
Vol.:(0123456789)

Machine Learning (2022) 111:377–414
https://doi.org/10.1007/s10994-021-06063-x

1 3

Quick and robust feature selection: the strength
of energy‑efficient sparse training for autoencoders

Zahra Atashgahi1 · Ghada Sokar2 · Tim van der Lee3 · Elena Mocanu1 ·
Decebal Constantin Mocanu1,2 · Raymond Veldhuis1 · Mykola Pechenizkiy2,4

Received: 22 November 2020 / Revised: 29 June 2021 / Accepted: 30 July 2021 /
Published online: 27 October 2021
© The Author(s) 2021

Abstract
Major complications arise from the recent increase in the amount of high-dimensional
data, including high computational costs and memory requirements. Feature selection,
which identifies the most relevant and informative attributes of a dataset, has been intro-
duced as a solution to this problem. Most of the existing feature selection methods are
computationally inefficient; inefficient algorithms lead to high energy consumption, which
is not desirable for devices with limited computational and energy resources. In this paper,
a novel and flexible method for unsupervised feature selection is proposed. This method,
named QuickSelection (The code is available at: https://github.com/zahraatashgahi/Quick-
Selection), introduces the strength of the neuron in sparse neural networks as a criterion to
measure the feature importance. This criterion, blended with sparsely connected denoising
autoencoders trained with the sparse evolutionary training procedure, derives the impor-
tance of all input features simultaneously. We implement QuickSelection in a purely sparse
manner as opposed to the typical approach of using a binary mask over connections to
simulate sparsity. It results in a considerable speed increase and memory reduction. When
tested on several benchmark datasets, including five low-dimensional and three high-
dimensional datasets, the proposed method is able to achieve the best trade-off of classifi-
cation and clustering accuracy, running time, and maximum memory usage, among widely
used approaches for feature selection. Besides, our proposed method requires the least
amount of energy among the state-of-the-art autoencoder-based feature selection methods.

Editors: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

 * Zahra Atashgahi
 z.atashgahi@utwente.nl

1 Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente,
7500 AE Enschede, The Netherlands

2 Department of Mathematics and Computer Science, Eindhoven University of Technology,
5600 MB Eindhoven, The Netherlands

3 Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven,
The Netherlands

4 Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland

http://orcid.org/0000-0001-8183-5541
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06063-x&domain=pdf

378 Machine Learning (2022) 111:377–414

1 3

Keywords Feature selection · Deep learning · Sparse autoencoders · Sparse training

1 Introduction

In the last few years, considerable attention has been paid to the problem of dimensionality
reduction and many approaches have been proposed (Van Der Maaten et al., 2009). There
are two main techniques for reducing the number of features of a high-dimensional data-
set: feature extraction and feature selection. Feature extraction focuses on transforming the
data into a lower-dimensional space. This transformation is done through a mapping which
results in a new set of features (Liu and Motoda, 1998). Feature selection reduces the fea-
ture space by selecting a subset of the original attributes without generating new features
(Chandrashekar & Sahin, 2014). Based on the availability of the labels, feature selection
methods are divided into three categories: supervised (Ang et al., 2015; Chandrashekar &
Sahin, 2014), semi-supervised (Sheikhpour et al., 2017; Zhao & Liu, 2007), and unsuper-
vised (Dy and Brodley, 2004; Miao & Niu, 2016). Supervised feature selection algorithms
try to maximize some function of predictive accuracy given the class labels. In unsuper-
vised learning, the search for discriminative features is done blindly, without having the
class labels. Therefore, unsupervised feature selection is considered as a much harder prob-
lem (Dy & Brodley, 2004).

Feature selection methods improve the scalability of machine learning algorithms since
they reduce the dimensionality of data. Besides, they reduce the ever-increasing demands
for computational and memory resources that are introduced by the emergence of big data.
This can lead to a considerable decrease in energy consumption in data centers. This can
ease not only the problem of high energy costs in data centers but also the critical chal-
lenges imposed on the environment (Yang et al., 2018). As outlined by the High-Level
Expert Group on Artificial Intelligence (AI) (AI High-level Expert Group, 2020), environ-
mental well-being is one of the requirements of a trust-worthy AI system. The develop-
ment, deployment, and process of an AI system should be assessed to ensure that it would
function in the most environmentally friendly way possible. For example, resource usage
and energy consumption through training can be evaluated.

However, a challenging problem that arises in the feature selection domain is that select-
ing features from datasets that contain a huge number of features and samples, may require
a massive amount of memory, computational, and energy resources. Since most of the
existing feature selection techniques were designed to process small-scale data, their effi-
ciency can be downgraded with high-dimensional data (Bolón-Canedo et al., 2015). Only
a few studies have focused on designing feature selection algorithms that are efficient in
terms of computation (Aghazadeh et al., 2018; Tan et al., 2014). The main contributions of
this paper can be summarized as follows:

• We propose a new fast and robust unsupervised feature selection method named Quick-
Selection. As briefly sketched in Fig. 1, It has two key components: (1) Inspired by
node strength in graph theory, the method proposes the neuron strength of sparse neu-
ral networks as a criterion to measure the feature importance; and (2) The method
introduces sparsely connected Denoising Autoencoders (sparse DAEs) trained from
scratch with the sparse evolutionary training procedure to model the data distribution
efficiently. The imposed sparsity before training also reduces the amount of required
memory and the training running time.

379Machine Learning (2022) 111:377–414

1 3

• We implement QuickSelection in a completely sparse manner in Python using the
SciPy library and Cython rather than using a binary mask over connections to simu-
late sparsity. This ensures minimum resource requirements, i.e., just Random-Access
Memory (RAM) and Central Processing Unit (CPU), without demanding Graphic Pro-
cessing Unit (GPU).

The experiments performed on eight benchmark datasets suggest that QuickSelection has
several advantages over the state-of-the-art, as follows:

• It is the first or the second-best performer in terms of both classification and clustering
accuracy in almost all scenarios considered.

• It is the best performer in terms of the trade-off between classification and clustering
accuracy, running time, and memory requirement.

• The proposed sparse architecture for feature selection has at least one order of magni-
tude fewer parameters than its dense equivalent. This leads to the outstanding fact that
the wall clock training time of QuickSelection running on CPU is smaller than the wall
clock training time of its autoencoder-based competitors running on GPU in most of
the cases.

• Last but not least, QuickSelection computational efficiency makes it have the minimum
energy consumption among the autoencoder-based feature selection methods consid-
ered.

2 Related work

2.1 Feature selection

The literature on feature selection shows a variety of approaches that can be divided into
three major categories, including filter, wrapper, and embedded methods. Filter meth-
ods use a ranking criterion to score the features and then remove the features with scores

Epoch 5

(c) Compute
Neurons Strength

(d) Feature
Selection

s1 = 0.2

s2 = 0.5

s5 = 0.3

s4 = 0

s3 = 1.3

f1

f2

f3

f4

f5

f2

f3

s1 = 0.2

s2 = 0.5

s5 = 0.3

s4 = 0

s3 = 1.3

f1ff

f2ff

f3ff

f4ff

f5ff

f2ff

f3fz

(b) Train Sparse-DAE
(a) Initialize
Sparse-DAE

Epoch 10Epoch 0

Fig. 1 A high-level overview of the proposed method, “QuickSelection”. a At epoch 0, connections are ran-
domly initialized. b After initializing the sparse structure, we start the training procedure. After 5 epochs,
some connections are changed during the training procedure, and as a result, the strength of some neurons
has increased or decreased. At epoch 10, the network has converged, and we can observe which neurons are
important (larger and darker blue circles) and which are not. c When the network is converged, we compute
the strength of all input neurons. d Finally, we select K features corresponding to neurons with the highest
strength values

380 Machine Learning (2022) 111:377–414

1 3

below a threshold. These criteria can be Laplacian score (He et al., 2006), Correlation,
Mutual Information (Chandrashekar & Sahin, 2014), and many other scoring methods
such as Bayesian scoring function, t-test scoring, and Information theory-based criteria
(Lazar et al., 2012). These methods are usually fast and computationally efficient. Wrap-
per methods evaluate different subsets of features to detect the best subset. Wrapper meth-
ods usually give better performance than filter methods; they use a predictive model to
score each subset of features. However, this results in high computation complexity. Semi-
nal contributions for this type of feature selection have been made by Kohavi and John
(1997). In (Kohavi and John 1997), the authors used a tree structure to evaluate the subsets
of features. Embedded methods unify the learning process, and the feature selection (Lal
et al., 2006). Multi-Cluster Feature Selection (MCFS) (Cai et al., 2010) is an unsupervised
method for embedded feature selection, which selects features using spectral regression
with L1-norm regularization. A key limitation of this algorithm is that it is computation-
ally intensive since it depends on computing the eigenvectors of the data similarity matrix
and then solving an L1-regularized regression problem for each eigenvector (Farahat
et al., 2013). Unsupervised Discriminative Feature Selection (UDFS) (Yang et al., 2011)
is another unsupervised embedded feature selection algorithm that simultaneously utilizes
both feature and discriminative information to select features (Li et al., 2018).

2.2 Autoencoders for feature selection

In the last few years, many deep learning-based models have been developed to select fea-
tures from the input data using the learning procedure of deep neural networks (Li et al.,
2016). In (Lu et al., 2018), a Multi-Layer Perceptron (MLP) is augmented with a pairwise-
coupling layer to feed each input feature along with its knockoff counterpart into the net-
work. After the training, the authors use the filter weights of the pairwise-coupling layer
to rank input features. Autoencoders which are generally known as a strong tool for fea-
ture extraction (Bengio et al. 2013), are being explored to perform unsupervised feature
selection. In (Han et al., 2018), authors combine autoencoder regression and group lasso
task for unsupervised feature selection named AutoEncoder Feature Selector (AEFS). In
(Doquet and Sebag 2019), an autoencoder is combined with three variants of structural
regularization to perform unsupervised feature selection. These regularizations are based
on slack variables, weights, and gradients, respectively. Another recently proposed autoen-
coder-based embedded method is feature selection with Concrete Autoencoder (CAE)
(Balın et al., 2019). This method selects features by learning a concrete distribution over
input features. They proposed a concrete selector layer that selects a linear combination
of input features that converges to a discrete set of K features during training. In (Singh
and Yamada 2020), the authors showed that a large set of parameters in CAE might lead
to over-fitting in case of having a limited number of samples. In addition, CAE may select
features more than once since there is no interaction between the neurons of the selector
layer. To mitigate these problems, they proposed a concrete neural network feature selec-
tion (FsNet) method, which includes a selector layer and a supervised deep neural network.
The training procedure of FsNet considers reducing the reconstruction loss and maximiz-
ing the classification accuracy simultaneously. In our research, we focus mostly on unsu-
pervised feature selection methods.

Denoising Autoencoder (DAE) is introduced to solve the problem of learning the iden-
tity function in the autoencoders. This problem is most likely to happen when we have
more hidden neurons than inputs (Baldi, 2012). As a result, the network output may be

381Machine Learning (2022) 111:377–414

1 3

equal to the inputs, which makes the autoencoder useless. DAEs solve the aforementioned
problem by introducing noise on the input data and trying to reconstruct the original input
from its noisy version (Vincent et al., 2008). As a result, DAEs learn a representation of
the input data that is robust to small irrelevant changes in the input. In this research, we use
the ability of this type of neural network to encode the input data distribution and select
the most important features. Moreover, we demonstrate the effect of noise addition on the
feature selection results.

2.3 Sparse training

Deep neural networks usually have at least some fully-connected layers, which results in a
large number of parameters. In a high-dimensional space, this is not desirable since it may
cause a significant decrease in training speed and a rise in memory requirement. To tackle
this problem, sparse neural networks have been proposed. Pruning the dense neural net-
works is one of the most well-known methods to achieve a sparse neural network (LeCun
et al., 1990; Hassibi & Stork, 1993). In (Han et al. 2015), authors start from a pre-trained
network, prune the unimportant weights, and retrain the network. Although this method
can output a network with the desired sparsity level, the minimum computation cost is as
much as the cost of training a dense network. To reduce this cost, Lee et al. (2018) start
with a dense neural network, and prune it prior to training based on connection sensitivity;
then, the sparse network is trained in the standard way. However, starting from a dense neu-
ral network requires at least the memory size of the dense neural network and the computa-
tional resources for one training iteration of a dense network. Therefore, this method might
not be suitable for low-resource devices.

In 2016, Mocanu et al. (2016) had introduced the idea of training sparse neural net-
works from scratch, a concept which recently has started to be known as sparse training.
The sparse connectivity pattern was fixed before training using graph theory, network
science, and data statistics. While it showed promising results, outperforming the dense
counterpart, the static sparsity pattern did not always model the data optimally. In order to
address these issues, in 2018, Mocanu et al. (2018) have proposed the Sparse Evolutionary
Training (SET) algorithm which makes use of dynamic sparsity during training. The idea
is to start with a sparse neural network before training and dynamically change its connec-
tions during training in order to automatically model the data distribution. This results in a
significant decrease in the number of parameters and increased performance. SET evolves
the sparse connections at each training epoch by removing a fraction � connections with
the smallest magnitude, and randomly adding new connections in each layer. Bourgin et al.
(2019) have shown that a sparse MLP trained with SET achieves state-of-the-art results on
tabular data in predicting human decisions, outperforming fully-connected neural networks
and Random Forest, among others.

In this work, we introduce for the first time sparse training in the world of denoising
autoencoders, and we named the newly introduced model sparse denoising autoencoder
(sparse DAE). We train the sparse DAE with the SET algorithm to keep the number of
parameters low during the training. Then, we then exploit the trained network to select the
most important features.

382 Machine Learning (2022) 111:377–414

1 3

3 Proposed method

To address the problem of the high dimensionality of the data, we propose a novel method,
named “QuickSelection”, to select the most informative attributes from the data based on
their strength (importance). In short, we train a sparse denoising autoencoder network from
scratch in an unsupervised adaptive manner. Then, we use the trained network to derive the
strength of each neuron in the input features.

The basic idea of our proposed approach is to impose sparse connections on DAE, which
proved its success in the related field of feature extraction, to efficiently handle the compu-
tational complexity of high-dimensional data in terms of memory resources. Sparse con-
nections are evolved in an adaptive manner that helps in identifying informative features.

A couple of methods have been proposed for training deep neural networks from scratch
using sparse connections and sparse training (Dettmers & Zettlemoyer, 2019; Mocanu
et al., 2018; Bellec et al., 2017; Mostafa & Wang, 2019; Evci et al., 2019; Zhu & Jin,
2019). All these methods are implemented using a binary mask over connections to simu-
late sparsity since all standard deep learning libraries and hardware (e.g., GPUs) are not
optimized for sparse weight matrix operations. Unlike the aforementioned methods, we
implement our proposed method in a purely sparse manner to meet our goal of actually
using the advantages of a very small number of parameters during training. We decided to
use SET in training our sparse DAE.

The choice of SET is due to its desirable characteristic. SET is a simple method yet
achieves satisfactory performance. Unlike other methods that calculate and store informa-
tion for all the network weights, including the non-existing ones, SET is memory efficient.
It stores the weights for the existing sparse connections only. It does not need any high
computational complexity as the evolution procedure depends on the magnitude of the
existing connections only. This is a favourable advantage to our proposed method to select
informative features quickly. In the following subsections, we first present the structure of
our proposed sparse denoising autoencoder network and then explain the feature selection
method. The pseudo-code of our proposed method can be found in Algorithm 1.

