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Abstract
Major complications arise from the recent increase in the amount of high-dimensional 
data, including high computational costs and memory requirements. Feature selection, 
which identifies the most relevant and informative attributes of a dataset, has been intro-
duced as a solution to this problem. Most of the existing feature selection methods are 
computationally inefficient; inefficient algorithms lead to high energy consumption, which 
is not desirable for devices with limited computational and energy resources. In this paper, 
a novel and flexible method for unsupervised feature selection is proposed. This method, 
named QuickSelection (The code is available at: https://github.com/zahraatashgahi/Quick-
Selection), introduces the strength of the neuron in sparse neural networks as a criterion to 
measure the feature importance. This criterion, blended with sparsely connected denoising 
autoencoders trained with the sparse evolutionary training procedure, derives the impor-
tance of all input features simultaneously. We implement QuickSelection in a purely sparse 
manner as opposed to the typical approach of using a binary mask over connections to 
simulate sparsity. It results in a considerable speed increase and memory reduction. When 
tested on several benchmark datasets, including five low-dimensional and three high-
dimensional datasets, the proposed method is able to achieve the best trade-off of classifi-
cation and clustering accuracy, running time, and maximum memory usage, among widely 
used approaches for feature selection. Besides, our proposed method requires the least 
amount of energy among the state-of-the-art autoencoder-based feature selection methods.
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1 Introduction

In the last few years, considerable attention has been paid to the problem of dimensionality 
reduction and many approaches have been proposed (Van Der Maaten et al., 2009). There 
are two main techniques for reducing the number of features of a high-dimensional data-
set: feature extraction and feature selection. Feature extraction focuses on transforming the 
data into a lower-dimensional space. This transformation is done through a mapping which 
results in a new set of features (Liu and Motoda, 1998). Feature selection reduces the fea-
ture space by selecting a subset of the original attributes without generating new features 
(Chandrashekar & Sahin, 2014). Based on the availability of the labels, feature selection 
methods are divided into three categories: supervised (Ang et al., 2015; Chandrashekar & 
Sahin, 2014), semi-supervised (Sheikhpour et al., 2017; Zhao & Liu, 2007), and unsuper-
vised (Dy and Brodley, 2004; Miao & Niu, 2016). Supervised feature selection algorithms 
try to maximize some function of predictive accuracy given the class labels. In unsuper-
vised learning, the search for discriminative features is done blindly, without having the 
class labels. Therefore, unsupervised feature selection is considered as a much harder prob-
lem (Dy & Brodley, 2004).

Feature selection methods improve the scalability of machine learning algorithms since 
they reduce the dimensionality of data. Besides, they reduce the ever-increasing demands 
for computational and memory resources that are introduced by the emergence of big data. 
This can lead to a considerable decrease in energy consumption in data centers. This can 
ease not only the problem of high energy costs in data centers but also the critical chal-
lenges imposed on the environment (Yang et  al., 2018). As outlined by the High-Level 
Expert Group on Artificial Intelligence (AI) (AI High-level Expert Group, 2020), environ-
mental well-being is one of the requirements of a trust-worthy AI system. The develop-
ment, deployment, and process of an AI system should be assessed to ensure that it would 
function in the most environmentally friendly way possible. For example, resource usage 
and energy consumption through training can be evaluated.

However, a challenging problem that arises in the feature selection domain is that select-
ing features from datasets that contain a huge number of features and samples, may require 
a massive amount of memory, computational, and energy resources. Since most of the 
existing feature selection techniques were designed to process small-scale data, their effi-
ciency can be downgraded with high-dimensional data (Bolón-Canedo et al., 2015). Only 
a few studies have focused on designing feature selection algorithms that are efficient in 
terms of computation (Aghazadeh et al., 2018; Tan et al., 2014). The main contributions of 
this paper can be summarized as follows:

• We propose a new fast and robust unsupervised feature selection method named Quick-
Selection. As briefly sketched in Fig.  1, It has two key components: (1) Inspired by 
node strength in graph theory, the method proposes the neuron strength of sparse neu-
ral networks as a criterion to measure the feature importance; and (2) The method 
introduces sparsely connected Denoising Autoencoders (sparse DAEs) trained from 
scratch with the sparse evolutionary training procedure to model the data distribution 
efficiently. The imposed sparsity before training also reduces the amount of required 
memory and the training running time.
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• We implement QuickSelection in a completely sparse manner in Python using the 
SciPy library and Cython rather than using a binary mask over connections to simu-
late sparsity. This ensures minimum resource requirements, i.e., just Random-Access 
Memory (RAM) and Central Processing Unit (CPU), without demanding Graphic Pro-
cessing Unit (GPU).

The experiments performed on eight benchmark datasets suggest that QuickSelection has 
several advantages over the state-of-the-art, as follows:

• It is the first or the second-best performer in terms of both classification and clustering 
accuracy in almost all scenarios considered.

• It is the best performer in terms of the trade-off between classification and clustering 
accuracy, running time, and memory requirement.

• The proposed sparse architecture for feature selection has at least one order of magni-
tude fewer parameters than its dense equivalent. This leads to the outstanding fact that 
the wall clock training time of QuickSelection running on CPU is smaller than the wall 
clock training time of its autoencoder-based competitors running on GPU in most of 
the cases.

• Last but not least, QuickSelection computational efficiency makes it have the minimum 
energy consumption among the autoencoder-based feature selection methods consid-
ered.

2  Related work

2.1  Feature selection

The literature on feature selection shows a variety of approaches that can be divided into 
three major categories, including filter, wrapper, and embedded methods. Filter meth-
ods use a ranking criterion to score the features and then remove the features with scores 
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Fig. 1  A high-level overview of the proposed method, “QuickSelection”. a At epoch 0, connections are ran-
domly initialized. b After initializing the sparse structure, we start the training procedure. After 5 epochs, 
some connections are changed during the training procedure, and as a result, the strength of some neurons 
has increased or decreased. At epoch 10, the network has converged, and we can observe which neurons are 
important (larger and darker blue circles) and which are not. c When the network is converged, we compute 
the strength of all input neurons. d Finally, we select K features corresponding to neurons with the highest 
strength values
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below a threshold. These criteria can be Laplacian score (He et  al., 2006), Correlation, 
Mutual Information (Chandrashekar & Sahin, 2014), and many other scoring methods 
such as Bayesian scoring function, t-test scoring, and Information theory-based criteria 
(Lazar et al., 2012). These methods are usually fast and computationally efficient. Wrap-
per methods evaluate different subsets of features to detect the best subset. Wrapper meth-
ods usually give better performance than filter methods; they use a predictive model to 
score each subset of features. However, this results in high computation complexity. Semi-
nal contributions for this type of feature selection have been made by Kohavi and John 
(1997). In (Kohavi and John 1997), the authors used a tree structure to evaluate the subsets 
of features. Embedded methods unify the learning process, and the feature selection (Lal 
et al., 2006). Multi-Cluster Feature Selection (MCFS) (Cai et al., 2010) is an unsupervised 
method for embedded feature selection, which selects features using spectral regression 
with L1-norm regularization. A key limitation of this algorithm is that it is computation-
ally intensive since it depends on computing the eigenvectors of the data similarity matrix 
and then solving an L1-regularized regression problem for each eigenvector (Farahat 
et al., 2013). Unsupervised Discriminative Feature Selection (UDFS) (Yang et al., 2011) 
is another unsupervised embedded feature selection algorithm that simultaneously utilizes 
both feature and discriminative information to select features (Li et al., 2018).

2.2  Autoencoders for feature selection

In the last few years, many deep learning-based models have been developed to select fea-
tures from the input data using the learning procedure of deep neural networks (Li et al., 
2016). In (Lu et al., 2018), a Multi-Layer Perceptron (MLP) is augmented with a pairwise-
coupling layer to feed each input feature along with its knockoff counterpart into the net-
work. After the training, the authors use the filter weights of the pairwise-coupling layer 
to rank input features. Autoencoders which are generally known as a strong tool for fea-
ture extraction (Bengio et  al. 2013), are being explored to perform unsupervised feature 
selection. In (Han et al., 2018), authors combine autoencoder regression and group lasso 
task for unsupervised feature selection named AutoEncoder Feature Selector (AEFS). In 
(Doquet and Sebag 2019), an autoencoder is combined with three variants of structural 
regularization to perform unsupervised feature selection. These regularizations are based 
on slack variables, weights, and gradients, respectively. Another recently proposed autoen-
coder-based embedded method is feature selection with Concrete Autoencoder (CAE) 
(Balın et al., 2019). This method selects features by learning a concrete distribution over 
input features. They proposed a concrete selector layer that selects a linear combination 
of input features that converges to a discrete set of K features during training. In (Singh 
and Yamada 2020), the authors showed that a large set of parameters in CAE might lead 
to over-fitting in case of having a limited number of samples. In addition, CAE may select 
features more than once since there is no interaction between the neurons of the selector 
layer. To mitigate these problems, they proposed a concrete neural network feature selec-
tion (FsNet) method, which includes a selector layer and a supervised deep neural network. 
The training procedure of FsNet considers reducing the reconstruction loss and maximiz-
ing the classification accuracy simultaneously. In our research, we focus mostly on unsu-
pervised feature selection methods.

