in a 70% chance of moving one unit in the specified direction 
and a 10% chance of moving one unit in each of the other directions. The plot on the right 
of Fig. 1 shows a sensible neural network policy for an agent in this world to follow along 
with a potential partition of the state space into cells. Our goal is to determine the overap-
proximated probability that an agent following this policy from each cell will fall into the 
pit.

3.1  Policy overapproximation

The first step in modifying traditional MDP model checking to use cells involves defin-
ing a policy that takes a cell as input rather than a single state. Because each cell contains 
multiple states, it is possible for cells to map to multiple actions. For example, the cell in 
the bottom left corner of the policy plot in Fig. 1 contains some states that map to the right 
action and others that map to the up action. For each cell c ∈ C , we use a neural verification 
tool to obtain the possible actions Ac ⊆ A that the neural network could output for some 
point in c. The results provide an overapproximated policy �̃� that maps a cell c to a subset 
of the action space Ac in contrast with � , which maps a specific state in the input space to 
a specific action. We assume that any point in c could yield any action in Ac . Therefore, 
any cell that has multiple actions in Ac contributes to an overapproximation of the neural 
network policy. Policy overapproximation is the first source of overapproximation error in 
the probability estimate.
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Fig. 1  Continuum world explanatory example. The plot on the left shows the setup of the continuum world. 
The goal of the agent is to reach a point in the green area while avoiding the red area. The plot on the right 
shows an example neural network policy for this problem (Color figure online)
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3.2  Model checking

Once we have an overapproximated policy, we can further modify the model checking 
framework to determine the probability of satisfying the LTL safety specification from 
each cell c ∈ C . We first convert the LTL specification to a reachability problem for a set 
of states B either directly or by using the methods in Baier and Katoen (2008). In the 
continuum world example, B is the region of the state space that corresponds to the pit. 
Next, we adapt Eq. (3) to determine the probabilities for each cell c ∈ C using our over-
approximated neural network policy �̃� as

where Ac uses the neural network verification results and contains the set of actions that 
could be taken in cell c. All cells that overlap with B are assigned a probability of one. The 
maximization in Eq. (5) corresponds to taking the worst-case action in Ac.

The transition model, T(c� ∣ c, a) , is modified to determine transitions between cells 
rather than states and to ensure that the resulting probabilities represent an overapproxi-
mation of the true probabilities. In this work, we restrict our approach to models in 
which taking an action results in a finite number of outcomes. We assume that taking 
action a from state s has n possible outcomes with probabilities according to T(s� ∣ s, a) . 
For example, in the continuum world, these outcomes would be the result of moving 
one unit up, down, left, and right. Let pi represent the probability of the ith outcome. 
Let S�

1∶n
 represent regions of the state space that contain all possible next states from 

cell c for each outcome i ∈ 1,… , n . We define C�
1∶n

 as the sets of cells that overlap with 
S
�
1∶n

 . In order to preserve the overapproximation in our probabilities, we assign all of the 
probability for outcome i to the worst-case cell in C′

i
 as follows

Equation (6) preserves the overapproximation by assuming that all points in a cell transi-
tion to the worst-case next state realizable from any point in the cell. Figure  2 shows a 
visual representation of the transition model for the continuum world adapted for use with 
cells. All cells are labeled with their probability estimates, and the figure shows the result 
of taking the up action from the cell highlighted in black. The shaded regions represent 
S
�
1∶4

 . The highlighted cells represent the worst-case cells that overlap each region S′
i
.

With these modifications in place, we can apply dynamic programming using Eq. (5) 
to determine the probability of reaching states in B for each cell c ∈ C . Figure 3 shows 
the results of this process for two different cell partitions: a coarse partition (top row) 
and a fine partition (bottom row). In both cases, all cells that overlap with the pit have a 
probability of one assigned to them, and the probability of falling into the pit decreases 
as cells get further away from it. The coarse partitioning results in significantly more 
overapproximation error than the fine partitioning. However, partitioning the neural net-
work input space uniformly into small cells significantly increases complexity, espe-
cially as the dimension of the input space increases. Sect.  4 describes ways to reduce 
overapproximation error that only require a fine resolution in critical areas of the state 
space.

(5)Pr�̃�(c) = max
a∈Ac

∑

c�∈C

T(c� ∣ c, a)Pr�̃�(c�)

(6)T(c� ∣ c, a) =
∑

i

{

pi, if c
� = argmax

c��∈C�
i

Pr�̃�(c��)

0, otherwise
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4  Reducing overapproximation error

The model checking formulation presented here results in two sources of overapproxi-
mation error. The first source of error, which we will refer to as policy overapproxi-
mation error, is the overapproximation of the neural network policy from the neural 
network verification tools. We assume that the actions in Ac may be taken at any point 
in the cell and that we always take the action with the worst-case probability (see the 
maximization in Eq. (4)). Even if the worst-case action covers only a small portion of a 
cell, we must assume that the action is possible at any point in the cell.

