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Abstract
The combination of learning and reasoning is an essential and challenging topic in neuro-
symbolic research. Differentiable inductive logic programming is a technique for learn-
ing a symbolic knowledge representation from either complete, mislabeled, or incomplete 
observed facts using neural networks. In this paper, we propose a novel differentiable 
inductive logic programming system called differentiable learning from interpretation tran-
sition (D-LFIT) for learning logic programs through the proposed embeddings of logic 
programs, neural networks, optimization algorithms, and an adapted algebraic method to 
compute the logic program semantics. The proposed model has several characteristics, 
including a small number of parameters, the ability to generate logic programs in a curric-
ulum-learning setting, and linear time complexity for the extraction of trained neural net-
works. The well-known bottom clause positionalization algorithm is incorporated when the 
proposed system learns from relational datasets. We compare our model with NN-LFIT, 
which extracts propositional logic rules from retuned connected networks, the highly accu-
rate rule learner RIPPER, the purely symbolic LFIT system LF1T, and CILP++, which 
integrates neural networks and the propositionalization method to handle first-order logic 
knowledge. From the experimental results, we conclude that D-LFIT yields comparable 
accuracy with respect to the baselines when given complete, incomplete, and mislabeled 
data. Our experimental results indicate that D-LFIT not only learns symbolic logic pro-
grams quickly and precisely but also performs robustly when processing mislabeled and 
incomplete datasets.
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1 Introduction

Human cognition has been successfully modelled by machine learning. Moreover, learning 
human-readable knowledge from a large amount of data using machines is an easy and fast 
way for people to understand the facts hidden in the data. However, real datasets, especially 
in biology, are observed in an incomplete or noisy manner. Hence, extracting high accuracy 
and reliable knowledge is a difficult and important task in the field of machine learning. 
Inductive logic programming (ILP) was first proposed by Muggleton (1991) as a combina-
tion of inductive learning and logic programming techniques, and it has gained widespread 
attention in the machine learning community. Given a set of observations (examples), the 
ILP framework induces a logic program that explains all examples. Differentiable ILP sys-
tems, first introduced by Evans and Grefenstette (2018) adopt neural networks to automati-
cally learn declarative theories hidden in the data. Compared with purely symbolic ILP 
methods, differentiable ILP systems are robust to incomplete or mislabeled data. Hence, 
differentiable ILP systems can help people cognize from these data in a more effective way.

The learning from interpretation transition (LFIT) approach proposed by Inoue et  al. 
(2014) is an important sub-field of ILP. When interpreting a logic program as a state transi-
tion system (Inoue 2011; Inoue and Sakama 2012), a Herbrand interpretation represents the 
current state of the world, and a logic program P specifies how to define the next state of 
the world as a Herbrand interpretation through the immediate consequence operator (also 
called the TP operator) (Van Emden and Kowalski 1976; Apt et al. 1988). The learning set-
ting of LFIT is as follows: given a set of pairs of input and output Herbrand interpretations 
(I, J) such that J = TP(I) as positive examples, the goal is to induce a normal logic program 
P that realizes the given transition relations (Inoue et al. 2014).

In this paper, we propose a differentiable LFIT system called D-LFIT, which uses neural 
networks to learn the symbolic logic programs from Boolean network datasets (Kauffman 
et al. 1993) and relational datasets. For Boolean networks, it has been observed that the TP 
operator of a normal logic program P precisely captures the synchronous updates of the 
corresponding Boolean network, where each node corresponds to a ground atom and its 
regulation function corresponds to the set of ground rules that have the atom in their heads 
(Inoue 2011). Given an observed interpretation pair (I, J) that corresponds to a transition 
of the gene activity profile at a time step such that J = TP(I) , the LFIT of a normal logic 
program P corresponds to inferring a set of regulation rules describing the Boolean net-
work. For relational datasets, to build a first-order logic program to describe the association 
between a relation and other relations, we utilize a propositionalization method (Kramer 
et al. 2001) called bottom clause positionalization (BCP) (França et al. 2014) to generate a 
set of bottom clauses G in the first-order form. With most literals, BCP generates a bottom 
clause, which can be considered to be a hypothesis for each observed relational example. 
Each predicate in a bottom clause is called a first-order feature. By regarding the bottom 
clause as a propositional logic program, we regard an input Herbrand interpretation I as a 
set of first-order features from the body of a bottom clause and an output Herbrand inter-
pretation J as a set of first-order features from the head of the bottom clause, where I and J 
satisfy J = TG(I) . Because the numbers of bottom clauses and the first-order features in the 
bodies of the bottom clauses are both large, the LFIT process of a normal logic program 
P in a relational dataset corresponds to inferring simpler and more legible logic programs 
describing the relational datasets.