Denoising Autoencoder (DAE) is introduced to solve the problem of learning the iden-
tity function in the autoencoders. This problem is most likely to happen when we have 
more hidden neurons than inputs (Baldi, 2012). As a result, the network output may be 
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equal to the inputs, which makes the autoencoder useless. DAEs solve the aforementioned 
problem by introducing noise on the input data and trying to reconstruct the original input 
from its noisy version (Vincent et al., 2008). As a result, DAEs learn a representation of 
the input data that is robust to small irrelevant changes in the input. In this research, we use 
the ability of this type of neural network to encode the input data distribution and select 
the most important features. Moreover, we demonstrate the effect of noise addition on the 
feature selection results.

2.3  Sparse training

Deep neural networks usually have at least some fully-connected layers, which results in a 
large number of parameters. In a high-dimensional space, this is not desirable since it may 
cause a significant decrease in training speed and a rise in memory requirement. To tackle 
this problem, sparse neural networks have been proposed. Pruning the dense neural net-
works is one of the most well-known methods to achieve a sparse neural network (LeCun 
et al., 1990; Hassibi & Stork, 1993). In (Han et al. 2015), authors start from a pre-trained 
network, prune the unimportant weights, and retrain the network. Although this method 
can output a network with the desired sparsity level, the minimum computation cost is as 
much as the cost of training a dense network. To reduce this cost, Lee et al. (2018) start 
with a dense neural network, and prune it prior to training based on connection sensitivity; 
then, the sparse network is trained in the standard way. However, starting from a dense neu-
ral network requires at least the memory size of the dense neural network and the computa-
tional resources for one training iteration of a dense network. Therefore, this method might 
not be suitable for low-resource devices.

In 2016, Mocanu et  al. (2016) had introduced the idea of training sparse neural net-
works from scratch, a concept which recently has started to be known as sparse training. 
The sparse connectivity pattern was fixed before training using graph theory, network 
science, and data statistics. While it showed promising results, outperforming the dense 
counterpart, the static sparsity pattern did not always model the data optimally. In order to 
address these issues, in 2018, Mocanu et al. (2018) have proposed the Sparse Evolutionary 
Training (SET) algorithm which makes use of dynamic sparsity during training. The idea 
is to start with a sparse neural network before training and dynamically change its connec-
tions during training in order to automatically model the data distribution. This results in a 
significant decrease in the number of parameters and increased performance. SET evolves 
the sparse connections at each training epoch by removing a fraction � connections with 
the smallest magnitude, and randomly adding new connections in each layer. Bourgin et al. 
(2019) have shown that a sparse MLP trained with SET achieves state-of-the-art results on 
tabular data in predicting human decisions, outperforming fully-connected neural networks 
and Random Forest, among others.

In this work, we introduce for the first time sparse training in the world of denoising 
autoencoders, and we named the newly introduced model sparse denoising autoencoder 
(sparse DAE). We train the sparse DAE with the SET algorithm to keep the number of 
parameters low during the training. Then, we then exploit the trained network to select the 
most important features.
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3  Proposed method

To address the problem of the high dimensionality of the data, we propose a novel method, 
named “QuickSelection”, to select the most informative attributes from the data based on 
their strength (importance). In short, we train a sparse denoising autoencoder network from 
scratch in an unsupervised adaptive manner. Then, we use the trained network to derive the 
strength of each neuron in the input features.

The basic idea of our proposed approach is to impose sparse connections on DAE, which 
proved its success in the related field of feature extraction, to efficiently handle the compu-
tational complexity of high-dimensional data in terms of memory resources. Sparse con-
nections are evolved in an adaptive manner that helps in identifying informative features.

A couple of methods have been proposed for training deep neural networks from scratch 
using sparse connections and sparse training (Dettmers & Zettlemoyer, 2019; Mocanu 
et  al., 2018; Bellec et  al., 2017; Mostafa & Wang, 2019; Evci et  al., 2019; Zhu & Jin, 
2019). All these methods are implemented using a binary mask over connections to simu-
late sparsity since all standard deep learning libraries and hardware (e.g., GPUs) are not 
optimized for sparse weight matrix operations. Unlike the aforementioned methods, we 
implement our proposed method in a purely sparse manner to meet our goal of actually 
using the advantages of a very small number of parameters during training. We decided to 
use SET in training our sparse DAE.

The choice of SET is due to its desirable characteristic. SET is a simple method yet 
achieves satisfactory performance. Unlike other methods that calculate and store informa-
tion for all the network weights, including the non-existing ones, SET is memory efficient. 
It stores the weights for the existing sparse connections only. It does not need any high 
computational complexity as the evolution procedure depends on the magnitude of the 
existing connections only. This is a favourable advantage to our proposed method to select 
informative features quickly. In the following subsections, we first present the structure of 
our proposed sparse denoising autoencoder network and then explain the feature selection 
method. The pseudo-code of our proposed method can be found in Algorithm 1.
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3.1  Sparse DAE

3.1.1  Structure

As the goal of our proposed method is to do fast feature selection in a memory-efficient 
way, we consider here the model with the least possible number of hidden layers, one hid-
den layer, as more layers mean more computation. Initially, sparse connections between 
two consecutive layers of neurons are initialized with an Erdős-Rényi random graph, in 
which the probability of the connection between two neurons is given by

where � denotes the parameter that controls the sparsity level, nl denotes number of neu-
rons at layer l, and Wl

ij
 is the connection between neuron i in layer l − 1 and neuron j in layer 

l, stored in the sparse weight matrix �l.
Input denoising We use the additive noise model to corrupt the original data:

where � is the input data vector from dataset X, nf  (noise factor) is a hyperparameter of the 
model which determines the level of corruption, and N(�, �2) is a Gaussian noise. After 
denoising the data, we derive the hidden representation � using this corrupted input. Then, 
the output � is reconstructed from the hidden representation. Formally, the hidden repre-
sentation � and the output � are computed as follows:

where �1 and �2 are the sparse weight matrices of hidden and output layers respectively, 
�
1 and �2 are the bias vectors of their corresponding layer, and a is the activation function 

of each layer. The objective of our network is to reconstruct the original features in the out-
put. For this reason, we use mean squared error (MSE) as the loss function to measure the 
difference between original features � and the reconstructed output �:

Finally, the weights can be optimized using the standard training algorithms (e.g., Stochas-
tic Gradient Descent (SGD), AdaGrad, and Adam) with the above reconstruction error.

3.1.2  Training procedure

We adapt the SET training procedure (Mocanu et al., 2018) in training our proposed net-
work for feature selection. SET works as follows. After each training epoch, a fraction � of 
the smallest positive weights and a fraction � of the largest negative weights at each layer 
is removed. The selection is based on the magnitude of the weights. New connections in 
the same amount as the removed ones are randomly added in each layer. Therefore the 
total number of connections in each layer remains the same, while the number of connec-
tions per neuron varies, as represented in Fig. 1. The weights of these new connections are 

(1)P
(
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ij

)
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�
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initialized from a standard normal distribution. The random addition of new connections 
do not have a high risk of not finding good sparse connectivity at the end of the training 
process because it has been shown in (Liu et  al. 2020) that sparse training can unveil a 
vast number of very different sparse connectivity local optima which achieve very similar 
performance.

3.2  Feature selection

We select the most important features of the data based on the weights of their correspond-
ing input neurons of the trained sparse DAE. Inspired by node strength in graph theory 
(Barrat et al., 2004), we determine the importance of each neuron based on its strength. 
We estimate the strength of each neuron ( si ) by the summation of absolute weights of its 
outgoing connections.

where n1 is the number of neurons of the first hidden layer, and W1
ij
 denotes the weight of 

connection linking input neuron i to hidden neuron j.
As represented in Fig. 1, the strength of the input neurons changes during training; we 

have depicted the strength of the neurons according to their size and color. After conver-
gence, we compute the strength for all of the input neurons; each input neuron corresponds 
to a feature. Then, we select the features corresponding to the neurons with K largest 
strength values:

where �  and � ∗
s
 are the original feature set and the final selected features respectively, fi is 

the ith feature of �  , and K is the number of features to be selected. In addition, by sorting 
all the features based on their strength, we will derive the importance of all features in the 
dataset. In short, we will be able to rank all input features by training just once a single 
sparse DAE model.