The second source of error, which we will refer to as worst-case transition error, is 
the overapproximation in the transition model shown in Eq. (6). We assume that all 
points in the cell transition to the worst-case next cell for a given outcome. In order to 
produce meaningful probabilistic guarantees, it is crucial that we develop methods to 
reduce the overapproximation error. In this work, we present both offline and online 
error reduction methods.
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Fig. 2  Illustration of cell transitions for the continuum world example. Each cell is labeled with its cor-
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4.1  Offline reduction: adaptive verification

As described in Sect. 3.1, overapproximation error grows with the number of possible 
actions in a cell, and cells with only one possible action will have no overapproximation 
error in the policy. Therefore, in order to partition our space in a way that minimizes 
policy overapproximation, we seek to minimize the volume of the input space occupied 
by cells that have multiple possible actions. Figure 4 shows an example of two possible 
partitions of the input space for an example policy. While both partitions contain the 
same number of cells, the second partition has a smaller area of the input space covered 
by cells with multiple possible actions and therefore a smaller overapproximation error. 
Our goal is to develop a verification strategy that will automatically generate a partition 
similar to the rightmost partition in Fig. 4.

We use an adaptive verification strategy summarized in algorithm 1 to obtain �̃� . We 
begin with a single cell that encompasses all of S . Each time we evaluate a cell, we run 
the verification tool to check which actions are possible in the specified cell to obtain 
Ac . If Ac contains more than one action and the cell exceeds the minimum cell size, we 
split the cell into smaller cells. Splitting continues until all cells are either below the 
minimum cell width in the splitting dimension or have a single action in Ac . 
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Fig. 3  Overapproximated probability of falling into the pit for different cell partitions. The plots in the left 
column show the cells plotted on top of the neural network policy, while the plots in the right column show 
the overapproximated probability of falling into the pit from each cell
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Because calls to neural verification tools are computationally expensive, we want to 
select a splitting strategy that will allow us to minimize the number of calls. We tested 
the following two splitting strategies.

• All split splits the cell along all dimensions at the midpoint
• Informed split attempts to speed up the verification process by first evaluating the 

neural network at the corners of the cell. If the corner points evaluate to different 
actions, we know that the verification tool would return multiple possible actions. 
Therefore, we can split the cell without calling it. Furthermore, we can use the eval-
uations of the corner points to select the dimensions to split.

Figure 5 demonstrates the informed split strategy for different corner evaluations. If the 
adjacent actions are the same across a particular dimension, we do not split along that 

Policy

Uniform Efficient

Fig. 4  Two possible partitions of the input space for the simple policy with two possible actions shown 
on the left. The pink region corresponds to the first action, and the gray region corresponds to the second 
action. The top row shows an overlay of the partition on the policy, while bottom row shows the corre-
sponding number of actions in each cell. Blue cells have one possible action, while red cells have two pos-
sible actions (Color figure online)
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dimension. For example, the adjacent actions in the first dimension in the leftmost cell 
of Fig. 5 are equal, so we do not split in the first dimension.

The adaptive verification algorithm encourages small cells near the decision boundaries 
of the neural network policy, and larger cells in continuous regions of the same action. 
This result is illustrated by Fig. 6, which shows the result of applying algorithm 1 to the 
continuum world example with each splitting strategy. Both splitting strategies focus on 
the decision boundaries of the network. By only splitting along particular dimensions, the 
informed split strategy results in fewer cells overall.

4.2  Online reduction: state abstraction

While offline error reduction addresses policy overapproximation error, it does not address 
the second source of error. In order to reduce both types of error, we add online error reduc-
tion techniques to the model checking process. The online overapproximation error reduc-
tion techniques presented in this work are inspired by state abstraction techniques devel-
oped to solve for the value function of MDPs with large state spaces (Munos and Moore 
2002). State abstraction relies on the assumption that large portions of the state space will 
have low variability in the policy or value function, while other more critical regions of the 
state space will require a finer resolution for accuracy. Some portions of the state space are 
safety-critical; however, a large portion of the state space will have a low probability esti-
mate regardless of the action taken. During the solving process, we use heuristics based on 
our current probability estimate to determine critical portions of the state space. Splitting 

Fig. 5  Example splitting of three cells for the informed splitting strategy based on the actions at the corners. 
The colored dots represent the actions at the corners with different colors indicating different actions
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cells in these critical regions allows us to significantly reduce overapproximation error dur-
ing the solving process without making cells in the input space unnecessarily small.

We address the worst-case transition error with an online splitting heuristic based on the 
maximum range of probability values for next cells. This range is computed as

As an example, the worst-case transition range for the example shown in Fig. 2 is calcu-
lated as

If this range is high, the worst-case transition overapproximation error is likely to be high. 
Therefore, we split the cell if this range exceeds a specified threshold and the cell is larger 
than a minimum cell size. The threshold can be tuned by the user to achieve a desired reso-
lution. Splitting the cell will shrink the region of next states for each new cell and reduce 
the spread of overapproximation error.

The second online splitting heuristic aims to reduce policy overapproximation error and 
applies to cells that have multiple actions in Ac . If a cell has multiple actions, we compute 
the range of the probabilities when taking each action as

If this range exceeds a threshold and the cell is larger than the minimum cell size, we split 
the cell and rerun the verification on the resulting smaller cells.

4.3  Algorithm summary

The neural network model checking methods established in this work are summarized in 
algorithm 2. Inputs to the algorithm include the neural networks to verify, the reachable set 
encoding the property we wish to verify, an initial cell that covers the entire network input 
space, the minimum cell size, and the transition and action thresholds. The last three input 
parameters can be tuned to achieve desired accuracy. A smaller minimum cell size and 
lower values for the thresholds will result in smaller overapproximation error and therefore 
a more accurate estimate of the probabilities. 