383Machine Learning (2022) 111:377–414

1 3

3.1 Sparse DAE

3.1.1 Structure

As the goal of our proposed method is to do fast feature selection in a memory-efficient
way, we consider here the model with the least possible number of hidden layers, one hid-
den layer, as more layers mean more computation. Initially, sparse connections between
two consecutive layers of neurons are initialized with an Erdős-Rényi random graph, in
which the probability of the connection between two neurons is given by

where � denotes the parameter that controls the sparsity level, nl denotes number of neu-
rons at layer l, and Wl

ij
 is the connection between neuron i in layer l − 1 and neuron j in layer

l, stored in the sparse weight matrix �l.
Input denoising We use the additive noise model to corrupt the original data:

where � is the input data vector from dataset X, nf (noise factor) is a hyperparameter of the
model which determines the level of corruption, and N(�, �2) is a Gaussian noise. After
denoising the data, we derive the hidden representation � using this corrupted input. Then,
the output � is reconstructed from the hidden representation. Formally, the hidden repre-
sentation � and the output � are computed as follows:

where �1 and �2 are the sparse weight matrices of hidden and output layers respectively,
�
1 and �2 are the bias vectors of their corresponding layer, and a is the activation function

of each layer. The objective of our network is to reconstruct the original features in the out-
put. For this reason, we use mean squared error (MSE) as the loss function to measure the
difference between original features � and the reconstructed output �:

Finally, the weights can be optimized using the standard training algorithms (e.g., Stochas-
tic Gradient Descent (SGD), AdaGrad, and Adam) with the above reconstruction error.

3.1.2 Training procedure

We adapt the SET training procedure (Mocanu et al., 2018) in training our proposed net-
work for feature selection. SET works as follows. After each training epoch, a fraction � of
the smallest positive weights and a fraction � of the largest negative weights at each layer
is removed. The selection is based on the magnitude of the weights. New connections in
the same amount as the removed ones are randomly added in each layer. Therefore the
total number of connections in each layer remains the same, while the number of connec-
tions per neuron varies, as represented in Fig. 1. The weights of these new connections are

(1)P
(
Wl

ij

)
=

�
(
nl−1 + nl

)

nl−1 × nl
,

(2)�̃ = � + nfN
(
�, �2

)
,

(3)� =a
(
�

1
�̃ + �

1
)
,

(4)� =a
(
�

2
� + �

2
)
,

(5)LMSE = ‖� − �‖2
2
.

384 Machine Learning (2022) 111:377–414

1 3

initialized from a standard normal distribution. The random addition of new connections
do not have a high risk of not finding good sparse connectivity at the end of the training
process because it has been shown in (Liu et al. 2020) that sparse training can unveil a
vast number of very different sparse connectivity local optima which achieve very similar
performance.

3.2 Feature selection

We select the most important features of the data based on the weights of their correspond-
ing input neurons of the trained sparse DAE. Inspired by node strength in graph theory
(Barrat et al., 2004), we determine the importance of each neuron based on its strength.
We estimate the strength of each neuron (si) by the summation of absolute weights of its
outgoing connections.

where n1 is the number of neurons of the first hidden layer, and W1
ij
 denotes the weight of

connection linking input neuron i to hidden neuron j.
As represented in Fig. 1, the strength of the input neurons changes during training; we

have depicted the strength of the neurons according to their size and color. After conver-
gence, we compute the strength for all of the input neurons; each input neuron corresponds
to a feature. Then, we select the features corresponding to the neurons with K largest
strength values:

where � and � ∗
s
 are the original feature set and the final selected features respectively, fi is

the ith feature of � , and K is the number of features to be selected. In addition, by sorting
all the features based on their strength, we will derive the importance of all features in the
dataset. In short, we will be able to rank all input features by training just once a single
sparse DAE model.

For a deeper understanding of the above process, we analyze the strength of each input
neuron in a 2D map on the MNIST dataset. This is illustrated in Fig. 2. At the beginning of

(6)si =

n1∑

j=1

|W1
ij
|,

(7)�
∗

s
= argmax

�s⊂� ,|�s|=k

∑

fi∈�s

si,

Random Ini�aliza�on A�er 3 epochs A�er 6 Epochs A�er 10 epochs

he
ig

ht
 (p

ix
el

)

St
re

ng
th

width (pixel) width (pixel) width (pixel) width (pixel)

Fig. 2 Neuron’s strength on the MNIST dataset. The heat-maps above are a 2D representation of the input
neuron’s strength. It can be observed that the strength of neurons is random at the beginning of training.
After a few epochs, the pattern changes, and neurons in the center become more important and similar to
the MNIST data pattern

385Machine Learning (2022) 111:377–414

1 3

training, all the neurons have small strength due to the random initialization of each weight
to a small value. During the network evolution, stronger connections are linked to impor-
tant features gradually. We can observe that after ten epochs, the neurons in the center of
the map become stronger. This pattern is similar to the pattern of MNIST data in which
most of the digits appear in the middle of the picture.

We studied other metrics for estimating the neuron importance, such as the strength of
output neurons, degree of input and output neurons, and strength and degree of neurons
simultaneously. However, in our experiments, all these methods have been outperformed
by the strength of the input neurons in terms of accuracy and stability.

4 Experiments

In order to verify the validity of our proposed method, we carry out several experiments. In
this section, first, we state the settings of the experiments, including hyperparameters and
datasets. Then, we perform feature selection with QuickSelection and compare the results
with other methods, including MCFS, Laplacian Score, and three autoencoder-based fea-
ture selection methods. After that, we do different analyses on QuickSelection to under-
stand its behavior. Finally, we discuss the scalability of QuickSelection and compare it with
the other methods considered.

4.1 Settings

The experiment settings, including the values of hyperparameters, implementation details,
the structure of the sparse DAE, datasets we use for evaluation, and the evaluation metric,
are as follows.

4.1.1 Hyperparameters and implementation

For feature selection, we consider the case of the simplest sparse DAE with one hidden
layer consisting of 1000 neurons. This choice is made due to our main objective to decrease
the model complexity and the number of parameters. The activation function used for the
hidden and output layer neurons is “Sigmoid” and “Linear” respectively, except for the
Madelon dataset where we use “Tanh” for the output activation function. We train the net-
work with SGD and a learning rate of 0.01. The hyperparameter � , the fraction of weights
to be removed in the SET procedure, is 0.2. Also, � , which determines the sparsity level,
is set to 13. We set the noise factor (nf) to 0.2 in the experiments. To improve the learning
process of our network, we standardize the features of our dataset such that each attribute
has zero mean and unit variance. However, for SMK and PCMAC datasets, we use Min-
Max scaling. The preprocessing method for each dataset is determined with a small experi-
ment of the two preprocessing method.

We implement sparse DAE and QuickSelection1 in a purely sparse manner in Python,
using the Scipy library (Jones et al. 2001) and Cython. We compare our proposed method
to MCFS, Laplacian score (LS), AEFS, and CAE, which have been mentioned in Sect. 2.

1 The implementation of QuickSelection is available at: https:// github. com/ zahra atash gahi/ Quick Selec tion.

https://github.com/zahraatashgahi/QuickSelection

386 Machine Learning (2022) 111:377–414

1 3

We also performed some experiments with UDFS; however, since we were not able to
obtain many of the results in the considered time limit (24 hours), we do not include the
results in the paper. We have used the scikit-feature repository for the implementation of
MCFS, and Laplacian score (Li et al., 2018). Also, we use the implementation of feature
selection with CAE and AEFS from Github2. In addition, to highlight the advantages of
using sparse layers, we compare our results with a fully-connected autoencoder (FCAE)
using the neuron strength as a measure of the importance of each feature. To have a fair
comparison, the structure of this network is considered similar to our DAE, one hidden
layer containing 1000 neurons implemented using TensorFlow. Furthermore, we have stud-
ied the effect of other components of QuickSelection, including input denoising and SET
training algorithm, in Appendix B.1 and F, respectively.

For all the other methods (except FCAE for which all the hyperparameters and preproc-
essing are similar to QuickSelection), we scaled the data between zero and one, since it
yields better performance than data standardization for these methods. The hyperparam-
eters of the aforementioned methods have been set similar to the ones reported in the cor-
responding code or paper. For AEFS, we tuned the regularization hyperparameter between
0.0001 and 1000, since this method is sensitive to this value. We perform our experiments
on a single CPU core, Intel Xeon Processor E5 v4, and for the methods that require GPU,
we use NVIDIA TESLA P100.

4.1.2 Datasets

We evaluate the performance of our proposed method on eight datasets, including five low-
dimensional datasets and three high-dimensional ones. Table 1 illustrates the characteris-
tics of these datasets.

• COIL-20 (Nene et al., 1996) consists of 1440 images taken from 20 objects (72 poses
for each object).

• Madelon (Guyon et al., 2008) is an artificial dataset with 5 informative features and 15
linear combinations of them. The rest of the features are distractor features since they
have no predictive power.

Table 1 Datasets characteristics

Dataset Dimensions Type Samples Train Test Classes

Coil20 1024 Image 1440 1152 288 20
Isolet 617 Speech 7737 6237 1560 26
HAR 561 Time Series 10299 7352 2947 6
Madelon 500 Artificial 2600 2000 600 2
MNIST 784 Image 70000 60000 10000 10
SMK-CAN-187 19993 Microarray 187 149 38 2
GLA-BRA-180 49151 Microarray 180 144 36 4
PCMAC 3289 Text 1943 1554 389 2

2 The implementation of AEFS and CAE is available at: https:// github. com/ mfbal in/ Concr ete- Autoe ncode rs.

https://github.com/mfbalin/Concrete-Autoencoders

387Machine Learning (2022) 111:377–414

1 3

• Human Activity Recognition (HAR) (Anguita et al., 2013) is created by collecting the
observations of 30 subjects performing 6 activities such as walking, standing, and sit-
ting. The data was recorded by a smart-phone connected to the subjects’ body.

• Isolet (Fanty & Cole, 1991) has been created with the spoken name of each letter of the
English alphabet.

• MNIST (LeCun, 1998) is a database of 28x28 images of handwritten digits.
• SMK-CAN-187 (Spira et al., 2007) is a gene expression dataset with 19993 features.

This dataset compares smokers with and without lung cancer.
• GLA-BRA-180 (Sun et al., 2006) consists of the expression profile of Stem cell factor

useful to determine tumor angiogenesis.
• PCMAC (Lang, 1995) is a subset of the 20 Newsgroups data.

4.1.3 Evaluation metrics

To evaluate our model, we compute two metrics: clustering accuracy and classification
accuracy. To derive clustering accuracy (Li et al., 2018), first, we perform K-means using
the subset of the dataset corresponding to the selected features and get the cluster labels.
Then, we find the best match between the class labels and the cluster labels and report
the clustering accuracy. We repeat the K-means algorithm 10 times and report the average
clustering results since K-means may converge to a local optimal.

To compute classification accuracy, we use a supervised classification model named
“Extremely randomized trees” (ExtraTrees), which is an ensemble learning method that
fits several randomized decision trees on different parts of the data (Geurts et al., 2006).
The choice of the classification method is made due to the computational-efficiency of the
ExtraTrees classifier. To compute classification accuracy, first, we derive the K selected
features using each feature selection method considered. Then, we train the ExtraTrees
classifier with 50 trees as estimators on the K selected features of the training set. Finally,
we compute the classification accuracy on the unseen test data. For the datasets that do not
contain a test set, we split the data into training and testing sets, including 80% of the total
original samples for the training set and the remaining 20% for the testing set. In addition,
we have evaluated the classification accuracy of feature selection using the random forest
classifier (Liaw et al., 2002) in Appendix G.

4.2 Feature selection

We select 50 features from each dataset except Madelon, for which we select just 20 fea-
tures since most of its features are non-informative noise. Then, we compute the cluster-
ing and classification accuracy on the selected subset of features; the more informative
features selected, the higher accuracy will be achieved. The clustering and classification
accuracy results of our model and the other methods are summarized in Tables 2 and 3,
respectively. These results are an average of 5 runs for each case. For the autoencoder-
based feature selection methods, including CAE, AEFS, and FCAE, we consider 100 train-
ing epochs. However, we present the results of QuickSelection at epoch 10 and 100 named
 QuickSelection10 and QuickSelection100, respectively. This is mainly due to the fact that
our proposed method is able to achieve a reasonable accuracy after the first few epochs.
Moreover, we perform hyperparameter tuning for � and � using the grid search method over

388 Machine Learning (2022) 111:377–414

1 3

a limited number of values for all datasets; the best result is presented in Tables 2 and 3 as
 QuickSelectionbest. The results of hyperparameters selection can be found in Appendix B.2.
However, we do not perform hyperparameter optimization for the other methods (except
AEFS). Therefore, in order to have a fair comparison between all methods, we do not com-
pare the results of QuickSelectionbest with the other methods.

From Table 2, it can be observed that QuickSelection outperforms all the other methods
on Isolet, Madelon, and PCMAC, in terms of clustering accuracy, while being the second-
best performer on Coil20, MNIST, SMK, and GLA. Furthermore, On the HAR dataset, it
is the best performer among all the autoencoder-based feature selection methods consid-
ered. As shown in Table 3, QuickSelection outperforms all the other methods on Coil20,
SMK, and GLA, in terms of classification accuracy, while being the second-best performer
on the other datasets. From these tables, it is clear that QuickSelection can outperform its

Table 2 Clustering accuracy (%) using 50 selected features (except Madelon for which we select 20 fea-
tures)

On each dataset, the bold entry is the best-performer, and the italic one is the second-best performer

Method COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

MCFS 67.0 ± 0.7 33.8 ± 0.5 62.4 ±
0.0

57.2 ± 0.0 35.2 ± 0 51.6 ± 0.2 65.8 ± 0.3 50.6 ± 0.0

LS 55.5 ± 0.4 33.2 ± 0.2 61.2 ±
0.0

58.1 ± 0.0 14.9 ± 0.1 51.6 ± 0.4 55.5 ± 0.4 50.6 ± 0.0

CAE 60.0 ± 1.1 31.6 ± 1.3 51.40.4 56.9 ± 3.6 49.2 ± 1.5 60.7 ± 0.4 55.4 ± 1.3 52.0 ± 1.2
AEFS 51.2 ± 1.7 31.0 ± 2.7 55.0 ±

2.2
50.8 ± 0.2 40.0 ± 1.9 52.4 ± 1.8 56.1 ± 5.2 50.9 ± 0.5

FCAE 60.2 ± 1.7 28.7 ± 2.5 49.5 ±
8.7

50.9 ± 0.4 28.2 ± 8.5 51.5 ± 0.8 53.5 ± 3.0 50.9 ± 0.1

QS
10

59.5 ± 2.1 32.5 ± 2.8 56.0 ±
2.6

57.5 ± 3.8 45.4 ± 3.9 54.0 ± 3.1 53.6 ± 4.7 50.9 ± 0.5

QS
100

60.2 ± 2.0 35.1 ± 2.7 54.6 ±
4.5

58.2 ± 1.5 48.3 ± 2.4 51.8 ± 0.8 59.5 ± 1.8 52.5 ± 1.1

QSbest 63.8 ± 1.5 42.2 ± 2.6 59.5 ±
4.3

58.6 ± 0.9 48.3 ± 2.4 54.9 ± 1.39 59.5 ± 1.8 53.1 ± 0

Table 3 Classification accuracy (%) using 50 selected features (except Madelon for which we select 20 fea-
tures)

 On each dataset, the bold entry is the best-performer, and the italic one is the second-best performer

Method COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

MCFS 99.2 ± 0.3 79.5 ± 0.4 88.9 ± 0.3 81.7 ± 0.8 88.7 ± 0 75.8 ± 1.5 70.6 ± 3.8 55.5 ± 0.0
LS 89.8 ± 0.4 83.0 ± 0.2 86.4 ± 0.4 91.4 ± 0.9 20.7 ± 0.1 71.6 ± 5.6 71.7 ± 1.1 50.4 ± 0.0
CAE 99.6 ± 0.3 89.8 ± 0.6 91.7 ± 1.0 87.5 ± 2.0 95.4 ± 0.1 71.6 ± 3.1 70.0 ± 4.1 59.9 ± 1.5
AEFS 93.0 ± 2.7 85.1 ± 2.4 87.7 ± 1.4 52.1 ± 2.8 86.1 ± 2.0 76.3 ± 4.4 68.9 ± 3.7 57.1 ± 3.6
FCAE 99.7 ± 0.2 81.6 ± 5.9 87.4 ± 2.4 53.5 ± 8.1 68.8 ± 28.7 71.6 ± 3.5 72.8 ± 4.8 58.1 ± 1.9
QS

10
98.8 ± 0.6 86.9 ± 1.1 88.8 ± 0.7 86.6 ± 3.6 93.8 ± 0.6 76.9 ± 4.6 69.4 ± 3.0 58.9 ± 4.4

QS
100

99.7 ± 0.3 89.0 ± 1.3 90.2 ± 1.2 90.3 ± 0.7 93.5 ± 0.5 75.7 ± 3.9 73.3 ± 3.3 58.0 ± 2.9
QSbest 99.7 ± 0.3 89.0 ± 1.3 90.5 ± 1.6 90.9 ± 0.5 94.2 ± 0.5 81.6 ± 2.9 73.3 ± 3.3 61.3 ± 6.1

389Machine Learning (2022) 111:377–414

1 3

equivalent dense network (FCAE) in terms of classification and clustering accuracy on all
datasets.