For a deeper understanding of the above process, we analyze the strength of each input 
neuron in a 2D map on the MNIST dataset. This is illustrated in Fig. 2. At the beginning of 
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Fig. 2  Neuron’s strength on the MNIST dataset. The heat-maps above are a 2D representation of the input 
neuron’s strength. It can be observed that the strength of neurons is random at the beginning of training. 
After a few epochs, the pattern changes, and neurons in the center become more important and similar to 
the MNIST data pattern
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training, all the neurons have small strength due to the random initialization of each weight 
to a small value. During the network evolution, stronger connections are linked to impor-
tant features gradually. We can observe that after ten epochs, the neurons in the center of 
the map become stronger. This pattern is similar to the pattern of MNIST data in which 
most of the digits appear in the middle of the picture.

We studied other metrics for estimating the neuron importance, such as the strength of 
output neurons, degree of input and output neurons, and strength and degree of neurons 
simultaneously. However, in our experiments, all these methods have been outperformed 
by the strength of the input neurons in terms of accuracy and stability.

4  Experiments

In order to verify the validity of our proposed method, we carry out several experiments. In 
this section, first, we state the settings of the experiments, including hyperparameters and 
datasets. Then, we perform feature selection with QuickSelection and compare the results 
with other methods, including MCFS, Laplacian Score, and three autoencoder-based fea-
ture selection methods. After that, we do different analyses on QuickSelection to under-
stand its behavior. Finally, we discuss the scalability of QuickSelection and compare it with 
the other methods considered.

4.1  Settings

The experiment settings, including the values of hyperparameters, implementation details, 
the structure of the sparse DAE, datasets we use for evaluation, and the evaluation metric, 
are as follows.

4.1.1  Hyperparameters and implementation

For feature selection, we consider the case of the simplest sparse DAE with one hidden 
layer consisting of 1000 neurons. This choice is made due to our main objective to decrease 
the model complexity and the number of parameters. The activation function used for the 
hidden and output layer neurons is “Sigmoid” and “Linear” respectively, except for the 
Madelon dataset where we use “Tanh” for the output activation function. We train the net-
work with SGD and a learning rate of 0.01. The hyperparameter � , the fraction of weights 
to be removed in the SET procedure, is 0.2. Also, � , which determines the sparsity level, 
is set to 13. We set the noise factor (nf) to 0.2 in the experiments. To improve the learning 
process of our network, we standardize the features of our dataset such that each attribute 
has zero mean and unit variance. However, for SMK and PCMAC datasets, we use Min-
Max scaling. The preprocessing method for each dataset is determined with a small experi-
ment of the two preprocessing method.

We implement sparse DAE and QuickSelection1 in a purely sparse manner in Python, 
using the Scipy library (Jones et al. 2001) and Cython. We compare our proposed method 
to MCFS, Laplacian score (LS), AEFS, and CAE, which have been mentioned in Sect. 2. 

1 The implementation of QuickSelection is available at: https:// github. com/ zahra atash gahi/ Quick Selec tion.

https://github.com/zahraatashgahi/QuickSelection
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We also performed some experiments with UDFS; however, since we were not able to 
obtain many of the results in the considered time limit (24 hours), we do not include the 
results in the paper. We have used the scikit-feature repository for the implementation of 
MCFS, and Laplacian score (Li et al., 2018). Also, we use the implementation of feature 
selection with CAE and AEFS from Github2. In addition, to highlight the advantages of 
using sparse layers, we compare our results with a fully-connected autoencoder (FCAE) 
using the neuron strength as a measure of the importance of each feature. To have a fair 
comparison, the structure of this network is considered similar to our DAE, one hidden 
layer containing 1000 neurons implemented using TensorFlow. Furthermore, we have stud-
ied the effect of other components of QuickSelection, including input denoising and SET 
training algorithm, in Appendix B.1 and F, respectively.

For all the other methods (except FCAE for which all the hyperparameters and preproc-
essing are similar to QuickSelection), we scaled the data between zero and one, since it 
yields better performance than data standardization for these methods. The hyperparam-
eters of the aforementioned methods have been set similar to the ones reported in the cor-
responding code or paper. For AEFS, we tuned the regularization hyperparameter between 
0.0001 and 1000, since this method is sensitive to this value. We perform our experiments 
on a single CPU core, Intel Xeon Processor E5 v4, and for the methods that require GPU, 
we use NVIDIA TESLA P100.

4.1.2  Datasets

We evaluate the performance of our proposed method on eight datasets, including five low-
dimensional datasets and three high-dimensional ones. Table 1 illustrates the characteris-
tics of these datasets.

• COIL-20 (Nene et al., 1996) consists of 1440 images taken from 20 objects (72 poses 
for each object).

• Madelon (Guyon et al., 2008) is an artificial dataset with 5 informative features and 15 
linear combinations of them. The rest of the features are distractor features since they 
have no predictive power.

Table 1  Datasets characteristics

Dataset Dimensions Type Samples Train Test Classes

Coil20 1024 Image 1440 1152 288 20
Isolet 617 Speech 7737 6237 1560 26
HAR 561 Time Series 10299 7352 2947 6
Madelon 500 Artificial 2600 2000 600 2
MNIST 784 Image 70000 60000 10000 10
SMK-CAN-187 19993 Microarray 187 149 38 2
GLA-BRA-180 49151 Microarray 180 144 36 4
PCMAC 3289 Text 1943 1554 389 2

2 The implementation of AEFS and CAE is available at: https:// github. com/ mfbal in/ Concr ete- Autoe ncode rs.

https://github.com/mfbalin/Concrete-Autoencoders
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• Human Activity Recognition (HAR) (Anguita et al., 2013) is created by collecting the 
observations of 30 subjects performing 6 activities such as walking, standing, and sit-
ting. The data was recorded by a smart-phone connected to the subjects’ body.

• Isolet (Fanty & Cole, 1991) has been created with the spoken name of each letter of the 
English alphabet.

• MNIST (LeCun, 1998) is a database of 28x28 images of handwritten digits.
• SMK-CAN-187 (Spira et  al., 2007) is a gene expression dataset with 19993 features. 

This dataset compares smokers with and without lung cancer.
• GLA-BRA-180 (Sun et al., 2006) consists of the expression profile of Stem cell factor 

useful to determine tumor angiogenesis.
• PCMAC (Lang, 1995) is a subset of the 20 Newsgroups data.

4.1.3  Evaluation metrics

To evaluate our model, we compute two metrics: clustering accuracy and classification 
accuracy. To derive clustering accuracy (Li et al., 2018), first, we perform K-means using 
the subset of the dataset corresponding to the selected features and get the cluster labels. 
Then, we find the best match between the class labels and the cluster labels and report 
the clustering accuracy. We repeat the K-means algorithm 10 times and report the average 
clustering results since K-means may converge to a local optimal.

To compute classification accuracy, we use a supervised classification model named 
“Extremely randomized trees” (ExtraTrees), which is an ensemble learning method that 
fits several randomized decision trees on different parts of the data (Geurts et al., 2006). 
The choice of the classification method is made due to the computational-efficiency of the 
ExtraTrees classifier. To compute classification accuracy, first, we derive the K selected 
features using each feature selection method considered. Then, we train the ExtraTrees 
classifier with 50 trees as estimators on the K selected features of the training set. Finally, 
we compute the classification accuracy on the unseen test data. For the datasets that do not 
contain a test set, we split the data into training and testing sets, including 80% of the total 
original samples for the training set and the remaining 20% for the testing set. In addition, 
we have evaluated the classification accuracy of feature selection using the random forest 
classifier (Liaw et al., 2002) in Appendix G.

4.2  Feature selection

We select 50 features from each dataset except Madelon, for which we select just 20 fea-
tures since most of its features are non-informative noise. Then, we compute the cluster-
ing and classification accuracy on the selected subset of features; the more informative 
features selected, the higher accuracy will be achieved. The clustering and classification 
accuracy results of our model and the other methods are summarized in Tables 2 and 3, 
respectively. These results are an average of 5 runs for each case. For the autoencoder-
based feature selection methods, including CAE, AEFS, and FCAE, we consider 100 train-
ing epochs. However, we present the results of QuickSelection at epoch 10 and 100 named 
 QuickSelection10 and  QuickSelection100, respectively. This is mainly due to the fact that 
our proposed method is able to achieve a reasonable accuracy after the first few epochs. 
Moreover, we perform hyperparameter tuning for � and � using the grid search method over 
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a limited number of values for all datasets; the best result is presented in Tables 2 and 3 as 
 QuickSelectionbest. The results of hyperparameters selection can be found in Appendix B.2. 
However, we do not perform hyperparameter optimization for the other methods (except 
AEFS). Therefore, in order to have a fair comparison between all methods, we do not com-
pare the results of  QuickSelectionbest with the other methods.