(7)transitionRange = max
i

[

max
c�∈C�

i

Pr�̃�(c�) − min
c�∈C�

i

Pr�̃�(c�)

]

(8)transitionRange = max(0.0 − 0.0, 0.13 − 0.03, 0.13 − 0.12, 0.02 − 0.0) = 0.1

(9)actionRange = max
a∈Ac

Pr�̃�(c, a) − min
a∈Ac

Pr�̃�(c, a)
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The first step in the algorithm is to obtain an overapproximation of the neural network pol-
icy using the adaptive verification method in algorithm 1. Next, the probability is initialized 
to zero for all cells except those that overlap with the reachable set B , which are initialized to 
a probability of one. After these preprocessing steps, we begin value iteration with our online 
splitting heuristics. For each cell, we first compute the transition range according to Eq. (7). If 
the cell satisfies the worst-case transition splitting criterion, we split the cell. Otherwise, we 
perform the Bellman update (Eq. 4) to compute the probability of collision for taking each 
action in Ac from the cell. Using these probabilities and Eq. (9), we can compute the action 
range and decide once again whether to split the cell.

Figure 7 compares the overapproximated probability of falling into the pit when taking two 
different approaches to partitioning the state space into cells. The first approach represents 
the naïve approach in which the space is uniformly partitioned into small cells. The second 
approach follows our algorithm, applying adaptive verification with the informed split strategy 
and using the online overapproximation error reduction methods during the solving process. 
The partition using the second approach results in small cells in regions of the state space near 
the pit and the decision boundaries of the network. Using our overapproximation error reduc-
tion methods, we are able to obtain similar probability estimates with significantly fewer cells 
in the partition.
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4.4  Complexity

The overapproximation error reduction methods presented in Sects 4.1 and 4.2 are key con-
tributors to the overall complexity of the algorithm. In the worst case, algorithm  1 will 
result in a uniform splitting of the input space in which all cells have the minimum cell 
size. Therefore, the worst-case complexity of algorithm 1 is exponential in the input dimen-
sion of the neural network controller. Despite this worst-case complexity, control policies 
in practice tend to be structured such that large, continuous regions of the state space corre-
spond to the same action. Our adaptive verification approach takes advantage of this struc-
ture by allowing large regions of the same action to be grouped into a single cell while only 
decreasing cells on the decision boundaries of the network to the minimum cell size.

The complexity of algorithm 1 observed in practice depends on the splitting strategy. 
Because the all split strategy simply splits along every dimension, the number of new cells 
created on each split is always exponential in the input dimension. In contrast, while still 
exponential in the worst case, the informed split strategy limits the number of new cells 
created in practice by selecting a subset of dimensions to split using the evaluations at the 
corners. We note that the number of corner points of a cell grows exponentially with the 
input dimension, so this strategy will be intractable for controllers with high-dimensional 
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Fig. 7  Overapproximated probability of falling into the pit using a naïve approach to partitioning the state 
space into cells (top) compared to using adaptive verification with the informed splitting strategy along with 
the online heuristics. The plots in the left column show the cells plotted on top of the neural network policy, 
while the plots in the right column show the overapproximated probability of falling into the pit from each 
cell



2916 Machine Learning (2023) 112:2903–2931

1 3

inputs. In this case, one could consider using the gradient-based splitting heuristics used in 
prior work on neural network verification to select a subset of dimensions to split (Wang 
et al. 2018).

The online reduction strategies described in Sect. 4.2 also have worst-case exponential 
complexity in the input dimension. However, similarly to algorithm 1, the strategies exploit 
the structure of the problem to limit this complexity in practice by only splitting cells in 
safety-critical regions. Another contributor to algorithm complexity is calls to the neural 
network verification tool. Depending on the verification algorithm, queries on larger cells 
tend to have greater complexity. Therefore, there is a tradeoff between using large cells 
to limit the total number of cells in the partition and keeping the cells small enough to be 
effectively handed by a neural network verification tool. Furthermore, the size and type 
of neural networks we can verify with our algorithm is limited by the current capabili-
ties of neural network verification tools. These tools tend to perform best on small neural 
networks with simple architectures and rectified linear unit (ReLU) activations (Liu et al. 
2021).

As a result of the worst-case complexity in the input dimension, our algorithm is most 
effective on neural network controllers with relatively low-dimensional inputs. Controllers 
that take the physical state of the system as input tend to have this property; however, our 
method will not scale well to controllers with high-dimensional inputs such as images.

5  Application: collision avoidance neural networks

We use the aircraft collision avoidance problem as an example application for our meth-
ods. Aircraft collision avoidance provides a compelling, real-world example of a safety-
critical application in which neural network controllers provide a substantial benefit and 
has been used as a benchmark in previous work on neural network verification. Specifi-
cally, neural networks have been demonstrated as space-efficient controllers for a family 
of aircraft collision avoidance systems called the Airborne Collision Avoidance System X 
(ACAS X) (Julian et al. 2016, 2019a). ACAS X relies on a large numeric lookup table to 
provide optimized advisories during flight (Kochenderfer and Chryssanthacopoulos 2011; 
Kochenderfer et al. 2012; Olson 2015; Owen et al. 2019). Julian et al. (2019a) showed that 
it is possible to decrease the memory footprint of the table by training a neural network to 
take its place. The neural network representation decreases the required storage by a factor 
of 1,000 while maintaining comparable performance to the table in simulation.