It can be observed in Tables 2 and 3, that Lap_score has a poor performance when the
number of samples is large (e.g. MNIST). However, in the tasks with a low number of sam-
ples and features, even on noisy environments such as Madelon, Lap_score has a relatively
good performance. In contrast, CAE has a poor performance in noisy environments (e.g.,
Madelon), while it has a decent classification accuracy on the other datasets considered. It
is the best or second-best performer on five datasets, in terms of classification accuracy,
when K = 50 . AEFS and FCAE cannot achieve a good performance on Madelon, either.
We believe that the dense layers are the main cause of this behaviour; the dense connec-
tions try to learn all input features, even the noisy features. Therefore, they fail to detect
the most important attributes of the data. MCFS performs decently on most of the datasets
in terms of clustering accuracy. This is due to the main objective of MCFS to preserve
the multi-cluster structure of the data. However, this method also has a poor performance
on the datasets with a large number of samples (e.g., MNIST) and noisy features (e.g.,
Madelon).

However, since evaluating the methods using a single value of K might not be enough
for comparison, we performed another experiment using different values of K. In Appen-
dix A.1, we test other values for K on all datasets, and compare the methods in terms of
classification accuracy, clustering accuracy, running time, and maximum memory usage.
The summary of the results of this Appendix has been summarized in Sect. 5.1.

4.2.1 Relevancy of selected features

To illustrate the ability of QuickSelection in finding informative features, we analyze
thoroughly the Madelon dataset results, which has the interesting property of containing
many noisy features. We perform the following experiments; first, we sort the features
based on their strength. Then, we remove the features one by one from the least impor-
tant feature to the most important one. In each step, we train an ExtraTrees classifier
with the remained features. We repeat this experiment by removing the feature from the
most important ones to the least important ones. The result of classification accuracy
for both experiments can be seen in Fig. 3. On the left side of Fig. 3, we can observe
that removing the least important features, which are noise, increases the accuracy. The
maximum accuracy occurs after we remove 480 noise features. This corresponds to the
moment when all the noise features are supposed to be removed. In Fig. 3 (right), it can
be seen that removing the features in a reverse order results in a sudden decrease in the
classification accuracy. After removing 20 features (indicated by the vertical blue line),

A
(

)

A
(

)

l

Fig. 3 Influence of feature removal on Madelon dataset. After deriving the importance of the features with
QuickSelection, we sort and then remove them based on two orders

390 Machine Learning (2022) 111:377–414

1 3

the classifier performs like a random classifier. We conclude that QuickSelection is able
to find the most informative features in good order.

To better show the relevancy of the features found by QuickSelection, we visualize
the 50 features selected on the MNIST dataset per class, by averaging their correspond-
ing values from all data samples belonging to one class. As can be observed in Fig. 4,
the resulting shape resembles the actual samples of the corresponding digit. We discuss
the results of all classes at different training epochs in more detail in Appendix C.

5 Discussion

5.1 Accuracy and computational efficiency trade‑off

In this section, we perform a thorough comparison between the models in terms of run-
ning time, energy consumption, memory requirement, clustering accuracy, and classifica-
tion accuracy. In short, we change the number of features to be selected (K) and measure
the accuracy, running time, and maximum memory usage across all methods. Then, we
compute two scores to summarize the results and compare methods.

We analyse the effect of changing K on QuickSelection performance and compare
it with other methods; the results are presented in Fig. 10 in Appendix A.1. Figure 10a
compares the performance of all methods when K is changing between 5 and 100 on low-
dimensional datasets, including Coil20, Isolet, HAR, and Madelon. Figure 10b illustrates
performance comparison for K between 5 and 300 on the MNIST dataset, which is also
a low-dimensional dataset. We discuss this dataset separately since it has a large number
of samples that makes it different from other low-dimensional datasets. Figure 10c repre-
sents a similar comparison on three high-dimensional datasets, including SMK, GLA, and
PCMAC. It should be noted that to have a fair comparison, we use a single CPU core to
run these methods; however, since the implementations of CAE and AEFS are optimized
for parallel computation, we use a GPU to run these methods. We also measure the running
time of feature selection with CAE on CPU.

To compare the memory requirement of each method, we profile the maximum memory
usage during feature selection for different values of K. The results are presented in Fig. 11

Fig. 4 Average values of all data samples of each class corresponding to the 50 selected features on MNIST
after 100 training epochs (bottom), along with the average of the actual data samples of each class (top)

391Machine Learning (2022) 111:377–414

1 3

in Appendix A.1, derived using a Python library named resource3. Besides, to compare
memory occupied by the autoencoder-based models, we count the number of parameters
for each model. The results are shown in Figure 14 in Appendix A.3.

However, comparing all of these methods only by looking into the graphs in Figs. 10
and 11 is not easily possible, and the trade-off between the factors is not clear. For this rea-
son, we compute two scores to take all these metrics into account simultaneously.

5.1.1 Score 1

To compute this score, on each dataset and for each value of K, we rank the methods based
on the running time, memory requirement, clustering accuracy, and classification accuracy.
Then, we give a score of 1 to the best and second-best performers; this is mainly due to the
fact that in most cases, the difference between these two is negligible. After that, we com-
pute the summation of these scores for each method on all datasets. The results are pre-
sented in Fig. 5a; to ease the comparison of different components in the score, a heat-map
visualization of the scores is presented in Fig. 5c. The cumulative score for each method
consists of four parts that correspond to each metric considered. As it is obvious in this
figure, QuickSelection (cumulative score of QuickSelection10 and QuickSelection100) out-
performs all other methods by a significant gap. Our proposed method is able to achieve
the best trade-off between accuracy, running time, and memory usage, among all these
methods. Laplacian score, the second-best performer, has a decent performance in terms of
running time and memory, while it cannot perform well in terms of accuracy. On the other
hand, CAE has a satisfactory performance in terms of accuracy. However, it is not among
the best two performers in terms of computational resources for any values of K. Finally,
FCAE and AEFS cannot achieve a decent performance compared to the other methods. A
more detailed version of Fig. 5a is available in Fig. 12 in Appendix A.1.

5.1.2 Score 2

In addition to the raking-based score, we calculate another score to consider all the methods,
even the lower-ranking ones. With this aim, on each dataset and value of K, we normalize

(a) (b) (c)

Fig. 5 Feature selection comparison in terms of classification accuracy, clustering accuracy, speed, and
memory requirement, on each dataset and for different values of K, using two scoring variants

3 https:// docs. python. org/2/ libra ry/ resou rce. html.

https://docs.python.org/2/library/resource.html

392 Machine Learning (2022) 111:377–414

1 3

each performance metric between 0 and 1, using the values of the best performer and worst
performer on each metric. The value of 1 in the accuracy score means the highest accuracy.
However, for the memory and running time, the value of 1 means the least memory require-
ment and the least running time, respectively. After normalizing the metrics, we accumulate
the normalized values for each method and on all datasets. The results are depicted in Fig. 5b.
As can be seen in this diagram, QuickSelection (we consider the results of QuickSelection100)
outperforms the other methods by a large margin. CAE has a close performance to Quick-
Selection in terms of both accuracy metrics, while it has a poor performance in terms of
memory and running time. In contrast, Lap_score is computationally efficient while having
the lowest accuracy score. In summary, it can be observed in Fig. 5b, that QuickSelection
achieves the best trade-off of the four objectives among the considered methods.

5.1.3 Energy consumption

The next analysis we perform concerns the energy consumption of each method. We esti-
mate the energy consumption of each method using the running time of the corresponding
algorithm for each dataset and value of K. We assume that each method uses the maximum
power of the corresponding computational resources during its running time. Therefore,
we derive the power consumption of each method, using the running time and maximum
power consumption of CPU and/or GPU, which can be found within the specification of
the corresponding CPU or GPU model. As shown in Fig. 13 in Appendix A.2, the Lapla-
cian score feature selection needs the least amount of energy among the methods on all
datasets except the MNIST dataset. QuickSelection10 is the best performer on MNIST in
terms of energy consumption. Laplacian score and MCFS are sensitive to the number of
samples. They cannot perform well on MNIST, either in terms of accuracy or efficiency.
The maximum memory usage during feature selection for Laplacian score and MCFS on
MNIST is 56 GB and 85 GB, respectively. Therefore, they are not a good choice in case of
having a large number of samples. QuickSelection is the second-best performer in terms of
energy consumption, and also the best performer among the autoencoder-based methods.
QuickSelection is not sensitive to the number of samples or the number of dimensions.

5.1.4 Efficiency versus accuracy

In order to study the trade-off between accuracy and resource efficiency, we perform another
in-depth analysis. In this analysis, we plot the trade-off between accuracy (including, clas-
sification and clustering accuracy) and resource requirement (including, memory and energy
consumption). The results are shown in Figs. 6 and 7 that correspond to the energy-accuracy
and memory-accuracy trade-off, respectively. Each point in these plots refers to the results
of a particular combination between a specific method and dataset when selecting 50 fea-
tures (except Madelon, for which we select 20 features). As can be observed in these plots,
QuickSelection, MCFS, and Lap_score usually have a good trade-off between the consid-
ered metrics. A good trade-off between a pair of metrics is to maximize the accuracy (clas-
sification or clustering accuracy) while minimizing the computational cost (power con-
sumption or memory requirement). However, when the number of samples increases (on
the MNIST dataset), both MCFS and Lap_score fail to maintain a low computational cost
and high accuracy. Therefore, when the dataset size increases, these two methods are not an
optimal choice. Among the autoencoder-based methods, in most cases QuickSelection10 and
 QuickSelection100 are among the Pareto optimal points. Another significant advantage of our

393Machine Learning (2022) 111:377–414

1 3

proposed method is that it gives the ranking of the features as the output. Therefore, unlike
the MCFS or CAE that need the value of K as their input, QuickSelection is not dependent
on K and needs just a single training of the sparse DAE model for any values of K. Therefore,
the computational cost of QuickSelection is the same for all values of K, and only a single
run of this algorithm is required to get the hierarchical importance of features.

5.2 Running time comparison on an artificially generated dataset

In this section, we perform a comparison of the running time of the autoencoder-based fea-
ture selection methods on an artificially generated dataset. Since on the benchmark data-
sets both the number of features and samples are different, it is not easily possible to com-
pare clearly the efficiency of the methods. This experiment aims at comparing the models
real wall-clock training time in a controlled environment with respect to the number of
input features and hidden neurons. In addition, in Appendix E, we have conducted another

Fig. 6 Estimated power consumption (Kwh) versus accuracy (%) when selecting 50 features (except
Madelon for which we select 20 features). Each point refers to the result of a single dataset (specified by
colors) and method (specified by markers) where the x and y-axis show the accuracy and the estimated
power consumption, respectively

Fig. 7 Maximum memory requirement (Kb) versus accuracy (%) when selecting 50 features (except
Madelon for which we select 20 features). Each point refers to the result of a single dataset (specified by
colors) and method (specified by markers) where the x and y-axis show the accuracy and the maximum
memory requirement, respectively. Due to the high memory requirement of MCFS and Lap_score on the
MNIST dataset which makes it difficult to compare the other results (upper plots), we zoom in this section
in the bottom plots

394 Machine Learning (2022) 111:377–414

1 3

experiment regarding the evaluation of the methods on a very large artificial dataset in terms
of both computational resources and accuracy.

In this experiment, we aim to compare the speed of QuickSelection versus other autoencoder-
based feature selection methods for different numbers of input features. We run all of them on an
artificially generated dataset with various numbers of features and 5000 samples, for 100 training
epochs (10 epochs for QuickSelection10). The features of this dataset are generated using a stand-
ard normal distribution. In addition, we aim to compare the running time of different structures
for these algorithms. The specifications of the network structure for each method, the computa-
tional resources used for feature selection, and the corresponding results can be seen in Fig. 8.

For CAE, we consider two different values of K. The structure of CAE depends on this
value. CAE has two hidden layers including a concrete selector and a decoder that have K
and 1.5K neurons, respectively. Therefore, by increasing the number of selected features, the
running time of the model will also increase. In addition, we consider the cases of CAE with
1000 and 10000 hidden neurons in the decoder layer (manually changed in the code) to be able
to compare it with the other models. We also measure the running time of performing feature
selection with CAE using only a single CPU core. It can be seen from Fig. 8 that its running
time is considerably high. The general structures of AEFS, QuickSelection, and FCAE are
similar in terms of the number of hidden layers. They are basic autoencoders with a single hid-
den layer. For AEFS, we considered three structures with different numbers of hidden neurons,
including 300, 1000, and 10000. Finally, for QuickSelection and FCAE, we consider two dif-
ferent values for the number of hidden neurons, including 1000 and 10000.

It can be observed that the running time of AEFS with 1000 and 10000 hidden neurons
using a GPU, is much larger than the running time of QuickSelection100 with similar num-
bers of hidden neurons using only a single CPU core, respectively. The same pattern is also
visible in the case of CAE with 1000 and 10000 hidden neurons. This pattern also repeats
in the case of FCAE with 10000 hidden neurons. The running time of FCAE with 1000

Fig. 8 Running time comparison on an artificially generated dataset. The features are generated using a
standard normal distribution and the number of samples for each case is 5000

395Machine Learning (2022) 111:377–414

1 3

hidden neurons is approximately similar to QuickSelection100 . However, the difference
between these two methods is more significant when we increase the number of hidden
neurons to 10000. This is mainly due to the fact that the difference between the number of
parameters of QuickSelection and the other methods become much higher for large values
of K. Besides, these observations depict that the running time of QuickSelection does not
change significantly by increasing the number of hidden neurons.

As we have also mentioned before, QuickSelection gives the ranking of the features as the
output. Therefore, unlike CAE, which should be run separately for different values of K, Quick-
Selection is not affected by choice of K because it computes the importance of all features at the
same time and after finishing the training. In short, QuickSelection10 has the least running time
among other autoencoder-based methods while being independent of the value of K. In addition,
unlike the other methods, the running time of QuickSelection is not sensitive to the number of
hidden neurons since the number of parameters is low even for a very large hidden layer.