From Table 2, it can be observed that QuickSelection outperforms all the other methods 
on Isolet, Madelon, and PCMAC, in terms of clustering accuracy, while being the second-
best performer on Coil20, MNIST, SMK, and GLA. Furthermore, On the HAR dataset, it 
is the best performer among all the autoencoder-based feature selection methods consid-
ered. As shown in Table 3, QuickSelection outperforms all the other methods on Coil20, 
SMK, and GLA, in terms of classification accuracy, while being the second-best performer 
on the other datasets. From these tables, it is clear that QuickSelection can outperform its 

Table 2  Clustering accuracy (%) using 50 selected features (except Madelon for which we select 20 fea-
tures)

On each dataset, the bold entry is the best-performer, and the italic one is the second-best performer

Method COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

MCFS 67.0 ± 0.7 33.8 ± 0.5 62.4 ± 
0.0

57.2 ± 0.0 35.2 ± 0 51.6 ± 0.2 65.8 ± 0.3 50.6 ± 0.0

LS 55.5 ± 0.4 33.2 ± 0.2 61.2 ± 
0.0

58.1 ± 0.0 14.9 ± 0.1 51.6 ± 0.4 55.5 ± 0.4 50.6 ± 0.0

CAE 60.0 ± 1.1 31.6 ± 1.3 51.40.4 56.9 ± 3.6 49.2 ± 1.5 60.7 ± 0.4 55.4 ± 1.3 52.0 ± 1.2
AEFS 51.2 ± 1.7 31.0 ± 2.7 55.0 ± 

2.2
50.8 ± 0.2 40.0 ± 1.9 52.4 ± 1.8 56.1 ± 5.2 50.9 ± 0.5

FCAE 60.2 ± 1.7 28.7 ± 2.5 49.5 ± 
8.7

50.9 ± 0.4 28.2 ± 8.5 51.5 ± 0.8 53.5 ± 3.0 50.9 ± 0.1

QS
10

59.5 ± 2.1 32.5 ± 2.8 56.0 ± 
2.6

57.5 ± 3.8 45.4 ± 3.9 54.0 ± 3.1 53.6 ± 4.7 50.9 ± 0.5

QS
100

60.2 ± 2.0 35.1 ± 2.7 54.6 ± 
4.5

58.2 ± 1.5 48.3 ± 2.4 51.8 ± 0.8 59.5 ± 1.8 52.5 ± 1.1

QSbest 63.8 ± 1.5 42.2 ± 2.6 59.5 ± 
4.3

58.6 ± 0.9 48.3  ± 2.4 54.9 ± 1.39 59.5 ± 1.8 53.1 ± 0

Table 3  Classification accuracy (%) using 50 selected features (except Madelon for which we select 20 fea-
tures)

 On each dataset, the bold entry is the best-performer, and the italic one is the second-best performer

Method COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

MCFS 99.2  ±  0.3 79.5 ± 0.4 88.9 ± 0.3 81.7 ± 0.8 88.7 ± 0 75.8 ± 1.5 70.6 ± 3.8 55.5 ± 0.0
LS 89.8  ±  0.4 83.0 ± 0.2 86.4 ± 0.4 91.4 ± 0.9 20.7 ± 0.1 71.6 ± 5.6 71.7 ± 1.1 50.4 ± 0.0
CAE 99.6  ±  0.3 89.8 ± 0.6 91.7 ± 1.0 87.5 ± 2.0 95.4 ± 0.1 71.6 ± 3.1 70.0 ± 4.1 59.9 ± 1.5
AEFS 93.0 ± 2.7 85.1 ± 2.4 87.7 ± 1.4 52.1 ± 2.8 86.1 ± 2.0 76.3 ± 4.4 68.9 ± 3.7 57.1 ± 3.6
FCAE 99.7 ± 0.2 81.6 ± 5.9 87.4 ± 2.4 53.5 ± 8.1 68.8 ± 28.7 71.6 ± 3.5 72.8 ± 4.8 58.1 ± 1.9
QS

10
98.8 ± 0.6 86.9 ± 1.1 88.8 ± 0.7 86.6 ± 3.6 93.8 ± 0.6 76.9 ± 4.6 69.4 ± 3.0 58.9 ± 4.4

QS
100

99.7 ± 0.3 89.0 ± 1.3 90.2 ± 1.2 90.3 ± 0.7 93.5 ± 0.5 75.7 ± 3.9 73.3 ± 3.3 58.0 ± 2.9
QSbest 99.7 ± 0.3 89.0 ± 1.3 90.5 ± 1.6 90.9  ± 0.5 94.2 ± 0.5 81.6  ± 2.9 73.3 ± 3.3 61.3 ± 6.1
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equivalent dense network (FCAE) in terms of classification and clustering accuracy on all 
datasets.

It can be observed in Tables 2 and 3, that Lap_score has a poor performance when the 
number of samples is large (e.g. MNIST). However, in the tasks with a low number of sam-
ples and features, even on noisy environments such as Madelon, Lap_score has a relatively 
good performance. In contrast, CAE has a poor performance in noisy environments (e.g., 
Madelon), while it has a decent classification accuracy on the other datasets considered. It 
is the best or second-best performer on five datasets, in terms of classification accuracy, 
when K = 50 . AEFS and FCAE cannot achieve a good performance on Madelon, either. 
We believe that the dense layers are the main cause of this behaviour; the dense connec-
tions try to learn all input features, even the noisy features. Therefore, they fail to detect 
the most important attributes of the data. MCFS performs decently on most of the datasets 
in terms of clustering accuracy. This is due to the main objective of MCFS to preserve 
the multi-cluster structure of the data. However, this method also has a poor performance 
on the datasets with a large number of samples (e.g., MNIST) and noisy features (e.g., 
Madelon).

However, since evaluating the methods using a single value of K might not be enough 
for comparison, we performed another experiment using different values of K. In Appen-
dix A.1, we test other values for K on all datasets, and compare the methods in terms of 
classification accuracy, clustering accuracy, running time, and maximum memory usage. 
The summary of the results of this Appendix has been summarized in Sect. 5.1.

4.2.1  Relevancy of selected features

To illustrate the ability of QuickSelection in finding informative features, we analyze 
thoroughly the Madelon dataset results, which has the interesting property of containing 
many noisy features. We perform the following experiments; first, we sort the features 
based on their strength. Then, we remove the features one by one from the least impor-
tant feature to the most important one. In each step, we train an ExtraTrees classifier 
with the remained features. We repeat this experiment by removing the feature from the 
most important ones to the least important ones. The result of classification accuracy 
for both experiments can be seen in Fig. 3. On the left side of Fig. 3, we can observe 
that removing the least important features, which are noise, increases the accuracy. The 
maximum accuracy occurs after we remove 480 noise features. This corresponds to the 
moment when all the noise features are supposed to be removed. In Fig. 3 (right), it can 
be seen that removing the features in a reverse order results in a sudden decrease in the 
classification accuracy. After removing 20 features (indicated by the vertical blue line), 

A
(

)

A
(

)

l

Fig. 3  Influence of feature removal on Madelon dataset. After deriving the importance of the features with 
QuickSelection, we sort and then remove them based on two orders



390 Machine Learning (2022) 111:377–414

1 3

the classifier performs like a random classifier. We conclude that QuickSelection is able 
to find the most informative features in good order.

To better show the relevancy of the features found by QuickSelection, we visualize 
the 50 features selected on the MNIST dataset per class, by averaging their correspond-
ing values from all data samples belonging to one class. As can be observed in Fig. 4, 
the resulting shape resembles the actual samples of the corresponding digit. We discuss 
the results of all classes at different training epochs in more detail in Appendix C.

5  Discussion

5.1  Accuracy and computational efficiency trade‑off

In this section, we perform a thorough comparison between the models in terms of run-
ning time, energy consumption, memory requirement, clustering accuracy, and classifica-
tion accuracy. In short, we change the number of features to be selected (K) and measure 
the accuracy, running time, and maximum memory usage across all methods. Then, we 
compute two scores to summarize the results and compare methods.