The collision avoidance neural networks used in this work are based on the networks in 
the VerticalCAS repository developed by Julian and Kochenderfer (2019b). The repository 
contains an open source collision avoidance logic loosely modeled after the vertical logic 
used in ACAS X (Julian and Kochenderfer 2019b). The logic is designed to prevent near 
mid-air collisions (NMACs), which are defined as a simultaneous loss of separation to less 
than 500 ft horizontally and 100 ft vertically. To apply model checking to the problem, we 
must first formulate it as a Markov decision process. We use a similar formulation to what 
was used to generate the lookup table for ACAS X.

State Space The state space for VerticalCAS consists of five state variables. Table 1 sum-
marizes the variables and their ranges, and Fig. 8 provides a visual representation of the state 
variables. The first three variables summarize the relative positioning and vertical rate of the 
ownship and intruder aircraft. The next state variable, � , compactly summarizes the horizontal 
geometry by representing the time until the horizontal separation between the two aircraft is 
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less than 500 ft. Finally, adding the previous advisory to the state space allows us to penalize a 
reversal or strengthening of an advisory while still satisfying the Markov property.

Action Space The action space consists of the advisories that the collision avoidance sys-
tem will provide to the aircraft during flight. The logic has nine possible advisories, which are 
summarized in Table 2. All advisories except COC represent an alert and command the aircraft 
to a particular vertical rate range. The COC advisory indicates that there is currently no threat 
of collision with an intruding aircraft.

Transition Model The transition model uses the following linear dynamics model

(10)

h ← h + ḣ1 + 0.5ḧ1 − ḣ0 − 0.5ḧ0

ḣ0 ← ḣ0 + ḧ0

ḣ1 ← ḣ1 + ḧ1

𝜏 ← 𝜏 − 1

aprev ← a

Table 1  VerticalCAS state 
variables

Variable Description Units Range (low:high)

h Relative altitude of intruder ft − 8000:8000
ḣ0 Ownship vertical rate ft/s − 100:100

ḣ1 Intruder vertical rate ft/s − 100:100
� Time to loss of lateral separation s 0:40
aprev Previous advisory N/A N/A

Fig. 8  Visual representation of 
verticalCAS state variables

h

ḣ0

ḣ1

ownship

intruder

Table 2  VerticalCAS action 
space

Action Description

COC Clear of conflict
DNC Do not climb
DND Do not descend
DES1500 Descend ≥ 1500 ft/min
CL1500 Climb ≥ 1500 ft/min
SDES1500 Strengthen descent to ≥ 1500 ft/min
SCL1500 Strengthen climb to ≥ 1500 ft/min
SDES2500 Strengthen descent to ≥ 2500 ft/min
SCL2500 Strengthen climb to ≥ 2500 ft/min
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We assume a one second time step corresponding to the 1 Hz update frequency of the col-
lision avoidance system. The dynamics model is made stochastic by assuming distributions 
over the accelerations of the ownship and intruder. The intruder is assumed to have an 
equal chance of following accelerations −g∕8 , g/8, and 0 ft/s2 as in Julian and Kochender-
fer (2019a). The ownship follows accelerations ḧ1−3 based on its previous advisory with 
associated probabilities p1∶3 shown in Table 3. This transition model contains two features 
that add robustness. First, the ownship is assumed to follow the accelerations associated 
with its previous advisory (rather than its current advisory), which represents a short delay 
in the aircraft’s response to the advisory. Additionally, the ownship is assumed to acceler-
ate in the opposite direction of its advisory 20% of the time to further incorporate errors in 
aircraft response. For example, if a human pilot is responsible for executing the collision 
avoidance maneuver, they may not respond instantaneously to an advisory and could be 
accelerating in a direction opposite the advisory. The probabilistic safety guarantees pre-
sented in this paper are based on this stochastic dynamics model.

The reward model balances between safety and efficiency with a high penalty for an 
NMAC and relatively smaller penalties for alerting advisories. Using this formulation, we 
can solve for the optimal policy using value iteration. Traditionally, the final action-val-
ues result in a large numeric lookup table. To reduce the on-board memory requirements, 
Julian et al. (2019a) train a neural network representation to approximate the action-value 
function. One network is trained for each discrete previous advisory. The values of the 
other four state variables in Table 1 make up the four-dimensional input to the network, 
and the approximate value of each action makes up the nine-dimensional output. Each net-
work has five hidden layers with 25 units each that use rectified linear unit (ReLU) acti-
vation functions. The networks used in this work can be found at https:// github. com/ sisl/ 
Adapt iveVe rific ation/.

Figure 9 shows a comparison of the neural network policy and lookup table policy for 
a slice of the state space. The neural network policy closely approximates the table policy 
with a few subtle differences that are visible in the plot. Even though the alerting regions 
in the neural network policy appear continuous, the plot is generated by evaluating a finite 
number of points in the state space and does not guarantee this property. For example, 
while the region highlighted on the neural network policy in Fig.  9 appears to evaluate 
to CL1500 at all points within it, we cannot guarantee this property just by examining the 
plotted points. To provide a guarantee that all advisories in that region are in fact CL1500 , 
we use a neural verification tool to obtain Ac . For this application, we use the Reluval 

Table 3  Transition accelerations Previous action Probabilities ( p
1−3) Accelerations ( ̈h

1−3)

COC [0.34, 0.33, 0.33] [0.0, -g/3, g/3]
DNC [0.50, 0.30, 0.20] [-g/3, -g/2, g/3]
DND [0.50, 0.30, 0.20] [g/3, g/2, -g/3]
DES1500 [0.50, 0.30, 0.20] [-g/3, -g/2, g/3]
CL1500 [0.50, 0.30, 0.20] [g/3, g/2, -g/3]
SDES1500 [0.50, 0.30, 0.20] [-g/2.5, -g/2, g/3]
SCL1500 [0.50, 0.30, 0.20] [g/2.5, g/2, -g/3]
SDES2500 [0.50, 0.30, 0.20] [-g/2.5, -g/2, g/3]
SCL2500 [0.50, 0.30, 0.20] [g/2.5, g/2, -g/3]

https://github.com/sisl/AdaptiveVerification/
https://github.com/sisl/AdaptiveVerification/
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algorithm to verify each cell due to its fast performance on the collision avoidance net-
works (Liu et al. 2021; Wang et al. 2018).