5.3 Neuron strength analysis

In this section, we discuss the validity of neurons strength as a measure of feature impor-
tance. We observe the evolution of the network during training to analyze how the neuron
strength of important and unimportant neurons changes during training.

We argue that the most important features that lead to the highest accuracy of feature
selection are the features corresponding to neurons with the highest strength. In a neu-
ral network, weight magnitude is a metric that shows the importance of each connection
(Kavzoglu and Mather 1998). This stems from the fact that weights with a small magni-
tude have a small effect on the performance of the model. At the beginning of training, we
initialize all connections to a small random value. Therefore, all the neurons have almost
the same strength/importance. As the training proceeds, some connections grow to a larger
value while some others are pruned from the network during the dynamic connections
removal and regrowth of the SET training procedure. The growth of the stable connection
weights demonstrates their significance in the performance of the network. As a result, the
neurons connected to these important weights contain important information. In contrast,
the magnitude of the weights connected to unimportant neurons gradually decreases until
they are removed from the network. In short, important neurons receive connections with a
larger magnitude. As a result, neuron strength, which is the summation of the magnitude of
weights connected to a neuron, can be a measure of the importance of an input neuron and
its corresponding feature.

To support our claim, we observe the evolution of neurons’ strength on the Madelon
dataset. This choice is made due to the distinction between informative and non-inform-
ative features in the Madelon dataset. As described earlier, this dataset has 20 informa-
tive features, and the rest of the features are non-informative noise. We consider 20 most
informative and non-informative features detected by QS10 and QS100 , and monitor their
strength during training (as observed in Fig. 3, the maximum accuracy is achieved using
the 20 most informative features, while the least accuracy is achieved using the least impor-
tant features). The features selected by QS10 are also being monitored after the algorithm is
finished (epoch 10) until epoch 100, in order to compare the quality of the selected features
by QS10 with QS100 . In other words, we extract the index of important features using QS10 ,
and continue the training without making any changes in the network and monitor how the
strength of the neurons corresponding to the selected index would evolve after epoch 10.

396 Machine Learning (2022) 111:377–414

1 3

The results are presented in Fig. 9. At the initialization (epoch 0), the strength of all these
neurons is almost similar and below 5. As the training starts, the strength of significant
neurons increases, while the strength of unimportant neurons does not change significantly.
As can be seen in Fig. 9, some of the important features selected by QS10 are not among
those of QS100 ; this can explain the difference in the performance of these two methods
in Table 2 and 3. However, QS10 is able to detect a large majority of the features found
by QS100 ; these features are among the most important ones among the final 20 selected
features. Therefore, we can conclude that most of the important features are detectable by
QuickSelection, even at the first few epochs of the algorithm.

6 Conclusion

In this paper, a novel method (QuickSelection) for energy-efficient unsupervised fea-
ture selection has been proposed. It introduces neuron strength in sparse neural net-
works as a measure of feature importance. Besides, it proposes sparse DAE to accu-
rately model the data distribution and to rank all features simultaneously based on
their importance. By using sparse layers instead of dense ones from the beginning,
the number of parameters drops significantly. As a result, QuickSelection requires
much less memory and computational resources than its equivalent dense model and

Fig. 9 Strength of the 20 most informative and non-informative features of Madelon dataset, selected by
QS

10
 and QS

100
 . Each line in the plots corresponds to the strength values of a selected feature by QS

10
/QS

100

during training. The features selected by QS
10

 have been observed until epoch 100 to compare the quality of
these features with QS

100

397Machine Learning (2022) 111:377–414

1 3

its competitors. For example, on low-dimensional datasets, including Coil20, Isolet,
HAR, and Madelon, and for all values of K, QuickSelection100 which runs on one CPU
core is at least 4 times faster than its direct competitor, CAE, which runs on a GPU,
while having a close performance in terms of classification and clustering accuracy.
We empirically demonstrate that QuickSelection achieves the best trade-off between
clustering accuracy, classification accuracy, maximum memory requirement, and run-
ning time, among other methods considered. Besides, our proposed method requires
the least amount of energy among autoencoder-based methods considered.

The main drawback of the the proposed method is the lack of a parallel implementa-
tion. The running time of QuickSelection can be further decreased by an implementa-
tion that takes advantage of multi-core CPU or GPU. We believe that interesting future
research would be to study the effects of sparse training and neuron strength in other
types of autoencoders for feature selection, e.g. CAE. Nevertheless, this paper has just
started to explore one of the most important characteristics of QuickSelection, i.e.
scalability, and we intend to explore further its full potential on datasets with millions
of features. Besides, this paper showed that we can perform feature selection using
neural networks efficiently in terms of computational cost and memory requirement.
This can pave the way for reducing the ever-increasing computational costs of deep
learning models imposed on data centers. As a result, this will not only save the energy
costs of processing high-dimensional data but also will ease the challenges of high
energy consumption imposed on the environment.

Appendix

Appendix A: Performance evaluation

In this appendix, we compare all methods from different aspects including accuracy, mem-
ory usage, running time, energy consumption, and the number of parameters. We perform
different experiments to gain a deep insight into the performance of QuickSelection.

A.1 Discussion: accuracy and computational efficiency trade‑off

In this section, we compare the performance of all methods in more detail. We run feature
selection for different values of K on each dataset and then measure the performance.

As shown in Fig. 10, we compare clustering accuracy, classification accuracy, and run-
ning time among the methods for different values of K. The comparison of maximum
memory (RAM) requirement is also depicted in Fig. 11. For all methods except CAE and
AEFS, we run the experiments on a single CPU core. Since the implementations of CAE
and AEFS are optimized for GPU, we measure the running time of these methods using
a GPU. However, we also consider the running time of CAE using a single CPU core. It
should be noticed that since Laplacian score, AEFS, FCAE, and QuickSelection give the
ranking of the features as the output of the feature selection process, we need to run them
just once for all values of K. However, MCFS and CAE need the K value as an input of
their algorithm. So, the running time depends on the value of K. In the implementation of
AEFS, K is used to set the number of hidden values. However, it is not the requirement of
the algorithm.

398 Machine Learning (2022) 111:377–414

1 3

We summarize the results of the aforementioned plots in Fig. 12; we compare the meth-
ods using the score 1, which is introduced in Sect. 5.1. This score is computed based on
the methods’ ranking in clustering accuracy, classification accuracy, running time, and
memory. As explained in Sect. 5.1, we give a score of one to each method that is the first or
second-best performer in each of the considered metrics. Then, we compute a sum over all
of these scores on all datasets and on all values of K; the final scores for each method can

(a)

(b) (c)

Fig. 10 Comparison of clustering accuracy, classification accuracy, and running time for various values of
K among all the methods considered on eight datasets, including low-dimensional and high-dimensional
datasets. The running time of CAE and AEFS is measured using a GPU, while all the other methods use
only a single CPU core

399Machine Learning (2022) 111:377–414

1 3

be seen in Fig. 12. The first column depicts the results on low-dimensional datasets with
a low number of samples, including Coil20, Isolet, HAR, and Madelon. The second col-
umn shows the results corresponding to MNIST. Similarly, the third column corresponds
to high-dimensional datasets, including SMK, GLA, and PCMAC. The total score over all
of these datasets is shown in the 4th column. In Fig. 12, there exist four rows; the first row
corresponds to considering QuickSelection10 and QuickSelection100 simultaneously, and

Fig. 11 Maximum memory usage during feature selection for different values of K

Low-dimensional datasets MNIST dataset High-dimensional datasets All datasets All datasets (Average)

Q
S

10 , Q
S

100
S

U
M

Q
S

10
Q

S
100

Fig. 12 Feature selection results comparison in terms of classification accuracy, clustering accuracy, speed,
and memory. The Scores are based on the ranking of the methods on each dataset and for different values of
K (Score 1)

400 Machine Learning (2022) 111:377–414

1 3

the sum of their scores are depicted in the second row. The last two rows correspond to
considering each of these two methods separately.

However, since the performance of each method can be different in each of the three
groups of datasets, we compute a normalized version of the score 1, based on the num-
ber of datasets in each group. For example, the Laplacian score has a poor performance
on MNIST, and this pattern would be similar on other datasets with a large number of
samples. However, there is just one dataset with a large number of samples in this experi-
ment. On the other hand, on high-dimensional datasets with a low number of samples, this
method has a good performance in terms of running time, and we have three datasets with
such characteristics. So, we normalize the values of score 1, such that instead of giving a
score of one to each method, we give a score of one divided by the number of datasets in
the corresponding group. The results of the normalized score 1 are shown in the last col-
umn of Fig. 12.

A.2 Energy consumption

We perform another experiment regarding the comparison of energy consumption among
all methods. The results are presented in Fig. 13. More details regarding this plot are given
in the paper in Sect. 5.1.

A.3 Number of parameters

In Fig. 14, we compare the number of parameters of the autoencoder-based methods.
FCAE, a fully connected-autoencoder with 1000 hidden neurons, has the highest number
of parameters on all datasets. Our proposed network, sparse DAE, has the lowest number
of parameters in most cases. It has 1000 hidden neurons that are sparsely connected to
input and output neurons. The number of parameters of AEFS and CAE depends on the
number of selected features. As also mentioned earlier, the structure of AEFS is similar to
FCAE with a difference in the number of hidden neurons. The number of hidden neurons
in the implementation of AEFS is set to K.

Fig. 13 Energy consumption of all methods for different values of K

401Machine Learning (2022) 111:377–414

1 3

Fig. 14 Number of parameters of autoencoder-based models for different values of K

Appendix B: Parameter selection

In this appendix, we discuss the effect of three hyperparameters of QuickSelection on fea-
ture selection performance.

B.1 Noise factor

To analyze the effect of the noise level on QuickSelection behavior, we evaluate the sparse
DAE model with different noise factors. To this end, we test different noise factors between
0 and 0.8. The results can be observed in Fig. 15. These results are an average of 5 runs for
each case.

We can observe that adding 20% to 40% noise on the data seems to be opti-
mal; it improves the performance on most of the datasets for QuickSelection10 and
 QuickSelection100 compared to the model without any noise. We choose the noise factor of
0.2 for all the experiments.

It is clear in Fig. 15, that setting the noise factor to a large value may corrupt the input
data in such a way that the network would not be able to model the data distribution accu-
rately. For example, on the Isolet dataset, the clustering accuracy degrades for 10% when
we add 80% noise on the input data compared to the model with the noise factor of 0.2.
Also, the result is less stable when we add a large amount of noise. In this example, we can
observe that adding 20% noise to the original data improves both classification and cluster-
ing accuracy of QuickSelection100 by approximately 3%.

From this figure, it can be observed that the improvement of adding noise, is more obvi-
ous in QuickSelection100 than QuickSelection10. When we add noise to the data, it needs
more time to learn the original structure of the data. So, we need to run it for more epochs
to get a proper result.

402 Machine Learning (2022) 111:377–414

1 3

B.2 SET hyperparameters

As explained in the paper, � and � are the hyperparameters of the SET algorithm which
control the number of connections to remove/add for each topology change and the sparsity
level, respectively. The corresponding density level of each � value for each dataset can be
observed in Table 4.

To illustrate the effect of the hyperparameters � and � , we perform a grid search within a
small set of values on all of the datasets. The obtained results can be found in Tables 5 and 6.

Fig. 15 Clustering and classification accuracy for feature selection using QuickSelection10 and
 QuickSelection100 with different values of noise factor. We select 50 features from all datasets except
Madelon for which we select 20 features

Table 4 � values and their corresponding density level (%)

Density [%]

� COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

2 0.39 0.52 0.39 0.59 0.45 0.20 0.2 0.26
5 0.98 1.30 0.98 1.48 1.13 0.53 0.51 0.65
10 1.95 2.58 1.95 2.95 2.25 1.04 1.02 1.13
13 2.53 3.35 2.53 3.82 2.91 1.35 1.32 1.69
20 3.87 5.10 3.87 5.82 4.45 2.07 2.04 2.6
25 4.87 6.45 4.87 7.37 5.63 2.65 2.55 3.26

403Machine Learning (2022) 111:377–414

1 3

Ta
bl

e
5

 H
yp

er
-p

ar
am

et
er

 se
le

ct
io

n
fo

r Q
ui

ck
Se

le
ct

io
n 1

0

�

�
2

5
10

13
20

25

(a
) C

oi
l2

0
0.

1
61

.4
 ±

 2
.3

, 9
8.

6
±

 1
.5

59
.7

 ±
 1

.8
, 9

6.
9

±
 1

.6
61

.7
 ±

 2
.8

, 9
8.

3
±

 0
.8

60
.3

 ±
 2

.0
, 9

8.
6

±
 1

.7
61

.9
 ±

 0
.9

, 9
9.

5
±

 0
.3

60
.8

 ±
 2

.4
, 9

9.
7

±
 0

.2
0.

2
59

.4
 ±

 3
.8

, 9
7.

9
±

 1
.4

59
.3

 ±
 0

.9
, 9

8.
5

±
 1

.2
60

.1
 ±

 2
.6

, 9
8.

9
±

 0
.6

59
.5

 ±
 2

.1
, 9

8.
8

±
 0

.6
63

.6
 ±

 2
.5

, 9
9.

7
±

 0
.3

61
.0

 ±
 3

.0
, 9

9.
7

±
 0

.4
0.

3
61

.3
 ±

 2
.1

, 9
8.

7
±

 1
.6

59
.5

 ±
 1

.9
, 9

6.
7

±
 0

.6
60

.3
 ±

 0
.9

, 9
9.

1
±

 0
.6

60
.1

 ±
 1

.9
, 9

8.
2

±
 1

.0
59

.9
 ±

 2
.6

, 9
8.

7
±

 0
.9

60
.8

 ±
 1

.9
, 9

9.
4

±
 0

.4
0.

4
60

.5
 ±

 3
.2

, 9
7.

5
±

 1
.3

59
.0

 ±
 2

.4
, 9

6.
8

±
 1

.8
57

.2
 ±

 1
.5

, 9
7.

7
±

 1
.7

62
.0

 ±
 2

.5
, 9

9.
2

±
 0

.3
62

.1
 ±

 2
.5

, 9
9.

7
±

 0
.3

63
.8

 ±
 1

.5
, 9

9.
4

±
 0

.6
0.

5
61

.2
 ±

 2
.3

, 9
8.

0
±

 0
.9

58
.4

 ±
 2

.6
, 9

7.
8

±
 1

.2
58

.9
 ±

 2
.6

, 9
7.

3
±

 1
.3

60
.6

 ±
 1

.6
, 9

8.
2

±
 1

.6
59

.1
 ±

 2
.9

, 9
9.

0
±

 0
.6

62
.8

 ±
 1

.6
, 9

9.
0

±
 1

.0
(b

) I
so

le
t

0.
1

28
.6

 ±
 2

.1
, 8

2.
5

±
 3

.7
31

.7
 ±

 2
.4

, 8
4.

9
±

 2
.4

31
.2

 ±
 2

.2
, 8

7.
4

±
 1

.7
29

.4
 ±

 1
.5

, 8
8.

4
±

 1
.3

32
.4

 ±
 1

.8
, 8

6.
9

±
 1

.5
31

.7
 ±

 1
.0

, 8
6.

9
±

 0
.7

0.
2

26
.1

 ±
 2

.2
, 8

1.
5

±
 1

.8
30

.2
 ±

 2
.4

, 8
6.

2
±

 2
.8

30
.9

 ±
 2

.3
, 8

8.
2

±
 0

.6
32

.5
 ±

 2
.8

, 8
6.