To implement D-LFIT, we first define low-rank embeddings for logic programs and 
their interpretations in vector space. To compute the logic program semantics, we adapt an 
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algebraic method that was first proposed by Sakama et al. (2018) to implement the deductive 
reasoning of logic programs in vector space. Through the semantics, discrete logical opera-
tions are transferred into a series of matrix computations. Then, we devise neural networks 
to match the logical inference defined by the semantics and search for the optimal embed-
dings of the logic programs through optimization algorithms. During the learning processes, 
we reduce the search space and boost the learning speed through curriculum learning: the sys-
tem consolidates what it learns in one episode, stores it as background knowledge, and reuses 
it in subsequent episodes (Bengio et al. 2009). After the learning processes, we can extract 
symbolic logic programs directly from the embeddings, which means that the time complex-
ity for extracting rules is linear. In experiments, we evaluated the proposed method on four 
Boolean network datasets, three relational datasets, and their incomplete and mislabeled data. 
The results demonstrate the advantages of our model.

In short, D-LFIT can learn human-readable knowledge from real-world data through neural 
networks. In addition, D-LFIT enables humans to understand how neural networks make deci-
sions; for instance, by predicting a unique output interpretation according to the input inter-
pretation. A better understanding of the way in which neural networks derive their decisions 
could also make neural networks more transparent and develop our understanding of the rela-
tionship between black-box models such as neural networks and human-readable models such 
as logic programs.

Our main contribution is two-fold:

– We adapt the algebraic method to compute logic program semantics and devise a practical 
algorithm for learning logic programs.

– We demonstrate that the proposed approach performs faster and more precisely on incom-
plete, mislabeled datasets when compared with various strong baselines.

The rest of the paper is organized as follows. We present an overview of related concepts in 
Sect. 2. In Sect. 3, we extend the algebraic method to enable it to compute the logic program 
semantics and describe the details of the proposed framework. In Sect.  4, we measure the 
robustness of the proposed framework on mislabeled and incomplete data. In addition, we 
evaluate the accuracy of logic programs generated by our model and several baselines. We 
review related ILP systems in Sect. 5 and compare them with the proposed method. In Sect. 6, 
we conclude the paper and describe further research plans.

2  Background

In this section, the notions used in logic programs, ILP, Boolean networks, and proposition-
alization are reviewed. This section also introduces the notations used throughout the paper.

2.1  Logic programs and ILP

A normal logic program includes several notions. Moreover, a normal logic program is a 
finite set of rules that satisfies the following form:

where the li ’s are literals and h is the head atom. In first-order logic programs, an atom a is 
a tuple p(�) , where p is a predicate and � is its argument. An argument is either a variable 

(1)h ← l1 ∧ l2 ∧⋯ ∧ ln,
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or a constant. A ground atom in first-order logic is an atom with no variables, and the set 
of ground instances of all rules in a first-order logic program P is denoted as ground(P). 
In propositional logic programs, an atom a is a Boolean variable. The literal li can be an 
atom ai or its negation ¬ai . Given a logic program P, the set of all atoms (ground atoms) in 
P is called a Herbrand base and is denoted as BP . A logic program P is a definite program 
if there are no negations of atoms in each rule of the program. Given rule r in the form 
(1), we denote the head of r as head(r) = {h} and the body of r as body(r) = {l1,… , ln} . 
We also represent the body atoms appearing in the body of r positively and negatively as 
body+(r) = {a1,… , an} and body−(r) = {¬a1,… ,¬an} , respectively. In particular, if n = 0 
in r, then we call the corresponding ground head atom h in r a fact, and its Boolean value 
is always True.