We analyse the effect of changing K on QuickSelection performance and compare 
it with other methods; the results are presented in Fig.  10 in Appendix A.1. Figure 10a 
compares the performance of all methods when K is changing between 5 and 100 on low-
dimensional datasets, including Coil20, Isolet, HAR, and Madelon. Figure 10b illustrates 
performance comparison for K between 5 and 300 on the MNIST dataset, which is also 
a low-dimensional dataset. We discuss this dataset separately since it has a large number 
of samples that makes it different from other low-dimensional datasets. Figure 10c repre-
sents a similar comparison on three high-dimensional datasets, including SMK, GLA, and 
PCMAC. It should be noted that to have a fair comparison, we use a single CPU core to 
run these methods; however, since the implementations of CAE and AEFS are optimized 
for parallel computation, we use a GPU to run these methods. We also measure the running 
time of feature selection with CAE on CPU.

To compare the memory requirement of each method, we profile the maximum memory 
usage during feature selection for different values of K. The results are presented in Fig. 11 

Fig. 4  Average values of all data samples of each class corresponding to the 50 selected features on MNIST 
after 100 training epochs (bottom), along with the average of the actual data samples of each class (top)
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in Appendix  A.1, derived using a Python library named resource3. Besides, to compare 
memory occupied by the autoencoder-based models, we count the number of parameters 
for each model. The results are shown in Figure 14 in Appendix A.3.

However, comparing all of these methods only by looking into the graphs in Figs. 10 
and 11 is not easily possible, and the trade-off between the factors is not clear. For this rea-
son, we compute two scores to take all these metrics into account simultaneously.

5.1.1  Score 1

To compute this score, on each dataset and for each value of K, we rank the methods based 
on the running time, memory requirement, clustering accuracy, and classification accuracy. 
Then, we give a score of 1 to the best and second-best performers; this is mainly due to the 
fact that in most cases, the difference between these two is negligible. After that, we com-
pute the summation of these scores for each method on all datasets. The results are pre-
sented in Fig. 5a; to ease the comparison of different components in the score, a heat-map 
visualization of the scores is presented in Fig. 5c. The cumulative score for each method 
consists of four parts that correspond to each metric considered. As it is obvious in this 
figure, QuickSelection (cumulative score of QuickSelection10 and QuickSelection100 ) out-
performs all other methods by a significant gap. Our proposed method is able to achieve 
the best trade-off between accuracy, running time, and memory usage, among all these 
methods. Laplacian score, the second-best performer, has a decent performance in terms of 
running time and memory, while it cannot perform well in terms of accuracy. On the other 
hand, CAE has a satisfactory performance in terms of accuracy. However, it is not among 
the best two performers in terms of computational resources for any values of K. Finally, 
FCAE and AEFS cannot achieve a decent performance compared to the other methods. A 
more detailed version of Fig. 5a is available in Fig. 12 in Appendix A.1.

5.1.2  Score 2

In addition to the raking-based score, we calculate another score to consider all the methods, 
even the lower-ranking ones. With this aim, on each dataset and value of K, we normalize 

(a) (b) (c)

Fig. 5  Feature selection comparison in terms of classification accuracy, clustering accuracy, speed, and 
memory requirement, on each dataset and for different values of K, using two scoring variants

3 https:// docs. python. org/2/ libra ry/ resou rce. html.

https://docs.python.org/2/library/resource.html
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each performance metric between 0 and 1, using the values of the best performer and worst 
performer on each metric. The value of 1 in the accuracy score means the highest accuracy. 
However, for the memory and running time, the value of 1 means the least memory require-
ment and the least running time, respectively. After normalizing the metrics, we accumulate 
the normalized values for each method and on all datasets. The results are depicted in Fig. 5b. 
As can be seen in this diagram, QuickSelection (we consider the results of QuickSelection100 ) 
outperforms the other methods by a large margin. CAE has a close performance to Quick-
Selection in terms of both accuracy metrics, while it has a poor performance in terms of 
memory and running time. In contrast, Lap_score is computationally efficient while having 
the lowest accuracy score. In summary, it can be observed in Fig. 5b, that QuickSelection 
achieves the best trade-off of the four objectives among the considered methods.

5.1.3  Energy consumption

The next analysis we perform concerns the energy consumption of each method. We esti-
mate the energy consumption of each method using the running time of the corresponding 
algorithm for each dataset and value of K. We assume that each method uses the maximum 
power of the corresponding computational resources during its running time. Therefore, 
we derive the power consumption of each method, using the running time and maximum 
power consumption of CPU and/or GPU, which can be found within the specification of 
the corresponding CPU or GPU model. As shown in Fig. 13 in Appendix A.2, the Lapla-
cian score feature selection needs the least amount of energy among the methods on all 
datasets except the MNIST dataset. QuickSelection10 is the best performer on MNIST in 
terms of energy consumption. Laplacian score and MCFS are sensitive to the number of 
samples. They cannot perform well on MNIST, either in terms of accuracy or efficiency. 
The maximum memory usage during feature selection for Laplacian score and MCFS on 
MNIST is 56 GB and 85 GB, respectively. Therefore, they are not a good choice in case of 
having a large number of samples. QuickSelection is the second-best performer in terms of 
energy consumption, and also the best performer among the autoencoder-based methods. 
QuickSelection is not sensitive to the number of samples or the number of dimensions.

5.1.4  Efficiency versus accuracy

In order to study the trade-off between accuracy and resource efficiency, we perform another 
in-depth analysis. In this analysis, we plot the trade-off between accuracy (including, clas-
sification and clustering accuracy) and resource requirement (including, memory and energy 
consumption). The results are shown in Figs. 6 and 7 that correspond to the energy-accuracy 
and memory-accuracy trade-off, respectively. Each point in these plots refers to the results 
of a particular combination between a specific method and dataset when selecting 50 fea-
tures (except Madelon, for which we select 20 features). As can be observed in these plots, 
QuickSelection, MCFS, and Lap_score usually have a good trade-off between the consid-
ered metrics. A good trade-off between a pair of metrics is to maximize the accuracy (clas-
sification or clustering accuracy) while minimizing the computational cost (power con-
sumption or memory requirement). However, when the number of samples increases (on 
the MNIST dataset), both MCFS and Lap_score fail to maintain a low computational cost 
and high accuracy. Therefore, when the dataset size increases, these two methods are not an 
optimal choice. Among the autoencoder-based methods, in most cases  QuickSelection10 and 
 QuickSelection100 are among the Pareto optimal points. Another significant advantage of our 
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proposed method is that it gives the ranking of the features as the output. Therefore, unlike 
the MCFS or CAE that need the value of K as their input, QuickSelection is not dependent 
on K and needs just a single training of the sparse DAE model for any values of K. Therefore, 
the computational cost of QuickSelection is the same for all values of K, and only a single 
run of this algorithm is required to get the hierarchical importance of features.

5.2  Running time comparison on an artificially generated dataset

In this section, we perform a comparison of the running time of the autoencoder-based fea-
ture selection methods on an artificially generated dataset. Since on the benchmark data-
sets both the number of features and samples are different, it is not easily possible to com-
pare clearly the efficiency of the methods. This experiment aims at comparing the models 
real wall-clock training time in a controlled environment with respect to the number of 
input features and hidden neurons. In addition, in Appendix E, we have conducted another 

Fig. 6  Estimated power consumption (Kwh) versus accuracy (%) when selecting 50 features (except 
Madelon for which we select 20 features). Each point refers to the result of a single dataset (specified by 
colors) and method (specified by markers) where the x and y-axis show the accuracy and the estimated 
power consumption, respectively

Fig. 7  Maximum memory requirement (Kb) versus accuracy (%) when selecting 50 features (except 
Madelon for which we select 20 features). Each point refers to the result of a single dataset (specified by 
colors) and method (specified by markers) where the x and y-axis show the accuracy and the maximum 
memory requirement, respectively. Due to the high memory requirement of MCFS and Lap_score on the 
MNIST dataset which makes it difficult to compare the other results (upper plots), we zoom in this section 
in the bottom plots
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experiment regarding the evaluation of the methods on a very large artificial dataset in terms 
of both computational resources and accuracy.

In this experiment, we aim to compare the speed of QuickSelection versus other autoencoder-
based feature selection methods for different numbers of input features. We run all of them on an 
artificially generated dataset with various numbers of features and 5000 samples, for 100 training 
epochs (10 epochs for QuickSelection10 ). The features of this dataset are generated using a stand-
ard normal distribution. In addition, we aim to compare the running time of different structures 
for these algorithms. The specifications of the network structure for each method, the computa-
tional resources used for feature selection, and the corresponding results can be seen in Fig. 8.