9
±

 1
.1

32
.4

 ±
 1

.6
, 8

7.
8

±
 1

.6
33

.4
 ±

 2
.1

, 8
7.

5
±

 1
.0

0.
3

27
.9

 ±
 2

.0
, 8

3.
0

±
 3

.6
30

.6
 ±

 3
.3

, 8
7.

2
±

 2
.1

31
.9

 ±
 2

.5
, 8

7.
3

±
 1

.1
32

.9
 ±

 1
.1

, 8
7.

7
±

 1
.1

32
.2

 ±
 1

.8
, 8

7.
3

±
 0

.9
32

.3
 ±

 2
.4

, 8
8.

1
±

 1
.7

0.
4

26
.9

 ±
 2

.0
, 8

2.
5

±
 2

.5
30

.0
 ±

 0
.8

, 8
6.

4
±

 3
.3

31
.5

 ±
 2

.3
, 8

6.
2

±
 2

.6
29

.0
 ±

 1
.4

, 8
5.

4
±

 1
.6

34
.5

 ±
 2

.9
, 8

6.
5

±
 2

.3
31

.9
 ±

 3
.4

, 8
7.

1
±

 1
.1

0.
5

26
.9

 ±
 1

.9
, 8

1.
8

±
 1

.7
30

.7
 ±

 1
.9

, 8
4.

9
±

 3
.1

30
.7

 ±
 2

.3
, 8

6.
7

±
 2

.3
31

.2
 ±

 3
.5

, 8
6.

9
±

 1
.7

33
.1

 ±
 1

.5
, 8

7.
4

±
 0

.8
33

.8
 ±

 2
.1

, 8
7.

1
±

 0
.6

(c
) H

AR
0.

1
43

.0
 ±

 2
.7

, 8
3.

2
±

 1
.6

56
.8

 ±
 1

.0
, 8

8.
6

±
 1

.5
55

.8
 ±

 3
.8

, 8
8.

4
±

 0
.6

56
.0

 ±
 2

.6
, 8

7.
7

±
 0

.8
56

.6
 ±

 4
.9

, 9
0.

1
±

 1
.9

56
.4

 ±
 4

.7
, 8

8.
4

±
 1

.3
0.

2
43

.8
 ±

 2
.1

, 8
2.

7
±

 2
.6

56
.5

 ±
 0

.9
, 8

9.
2

±
 2

.2
58

.8
 ±

 1
.1

, 8
8.

4
±

 0
.5

56
.0

 ±
 2

.6
, 8

8.
8

±
 0

.7
54

.5
 ±

 4
.1

, 8
8.

9
±

 1
.3

55
.0

 ±
 2

.8
, 8

9.
7

±
 0

.8
0.

3
43

.0
 ±

 2
.1

, 8
4.

5
±

 2
.2

55
.7

 ±
 1

.7
, 8

9.
6

±
 1

.4
59

.2
 ±

 1
.0

, 8
8.

4
±

 1
.1

54
.7

 ±
 5

.2
, 8

8.
4

±
 1

.5
56

.3
 ±

 2
.4

, 8
9.

1
±

 1
.8

57
.7

 ±
 2

.1
, 8

9.
3

±
 1

.7
0.

4
42

.4
 ±

 3
.7

, 8
2.

9
±

 1
.4

55
.5

 ±
 1

.4
, 8

9.
8

±
 1

.5
56

.9
 ±

 1
.8

, 8
8.

7
±

 0
.6

59
.1

 ±
 0

.7
, 8

9.
4

±
 0

.6
56

.7
 ±

 3
.2

, 8
9.

7
±

 1
.2

56
.9

 ±
 2

.2
, 8

9.
1

±
 1

.8
0.

5
45

.9
 ±

 7
.0

, 8
4.

0
±

 3
.1

52
.2

 ±
 5

.2
, 8

9.
9

±
 0

.7
57

.9
 ±

 1
.9

, 8
9.

2
±

 0
.6

59
.5

 ±
 4

.3
, 8

9.
7

±
 1

.1
55

.3
 ±

 2
.7

, 8
9.

5
±

 0
.6

52
.6

 ±
 2

.6
, 8

9.
9

±
 0

.8
(d

) M
ad

el
on

0.
1

53
.5

 ±
 1

.3
, 5

5.
3

±
 1

.9
54

.0
 ±

 4
.0

, 6
2.

1
±

 7
.9

56
.7

 ±
 3

.8
, 7

8.
5

±
 7

.0
56

.6
 ±

 2
.5

, 8
6.

2
±

 2
.1

58
.1

 ±
 2

.5
, 8

7.
6

±
 1

.9
56

.5
 ±

 3
.9

, 8
9.

4
±

 1
.1

0.
2

52
.9

 ±
 2

.8
, 6

1.
4

±
 5

.6
57

.0
 ±

 3
.2

, 6
8.

6
±

 4
.2

57
.6

 ±
 2

.9
, 8

3.
6

±
 3

.5
57

.5
 ±

 3
.8

, 8
6.

6
±

 3
.6

55
.5

 ±
 3

.7
, 8

8.
3

±
 0

.7
59

.1
 ±

 0
.9

, 8
6.

0
±

 1
.5

0.
3

53
.4

 ±
 2

.5
, 5

8.
7

±
 1

0.
3

56
.4

 ±
 3

.5
, 6

7.
1

±
 9

.1
53

.9
 ±

 3
.1

, 8
1.

4
±

 5
.6

54
.4

 ±
 3

.3
, 8

6.
4

±
 2

.0
58

.2
 ±

 2
.7

, 8
8.

3
±

 1
.8

55
.5

 ±
 2

.6
, 8

8.
5

±
 0

.8
0.

4
53

.8
 ±

 4
.1

, 5
5.

3
±

 6
.3

55
.9

 ±
 4

.3
, 6

2.
6

±
 6

.4
54

.4
 ±

 2
.4

, 8
0.

1
±

 3
.6

53
.6

 ±
 2

.4
, 8

4.
9

±
 3

.2
56

.8
 ±

 3
.0

, 8
9.

7
±

 0
.8

58
.1

 ±
 1

.8
, 8

6.
4

±
 2

.8
0.

5
55

.2
 ±

 3
.8

, 5
6.

0
±

 3
.9

52
.2

 ±
 2

.3
, 6

1.
3

±
 9

.0
56

.0
 ±

 2
.4

, 8
1.

7
±

 3
.9

57
.9

 ±
 2

.8
, 8

4.
2

±
 4

.6
57

.8
 ±

 2
.3

, 8
6.

9
±

 0
.6

57
.2

 ±
 2

.5
, 8

9.
0

±
 2

.1
(e

) M
N

IS
T

0.
1

42
.6

 ±
 3

.5
, 9

1.
4

±
 0

.5
41

.2
 ±

 1
.8

, 9
3.

2
±

 0
.4

46
.8

 ±
 4

.4
, 9

4.
3

±
 0

.2
46

.9
 ±

 1
.3

, 9
3.

9
±

 0
.3

43
.3

 ±
 1

.7
, 9

3.
5

±
 0

.4
39

.5
 ±

 1
.7

, 9
2.

4
±

 1
.2

404 Machine Learning (2022) 111:377–414

1 3

Ta
bl

e
5

 (c
on

tin
ue

d)

�

�
2

5
10

13
20

25

0.
2

43
.8

 ±
 2

.3
, 9

2.
5

±
 0

.6
43

.9
 ±

 1
.4

, 9
3.

4
±

 0
.6

43
.0

 ±
 3

.2
, 9

3.
6

±
 0

.4
45

.4
 ±

 3
.9

, 9
3.

8
±

 0
.6

38
.5

 ±
 2

.9
, 9

2.
7

±
 0

.6
37

.6
 ±

 3
.4

, 9
1.

2
±

 1
.1

0.
3

42
.1

 ±
 1

.8
, 9

1.
9

±
 0

.5
45

.4
 ±

 2
.4

, 9
4.

2
±

 0
.4

47
.4

 ±
 1

.2
, 9

4.
0

±
 0

.1
45

.5
 ±

 3
.3

, 9
4.

0
±

 0
.4

39
.7

 ±
 1

.9
, 9

2.
8

±
 0

.7
33

.9
 ±

 3
.3

, 8
8.

3
±

 2
.1

0.
4

41
.9

 ±
 2

.0
, 9

2.
9

±
 0

.7
46

.9
 ±

 2
.6

, 9
3.

7
±

 0
.4

46
.2

 ±
 0

.9
, 9

4.
1

±
 0

.3
43

.4
 ±

 1
.5

, 9
3.

7
±

 0
.3

37
.0

 ±
 3

.6
, 9

0.
9

±
 1

.5
27

.9
 ±

 2
.2

, 8
1.

7
±

 3
.1

0.
5

43
.3

 ±
 3

.6
, 9

2.
3

±
 0

.5
45

.9
 ±

 4
.8

, 9
3.

8
±

 0
.6

45
.2

 ±
 2

.9
, 9

3.
8

±
 0

.4
42

.8
 ±

 2
.7

, 9
3.

8
±

 0
.7

39
.7

 ±
 2

.8
, 9

1.
3

±
 0

.6
28

.0
 ±

 2
.5

, 7
7.

7
±

 6
.1

(f)
 S

M
K

0.
1

52
.4

 ±
 1

.3
, 7

2.
1

±
 7

.0
53

.8
 ±

 3
.0

, 7
9.

5
±

 2
.0

52
.7

 ±
 1

.6
, 7

6.
8

±
 4

.5
56

.0
 ±

 1
.7

, 7
3.

7
±

 4
.1

55
.0

 ±
 2

.3
, 7

4.
2

±
 7

.3
53

.7
 ±

 2
.4

, 7
6.

3
±

 4
.4

0.
2

54
.1

 ±
 1

.7
, 7

3.
7

±
 4

.7
53

.5
 ±

 2
.7

, 7
4.

2
±

 8
.4

55
.3

 ±
 2

.6
, 7

5.
3

±
 4

.9
54

.0
 ±

 3
.1

, 7
6.

9
±

 4
.6

52
.9

 ±
 1

.2
, 8

1.
6

±
 5

.0
54

.5
 ±

 3
.0

, 7
6.

8
±

 6
.3

0.
3

56
.9

 ±
 2

.7
, 7

6.
8

±
 6

.1
54

.7
 ±

 1
.3

, 7
5.

3
±

 5
.2

53
.9

 ±
 2

.4
, 7

4.
7

±
 4

.9
53

.9
 ±

 2
.3

, 7
4.

2
±

 4
.5

54
.5

 ±
 0

.7
, 7

6.
3

±
 3

.7
54

.8
 ±

 2
.9

, 7
5.

8
±

 3
.9

0.
4

55
.4

 ±
 3

.7
, 7

4.
7

±
 2

.1
55

.5
 ±

 1
.7

, 7
4.

2
±

 2
.6

53
.1

 ±
 1

.8
, 7

2.
6

±
 4

.9
52

.8
 ±

 1
.6

, 7
4.

7
±

 4
.6

53
.4

 ±
 2

.9
, 7

2.
6

±
 4

.3
53

.1
 ±

 2
.5

, 7
2.

6
±

 4
.3

0.
5

53
.3

 ±
 1

.3
, 7

7.
4

±
 5

.4
55

.2
 ±

 3
.0

, 7
6.

3
±

 3
.7

53
.6

 ±
 2

.5
, 7

6.
3

±
 6

.0
52

.5
 ±

 1
.5

, 7
8.

9
±

 4
.4

52
.3

 ±
 1

.0
, 7

7.
4

±
 7

.7
51

.9
 ±

 1
.5

, 7
7.

9
±

 2
.7

(g
) G

LA
0.

1
54

.1
 ±

 2
.8

, 6
6.

7
±

 5
.0

54
.7

 ±
 3

.5
, 6

7.
2

±
 5

.9
55

.0
 ±

 4
.6

, 6
6.

7
±

 1
.8

54
.5

 ±
 1

.5
, 6

7.
8

±
 5

.7
56

.6
 ±

 4
.0

, 7
5.

0
±

 6
.3

55
.9

 ±
 3

.2
, 6

8.
9

±
 5

.4
0.

2
50

.2
 ±

 3
.5

, 6
7.

8
±

 3
.8

53
.4

 ±
 3

.3
, 6

7.
2

±
 6

.2
56

.6
 ±

 2
.5

, 7
0.

0
±

 4
.4

53
.6

 ±
 4

.7
, 6

9.
4

±
 3

.0
56

.7
 ±

 2
.2

, 6
8.

3
±

 2
.8

52
.6

 ±
 1

.5
, 6

8.
9

±
 1

.1
0.

3
56

.2
 ±

 3
.5

, 6
8.

9
±

 4
.8

53
.3

 ±
 4

.8
, 6

8.
3

±
 3

.8
54

.4
 ±

 2
.4

, 6
7.

8
±

 2
.8

57
.8

 ±
 4

.3
, 7

0.
0

±
 3

.2
56

.1
 ±

 1
.9

, 7
0.

6
±

 3
.8

56
.0

 ±
 3

.0
, 7

1.
1

±
 4

.5
0.

4
55

.6
 ±

 3
.5

, 6
8.

9
±

 2
.1

54
.2

 ±
 1

.5
, 6

8.
3

±
 4

.5
57

.5
 ±

 3
.1

, 6
8.

3
±

 2
.2

56
.9

 ±
 1

.1
, 7

0.
6

±
 2

.8
55

.7
 ±

 3
.6

, 6
8.

3
±

 4
.5

55
.4

 ±
 2

.4
, 6

8.
9

±
 6

.9
0.

5
54

.9
 ±

 2
.6

, 6
8.

9
±

 4
.1

54
.0

 ±
 2

.5
, 6

6.
1

±
 3

.7
54

.8
 ±

 2
.4

, 7
1.

1
±

 4
.5

54
.5

 ±
 5

.1
, 6

7.
2

±
 6

.4
56

.5
 ±

 5
.6

, 7
1.

1
±

 1
.4

55
.8

 ±
 2

.0
, 6

5.
6

±
 3

.8
(h

) P
C

M
AC

0.
1

51
.0

 ±
 0

.5
, 6

1.
1

±
 4

.2
51

.0
 ±

 0
.6

, 5
7.

0
±

 2
.0

51
.1

 ±
 1

.1
, 5

9.
3

±
 3

.4
51

.4
 ±

 0
.5

, 5
6.

6
±

 3
.0

50
.9

 ±
 0

.2
, 5

5.
5

±
 3

.5
51

.3
 ±

 0
.5

, 5
9.

4
±

 2
.2

0.
2

50
.5

 ±
 0

.4
, 6

1.
3

±
 6

.1
50

.8
 ±

 0
.5

, 5
7.

0
±

 3
.5

50
.7

 ±
 0

.4
, 5

5.
8

±
 2

.1
50

.9
 ±

 0
.5

, 5
8.

9
±

 4
.4

51
.0

 ±
 0

.2
, 5

9.
2

±
 4

.0
51

.0
 ±

 0
.6

, 5
7.

8
±

 2
.1

0.
3

51
.3

 ±
 1

.0
, 5

8.
7

±
 2

.9
50

.9
 ±

 0
.3

, 5
7.

4
±

 1
.1

51
.0

 ±
 0

.4
, 5

7.
0

±
 2

.0
51

.2
 ±

 0
.5

, 5
9.

2
±

 3
.2

50
.7

 ±
 0

.3
, 5

8.
2

±
 1

.9
51

.1
 ±

 0
.6

, 5
8.

3
±

 1
.9

0.
4

50
.7

 ±
 0

.3
, 5

8.
1

±
 2

.4
51

.3
 ±

 0
.4

, 5
5.