We can craft an LTL formula to determine the probability of an NMAC by using 
the temporal operator “eventually,” written as � . Let the atomic proposition N represent 
whether or not a cell belongs to the NMAC region ( � = 0 s and h < 100 ft). The LTL 
formula of interest is �N , read as “eventually N.” The probability of satisfying this for-
mula corresponds to the probability that a state will eventually reach an NMAC state. This 
problem is easily converted to a reachability problem. Let B represent the collection of all 
cells that satisfy N. We seek to find the maximum probability of reaching cells in B while 
following the overapproximated neural network policy.

6  Results

For ease of computation and visualization, we tested our methods on a two-dimensional 
version of the collision avoidance problem in which the intruder vertical rate is fixed at −90 
ft/s before testing on the full scale model. Since most of the overapproximation error in our 
initial experiments seemed to be concentrated at high vertical rates, we selected −90 ft/s 
for the intruder vertical rate to understand how our method performs in a challenging area 
of the state space. All other aspects of the problem, including the neural networks used for 
verification, remain the same. By taking this approach, we were able to better understand 
the effects of each aspect of the algorithm. Therefore, the results summarizing the effects 
of the overapproximation reduction techniques were generated using the two-dimensional 
model. After providing intuition with these results, we present the results of the full scale 
model.

6.1  Adaptive verification

We tested both the all split and informed split adaptive verification splitting strategies to 
obtain the overapproximated policy �̃� . Figure 10 shows the results of both splitting strat-
egies when the intruder vertical rate is fixed at −90 ft/s, and Table 4 shows a comparison 
of runtime for both the two-dimensional and full scale model for each strategy. We also 
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Fig. 9  Comparison of table policy to neural network policy for a slice of the state space. The intruder verti-
cal rate is fixed at −90 ft/s, � is fixed at 5 s, and the previous advisory is COC
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include the runtime of a uniform, non-adaptive splitting strategy in which all cells are 
the minimum cell size used in the adaptive strategies. For the full-scale model, the non-
adaptive runtime was estimated based on the time required to verify a single cell of the 
minimum cell size. Time trials were run on a single 4.20 GHz Intel Core i7 processor. 
Both adaptive splitting strategies result in small cells around the decision boundaries of 
the network; however, the informed splitting strategy results in fewer cells.

The adaptive strategies require fewer calls to the verification tool and therefore per-
form faster than a non-adaptive strategy. Additionally, whenever a cell is split and the 
resulting cells are reverified, the verification tool only needs to check for the actions that 
were possible in the larger cell. Informed split is faster than all split because it makes 
even fewer Reluval calls. Checking the corners to inform the split prevents unnecessary 
calls and results in fewer cells in the final partition. Due to its speed, the informed split 
strategy was selected for the rest of the analysis in this work.

While the adaptive verification technique presented here addresses policy overap-
proximation error for model checking, it may also be used on its own to analyze neural 
network policies and detect decision boundaries. The algorithm is an anytime algorithm, 
and the resolution can be controlled using the minimum cell size parameter. Figure 11 
shows the results of running adaptive verification as the parameter is decreased. To min-
imize overapproximation error, we want to maximize the amount of the state space cov-
ered by cells with a single advisory in them (blue cells). Figure 11 demonstrates that as 
the minimum cell size decreases, overapproximation error in the policy also decreases.
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Fig. 10  Comparison of the resulting state space partition for the adaptive splitting strategies. The intruder 
vertical rate is fixed at −90 ft/s, � is 5 s, and the previous advisory is COC . Cells that are colored blue have 
only one possible advisory in A

c
 , red cells have two possible advisories, and yellow cells have three or 

more possible advisories (Color figure online)

Table 4  Adaptive verification 
timing results

Splitting strategy ḣ
1
 Fixed time (s) Full scale time (s)

Uniform 235.5 16,000 (est.)
All split 21.9 2500.3
Informed split 5.5 655.6
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After obtaining the overapproximated network policy using adaptive verification, we 
can run model checking on the cells. Figure 12 shows the results for a slice of the state 
space. Assuming that an encounter gets initiated with 40 s until loss of horizontal sepa-
ration, a safe policy should have a low probability of NMAC for all states at � = 40 s; 
however, the probability values at � = 40 s after model checking are close to one, and we 
therefore cannot provide a safety guarantee with this adaptive verification method alone. 
We need to introduce the online error reduction techniques.

6.2  Online reduction

Figure 13 displays the model checking results with the online worst-case transition split-
ting heuristic for the same slice of the state space shown in Fig. 12.