For CAE, we consider two different values of K. The structure of CAE depends on this 
value. CAE has two hidden layers including a concrete selector and a decoder that have K 
and 1.5K neurons, respectively. Therefore, by increasing the number of selected features, the 
running time of the model will also increase. In addition, we consider the cases of CAE with 
1000 and 10000 hidden neurons in the decoder layer (manually changed in the code) to be able 
to compare it with the other models. We also measure the running time of performing feature 
selection with CAE using only a single CPU core. It can be seen from Fig. 8 that its running 
time is considerably high. The general structures of AEFS, QuickSelection, and FCAE are 
similar in terms of the number of hidden layers. They are basic autoencoders with a single hid-
den layer. For AEFS, we considered three structures with different numbers of hidden neurons, 
including 300, 1000, and 10000. Finally, for QuickSelection and FCAE, we consider two dif-
ferent values for the number of hidden neurons, including 1000 and 10000.

It can be observed that the running time of AEFS with 1000 and 10000 hidden neurons 
using a GPU, is much larger than the running time of QuickSelection100 with similar num-
bers of hidden neurons using only a single CPU core, respectively. The same pattern is also 
visible in the case of CAE with 1000 and 10000 hidden neurons. This pattern also repeats 
in the case of FCAE with 10000 hidden neurons. The running time of FCAE with 1000 

Fig. 8  Running time comparison on an artificially generated dataset. The features are generated using a 
standard normal distribution and the number of samples for each case is 5000
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hidden neurons is approximately similar to QuickSelection100 . However, the difference 
between these two methods is more significant when we increase the number of hidden 
neurons to 10000. This is mainly due to the fact that the difference between the number of 
parameters of QuickSelection and the other methods become much higher for large values 
of K. Besides, these observations depict that the running time of QuickSelection does not 
change significantly by increasing the number of hidden neurons.

As we have also mentioned before, QuickSelection gives the ranking of the features as the 
output. Therefore, unlike CAE, which should be run separately for different values of K, Quick-
Selection is not affected by choice of K because it computes the importance of all features at the 
same time and after finishing the training. In short, QuickSelection10 has the least running time 
among other autoencoder-based methods while being independent of the value of K. In addition, 
unlike the other methods, the running time of QuickSelection is not sensitive to the number of 
hidden neurons since the number of parameters is low even for a very large hidden layer.

5.3  Neuron strength analysis

In this section, we discuss the validity of neurons strength as a measure of feature impor-
tance. We observe the evolution of the network during training to analyze how the neuron 
strength of important and unimportant neurons changes during training.

We argue that the most important features that lead to the highest accuracy of feature 
selection are the features corresponding to neurons with the highest strength. In a neu-
ral network, weight magnitude is a metric that shows the importance of each connection 
(Kavzoglu and Mather 1998). This stems from the fact that weights with a small magni-
tude have a small effect on the performance of the model. At the beginning of training, we 
initialize all connections to a small random value. Therefore, all the neurons have almost 
the same strength/importance. As the training proceeds, some connections grow to a larger 
value while some others are pruned from the network during the dynamic connections 
removal and regrowth of the SET training procedure. The growth of the stable connection 
weights demonstrates their significance in the performance of the network. As a result, the 
neurons connected to these important weights contain important information. In contrast, 
the magnitude of the weights connected to unimportant neurons gradually decreases until 
they are removed from the network. In short, important neurons receive connections with a 
larger magnitude. As a result, neuron strength, which is the summation of the magnitude of 
weights connected to a neuron, can be a measure of the importance of an input neuron and 
its corresponding feature.

To support our claim, we observe the evolution of neurons’ strength on the Madelon 
dataset. This choice is made due to the distinction between informative and non-inform-
ative features in the Madelon dataset. As described earlier, this dataset has 20 informa-
tive features, and the rest of the features are non-informative noise. We consider 20 most 
informative and non-informative features detected by QS10 and QS100 , and monitor their 
strength during training (as observed in Fig. 3, the maximum accuracy is achieved using 
the 20 most informative features, while the least accuracy is achieved using the least impor-
tant features). The features selected by QS10 are also being monitored after the algorithm is 
finished (epoch 10) until epoch 100, in order to compare the quality of the selected features 
by QS10 with QS100 . In other words, we extract the index of important features using QS10 , 
and continue the training without making any changes in the network and monitor how the 
strength of the neurons corresponding to the selected index would evolve after epoch 10. 
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The results are presented in Fig. 9. At the initialization (epoch 0), the strength of all these 
neurons is almost similar and below 5. As the training starts, the strength of significant 
neurons increases, while the strength of unimportant neurons does not change significantly. 
As can be seen in Fig. 9, some of the important features selected by QS10 are not among 
those of QS100 ; this can explain the difference in the performance of these two methods 
in Table 2 and 3. However, QS10 is able to detect a large majority of the features found 
by QS100 ; these features are among the most important ones among the final 20 selected 
features. Therefore, we can conclude that most of the important features are detectable by 
QuickSelection, even at the first few epochs of the algorithm.

6  Conclusion

In this paper, a novel method (QuickSelection) for energy-efficient unsupervised fea-
ture selection has been proposed. It introduces neuron strength in sparse neural net-
works as a measure of feature importance. Besides, it proposes sparse DAE to accu-
rately model the data distribution and to rank all features simultaneously based on 
their importance. By using sparse layers instead of dense ones from the beginning, 
the number of parameters drops significantly. As a result, QuickSelection requires 
much less memory and computational resources than its equivalent dense model and 

Fig. 9  Strength of the 20 most informative and non-informative features of Madelon dataset, selected by 
QS

10
 and QS

100
 . Each line in the plots corresponds to the strength values of a selected feature by QS

10
/QS

100
 

during training. The features selected by QS
10

 have been observed until epoch 100 to compare the quality of 
these features with QS

100



397Machine Learning (2022) 111:377–414 

1 3

its competitors. For example, on low-dimensional datasets, including Coil20, Isolet, 
HAR, and Madelon, and for all values of K,  QuickSelection100 which runs on one CPU 
core is at least 4 times faster than its direct competitor, CAE, which runs on a GPU, 
while having a close performance in terms of classification and clustering accuracy. 
We empirically demonstrate that QuickSelection achieves the best trade-off between 
clustering accuracy, classification accuracy, maximum memory requirement, and run-
ning time, among other methods considered. Besides, our proposed method requires 
the least amount of energy among autoencoder-based methods considered.

The main drawback of the the proposed method is the lack of a parallel implementa-
tion. The running time of QuickSelection can be further decreased by an implementa-
tion that takes advantage of multi-core CPU or GPU. We believe that interesting future 
research would be to study the effects of sparse training and neuron strength in other 
types of autoencoders for feature selection, e.g. CAE. Nevertheless, this paper has just 
started to explore one of the most important characteristics of QuickSelection, i.e. 
scalability, and we intend to explore further its full potential on datasets with millions 
of features. Besides, this paper showed that we can perform feature selection using 
neural networks efficiently in terms of computational cost and memory requirement. 
This can pave the way for reducing the ever-increasing computational costs of deep 
learning models imposed on data centers. As a result, this will not only save the energy 
costs of processing high-dimensional data but also will ease the challenges of high 
energy consumption imposed on the environment.

Appendix

Appendix A: Performance evaluation

In this appendix, we compare all methods from different aspects including accuracy, mem-
ory usage, running time, energy consumption, and the number of parameters. We perform 
different experiments to gain a deep insight into the performance of QuickSelection.

A.1 Discussion: accuracy and computational efficiency trade‑off

In this section, we compare the performance of all methods in more detail. We run feature 
selection for different values of K on each dataset and then measure the performance.

As shown in Fig. 10, we compare clustering accuracy, classification accuracy, and run-
ning time among the methods for different values of K. The comparison of maximum 
memory (RAM) requirement is also depicted in Fig. 11. For all methods except CAE and 
AEFS, we run the experiments on a single CPU core. Since the implementations of CAE 
and AEFS are optimized for GPU, we measure the running time of these methods using 
a GPU. However, we also consider the running time of CAE using a single CPU core. It 
should be noticed that since Laplacian score, AEFS, FCAE, and QuickSelection give the 
ranking of the features as the output of the feature selection process, we need to run them 
just once for all values of K. However, MCFS and CAE need the K value as an input of 
their algorithm. So, the running time depends on the value of K. In the implementation of 
AEFS, K is used to set the number of hidden values. However, it is not the requirement of 
the algorithm.
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We summarize the results of the aforementioned plots in Fig. 12; we compare the meth-
ods using the score 1, which is introduced in Sect. 5.1. This score is computed based on 
the methods’ ranking in clustering accuracy, classification accuracy, running time, and 
memory. As explained in Sect. 5.1, we give a score of one to each method that is the first or 
second-best performer in each of the considered metrics. Then, we compute a sum over all 
of these scores on all datasets and on all values of K; the final scores for each method can 

(a)

(b) (c)

Fig. 10  Comparison of clustering accuracy, classification accuracy, and running time for various values of 
K among all the methods considered on eight datasets, including low-dimensional and high-dimensional 
datasets. The running time of CAE and AEFS is measured using a GPU, while all the other methods use 
only a single CPU core
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be seen in Fig. 12. The first column depicts the results on low-dimensional datasets with 
a low number of samples, including Coil20, Isolet, HAR, and Madelon. The second col-
umn shows the results corresponding to MNIST. Similarly, the third column corresponds 
to high-dimensional datasets, including SMK, GLA, and PCMAC. The total score over all 
of these datasets is shown in the 4th column. In Fig. 12, there exist four rows; the first row 
corresponds to considering QuickSelection10 and QuickSelection100 simultaneously, and 

Fig. 11  Maximum memory usage during feature selection for different values of K 

Low-dimensional datasets MNIST dataset High-dimensional datasets All datasets All datasets (Average)

Q
S

10 , Q
S

100
S

U
M

Q
S

10
Q

S
100

Fig. 12  Feature selection results comparison in terms of classification accuracy, clustering accuracy, speed, 
and memory. The Scores are based on the ranking of the methods on each dataset and for different values of 
K (Score 1)
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the sum of their scores are depicted in the second row. The last two rows correspond to 
considering each of these two methods separately.