7
±

 2
.8

50
.9

 ±
 0

.5
, 5

5.
2

±
 1

.0
51

.1
 ±

 0
.3

, 5
8.

1
±

 2
.5

51
.1

 ±
 0

.2
, 5

7.
9

±
 3

.7
51

.6
 ±

 0
.9

, 5
5.

4
±

 2
.2

0.
5

51
.1

 ±
 0

.5
, 5

7.
4

±
 2

.4
51

.1
 ±

 0
.4

, 5
7.

0
±

 1
.6

51
.2

 ±
 0

.9
, 5

8.
1

±
 3

.0
51

.0
 ±

 0
.6

, 5
6.

4
±

 1
.4

50
.9

 ±
 0

.3
, 5

5.
8

±
 1

.9
51

.6
 ±

 0
.9

, 5
8.

0
±

 2
.4

Ea
ch

 e
nt

ry
 o

f e
ac

h
ta

bl
e

co
nt

ai
ns

 c
lu

ste
rin

g
ac

cu
ra

cy
 a

nd
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

 in
 p

er
ce

nt
ag

es
 (%

),
re

sp
ec

tiv
el

y

405Machine Learning (2022) 111:377–414

1 3

Ta
bl

e
6

 H
yp

er
-p

ar
am

et
er

 se
le

ct
io

n
fo

r Q
ui

ck
Se

le
ct

io
n 1

00
.

�

�
2

5
10

13
20

25

(a
) C

oi
l2

0
0.

1
63

.2
 ±

 0
.7

, 9
9.

7
±

 0
.2

62
.8

 ±
 1

.1
, 9

9.
4

±
 0

.7
60

.2
 ±

 3
.5

, 9
9.

2
±

 0
.4

61
.8

 ±
 1

.5
, 9

9.
7

±
 0

.5
56

.0
 ±

 2
.3

, 9
8.

8
±

 1
.0

53
.4

 ±
 1

.7
, 9

8.
8

±
 0

.5
0.

2
61

.3
 ±

 0
.9

, 9
9.

1
±

 0
.7

62
.1

 ±
 3

.2
, 9

9.
7

±
 0

.1
61

.7
 ±

 2
.3

, 9
9.

6
±

 0
.4

60
.2

 ±
 2

.0
, 9

9.
7

±
 0

.3
56

.9
 ±

 1
.8

, 9
9.

1
±

 0
.6

53
.9

 ±
 1

.5
, 9

8.
9

±
 0

.7
0.

3
62

.1
 ±

 1
.5

, 9
8.

5
±

 0
.8

62
.0

 ±
 2

.6
, 9

9.
4

±
 0

.7
60

.0
 ±

 1
.8

, 9
9.

5
±

 0
.2

60
.2

 ±
 2

.5
, 9

9.
3

±
 0

.2
55

.0
 ±

 1
.6

, 9
8.

8
±

 0
.9

53
.8

 ±
 1

.7
, 9

8.
3

±
 0

.8
0.

4
58

.9
 ±

 1
.3

, 9
8.

3
±

 0
.6

62
.9

 ±
 1

.0
, 9

9.
7

±
 0

.3
62

.0
 ±

 3
.0

, 9
9.

5
±

 0
.5

62
.3

 ±
 1

.4
, 9

9.
7

±
 0

.4
57

.8
 ±

 2
.5

, 9
9.

2
±

 0
.2

57
.2

 ±
 2

.2
, 9

9.
0

±
 0

.7
0.

5
58

.1
 ±

 1
.9

, 9
7.

1
±

 1
.7

59
.9

 ±
 1

.5
, 9

9.
4

±
 0

.4
63

.2
 ±

 2
.6

, 9
9.

0
±

 0
.8

64
.2

 ±
 1

.3
, 9

9.
6

±
 0

.3
59

.2
 ±

 2
.9

, 9
8.

8
±

 1
.1

58
.0

 ±
 1

.4
, 9

9.
1

±
 1

.0
(b

) I
so

le
t

0.
1

29
.4

 ±
 2

.2
, 8

7.
1

±
 1

.1
29

.7
 ±

 1
.5

, 8
4.

8
±

 3
.2

28
.3

 ±
 2

.7
, 8

3.
4

±
 4

.2
33

.2
 ±

 3
.0

, 8
9.

3
±

 1
.8

37
.7

 ±
 1

.9
, 8

7.
5

±
 1

.8
36

.2
 ±

 2
.4

, 8
8.

3
±

 1
.2

0.
2

29
.4

 ±
 2

.2
, 8

5.
9

±
 2

.1
29

.6
 ±

 2
.7

, 8
6.

0
±

 1
.8

31
.5

 ±
 2

.0
, 8

5.
5

±
 3

.7
35

.1
 ±

 2
.7

, 8
9.

0
±

 1
.3

35
.5

 ±
 2

.5
, 8

7.
5

±
 2

.2
38

.9
 ±

 1
.7

, 8
7.

5
±

 0
.4

0.
3

30
.3

 ±
 2

.2
, 8

5.
7

±
 3

.1
30

.2
 ±

 1
.8

, 8
4.

2
±

 3
.8

30
.0

 ±
 2

.6
, 8

4.
5

±
 1

.8
33

.5
 ±

 2
.3

, 8
7.

6
±

 1
.8

35
.7

 ±
 3

.0
, 8

7.
1

±
 2

.5
38

.1
 ±

 1
.7

, 8
7.

4
±

 1
.7

0.
4

31
.1

 ±
 3

.3
, 8

5.
9

±
 3

.8
29

.5
 ±

 2
.5

, 8
6.

1
±

 3
.2

30
.4

 ±
 3

.4
, 8

3.
7

±
 3

.5
29

.6
 ±

 1
.3

, 8
5.

4
±

 0
.8

33
.1

 ±
 3

.6
, 8

7.
6

±
 2

.7
35

.4
 ±

 1
.5

, 8
7.

9
±

 1
.2

0.
5

30
.4

 ±
 2

.5
, 8

8.
0

±
 2

.1
29

.5
 ±

 1
.8

, 8
6.

2
±

 2
.7

31
.5

 ±
 2

.7
, 8

6.
4

±
 1

.9
31

.4
 ±

 2
.1

, 8
6.

2
±

 1
.9

33
.3

 ±
 2

.0
, 8

6.
4

±
 2

.1
35

.7
 ±

 2
.0

, 8
9.

5
±

 0
.6

(c
) H

AR
0.

1
52

.7
 ±

 5
.2

, 8
8.

4
±

 2
.3

57
.0

 ±
 1

.4
, 8

9.
5

±
 1

.2
56

.1
 ±

 1
.9

, 8
8.

8
±

 1
.2

54
.2

 ±
 4

.1
, 8

8.
5

±
 2

.1
56

.0
 ±

 2
.0

, 8
9.

2
±

 2
.5

55
.2

 ±
 3

.5
, 8

7.
5

±
 2

.1
0.

2
48

.9
 ±

 4
.0

, 8
5.

8
±

 1
.7

57
.4

 ±
 0

.4
, 9

0.
0

±
 0

.6
52

.1
 ±

 4
.5

, 8
8.

6
±

 2
.7

54
.6

 ±
 4

.5
, 9

0.
2

±
 1

.2
54

.2
 ±

 1
.8

, 8
9.

4
±

 0
.7

53
.9

 ±
 3

.0
, 8

9.
2

±
 1

.9
0.

3
50

.9
 ±

 6
.7

, 8
8.

5
±

 2
.8

56
.3

 ±
 6

.4
, 8

9.
5

±
 1

.2
54

.2
 ±

 3
.6

, 9
0.

8
±

 1
.5

53
.6

 ±
 4

.4
, 9

0.
5

±
 3

.2
52

.0
 ±

 6
.3

, 8
8.

0
±

 1
.4

51
.1

 ±
 3

.1
, 8

9.
4

±
 1

.1
0.

4
48

.9
 ±

 6
.1

, 8
8.

7
±

 2
.6

55
.7

 ±
 6

.6
, 9

0.
5

±
 1

.4
54

.1
 ±

 4
.1

, 9
1.

1
±

 0
.3

50
.8

 ±
 4

.1
, 8

9.
2

±
 1

.3
49

.7
 ±

 3
.2

, 9
0.

2
±

 1
.1

54
.1

 ±
 4

.4
, 8

9.
0

±
 1

.9
0.

5
46

.0
 ±

 5
.7

, 8
7.

3
±

 3
.2

55
.5

 ±
 8

.1
, 9

0.
5

±
 1

.6
52

.8
 ±

 5
.3

, 9
0.

2
±

 1
.3

55
.4

 ±
 0

.7
, 9

0.
4

±
 1

.0
50

.4
 ±

 4
.3

, 8
9.

4
±

 0
.4

49
.6

 ±
 5

.3
, 8

8.
3

±
 1

.1
(d

) M
ad

el
on

0.
1

53
.7

 ±
 3

.3
, 7

5.
1

±
 6

.8
58

.5
 ±

 2
.8

, 8
6.

1
±

 3
.5

57
.1

 ±
 2

.2
, 9

0.
3

±
 1

.0
56

.7
 ±

 2
.2

, 8
9.

9
±

 1
.2

58
.4

 ±
 0

.5
, 9

0.
3

±
 0

.8
58

.3
 ±

 0
.5

, 8
9.

8
±

 1
.1

0.
2

54
.3

 ±
 2

.4
, 8

1.
2

±
 4

.7
55

.6
 ±

 2
.5

, 8
8.

2
±

 2
.1

57
.1

 ±
 2

.6
, 8

9.
6

±
 0

.9
58

.2
 ±

 1
.5

, 9
0.

3
±

 0
.7

58
.1

 ±
 0

.1
, 9

0.
3

±
 1

.3
58

.1
 ±

 0
.0

, 9
0.

8
±

 0
.5

0.
3

53
.1

 ±
 2

.6
, 8

2.
0

±
 4

.5
60

.1
 ±

 0
.8

, 8
7.

5
±

 1
.3

57
.6

 ±
 2

.0
, 8

9.
6

±
 1

.2
57

.6
 ±

 1
.5

, 8
9.

4
±

 1
.3

58
.1

 ±
 0

.0
, 9

0.
9

±
 0

.4
58

.3
 ±

 0
.5

, 8
9.

5
±

 1
.5

0.
4

55
.0

 ±
 2

.8
, 7

8.
6

±
 8

.3
58

.4
 ±

 2
.9

, 8
7.

0
±

 4
.6

55
.8

 ±
 2

.2
, 9

0.
6

±
 0

.6
58

.4
 ±

 0
.7

, 9
0.

1
±

 0
.9

57
.4

 ±
 1

.6
, 9

0.
3

±
 0

.7
58

.1
 ±

 0
.0

, 9
0.

9
±

 1
.2

0.
5

55
.6

 ±
 3

.2
, 7

4.
3

±
 3

.3
57

.1
 ±

 3
.2

, 8
7.

1
±

 2
.4

57
.1

 ±
 3

.5
, 9

0.
0

±
 0

.6
58

.9
 ±

 0
.4

, 9
0.

3
±

 0
.3

58
.5

 ±
 0

.6
, 8

9.
3

±
 0

.7
58

.5
 ±

 0
.4

, 8
9.

4
±

 1
.3

(e
) M

N
IS

T
0.

1
44

.1
 ±

 2
.2

, 9
2.

8
±

 1
.0

46
.3

 ±
 3

.4
, 9

4.
0

±
 0

.4
48

.3
 ±

 1
.7

, 9
4.

0
±

 0
.6

44
.3

 ±
 2

.7
, 9

3.
8

±
 0

.5
43

.5
 ±

 3
.4

, 9
2.

8
±

 0
.5

31
.3

 ±
 4

.3
, 8

5.
2

±
 4

.9
0.

2
43

.3
 ±

 5
.1

, 9
3.

5
±

 1
.2

44
.3

 ±
 1

.4
, 9

3.
7

±
 0

.3
47

.1
 ±

 3
.1

, 9
3.

7
±

 0
.6

48
.3

 ±
 2

.4
, 9

3.
5

±
 0

.5
37

.7
 ±

 1
.3

, 9
1.

3
±

 0
.4

33
.7

 ±
 3

.5
, 8

7.
8

±
 1

.5

406 Machine Learning (2022) 111:377–414

1 3

Ta
bl

e
6

 (c
on

tin
ue

d)

�

�
2

5
10

13
20

25

0.
3

45
.1

 ±
 2

.8
, 9

3.
2

±
 0

.3
48

.4
 ±

 4
.5

, 9
3.

7
±

 0
.8

46
.0

 ±
 4

.6
, 9

3.
4

±
 0

.3
44

.9
 ±

 4
.4

, 9
3.

8
±

 0
.4

35
.8

 ±
 3

.0
, 9

1.
6

±
 0

.9
38

.1
 ±

 1
.3

, 9
0.

8
±

 0
.6

0.
4

45
.1

 ±
 2

.4
, 9

3.
4

±
 0

.3
45

.4
 ±

 2
.3

, 9
4.

2
±

 0
.3

45
.0

 ±
 2

.1
, 9

3.
4

±
 0

.5
40

.1
 ±

 4
.0

, 9
2.

4
±

 0
.7

41
.5

 ±
 4

.9
, 9

1.
8

±
 1

.3
32

.5
 ±

 2
.7

, 8
7.

7
±

 3
.7

0.
5

45
.7

 ±
 2

.6
, 9

3.
8

±
 0

.7
44

.1
 ±

 2
.6

, 9
3.

7
±

 0
.6

43
.8

 ±
 2

.6
, 9

3.
8

±
 0

.5
43

.2
 ±

 1
.8

, 9
2.

6
±

 0
.7

36
.6

 ±
 4

.5
, 9

1.
5

±
 1

.0
36

.0
 ±

 2
.7

, 8
8.

5
±

 1
.4

(f)
 S

M
K

0.
1

53
.1

 ±
 1

.3
, 7

2.
6

±
 5

.9
52

.6
 ±

 1
.6

, 7
6.

3
±

 2
.4

51
.6

 ±
 0

.9
, 7

6.
8

±
 4

.8
53

.5
 ±

 1
.6

, 7
5.

8
±

 2
.6

54
.6

 ±
 3

.2
, 7

2.
6

±
 2

.1
51

.4
 ±

 0
.9

, 7
6.

8
±

 5
.4

0.
2

53
.3

 ±
 2

.3
, 7

4.
2

±
 5

.4
53

.0
 ±

 1
.5

, 7
6.

8
±

 3
.1

51
.1

 ±
 0

.6
, 7

8.
4

±
 5

.9
51

.8
 ±

 0
.8

, 7
5.

7
±

 3
.9

51
.3

 ±
 0

.6
, 7

8.
4

±
 3

.5
51

.9
 ±

 1
.6

, 7
8.

4
±

 6
.5

0.
3

53
.3

 ±
 1

.7
, 7

4.
2

±
 4

.5
50

.7
 ±

 0
.3

, 7
6.

3
±

 6
.5

51
.6

 ±
 0

.9
, 7

6.
8

±
 6

.1
50

.9
 ±

 0
.5

, 7
4.

7
±

 3
.6

51
.2

 ±
 0

.6
, 7

7.
4

±
 2

.7
51

.4
 ±

 0
.7

, 7
7.

4
±

 5
.4

0.
4

52
.4

 ±
 2

.6
, 7

8.
4

±
 4

.5
51

.6
 ±

 0
.7

, 7
8.

4
±

 2
.6

50
.9

 ±
 0

.4
, 7

5.
8

±
 5

.4
51

.9
 ±

 0
.8

, 7
5.