An interpretation I of a normal logic program P is a subset of BP . Given a normal logic 
program P and BP = {p1,… , pn} , an interpretation vector (Sakama et  al. 2018; Nguyen 
et  al. 2018) is a vector � = (v1,… , vn)

T ∈ {0, 1}n . An interpretation vector represents 
an interpretation I ⊆ BP . If vi = 1 , then the truth value of pi is True, and pi ∈ I . Other-
wise, the truth value of pi is False, and pi ∉ I . Given an interpretation vector � , we define 
rowi(�) = �[i] . A mapping called the immediate consequence operator TPP ∶ 2BPP → 2BPP 
for a propositional logic program PP is defined as follows:

For a first-order logic program FP, the immediate consequence operator TFP ∶ 2BFP → 2BFP 
is defined as follows:

In ILP, a problem can be defined as a tuple (B,P,N) . Set B is the set of facts and a set 
of clauses called background knowledge in the form (1). Sets P and N  are the sets of 
positive and negative examples, respectively. Given this setting, the goal of an ILP is to 
construct a logic program (hypothesis) P that explains all the examples. The ILP tasks can 
be formally expressed as follows:

2.2  Boolean networks

A Boolean network is a pair N = (V ,F) , where V = {v1,… , vn} is a set of finite nodes (n 
is the number of nodes), and F = {f1,… , fn} is the corresponding set of Boolean functions. 
Each single state of the Boolean network is regarded as (v1(t), ..., vn(t))T , and the state transi-
tions are regarded as vi(t + 1) = fi(vi1 (t),… , vik (t)) , where vi1 ,… , vik are the input nodes of vi . 
Each state of N at time step t is S(t) = (v1(t),… , vn(t)) . The trajectory of N is a sequence of 
states obtained by a series of state transitions. As |V| is finite, every trajectory always reaches 
some attractor (Kauffman et al. 1993; Inoue 2011), which is either a fixed point or a periodic 
oscillation. Additionally, for each vi ∈ V , its Boolean function fi(vi1 (t),… , vik (t)) is equal to 
a set of propositional rules in the form (1), and we can convert any Boolean functions into a 
set of normal logic rules �(N) in three steps. First, each Boolean function is transferred to a 
formula in the disjunctive normal form (DNF) 

⋁li
j=1

Bt
i,j

 , where Bt
i,j

 is a conjunction of liter-
als at time t. Second, we generate li rules with vt+1

i
 as the head and Bt

i,j
 as the body for each 

j = 1, ..., li . Finally, we delete all time arguments from every literal in the above rules (Inoue 

TPP(I) = {head(r) | r ∈ PP, body+(r) ⊆ I, body−(r) ∩ I = �}.

TFP(I) = {head(r) | r ∈ ground(FP), body+(r) ⊆ I, body−(r) ∩ I = �}.

B, P ⊧ e+, ∀e+ ∈ P , B, P ̸⊧ e−, ∀e− ∈ N.
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2011). Then, we can simulate the trajectory of N from any state S(0) by the orbit of the inter-
pretation I0 = {vi ∈ V|vi(0) is true} with respect to the T�(N) operator, i.e., It+1 = T�(N)(I

t) for 
t ≥ 0 (Inoue et al. 2014). Hence, devising a system in LFIT to learn a normal logic program P 
that matches the behaviors of the corresponding Boolean network is feasible.

2.3  Propositionalization and bottom clauses

Propositionalization transfers a relational database into an attribute–value table amenable 
to propositional learners (Kramer et al. 2001). Propositionalization algorithms use facts and 
examples to find distinctive first-order features. Bottom clauses are the most specific clauses, 
which can be regarded as boundaries on the hypothesis search space, first introduced by Mug-
gleton (1995) as a part of the Progol system. Bottom clauses are built from one random posi-
tive example, facts, and language bias, which defines how a single rule is constructed.