The algorithm splits cells in a densely packed band along the safety-critical region of 
the state space where a collision is imminent. The intruder is rapidly descending at 90 ft/s, 
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Fig. 11  Adaptive verification results using informed split for decreasing minimum cell sizes (left to right). 
The intruder vertical rate is fixed at −90 ft/s, � is 5 s, and the previous advisory is COC . Cells that are 
colored blue have only one possible advisory in A
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Fig. 12  State space partition (same color scheme as Fig. 10) and overapproximated probability of NMAC 
with no online overapproximation reduction. The intruder vertical rate is fixed at −90 ft/s, the ownship ver-
tical rate is 0 ft/s, and the previous advisory is COC
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so the region directly above the ownship is most dangerous. Outside of this band, the state 
space partition remains untouched, indicating that the online splitting heuristic only splits 
states that require a finer resolution.

The overapproximation error in Fig. 13 is much lower than the error in Fig. 12, and we 
can now obtain meaningful information from the estimated probabilities. For example, the 
probabilities are highest at low values of � when the intruder is above the ownship. The 
high intruder descent rate results in the upward sloping band of high probability extending 
away from the NMAC region at � = 0 . At � = 40 s, the probabilities of collision are signifi-
cantly lower with a maximum probability of 0.0305 among all cells. The splitting threshold 
can be tuned to achieve a desired resolution as shown in Fig. 14. The highest threshold only 
splits cells in the extremely safety-critical region near � = 0 . As the threshold is decreased, 
the band of tightly packed cells extends further away from � = 0 and overapproximation 
error decreases.

Figure 15 shows the results when the policy overapproximation heuristic is used in addi-
tion to the worst-case transition heuristic. Beyond the splits due to the worst-case transition 
heuristic, this heuristic results in splits in overapproximated regions at higher values of � . 
There is no significant difference in the visualization of probabilities between Figs. 13 and 
15, and the maximum probability of NMAC at � = 40 s drops from 0.0305 to 0.0268. The 
addition of this splitting heuristic did not add a significant benefit over the worst-case tran-
sition heuristic, possibly due to the fact that adaptive verification already addresses policy 
overapproximation error.

Table  5 summarizes the effect of each overapproximation error reduction technique 
on the maximum overapproximated probability of NMAC for cells at � = 40 s. We also 
provide the number of cells in the final partitioning and the time required to perform the 
model checking to illustrate the added complexity of each technique. All time trials for this 
experiment were performed on 5 cores of a 4.20 GHz Intel Core i7 processor.

The adaptive verification technique alone is not enough to reduce overapproximation 
error to obtain a meaningful estimate of the probability of NMAC. Adaptive verification 
addresses only policy overapproximation error but does nothing to reduce worst-case tran-
sition error. When we add the online splitting heuristic to address worst-case transition 
error and decrease the splitting threshold, the probability estimate decreases to a more 
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Fig. 13  State space partition (same color scheme as Fig. 10) and overapproximated probability of NMAC 
with the worst-case transition splitting heuristic. The intruder vertical rate is fixed at −90 ft/s, the ownship 
vertical rate is 0 ft/s, and the previous advisory is COC
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meaningful result. We can guarantee that the probability of NMAC is less than 0.0305. 
Adding the online splitting heuristic to further reduce policy overapproximation in key 
areas of the state space does not have as much of an effect on the resulting probability. 
Nevertheless, it changes the guarantee to a 0.0268 probability of NMAC.
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Fig. 14  State space partition (same color scheme as Fig. 10) and overapproximated probability of NMAC 
using various thresholds for the worst-case transition splitting heuristic. The intruder vertical rate is fixed at 
−90 ft/s, the ownship vertical rate is 0 ft/s, and the previous advisory is COC
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Fig. 15  State space partition (same color scheme as Fig. 10) and overapproximated probability of NMAC 
with both the worst-case transition splitting heuristic and the policy overapproximation splitting heuristic. 
The intruder vertical rate is fixed at −90 ft/s, the ownship vertical rate is 0 ft/s, and the previous advisory is 
COC
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While the overapproximation error in the probability estimate decreases when we apply 
the online splitting heuristics, the number of cells in the final partition and time required 
to perform the model checking increases. Table 5 therefore shows a tradeoff between the 
error in the final estimate and the overall complexity of the algorithm. However, the online 
splitting heuristics still allow us to exploit the structure of the problem to ensure that splits 
only occur in critical parts of the state space. If we were to instead naïvely partition the 
state space uniformly into cells of the minimum cell size, our final partition would have 
2.36 × 108 cells. Comparing to the results in Table 5, even the partition that uses all overap-
proximation error reduction techniques has less than 5% of the cells required for a uniform 
partition.

6.3  Full scale model

After gaining intuition using the two-dimensional model, we applied our method to deter-
mine the maximum probability of collision on the full scale model. For computational 
reasons, the action range threshold was slowly increased throughout the solving process. 
To analyze the quality of our probability estimates, we generate two baseline probability 
comparisons. The first comparison is the estimated probability of NMAC when using the 
large numeric lookup table that the neural network is meant to approximate. This prob-
ability is calculated by performing traditional MDP model checking on the table policy 
using the method outlined in Sect.  2.2 with the same model used to evaluate the neural 
network. We use multilinear interpolation to determine probabilities at points in the state 
space that do not correspond directly to table entries, so the result is not guaranteed to be 
an overapproximation. We also compare with the probability of NMAC detected through 
1,000 Monte Carlo simulations from various points in the state space. While Monte Carlo 
simulations cannot provide any formal guarantees, they provide a good approximation to 
the probability of NMAC.