3
±

 7
.2

51
.1

 ±
 0

.5
, 7

6.
8

±
 4

.5
50

.8
 ±

 0
.3

, 7
6.

3
±

 2
.4

0.
5

53
.0

 ±
 1

.3
, 7

6.
8

±
 6

.1
52

.1
 ±

 1
.1

, 7
4.

7
±

 2
.7

51
.9

 ±
 0

.8
, 7

4.
2

±
 3

.5
50

.7
 ±

 0
.4

, 7
5.

8
±

 3
.9

50
.3

 ±
 0

.0
, 7

8.
9

±
 4

.1
51

.1
 ±

 0
.5

, 8
1.

0
±

 4
.2

(g
) G

LA
0.

1
57

.6
 ±

 2
.6

, 6
8.

9
±

 5
.9

57
.1

 ±
 1

.9
, 6

7.
2

±
 1

.1
57

.4
 ±

 2
.8

, 7
2.

2
±

 3
.9

57
.7

 ±
 2

.9
, 6

8.
9

±
 3

.2
57

.4
 ±

 2
.9

, 7
3.

3
±

 4
.8

59
.2

 ±
 2

.7
, 7

1.
7

±
 4

.1
0.

2
57

.0
 ±

 3
.4

, 6
4.

4
±

 3
.2

60
.8

 ±
 3

.8
, 7

1.
1

±
 3

.3
58

.7
 ±

 3
.5

, 6
7.

8
±

 6
.0

59
.5

 ±
 1

.8
, 7

3.
3

±
 3

.3
58

.6
 ±

 2
.0

, 7
2.

8
±

 2
.1

55
.6

 ±
 1

.3
, 7

0.
6

±
 7

.2
0.

3
57

.7
 ±

 3
.5

, 7
3.

9
±

 3
.3

58
.3

 ±
 4

.1
, 6

7.
2

±
 3

.2
54

.8
 ±

 0
.9

, 7
2.

2
±

 3
.5

58
.0

 ±
 4

.3
, 6

7.
8

±
 3

.8
56

.4
 ±

 3
.5

, 6
8.

3
±

 4
.2

57
.3

 ±
 2

.8
, 6

6.
7

±
 2

.5
0.

4
56

.1
 ±

 2
.6

, 7
1.

1
±

 3
.3

57
.9

 ±
 2

.9
, 6

7.
2

±
 4

.8
54

.4
 ±

 2
.5

, 6
7.

2
±

 3
.2

59
.0

 ±
 4

.0
, 6

9.
4

±
 4

.6
56

.9
 ±

 2
.3

, 6
9.

4
±

 2
.5

59
.9

 ±
 3

.6
, 6

9.
4

±
 4

.6
0.

5
55

.2
 ±

 2
.2

, 6
7.

2
±

 6
.4

56
.0

 ±
 1

.7
, 6

3.
9

±
 1

.8
58

.0
 ±

 2
.2

, 6
8.

3
±

 6
.0

59
.0

 ±
 3

.1
, 7

0.
0

±
 5

.4
59

.5
 ±

 3
.2

, 7
1.

1
±

 6
.2

53
.6

 ±
 1

.7
, 6

8.
3

±
 4

.2
(h

) P
C

M
AC

0.
1

50
.6

 ±
 0

.3
, 5

8.
1

±
 3

.8
50

.8
 ±

 0
.4

, 5
7.

4
±

 3
.1

51
.4

 ±
 1

.2
, 5

8.
5

±
 2

.3
51

.0
 ±

 0
.4

, 5
9.

2
±

 3
.2

50
.8

 ±
 0

.2
, 5

9.
2

±
 3

.1
52

.6
 ±

 1
.0

, 5
8.

8
±

 3
.4

0.
2

50
.7

 ±
 0

.4
, 5

9.
4

±
 2

.9
50

.7
 ±

 0
.5

, 6
0.

6
±

 3
.4

52
.1

 ±
 1

.7
, 5

7.
2

±
 3

.4
52

.5
 ±

 1
.1

, 5
8.

0
±

 2
.9

53
.1

 ±
 0

.0
, 5

8.
6

±
 2

.6
53

.1
 ±

 0
.0

, 6
0.

1
±

 2
.0

0.
3

51
.5

 ±
 0

.9
, 5

7.
2

±
 2

.9
51

.4
 ±

 0
.9

, 5
6.

0
±

 2
.2

51
.7

 ±
 1

.2
, 5

8.
1

±
 0

.9
52

.2
 ±

 1
.1

, 5
6.

5
±

 1
.7

53
.1

 ±
 0

.0
, 5

9.
5

±
 2

.4
53

.1
 ±

 0
.0

, 5
7.

3
±

 4
.1

0.
4

50
.9

 ±
 0

.4
, 5

9.
8

±
 6

.7
51

.3
 ±

 0
.9

, 5
6.

3
±

 4
.1

52
.0

 ±
 1

.3
, 5

7.
3

±
 3

.0
53

.1
 ±

 0
.0

, 5
6.

7
±

 2
.2

53
.1

 ±
 0

.0
, 5

6.
6

±
 2

.0
53

.1
 ±

 0
.0

, 5
7.

6
±

 2
.0

0.
5

50
.7

 ±
 0

.2
, 5

6.
9

±
 0

.5
51

.3
 ±

 0
.9

, 5
7.

1
±

 2
.1

52
.6

 ±
 0

.9
, 5

9.
6

±
 1

.9
53

.1
 ±

 0
.0

, 5
7.

7
±

 1
.8

53
.1

 ±
 0

.0
, 5

6.
8

±
 3

.4
53

.1
 ±

 0
.0

, 5
9.

8
±

 1
.6

Ea
ch

 e
nt

ry
 o

f e
ac

h
ta

bl
e

co
nt

ai
ns

 c
lu

ste
rin

g
ac

cu
ra

cy
 a

nd
 c

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

 in
 p

er
ce

nt
ag

es
 (%

),
re

sp
ec

tiv
el

y

407Machine Learning (2022) 111:377–414

1 3

As we increase the � value, the number of connections in our model increases, and
therefore, the computation time will increase. So, we prefer using small values for this
parameter. Additionally, for a large value of � , in some cases the model is not able to
converge in 100 epochs; for example, on the MNIST dataset, we can observe that for an
� value of 25, the model has lower performance in terms of clustering and classification
accuracy.

It can be observed that � = 0.2 and � = 13 (as chosen for the experiments performed in
the paper) lead to a decent performance on all datasets. For these values, QuickSelection is
able to achieve high clustering and classification accuracy.

Overall, although searching for the best pair of � and � will improve the performance,
QuickSelection is not extremely sensitive to these values. As can be seen in Tables 5 and 6,
for all values of these hyperparameters QuickSelection has a reasonable performance. Even
with � = 2 which leads to a very sparse model, QuickSelection has decent performance,
and in some cases better than a denser network.

Fig. 16 50 most informative fea-
tures of MNIST dataset selected
by QuickSelection after 1, 10,
and 100 epochs of training

Epoch 1 Epoch 10 Epoch 100

Epoch 1 Epoch 10 Epoch 100 Class Epoch 1 Epoch 10 Epoch 100 Class

Fig. 17 Average of the data samples of each MNIST class corresponding to the 50 selected features after 1,
10, and 100 epochs of training along with the average of the actual samples of each class

408 Machine Learning (2022) 111:377–414

1 3

Appendix C: Visualization of selected features on MNIST

In Fig. 16, we visualize the 50 best features found by QuickSelection on the MNIST data-
set at different epochs. These features are mostly at the center of the image, similar to the
pattern of MNIST digits.

Then, we visualize the features selected for each class separately. In Fig. 17, each pic-
ture at different epochs is the average of the 50 selected features of all the samples of each
class along with the average of the actual samples of the corresponding class. As we can
see, during training, these features become more similar to the pattern of digits of each
class. Thus, QuickSelection is able to find the most relevant features for all classes.

Appendix D: Feature extraction

Although it is not the main focus of the paper, we perform a small analysis on the MNIST
dataset to study the performance of sparse DAE as a feature extractor. We train it to map
the high-dimensional features into a lower-dimensional space.

The structure we consider for feature extraction has three hidden layers with 1000,
50, and 1000 neurons, respectively; the middle layer (50 neurons) is the extracted low-
dimensional representation. We compare the results with fully-connected DAE (FC-DAE
- implemented in Chollet et al. (2015)). We also extract features using the Principal Com-
ponent Analysis (PCA) (Wold et al., 1987) technique as a baseline method. Then, we train
an ExtraTrees classifier on these extracted features and compute the classification accuracy.
The results are presented in Fig. 18.

To achieve the best density level that suits our network, we test different � values. As
shown in Fig. 18, sparse DAE (density = 3.26%) has the best performance among them.
Sparse DAE (density = 3.26%), FC-DAE, and PCA achieve 95.2%, 96.2%, and 95.6%

Fig. 18 Classification accuracy
for feature extraction using
sparse DAE with different den-
sity level on the MNIST dataset
(number of extracted features
= 50) compared with FC-DAE
and PCA

409Machine Learning (2022) 111:377–414

1 3

accuracy, respectively. Although sparse DAE can not perform as well as the FC-DAE, it
approximately has 54 k parameters compared to 1.67 m parameters of FC-DAE. Such a
small number of parameters of this model results in a high rise in the running speed and a
significant drop in the memory requirement. Furthermore, it is interesting to observe that
a very sparse DAE (below 1% density) can achieve more than 90.0% accuracy on MNIST
while having about 150 times fewer parameters than FC-DAE.

Appendix E: Feature selection on a large dataset

In this appendix, we evaluate the performance of the methods on a very large dataset, in
terms of both number of samples and dimensions.

In this experiment, first, we generate two artificial datasets with high number of sam-
ples and features. The choice of an artificial dataset was made to easily control the num-
ber of relevant features of the dataset, as in most of the real-world datasets the number of
informative features are not clear. These datasets are generated using sklearn4 library tools,
make_classification function, which generates datasets with a desired number of features
and samples. This function allows us to adjust the number of informative, redundant, and
non-informative features. Table 7 shows the characteristics of the two artificially generated
datasets. We generated 2 datasets with 40000 samples and 8000 features. However, the
number of informative and redundant features are different in these datasets. Artificial2
dataset is much noisier than Artificial1; therefore, finding relevant features of Artificial2 is
more difficult compared to finding them on the Artificial1 dataset.

After generating the datasets, we evaluate feature selection performance of the methods
considered in the manuscript, and compare the results with QuickSelection. The hyperpa-
rameters used in this experiment are similar to the ones used in Sect. 4.1.1, except for hid-
den neurons and the sparsity level. The number of hidden neurons for autoencoder-based
methods has been set to 2000, and the hyperparameter of QuickSelection, � , has been
adjusted to 40. The number of selected features (K) is 1000. The number of training epochs
for the autoencoder-based methods is 100. However, since the QuickSelection did not con-
verge in 100 epochs on the Artificial2 dataset, we continued the training until epoch 200.
The results of this experiment are presented in Table 8.

As can be seen in Table 8, QuickSelection100 outperforms all the other methods in terms
of classification accuracy on both datasets. It can also outperform the other methods in
terms of clustering accuracy on the Artificial2 dataset. As mentioned earlier, QuickSelec-
tion achieves a higher accuracy on the Artificial2 dataset when it is trained for more than
100 epochs. However, since for all the other methods we use 100 epochs, we only consider
the results of QuickSelection100 to have a fair comparison (it should be noted that increas-
ing the number of training epochs did not improve the results of the other methods). On
noisy and very large datasets, CAE, AEFS, and FCAE have a poor performance in feature
selection. In addition, they have around 30 times more parameters than QuickSelection.
CAE has the lowest accuracy among these methods; this method is very sensitive to noise.
Lap_score and MCFS have a poor performance on the Artificial2 dataset that is noisier
than Artificial1. On the Artificial1 dataset, MCFS achieves the highest clustering accuracy.
However, the memory requirement of MCFS and Lap_score is noticeably large. On this

4 https:// scikit- learn. org/

https://scikit-learn.org/

410 Machine Learning (2022) 111:377–414

1 3

dataset, they need about 26GB of RAM. However, QuickSelection needs only about 8GB
memory. In summary, QuickSelection100 has a decent performance on these large datasets,
while having the lowest number of parameters.

Appendix F: Sparse training algorithm analysis

In this appendix, we aim to analyze the effect of the SET training procedure on the perfor-
mance of QuickSelection.

We perform QuickSelection using another algorithm to obtain and train the sparse net-
work, and then, compare the result with the original QuickSelection. We derive the sparse
denoising autoencoder using the lottery ticket hypothesis algorithm (Frankle & Carbin,
2018), as follows. The lottery ticket hypothesis (LTH), first, starts with training a dense
network. After that, it derives the topology of the sparse network by pruning the unimpor-
tant weights of the trained dense network. Then, using both the sparse topology and the ini-
tial weight values of the connections in the dense training phase, the network is retrained.
On the final obtained sparse model, we apply QuickSelection principles to select the most
informative features.

In this experiment, the structure, sparsity level, and other hyperparameters are similar
to the settings described in Sect. 4.1.1; we use a simple autoencoder with one hidden layer
containing 1000 hidden neurons, trained for 100 epochs. The results of feature selection

Table 7 Characteristics of the two artificially generated datasets

The classification and clustering accuracy have been obtained using all the features

Dataset Samples Features Informative
Features

Redundant
Features

Classes Classification
accuracy (%)

Clustering
accuracy
(%)

Artificial1 40000 8000 500 3000 5 59.8 30.6
Artificial2 40000 8000 1000 0 5 26.6 22.7

Table 8 Feature selection results on two artificially generated datasets (K = 1000)

Artificial1 dataset Artificial2 dataset Number of parameters

Method Classification
accuracy (%)

Clustering
accuracy (%)

Classification
accuracy (%)

Clustering
accuracy (%)

Lap_score 49.4 24.4 22.0 21.3 -
MCFS 68.2 29.3 24.6 21.7 -
CAE 23.4 20.6 21.1 20.4 ∼26×106

AEFS 34.7 23.3 22.8 21.4 ∼ 32 × 10
6

FCAE 43.8 24.3 22.9 21.5 ∼ 32 × 10
6

QS
10

68.1 25.7 24.8 21.21 ∼0.8×106

QS
100

68.4 24.8 34.5 24.6 ∼0.8×106

QS
200

– – 39.7 29.6 ∼0.8×106

411Machine Learning (2022) 111:377–414

1 3

(K = 50) are available in Tables 9 and 10. We refer to the feature selection performed
using QuickSelection principles and the Sparse DAE obtained with LTH as QSLTH

100
 . We use

QS100 for the QuickSelection that is done using the Sparse DAE obtained with SET.
As can be observed in Tables 9 and 10, in most of the cases QS100 outperforms QSLTH

100
 .

We believe that optimizing the sparse topology and the weights, simultaneously, results in
feature strength that are more meaningful for the feature selection. We discussed neuron
strength in more detail in Sect. 5.3. In addition, due to having an extra phase of dense train-
ing, the computational resource requirements of LTH are much higher than the ones of
SET. To clarify this aspect, we present a comparison for the number of parameters between
these two methods. The results can be found in Table 11. The much higher number of
parameters in QSLTH

100
 in comparison with the number of parameters in QS100 is given by the

dense training phase of LTH.

Appendix G: Performance evaluation using random forest classifier

In this appendix, we validate the classification accuracy results using another classifier. We
repeat the experiment from Sect. 4.2 in the manuscript; however, we measure the accuracy
of selecting 50 features (for Madelon, we select 20 features) using the RandomForest clas-
sifier (Liaw et al., 2002) instead of the ExtraTrees classifier. The results are presented in
Table 12.