However, since the performance of each method can be different in each of the three 
groups of datasets, we compute a normalized version of the score 1, based on the num-
ber of datasets in each group. For example, the Laplacian score has a poor performance 
on MNIST, and this pattern would be similar on other datasets with a large number of 
samples. However, there is just one dataset with a large number of samples in this experi-
ment. On the other hand, on high-dimensional datasets with a low number of samples, this 
method has a good performance in terms of running time, and we have three datasets with 
such characteristics. So, we normalize the values of score 1, such that instead of giving a 
score of one to each method, we give a score of one divided by the number of datasets in 
the corresponding group. The results of the normalized score 1 are shown in the last col-
umn of Fig. 12.

A.2 Energy consumption

We perform another experiment regarding the comparison of energy consumption among 
all methods. The results are presented in Fig. 13. More details regarding this plot are given 
in the paper in Sect. 5.1.

A.3 Number of parameters

In Fig.  14, we compare the number of parameters of the autoencoder-based methods. 
FCAE, a fully connected-autoencoder with 1000 hidden neurons, has the highest number 
of parameters on all datasets. Our proposed network, sparse DAE, has the lowest number 
of parameters in most cases. It has 1000 hidden neurons that are sparsely connected to 
input and output neurons. The number of parameters of AEFS and CAE depends on the 
number of selected features. As also mentioned earlier, the structure of AEFS is similar to 
FCAE with a difference in the number of hidden neurons. The number of hidden neurons 
in the implementation of AEFS is set to K.

Fig. 13  Energy consumption of all methods for different values of K 
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Fig. 14  Number of parameters of autoencoder-based models for different values of K 

Appendix B: Parameter selection

In this appendix, we discuss the effect of three hyperparameters of QuickSelection on fea-
ture selection performance.

B.1 Noise factor

To analyze the effect of the noise level on QuickSelection behavior, we evaluate the sparse 
DAE model with different noise factors. To this end, we test different noise factors between 
0 and 0.8. The results can be observed in Fig. 15. These results are an average of 5 runs for 
each case.

We can observe that adding 20% to 40% noise on the data seems to be opti-
mal; it improves the performance on most of the datasets for  QuickSelection10 and 
 QuickSelection100 compared to the model without any noise. We choose the noise factor of 
0.2 for all the experiments.

It is clear in Fig. 15, that setting the noise factor to a large value may corrupt the input 
data in such a way that the network would not be able to model the data distribution accu-
rately. For example, on the Isolet dataset, the clustering accuracy degrades for 10% when 
we add 80% noise on the input data compared to the model with the noise factor of 0.2. 
Also, the result is less stable when we add a large amount of noise. In this example, we can 
observe that adding 20% noise to the original data improves both classification and cluster-
ing accuracy of  QuickSelection100 by approximately 3%.

From this figure, it can be observed that the improvement of adding noise, is more obvi-
ous in  QuickSelection100 than  QuickSelection10. When we add noise to the data, it needs 
more time to learn the original structure of the data. So, we need to run it for more epochs 
to get a proper result.
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B.2 SET hyperparameters

As explained in the paper, � and � are the hyperparameters of the SET algorithm which 
control the number of connections to remove/add for each topology change and the sparsity 
level, respectively. The corresponding density level of each � value for each dataset can be 
observed in Table 4.

To illustrate the effect of the hyperparameters � and � , we perform a grid search within a 
small set of values on all of the datasets. The obtained results can be found in Tables 5 and 6.  

Fig. 15  Clustering and classification accuracy for feature selection using  QuickSelection10 and 
 QuickSelection100 with different values of noise factor. We select 50 features from all datasets except 
Madelon for which we select 20 features

Table 4  � values and their corresponding density level (%)

Density [%]

� COIL-20 Isolet HAR Madelon MNIST SMK GLA PCMAC

2 0.39 0.52 0.39 0.59 0.45 0.20 0.2 0.26
5 0.98 1.30 0.98 1.48 1.13 0.53 0.51 0.65
10 1.95 2.58 1.95 2.95 2.25 1.04 1.02 1.13
13 2.53 3.35 2.53 3.82 2.91 1.35 1.32 1.69
20 3.87 5.10 3.87 5.82 4.45 2.07 2.04 2.6
25 4.87 6.45 4.87 7.37 5.63 2.65 2.55 3.26
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As we increase the � value, the number of connections in our model increases, and 
therefore, the computation time will increase. So, we prefer using small values for this 
parameter. Additionally, for a large value of � , in some cases the model is not able to 
converge in 100 epochs; for example, on the MNIST dataset, we can observe that for an 
� value of 25, the model has lower performance in terms of clustering and classification 
accuracy.

It can be observed that � = 0.2 and � = 13 (as chosen for the experiments performed in 
the paper) lead to a decent performance on all datasets. For these values, QuickSelection is 
able to achieve high clustering and classification accuracy.

Overall, although searching for the best pair of � and � will improve the performance, 
QuickSelection is not extremely sensitive to these values. As can be seen in Tables 5 and 6, 
for all values of these hyperparameters QuickSelection has a reasonable performance. Even 
with � = 2 which leads to a very sparse model, QuickSelection has decent performance, 
and in some cases better than a denser network.

Fig. 16  50 most informative fea-
tures of MNIST dataset selected 
by QuickSelection after 1, 10, 
and 100 epochs of training

Epoch 1 Epoch 10 Epoch 100

Epoch 1 Epoch 10 Epoch 100 Class Epoch 1 Epoch 10 Epoch 100 Class

Fig. 17  Average of the data samples of each MNIST class corresponding to the 50 selected features after 1, 
10, and 100 epochs of training along with the average of the actual samples of each class
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Appendix C: Visualization of selected features on MNIST

In Fig. 16, we visualize the 50 best features found by QuickSelection on the MNIST data-
set at different epochs. These features are mostly at the center of the image, similar to the 
pattern of MNIST digits.

Then, we visualize the features selected for each class separately. In Fig. 17, each pic-
ture at different epochs is the average of the 50 selected features of all the samples of each 
class along with the average of the actual samples of the corresponding class. As we can 
see, during training, these features become more similar to the pattern of digits of each 
class. Thus, QuickSelection is able to find the most relevant features for all classes.

Appendix D: Feature extraction

Although it is not the main focus of the paper, we perform a small analysis on the MNIST 
dataset to study the performance of sparse DAE as a feature extractor. We train it to map 
the high-dimensional features into a lower-dimensional space.

The structure we consider for feature extraction has three hidden layers with 1000, 
50, and 1000 neurons, respectively; the middle layer (50 neurons) is the extracted low-
dimensional representation. We compare the results with fully-connected DAE (FC-DAE 
- implemented in Chollet et al. (2015)). We also extract features using the Principal Com-
ponent Analysis (PCA) (Wold et al., 1987) technique as a baseline method. Then, we train 
an ExtraTrees classifier on these extracted features and compute the classification accuracy. 
The results are presented in Fig. 18.

To achieve the best density level that suits our network, we test different � values. As 
shown in Fig. 18, sparse DAE (density = 3.26%) has the best performance among them. 
Sparse DAE (density = 3.26%), FC-DAE, and PCA achieve 95.2%, 96.2%, and 95.6% 

Fig. 18  Classification accuracy 
for feature extraction using 
sparse DAE with different den-
sity level on the MNIST dataset 
(number of extracted features 
= 50) compared with FC-DAE 
and PCA
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accuracy, respectively. Although sparse DAE can not perform as well as the FC-DAE, it 
approximately has 54 k parameters compared to 1.67 m parameters of FC-DAE. Such a 
small number of parameters of this model results in a high rise in the running speed and a 
significant drop in the memory requirement. Furthermore, it is interesting to observe that 
a very sparse DAE (below 1% density) can achieve more than 90.0% accuracy on MNIST 
while having about 150 times fewer parameters than FC-DAE.