The results for one slice of the state space are shown in Fig. 16. All three plots show 
similar trends. The model checking outputs for the table and neural network are similar 
with slightly higher probabilities for the neural network. The probabilities are also similar 
to the Monte Carlo probabilities with the same cells showing high probability of collision; 
however, the region of high probability is slightly larger in the model checking results. It is 
clear that the model checking probabilities represent an overapproximation.

Figure  17 shows the maximum probability of collision among all cells as � is 
increased for the same slice of the state space shown in Fig. 16. At � = 0 s, the maxi-
mum probability of NMAC is one, corresponding to cells in the NMAC region. As � 

Table 5  Effect of error reduction methods on overapproximated probability of NMAC

Error Reduction Transition 
Threshold

Action Threshold Cells Time (s) Probability

Adaptive verification – – 3.4 × 105 157 1.0
Worst-case transition 0.5 – 6.9 × 105 218 1.0
Worst-case transition 0.1 – 2.3 × 106 565 0.372
Worst-case transition 0.005 – 8.9 × 106 1546 0.0305
All techniques 0.005 0.005 1.2 × 107 6336 0.0268
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increases for each method, there is a sharp dropoff in probability of NMAC. The overap-
proximated model checking probabilities are greater than or equal to both the lookup 
table and Monte Carlo probabilities at all points. The curve, however, remains close 
to the other curves and represents a tight overapproximation. Furthermore, unlike the 
Monte Carlo estimate and lookup table model checking estimate, the neural network 
model checking estimate represents a guarantee on the performance of the neural net-
work policy. The final model checking probability is 0.0473 at � = 40 s. Therefore, with 
respect to the stochastic dynamics model in Sect. 5, we can guarantee that the probabil-
ity of NMAC is less than 0.0473 when the intruder and ownship are in level flight.

We also examined the probability of NMAC when the aircraft are climbing or 
descending. Figure 18 contains the results when the ownship is climbing at 60 ft/s in 
comparison to the table and Monte Carlo results, and Fig. 19 shows the vertical rates 
when both aircraft are climbing at a rate of 60 ft/s. The trends in the probabilities match 
the trends seen in the lookup table and Monte Carlo results. In Fig. 18, the region of 
high probability of NMAC extends above the ownship because it starts in a climb.
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When both aircraft are climbing at the same rate in Fig. 19, the two aircraft are on a 
direct collision path when they are co-altitude. For this reason, probabilities are high in 
this region when � is small. As the time to collision increases, the region shifts downward 
slightly since the intruder is not executing collision avoidance maneuvers and is therefore 
most dangerous at altitudes below the ownship. The overapproximated probabilities are 
again higher than the Monte Carlo probabilities, but the maximum probability of NMAC 
with these starting states decreases slightly to 0.0462 and 0.0437, respectively.

The maximum probability of NMAC among all states at � = 40 is 0.0605 and occurs 
in the cell in which the intruder is descending at a vertical rate between 77.34 and 78.13 
ft/s and is located between 656.25 and 664.06 ft below the ownship. The ownship is also 
descending rapidly between 99.22 and 100.0 ft/s. Therefore, we can guarantee that the 
probability of NMAC with respect to the dynamics model outlined in this work when 
following the neural network policy is less than 0.0605. Tuning parameters such as the 
online splitting thresholds and minimum cell size allowed us to tighten our bound on the 
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Fig. 18  Comparison of lookup table probabilities of NMAC estimated using traditional MDP model check-
ing, neural network probabilities of NMAC estimated using Monte Carlo simulations, and overapproxi-
mated neural network probabilities of NMAC using the model checking formulation in this work. The own-
ship vertical rate is 60 ft/s, the intruder vertical rate is 0 ft/s, and the previous advisory is COC
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Fig. 19  Comparison of lookup table probabilities of NMAC estimated using traditional MDP model check-
ing, neural network probabilities of NMAC estimated using Monte Carlo simulations, and overapproxi-
mated neural network probabilities of NMAC using the model checking formulation in this work. The own-
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probability. The full scale analysis was run on 9 cores of an Intel Xeon 2.20 GHz CPU and 
took approximately 10 days. With more computational resources, it is likely that we could 
tighten this bound further.

7  Related work

The complexity of deep neural networks makes their performance difficult to verify, and 
previous research has addressed this problem from multiple perspectives. One perspective 
involves decreasing the complexity of deep neural networks by extracting simpler poli-
cies that are easier to verify (Bastani et al. 2018; Koul et al. 2018; Carr et al. 2020). For 
instance, Bastani et al. (2018) outline a method to learn decision tree policies from neural 
networks trained used deep reinforcement learning. Other works focus on extracting finite 
state controllers from recurrent neural network policies (Koul et al. 2018; Carr et al. 2020). 
While these works simplify the verification problem, the extracted policies may be less 
effective and more difficult to store. In fact, Julian et al. (2019a) found that neural network 
policies performed better and required significantly less storage than decision trees when 
applied to the aircraft collision avoidance problem.