There are two steps in the BCP algorithm: The first step is bottom clause generation. The 
BCP proposed by França et al. (2014) generates bottom clauses for all examples and maintains 
their semantic meaning. The BCP algorithm extends the original bottom clauses algorithm to 
learn the most specific clauses from both positive and negative examples, facts, and language 
bias.

Each example ei in E  , where E = P ∪N  , is sent to the adapted bottom clause generation 
algorithm proposed by Tamaddoni-Nezhad and Muggleton (2009) to generate the correspond-
ing bottom clause set E⊥ . In the adapted algorithm, the same hash function that transfers exam-
ples to clauses is shared among all examples to maintain consistency among variable associa-
tions. The hash function also allows negative examples to have bottom clauses. In the second 
step, the BCP regards all bottom clause literals as first-order features and adds all features to 
feature table F. Then, BCP uses the following algorithm to transfer the examples into their 
embeddings: 

1. Let |F| be the number of the elements in F
2. For each bottom clause ⊥ei

∈ E⊥ do 

(a) Create a numerical vector vi of size |F| and with 0 in all positions
(b) For each position corresponding to a body literal of ⊥ei

 , change its value to 1
(c) Add vi to Ev;

3. Return Ev.
4. Associate a label 1 to vi if ei is a positive example, and 0 otherwise;

Consider a motivating example called the motherInLaw relationship from a family relation-
ship dataset (Muggleton and De Raedt 1994): F  = {mother(mom1, daughter1), wife(da-ugh-
ter1, husband1), wife(daughter2, husband2)}, P = {motherInLaw(mom1, husband1)}, and 
N  = {motherInLaw(daughter1, husband2)}. The BCP algorithm analyzes each example and 
generates the following bottom clause set (the depth of the variable is set to 1):

E
⟂
= {motherInLaw(A,B) ∶ −mother(A,C),wife(C,B);

∼ motherInLaw(A,B) ∶ −wife(A,C)}.
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Then, the BCP generates vector (1, 1, 0) with label 1 for the example motherInLaw(mom1, 
husband1) and vector (0,  0,  1) with label 0 for the example motherInLaw(daughter1, 
husband2).

3  Methods

In this section, we first introduce the details of the algebraic method used to compute the 
logic program semantics and then present the proposed D-LFIT framework. The algebraic 
method to compute the logic program semantics first proposed by Sakama et al. (2018), 
embeds definite programs into matrix space and transfers the discrete logic inference into 
continuous linear algebra computation. In this paper, we extend the algebraic method to 
compute the normal logic program semantics, which makes it possible to differentiate the 
embeddings of logic programs using optimization methods and implement them with neu-
ral networks.

The proposed framework can be divided into two modules: a meta-info learner and an 
interpretation learner. Each module consists of two processes, an inference process and a 
backpropagation process. The first module, the meta-info learner, produces highly concen-
trated information about the logic program representation and delivers the meta-informa-
tion to the second module. The meta-information consists of the number of different liter-
als in the rules with the same head variable, and that information is connected with the 
maximal number of rules with the same head variable in the logic program. When the sec-
ond module, the interpretation learner, receives the meta-information, it begins to search 
for comprehensive and interpretable logic rules in a reduced space.

3.1  Extended algebraic method to compute the logic program semantics

In this subsection, we provide the definitions needed to extend the algebraic method to 
compute the logic program semantics. To this end, we describe how to transfer the sym-
bolic logic programs into matrices and the immediate vector consequence operator DP cor-
responding to the logic program P.

First, we define a form of normal logic program called the same head variable (SHV) 
program. An SHV program P is a normal logic program such that all rules in P have the 
same variable in their heads. Therefore, a normal logic program consists of one or several 
SHV programs. Then, we stipulate that the body of each rule in a normal logic program is 
in the DNF. We construct the body of such a rule by connecting all the bodies in one SHV 
program using disjunction and setting the head of the rules with the same head across the 
SHV program to one head atom. Hence, any rules in the normal logic program have differ-
ent head atoms.