As can be seen in Table 12, QuickSelection100 is the best performer in 5 out of 8 cases.
By comparing the results with Table 3 which demonstrates the classification accuracy

Table 9 Clustering accuracy (%) using 50 selected features (except Madelon for which we select 20 fea-
tures)

Method Coil20 Isolet HAR Madelon MNIST SMK GLA PCMAC

QS
100

60.22.0 35.12.7 54.64.5 58.21.5 48.32.4 51.80.8 59.51.8 52.51.1
QSLTH

100
58.83.3 31.22.4 50.26.3 50.80.5 37.54.0 54.62.7 54.63.7 50.80.6

Table 10 Classification accuracy (%) using 50 selected features (except Madelon for which we select 20
features)

Method Coil20 Isolet HAR Madelon MNIST SMK GLA PCMAC

QS
100

99.70.3 89.01.3 90.21.2 90.30.7 93.50.5 75.73.9 73.33.3 58.02.9
QSLTH

100
99.60.6 84.53.9 86.36.3 53.07.2 82.62.4 74.22.7 71.34.2 59.55.9

Table 11 Number of parameters of QS
100

 and QSLTH
100

 (divided by 106)

Method Coil20 Isolet HAR Madelon MNIST SMK GLA PCMAC

QS
100

0.054 0.043 0.042 0.040 0.048 0.566 1.3 0.115
QSLTH

100
2.054 1.243 1.142 1.040 1.548 40.566 99.3 6.715

412 Machine Learning (2022) 111:377–414

1 3

measured by the ExtraTrees classifier, it is clear that there have been subtle changes in the
accuracy values. This has resulted in some changes in the ranking of the methods in terms
of the performance, as in several cases, the performance of the methods are very close. The
reason behind choosing ExtraTrees classifier in the experiment was due to the low compu-
tational cost. However, as discussed in the paper, to perform an extensive evaluation, we
have also measured the performance using clustering accuracy. Overall, by looking into
the results of the three approaches to compute accuracy, it is clear that QuickSelection is a
performant feature selection method in terms of the quality of the selected features.

Acknowledgements This research has been partly funded by the NWO EDIC project.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Aghazadeh, A., Spring, R., Lejeune, D., Dasarathy, G., & Shrivastava, A., et al. (2018). Mission: Ultra
large-scale feature selection using count-sketches. In International conference on machine learning
(pp. 80–88).

AI High-Level Expert Group (2020). Assessment list for trustworthy artificial intelligence (ALTAI) for
self-assessment.

Ang, J. C., Mirzal, A., Haron, H., & Hamed, H. N. A. (2015). Supervised, unsupervised, and semi-super-
vised feature selection: A review on gene selection. IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics, 13(5), 971–989.

Anguita, D., Ghio, A., Oneto, L., Parra, X., & Reyes-Ortiz, J.Luis. (2013). A public domain dataset for
human activity recognition using smartphones. In Esann.

Baldi, P. (2012). Autoencoders, unsupervised learning, and deep architectures. In Proceedings of ICML
workshop on unsupervised and transfer learning, pp. 37–49.

Balın, M.F., Abid, A., & Zou, J. (2019). Concrete autoencoders: Differentiable feature selection and recon-
struction. In International conference on machine learning pp. 444–453.

Barrat, A., Barthelemy, M., Pastor-Satorras, R., & Vespignani, A. (2004). The architecture of complex
weighted networks. Proceedings of the National Academy of Sciences, 101(11), 3747–3752.

Table 12 Classification accuracy (%) using 50 selected features (except Madelon for which we select 20
features). On each dataset, the bold entry is the best-performer, and the italic one is the second-best per-
former. The classifier used for evaluation is the random forest classifier

Method COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

MCFS 99.5 ± 0.3 79.9 ± 0.4 88.5 ± 0.4 81.9 ± 0.7 89.2 ± 0.0 76.3 ± 3.7 69.4 ± 3.9 56.5 ± 0.16
LS 88.9 ± 0.8 83.4 ± 0.2 86.4 ± 0.3 88.9 ± 0.6 20.7 ± 0.1 67.9 ± 3.1 71.1 ± 2.8 50.13 ± 0
CAE 99.3 ± 0.6 89.0 ± 0.7 89.8 ± 1.0 84.2 ± 0.9 95.2 ± 0.2 76.7 ± 4.7 76.6 ± 3.8 61.6 ± 2.3
AEFS 92.4 ± 2.3 84.9 ± 1.7 87.8 ± 1.1 59.6 ± 4.0 87.6 ± 0.8 71.1 ± 6.2 67.2 ± 4.8 57.7 ± 2.2
FCAE 99.0 ± 0.6 85.8 ± 5.2 83.6 ± 2.6 62.7 ± 13.1 69.6 ± 2.9 74.2 ± 2.6 68.9 ± 4.0 58.8 ± 2.5
QS

10
98.5 ± 0.9 87.0 ± 0.7 87.6 ± 0.5 81.5 ± 3.8 93.6 ± 0.6 75.1 ± 2.3 68.1 ± 4.6 60.0 ± 3.7

QS
100

99.5 ± 0.3 89.1 ± 1.3 89.0 ± 1.2 88.9 ± 0.7 93.2 ± 0.5 78.5 ± 3.5 73.3 ± 3.1 67.9 ± 3.8

http://creativecommons.org/licenses/by/4.0/

413Machine Learning (2022) 111:377–414

1 3

Bellec, G., Kappel, D., Maass, W., & Legenstein, R. (2017). Deep rewiring: Training very sparse deep net-
works. arXiv preprint arXiv: 1711. 05136.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

Bolón-Canedo, V., Sánchez-Maroño, N., & Alonso-Betanzos, A. (2015). Feature selection for high-dimen-
sional data. Springer.

Bourgin, D.D., Peterson, J.C., Reichman, D., Russell, S.J., & Griffiths, T.L. (2019). Cognitive model priors
for predicting human decisions. In K. Chaudhuri and R. Salakhutdinov (Ed.) Proceedings of the 36th
international conference on machine learning, volume 97 of proceedings of machine learning research
pp. 5133–5141, Long Beach, California, USA, 09–15. PMLR. URL http:// proce edings. mlr. press/ v97/
peter son19a. html

Cai, D., Zhang, C., & He, X. (2010). Unsupervised feature selection for multi-cluster data. In Proceed-
ings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (pp
333–342). ACM.

Chandrashekar, Girish, & Sahin, Ferat. (2014). A survey on feature selection methods. Computers & Elec-
trical Engineering, 40(1), 16–28.

Chollet, F., et al. (2015). Keras. https:// keras. io.
Dettmers, T., & Zettlemoyer, L. (2019) Sparse networks from scratch: Faster training without losing perfor-

mance. arXiv preprint arXiv: 1907. 04840
Doquet, G., & Sebag, M. (2019). Agnostic feature selection. In Joint european conference on machine

learning and knowledge discovery in databases (pp. 343–358). Springer.
Dy, J. G., & Brodley, C. E. (2004). Feature selection for unsupervised learning. Journal of Machine Learn-

ing Research, 5, 845–889.
Evci, U., Gale, T., Menick, J., Castro, P.S., & Elsen, E. (2019). Rigging the lottery: Making all tickets win-

ners. arXiv preprint arXiv: 1911. 11134
Fanty, M., & Cole, R. (1991). Spoken letter recognition. In Advances in neural information processing sys-

tems (pp. 220–226).
Farahat, A. K., Ghodsi, A., & Kamel, M. S. (2013). Efficient greedy feature selection for unsupervised

learning. Knowledge and Information Systems, 35(2), 285–310.
Frankle, J., & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable neural networks.

arXiv preprint arXiv: 1803. 03635
Geurts, Pierre, Ernst, Damien, & Wehenkel, Louis. (2006). Extremely randomized trees. Machine Learning,

63(1), 3–42.
Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (2008). Feature extraction: Foundations and appli-

cations (Vol. 207). Springer.
Han, S., Pool, J., Tran, J., Dally, W. (2015). Learning both weights and connections for efficient neural

network. In Advances in neural information processing systems (pp. 1135–1143).
Han, K., Wang, Y., Zhang, C., Li, C., & Xu, C. (2018). Autoencoder inspired unsupervised feature selec-

tion. In 2018 IEEE international conference on acoustics, speech and signal processing (ICASSP)
(pp. 2941–2945). IEEE.

Hassibi, B., & Stork, D.G. (1993). Second order derivatives for network pruning: Optimal brain surgeon.
In Advances in neural information processing systems (pp. 164–171).

He, X., Cai, D., & Niyogi, P. (2006). Laplacian score for feature selection. In Advances in neural infor-
mation processing systems (pp. 507–514).

Jones, E., Oliphant, T., & Peterson, P. (2001). Scipy: Open source scientific tools for python.
Kavzoglu, T., & Mather, P.M. (1998). Assessing artificial neural network pruning algorithms. In Pro-

ceedings of the 24th annual conference and exhibition of the remote sensing society (pp. 9–11).
Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1–2),

273–324.
Lal, T.N., Chapelle, O., Weston, J., & Elisseeff, A. (2006). Embedded methods. In Feature extraction

(pp. 137–165). Springer.
Lang, K. (1995). Newsweeder: Learning to filter netnews (pp. 331–339). Elsevier.
Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta, A., Molter, C., et al. (2012). A survey on fil-

ter techniques for feature selection in gene expression microarray analysis. IEEE/ACM Transactions
on Computational Biology and Bioinformatics, 9(4), 1106–1119.

LeCun, Y. (1998). The mnist database of handwritten digits. http:// yann. lecun. com/ exdb/ mnist/
LeCun, Y., Denker, J.S., & Solla, Sara A. (1990). Optimal brain damage. In Advances in neural informa-

tion processing systems (pp. 598–605).
Lee, N., Ajanthan, T., & Torr, P.H.S. (2018). Snip: Single-shot network pruning based on connection

sensitivity. arXiv preprint arXiv: 1810. 02340

http://arxiv.org/abs/1711.05136
http://proceedings.mlr.press/v97/peterson19a.html
http://proceedings.mlr.press/v97/peterson19a.html
https://keras.io
http://arxiv.org/abs/1907.04840
http://arxiv.org/abs/1911.11134
http://arxiv.org/abs/1803.03635
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1810.02340

414 Machine Learning (2022) 111:377–414

1 3

Liaw, A., Wiener, M., et al. (2002). Classification and regression by randomforest. R News, 2(3), 18–22.
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2018). Feature selection:

A data perspective. ACM Computing Surveys (CSUR), 50(6), 94.
Li, Y., Chen, C. Y., & Wasserman, W. W. (2016). Deep feature selection: Theory and application to iden-

tify enhancers and promoters. Journal of Computational Biology, 23(5), 322–336.
Liu, S., van der Lee, T., Yaman, A., Atashgahi, Z., Ferraro, D., Sokar, G., Pechenizkiy, M., & Mocanu,

D. C. (2020). Topological insights into sparse neural networks. In proceedings of the european
conference on machine learning and principles and practice of knowledge discovery in databases
(ECML PKDD) 2020.

Liu, H., & Motoda, H. (1998). Feature extraction, construction and selection: A data mining perspective
(Vol. 453). Springer Science & Business Media.

Lu, Y., Fan, Y., Lv, J., & Noble, W.S. (2018). Deeppink: Reproducible feature selection in deep neural
networks. In Advances in neural information processing systems (pp. 8676–8686).

Miao, J., & Niu, L. (2016). A survey on feature selection. Procedia Computer Science, 91, 919–926.
Mocanu, D. C., Mocanu, E., Nguyen, P. H., Gibescu, M., & Liotta, A. (2016). A topological insight into

restricted boltzmann machines. Machine Learning, 104(2–3), 243–270.
Mocanu, D. C., Mocanu, E., Stone, P., Nguyen, P. H., Gibescu, M., & Liotta, A. (2018). Scalable train-

ing of artificial neural networks with adaptive sparse connectivity inspired by network science.
Nature Communications, 9(1), 2383.

Mostafa, H., & Wang, X. (2019). Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In K. Chaudhuri and R. Salakhutdinov (Ed.), Proceedings
of the 36th international conference on machine learning, volume 97 of proceedings of machine
learning research (pap. 4646–4655). Long Beach, California, USA, 09–15. PMLR. URL http://
proce edings. mlr. press/ v97/ mosta fa19a. html

Nene, S.A., Nayar, S.K., & Murase, H., et al. (1996). Columbia object image library (coil-20).
Sheikhpour, R., Sarram, M. A., Gharaghani, S., & Chahooki, M. A. (2017). A survey on semi-super-

vised feature selection methods. Pattern Recognition, 64, 141–158.
Singh, D., & Yamada, M. (2020). Fsnet: Feature selection network on high-dimensional biological data.

arXiv preprint arXiv: 2001. 08322
Spira, A., Beane, J. E., Shah, V., Steiling, K., Liu, G., Schembri, F., et al. (2007). Airway epithelial

gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nature Medicine,
13(3), 361–366.

Sun, L., Hui, A. M., Qin, S., Vortmeyer, A., Kotliarov, Y., Pastorino, Sandra, et al. (2006). Neuronal and
glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell, 9(4), 287–300.

Tan, M., Tsang, I.W., & Wang, L. (2014). Towards ultrahigh dimensional feature selection for big data.
Journal of Machine Learning Research.

Van Der Maaten, L., Postma, E., & Van den Herik, J. (2009). Dimensionality reduction: A comparative. J
Mach Learn Res, 10(66–71), 13.

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.A. (2008). Extracting and composing robust features
with denoising autoencoders. In Proceedings of the 25th international conference on Machine learning
(pp. 1096–1103). ACM.

Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent
Laboratory Systems, 2(1–3), 37–52.

Yang, Y., Shen, H.T., Ma, Z., Huang, Z., & Zhou, X. (2011). L2, 1-norm regularized discriminative feature
selection for unsupervised. In Twenty-second international joint conference on artificial intelligence.

Yang, J., Xiao, W., Jiang, C., Hossain, M. S., Muhammad, G., & Amin, S. U. (2018). Ai-powered green
cloud and data center. IEEE Access, 7, 4195–4203.

Zhao, Z., & Liu, H. (2007). Semi-supervised feature selection via spectral analysis. In Proceedings of the
2007 SIAM international conference on data mining (pp. 641–646). SIAM.

Zhu, Hangyu, & Jin, Yaochu. (2019). Multi-objective evolutionary federated learning. IEEE transactions on
neural networks and learning systems.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://proceedings.mlr.press/v97/mostafa19a.html
http://proceedings.mlr.press/v97/mostafa19a.html
http://arxiv.org/abs/2001.08322

	Quick and robust feature selection: the strength of energy-efficient sparse training for autoencoders
	Abstract
	1 Introduction
	2 Related work
	2.1 Feature selection
	2.2 Autoencoders for feature selection
	2.3 Sparse training

	3 Proposed method
	3.1 Sparse DAE
	3.1.1 Structure
	3.1.2 Training procedure

	3.2 Feature selection

	4 Experiments
	4.1 Settings
	4.1.1 Hyperparameters and implementation
	4.1.2 Datasets
	4.1.3 Evaluation metrics

	4.2 Feature selection
	4.2.1 Relevancy of selected features

	5 Discussion
	5.1 Accuracy and computational efficiency trade-off
	5.1.1 Score 1
	5.1.2 Score 2
	5.1.3 Energy consumption
	5.1.4 Efficiency versus accuracy

	5.2 Running time comparison on an artificially generated dataset
	5.3 Neuron strength analysis

	6 Conclusion
	Acknowledgements
	References