Another perspective on ensuring the safety of neural networks involves verifying their 
policies directly without the need to extract a simpler policy. Recent work has used formal 
methods to verify input-output properties of neural networks (Katz et al. 2017, 2019; Wang 
et al. 2018; Tjeng et al. 2017). Liu et al. (2021) provide an overview of neural verification 
methodologies that incorporate techniques from reachability, optimization, and search. In 
the context of neural network controllers, these tools can provide guarantees on the actions 
that the network could output in a given region of the state space. This methodology was 
used to prove properties of neural networks trained on an early prototype of ACAS Xu, the 
version of ACAS X developed for unmanned aircraft (Katz et al. 2017; Owen et al. 2019). 
An example property that should hold for the ACAS Xu networks is that the system should 
always issue an alert if an intruder is directly in front of the ownship. Katz et al. (2017) use 
the Reluplex algorithm for neural network verification to prove this property, along with 
a number of other intuitive properties that must hold for safe operation. Other verification 
tools have proven the same properties as a benchmark (Wang et al. 2018; Liu et al. 2021).

While neural network verification tools provide guarantees on the performance of neu-
ral network controllers at a single instance in time, other work has extended these tools to 
evaluate their performance over time using a model of the system dynamics. Julian et al. 
(2019b) define “safeable” regions for each action, in which even the worst case trajectory 
created by following the action could still be safe. This worst-case analysis, however, does 
not consider whether states are reachable when following the neural network policy, so 
states that it flags as unsafe may never be reached in the first place.

To better approximate the true closed-loop system, previous work has used various 
forms of reachability analysis (Julian and Kochenderfer 2019b, a; Huang et al. 2019; Xiang 
and Johnson 2018; Xiang et al. 2018, 2019; Dutta et al. 2019; Ivanov et al. 2019; Clavière 
et al. 2020; Lopez et al. 2021). These reachability approaches typically involve combining 
work in neural network verification with existing reachability methods from fields such as 
ordinary differential equations and hybrid systems. Other approaches involve combining 
the neural network controller with a neural network representation of the dynamics and 
performing the neural network verification on the entire closed-loop system (Sidrane and 
Kochenderfer 2019; Akintunde et al. 2018).
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Previous works have applied reachability analysis to evaluate the closed-loop perfor-
mance of aircraft collision avoidance neural networks (Lopez et al. 2021; Clavière et al. 
2020; Julian and Kochenderfer 2019a; Akintunde et al. 2020). While Lopez et al. (2021) 
and Clavière et al. (2020) are able to show that the aircraft will not collide in a given set 
of scenarios, they do not take into account any uncertainty in the dynamics of either air-
craft. Julian and Kochenderfer (2019a) and Akintunde et al. (2020) account for uncertainty 
in the dynamics by allowing the ownship and intruder to follow a range of accelerations. 
While these approaches are able to provide deterministic guarantees that the aircraft will 
not collide, they require strong assumptions on the dynamics of the aircraft for the conclu-
sion to hold. As these assumptions are relaxed, there is likely to exist a set of adversarial 
intruder and ownship accelerations that could result in a collision. Even though the aircraft 
are unlikely to follow this acceleration pattern, there is still a nonzero probability that they 
will follow it, and the reachability analysis would conclude that the system is unsafe.

In this work, we adapt methods in probabilistic model checking to provide probabilistic 
guarantees for neural network controllers (Baier and Katoen 2008; Lahijanian et al. 2011; 
Bouton et  al. 2020; D’argenio et  al. 2001). There has been extensive previous work on 
model checking for finite state MDPs (Baier and Katoen 2008; Lahijanian et  al. 2011). 
MDP model checking can be used to determine the probability of satisfying an LTL for-
mula when following a given policy from any state in the state space. However, these 
methods are limited to problems with discrete states and cannot be applied directly to con-
tinuous neural network policies. This work therefore extends these methods to handle con-
tinuous states. To provide guarantees, we ensure that the probability estimates using our 
method represent an overapproximation of the true probability of failure.

8  Conclusion

In this work, we have introduced an approach to generate probabilistic safety guarantees 
on a neural network controller and applied it to an open source collision avoidance system 
inspired by the ACAS X neural networks. We demonstrated how techniques in MDP model 
checking could be applied to verify an overapproximated neural network policy obtained 
using a neural network verification tool. We identified the major sources of overapproxima-
tion error in the model checking process and developed both offline and online error reduc-
tion techniques to address them.

Our adaptive verification technique efficiently partitions the input space to obtain an 
overapproximated neural network policy that minimizes overapproximation error. This 
method can be used outside of the context of model checking to analyze neural network 
policies and detect decision boundaries. By combining the adaptive verification results 
with online splitting heuristics inspired by MDP state abstraction, we are able to provide 
meaningful probabilistic safety guarantees that follow trends shown in both Monte Carlo 
analysis and model checking analysis performed on the lookup table that the neural net-
work approximates.

The probabilistic dynamics model used in this work represents a conservative aircraft 
response model. In the future, other aircraft response models will be analyzed to determine 
the effect of the model selection on the probabilities. Furthermore, the results can be used 
to determine unsafe areas of the state space where the neural network policy may need 
adjustments. For example, at the outset of this work, the model checking method was able 
to easily detect a bounds error in the neural network policy generation that may have been 



2929Machine Learning (2023) 112:2903–2931 

1 3

otherwise easy to overlook. Although we used the method to determine the probability of 
an NMAC in this work, the general formulation allows us to determine the probability of 
satisfying any LTL specification. Future work will explore both generating guarantees on 
other aspects of the aircraft collision avoidance problem as well as for other safety-critical 
applications such as autonomous driving. The methodology presented here represents a 
step toward the ability to verify the performance of neural network controllers for use in 
safety-critical environments.
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