Then, we extend the interpretation vector used to interpret the input to describe the 
input state of both the atoms and their negations in a normal logic program. We append 
the opposite Boolean value of each element in the original input interpretation vector 
� = (v1,… , vn, 1 − v1,… , 1 − vn)

T ∈ {0, 1}2n . Then, we define the immediate vector con-
sequence operator DP as follows:

Definition 1 (Immediate vector consequence operator) Considering a normal logic 
program P has m rules and BP = {p1,… , pn} . The immediate vector consequence 
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operator DP is an operator mapping in the vector space. Given an interpretation vector 
� = (v1,… , vn, 1 − v1,… , 1 − vn)

T ∈ {0, 1}2n , DP(�) ∈ {0, 1}m is defined as follows: 

1. DP(�)[k] = 1, if (pk ← pj1 ∧⋯ ∧ pjs ∧ ¬pjs+1 ∧⋯ ∧ ¬pju )

∧⋯ ∧ ¬pju ) ∈ P and �[j1] = ⋯ = �[js] = 1 and �[js+1] = ⋯ = �[ju] = 0,

2. DP(�)[k] = 0, otherwise.

Obviously, DP(�) is the output interpretation vector corresponding to output interpre-
tation TP(I) , where � is the input interpretation vector corresponding to input interpreta-
tion I.

Next, we define two embedding methods, one representing normal logic programs 
and the other representing SHV programs. We call the embedding of an SHV program 
an SHV matrix, and we define it as follows.

Definition 2 (SHV matrix) For an SHV program P, which has l different rules and the 
head variable is ph for all rules, each rule in P is indexed with a unique number i to locate 
it in the corresponding row in the matrix. Let BP = {p1,… , pn} be the Herbrand base of 
SHV program P. SHV program P is represented by a matrix �SHV

P
∈ [0, 1]l×2n , such that 

for each element aij(1 ≤ i ≤ l, 1 ≤ j ≤ 2n) , 

1. if ph ← pj1 ∧… pjs ∧ ¬pjs+1 ∧⋯ ∧ ¬pju is in P, and the rule is indexed using number i, 
then 

(a) aijk =
1

u
(1 ≤ k ≤ s);

(b) ai(jk+n) =
1

u
(s + 1 ≤ k ≤ u);

2. if ph ← is in P, and the rule is indexed using number i, then aih = 1;
3. aij = 0 , otherwise.

Here, �SHV
P

 is called the SHV matrix of P. Then, we define rowi(�
SHV
P

) = �P[i, ∶] and 
colj(�

SHV
P

) = [∶, j].
In SHV matrix �SHV

P
 , the i-th ( 1 ≤ i ≤ l ) row corresponds to the i-th rule in the SHV 

program. For 1 ≤ j ≤ n , the j-th column corresponds to the literal pj appearing in the 
body of a rule in the SHV program, and the ( n + j)-th column corresponds to the literal 
¬pj appearing in the body of a rule in an SHV program. When a rule in an SHV program 
contains u literals in its body, each literal is considered to have the truth value 1

u
 . As a 

special case, each fact ph ← in P is represented as the tautology ph ← ph in �SHV
P

.

Example 1 Consider an SHV program P with three rules and BP = {p, q, r} . Logic program 
P and its SHV matrix �SHV

P
 are expressed as follows:

Before we introduce the embeddings for normal logic programs, we define the notion 
of a conjunction set as follows and present an example in Example 2.

p ← p ∧ q ∧ ¬r

P ∶ p ← r ∧ ¬p

p ←

, �SHV
P

=

1

3

1

3
0 0 0

1

3

0 0
1

2

1

2
0 0

1 0 0 0 0 0
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Definition 3 (Conjunction set) Given a rule r in a normal logic program and head(r) = pi , 
the conjunction set of a literal l in r is denoted as Cl,pi

 and is defined as follows:

where con is a mapping from � to �  . The elements in the domain � are sets whose elements 
are literals, and the elements of codomain �  are the conjunctions of those literals.