Appendix E: Feature selection on a large dataset

In this appendix, we evaluate the performance of the methods on a very large dataset, in 
terms of both number of samples and dimensions.

In this experiment, first, we generate two artificial datasets with high number of sam-
ples and features. The choice of an artificial dataset was made to easily control the num-
ber of relevant features of the dataset, as in most of the real-world datasets the number of 
informative features are not clear. These datasets are generated using sklearn4 library tools, 
make_classification function, which generates datasets with a desired number of features 
and samples. This function allows us to adjust the number of informative, redundant, and 
non-informative features. Table 7 shows the characteristics of the two artificially generated 
datasets. We generated 2 datasets with 40000 samples and 8000 features. However, the 
number of informative and redundant features are different in these datasets. Artificial2 
dataset is much noisier than Artificial1; therefore, finding relevant features of Artificial2 is 
more difficult compared to finding them on the Artificial1 dataset.

After generating the datasets, we evaluate feature selection performance of the methods 
considered in the manuscript, and compare the results with QuickSelection. The hyperpa-
rameters used in this experiment are similar to the ones used in Sect. 4.1.1, except for hid-
den neurons and the sparsity level. The number of hidden neurons for autoencoder-based 
methods has been set to 2000, and the hyperparameter of QuickSelection, � , has been 
adjusted to 40. The number of selected features (K) is 1000. The number of training epochs 
for the autoencoder-based methods is 100. However, since the QuickSelection did not con-
verge in 100 epochs on the Artificial2 dataset, we continued the training until epoch 200. 
The results of this experiment are presented in Table 8.

As can be seen in Table 8, QuickSelection100 outperforms all the other methods in terms 
of classification accuracy on both datasets. It can also outperform the other methods in 
terms of clustering accuracy on the Artificial2 dataset. As mentioned earlier, QuickSelec-
tion achieves a higher accuracy on the Artificial2 dataset when it is trained for more than 
100 epochs. However, since for all the other methods we use 100 epochs, we only consider 
the results of QuickSelection100 to have a fair comparison (it should be noted that increas-
ing the number of training epochs did not improve the results of the other methods). On 
noisy and very large datasets, CAE, AEFS, and FCAE have a poor performance in feature 
selection. In addition, they have around 30 times more parameters than QuickSelection. 
CAE has the lowest accuracy among these methods; this method is very sensitive to noise. 
Lap_score and MCFS have a poor performance on the Artificial2 dataset that is noisier 
than Artificial1. On the Artificial1 dataset, MCFS achieves the highest clustering accuracy. 
However, the memory requirement of MCFS and Lap_score is noticeably large. On this 

4 https:// scikit- learn. org/

https://scikit-learn.org/
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dataset, they need about 26GB of RAM. However, QuickSelection needs only about 8GB 
memory. In summary, QuickSelection100 has a decent performance on these large datasets, 
while having the lowest number of parameters.

Appendix F: Sparse training algorithm analysis

In this appendix, we aim to analyze the effect of the SET training procedure on the perfor-
mance of QuickSelection.

We perform QuickSelection using another algorithm to obtain and train the sparse net-
work, and then, compare the result with the original QuickSelection. We derive the sparse 
denoising autoencoder using the lottery ticket hypothesis algorithm (Frankle & Carbin, 
2018), as follows. The lottery ticket hypothesis (LTH), first, starts with training a dense 
network. After that, it derives the topology of the sparse network by pruning the unimpor-
tant weights of the trained dense network. Then, using both the sparse topology and the ini-
tial weight values of the connections in the dense training phase, the network is retrained. 
On the final obtained sparse model, we apply QuickSelection principles to select the most 
informative features.

In this experiment, the structure, sparsity level, and other hyperparameters are similar 
to the settings described in Sect. 4.1.1; we use a simple autoencoder with one hidden layer 
containing 1000 hidden neurons, trained for 100 epochs. The results of feature selection 

Table 7  Characteristics of the two artificially generated datasets

The classification and clustering accuracy have been obtained using all the features

Dataset Samples Features Informative 
Features

Redundant 
Features

Classes Classification 
accuracy ( %)

Clustering 
accuracy 
( %)

Artificial1 40000 8000 500 3000 5 59.8 30.6
Artificial2 40000 8000 1000 0 5 26.6 22.7

Table 8  Feature selection results on two artificially generated datasets ( K = 1000)

Artificial1 dataset Artificial2 dataset Number of parameters

Method Classification 
accuracy ( %)

Clustering 
accuracy ( %)

Classification 
accuracy ( %)

Clustering 
accuracy ( %)

Lap_score 49.4 24.4 22.0 21.3 -
MCFS 68.2 29.3 24.6 21.7 -
CAE 23.4 20.6 21.1 20.4 ∼26×106

AEFS 34.7 23.3 22.8 21.4 ∼ 32 × 10
6

FCAE 43.8 24.3 22.9 21.5 ∼ 32 × 10
6

QS
10

68.1 25.7 24.8 21.21 ∼0.8×106

QS
100

68.4 24.8 34.5 24.6 ∼0.8×106

QS
200

– – 39.7 29.6 ∼0.8×106
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( K = 50 ) are available in Tables  9 and 10. We refer to the feature selection performed 
using QuickSelection principles and the Sparse DAE obtained with LTH as QSLTH

100
 . We use 

QS100 for the QuickSelection that is done using the Sparse DAE obtained with SET.
As can be observed in Tables 9 and 10, in most of the cases QS100 outperforms QSLTH

100
 . 

We believe that optimizing the sparse topology and the weights, simultaneously, results in 
feature strength that are more meaningful for the feature selection. We discussed neuron 
strength in more detail in Sect. 5.3. In addition, due to having an extra phase of dense train-
ing, the computational resource requirements of LTH are much higher than the ones of 
SET. To clarify this aspect, we present a comparison for the number of parameters between 
these two methods. The results can be found in Table  11. The much higher number of 
parameters in QSLTH

100
 in comparison with the number of parameters in QS100 is given by the 

dense training phase of LTH.

Appendix G: Performance evaluation using random forest classifier

In this appendix, we validate the classification accuracy results using another classifier. We 
repeat the experiment from Sect. 4.2 in the manuscript; however, we measure the accuracy 
of selecting 50 features (for Madelon, we select 20 features) using the RandomForest clas-
sifier (Liaw et al., 2002) instead of the ExtraTrees classifier. The results are presented in 
Table 12.

As can be seen in Table 12,  QuickSelection100 is the best performer in 5 out of 8 cases. 
By comparing the results with Table  3 which demonstrates the classification accuracy 

Table 9  Clustering accuracy (%) using 50 selected features (except Madelon for which we select 20 fea-
tures)

Method Coil20 Isolet HAR Madelon MNIST SMK GLA PCMAC

QS
100

60.22.0 35.12.7 54.64.5 58.21.5 48.32.4 51.80.8 59.51.8 52.51.1
QSLTH

100
58.83.3 31.22.4 50.26.3 50.80.5 37.54.0 54.62.7 54.63.7 50.80.6

Table 10  Classification accuracy (%) using 50 selected features (except Madelon for which we select 20 
features)

Method Coil20 Isolet HAR Madelon MNIST SMK GLA PCMAC

QS
100

99.70.3 89.01.3 90.21.2 90.30.7 93.50.5 75.73.9 73.33.3 58.02.9
QSLTH

100
99.60.6 84.53.9 86.36.3 53.07.2 82.62.4 74.22.7 71.34.2 59.55.9

Table 11  Number of parameters of QS
100

 and QSLTH
100

 (divided by 106)

Method Coil20 Isolet HAR Madelon MNIST SMK GLA PCMAC

QS
100

0.054 0.043 0.042 0.040 0.048 0.566 1.3 0.115
QSLTH

100
2.054 1.243 1.142 1.040 1.548 40.566 99.3 6.715
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measured by the ExtraTrees classifier, it is clear that there have been subtle changes in the 
accuracy values. This has resulted in some changes in the ranking of the methods in terms 
of the performance, as in several cases, the performance of the methods are very close. The 
reason behind choosing ExtraTrees classifier in the experiment was due to the low compu-
tational cost. However, as discussed in the paper, to perform an extensive evaluation, we 
have also measured the performance using clustering accuracy. Overall, by looking into 
the results of the three approaches to compute accuracy, it is clear that QuickSelection is a 
performant feature selection method in terms of the quality of the selected features.
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