Example 2 Given literal sets L1 = {p, q,¬r} and L2 = {p, q} , we then have 
con(L1) = p ∧ q ∧ ¬r and con(L2) = p ∧ q . Given a rule p ← (p ∧ q ∧ ¬r) ∨ (p ∧ q) , we 
obtain C¬r,p = {{p, q,¬r}} and Cq,p = {{p, q,¬r}, {p, q}}.

We now define the embedding for a normal logic program called a normal matrix.

Definition 4 (Normal matrix) For an arbitrary normal logic program P with m rules and 
BP = {p1,… , pn} , P is represented by a matrix �NOR

P
∈ [0, 1]m×2n such that for each ele-

ment aij(1 ≤ i ≤ m, 1 ≤ j ≤ 2n) , 

1. i f  pi ← (lj1 ∧⋯ ∧ lju1
) ∨⋯ ∨ (lj1 ∧⋯ ∧ ljul

)  i s  i n  P ,  1 ≤ i, jk ≤ n  ,  a n d 
1 ≤ k ≤ max(u1,… , ul) , then 

(a) aijk = max(
1

|L1| ,… ,
1

|Ls| ), where L1,… , Ls ∈ Cpjk
,pi

(b) ai(jk+n) = max(
1

|L1| ,… ,
1

|Ls| ), where L1,… , Ls ∈ C¬pjk
,pi

2. if pi ← is in P, then aii = 1;
3. aij = 0 , otherwise.

Here, �NOR
P

 is called the normal matrix of P.
Given a normal matrix �NOR

P
 , the i-th ( 1 ≤ i ≤ m ) row corresponds to the Boolean vari-

able pi dominating the head of the DNF format rule. For 1 ≤ j ≤ n , the j-th column corre-
sponds to the literal pj appearing in the body of the DNF format rule, and the ( n + j)-th 
column corresponds to the literal ¬pj appearing in the body of the DNF format rule. Given 
a rule r in a normal logic program P with head(r) = ph , each literal li in r is considered to 
have the truth value max( 1

|L1| ,… ,
1

|Ls| ) , where Li ∈ Cli,ph
 . Specifically, each fact pi ← in P 

is represented as the tautology pi ← pi in �NOR
P

 . We give an example of translating a nor-
mal logic program into its normal matrix as follows:

Example 3 Consider a normal logic program P with three rules and BP = {p, q, r} . Logic 
program P and its normal matrix �NOR

P
 are as follows:

We present some properties of the SHV matrices and normal matrices. First, we find that 
the number of non-zero entries in each row of the normal matrices is equal to the number of 
different literals in the rules. Second, all the values of the non-zero entries in one row of an 
SHV matrix are equal. Third, a single normal matrix can embed both normal logic programs 

(2)Cl,pi
= {Lk|l ∈ Lk, 1 ≤ k ≤ n}, if pi ← con(L1) ∨ con(L2) ∨⋯ ∨ con(Ln),

p ← (p ∧ q ∧ ¬r) ∨ (p ∧ ¬q)

P ∶ q ← p ∧ r

r ←

, �NOR
P

=

(p)
1

2

1

3
0 0

1

2

1

3

(q)
1

2
0

1

2
0 0 0

(r) 0 0 1 0 0 0
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and SHV programs. However, an SHV matrix only embeds one SHV program. We can rep-
resent normal logic programs through multiple two-dimensional SHV matrices. Finally, the 
SHV embedding method is a bijective mapping, which means that we can infer a unique sym-
bolic SHV program according to the numbers, values, and positions of the non-zero entries 
from each row of an SHV matrix. However, we cannot infer a unique symbolic normal logic 
program from a normal matrix.

3.2  Framework details

In this subsection, we first briefly describe about the inference process and backpropagation 
process. Then, we provide a comprehensive description of the two modules, the meta-info 
learner and the interpretation learner. When defining each module, we describe the deduc-
tive reasoning in each module and how we convert this reasoning into inference processes, 
that is, differentiable processes corresponding to deductive reasoning, to learn the symbolic 
logic program through optimization methods. Finally, we describe learning logic programs 
from relational datasets in detail, the algorithm of D-LFIT, and the complexity of the D-LFIT 
algorithm.

The inference process implements the deductive reasoning in the D-LFIT framework. In 
each module, the trainable matrices for P, denoted as �P , have different definitions. There-
fore, we design distinct inference processes in the two modules. We explain the details of both 
inference processes in Sects. 3.2.1 and 3.2.2, respectively. In contrast, the backpropagation 
process is the same for both modules. It calculates the loss values and uses the stochastic gra-
dient descent algorithm to adjust the parameters w in the trainable matrix �P.

where � is the learning rate. In the general settings of the neural networks, the loss function 
is a binary cross-entropy function, defined as follows:

where m is the number of the different head atoms in the normal logic program, and � and 
� are the labeled Boolean values of the head atoms and the predicted Boolean values of the 
head atoms, respectively.

3.2.1  Meta‑info learner

A meta-info learner generates meta-information, which helps the interpretation learner reduce 
the search space and learn the symbolic logic program effectively. To define the deductive 
reasoning function in the meta-info learner, we use a threshold function, the proposed normal 
matrix, and the extended interpretation vector. The threshold function is defined as follows: 
for input element i, if i ≥ 1 , then we have �(i) = 1 ; otherwise, we have �(i) = 0 . The deductive 
reasoning is then defined as follows:

w = w − � ⋅ ∇wloss(w),

(3)H(�, �) = −
1

m

(
m∑
k=1

�[k] ⋅ log(�[k]) + (1 − �[k]) ⋅ log(1 − �[k])

)
,

(4)�o = �(�NOR
P

�i),
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where �NOR
P

∈ [0, 1]m×2n is a single normal matrix embedded in the logic program. Here, 
m is the number of rules and n is the number of atoms in Herbrand base BP . Vectors �i and 
�o are the input and output interpretation vectors, respectively.

In particular, the deductive function plays the same role as the vector consequence 
operator DP . To implement the inference process in the neural networks, we need to 
determine a differentiable function to replace the � function in Eq. (4). The sigmoid 
function is a common activation function in neural networks. Not only is it a differen-
tiable function, but the sigmoid function has a behavior at x = 0 that is similar to the 
behavior of the � function at x = 1 . In addition, to make our activation function similar 
to the � function, we use the following sigmoid-like function in the meta-info learner:

where � ≥ 1 . Parameter � controls the slope of the activation function. A larger � indicates 
that the activation function is closer to the � function, but it tends to cause exploding gra-
dients when x is close to zero, and vanishing gradients when x is far from zero. Hence, a 
larger � makes it harder to train the neural network. Similarly, we set a trainable normal 
matrix �

NOR

P
∈ [0, 1]m×2n to learn the normal matrix of the normal logic program P. We 

define the inference process in Eq. (5) and the loss function in Eq. (6) in the first module as 
follows:

The optimized target in this module minimizes the distance between the label interpreta-
tion vector �(�NOR

P
�) and predicted vector �(�

NOR

P
� − �) . According to the ranges of train-

able parameters in normal matrices, the inference process in this module, and the definition 
of the loss function, the values of the parameters in the trainable normal matrices searched 
by the neural networks may be larger than the corresponding parameters in the normal 
matrices. In addition, the values of the unimportant parameters in trainable normal matri-
ces are trained to zeros. Hence, the number of non-zero parameters in each row of the train-
able normal matrix �

NOR

P
 is equal to the number of non-zero elements in each row of the 

normal matrix embedding for logic program P. As stated above, the number of non-zero 
elements in the k-th row of the normal matrix is equal to the number of different literals 
denoted as Lpk in the rules whose head atom is pk . Moreover, the generated normal matrix 
�

NOR

P
 in this module includes the errors. We use min-max feature scaling (also known as 

data normalization) to normalize the elements in �
NOR

P
 and set a threshold value to filter 

the valid elements. Then, we count the number of valid elements in rowk(�
NOR

P
 ) to deter-

mine the number of literals Lpk in the rules with head pk . Although we cannot extract the 
precise symbolic logic program directly from the generated normal matrix �

NOR

P
 , the value 

of Lpk (1 ≤ k ≤ m) is a key knowledge and is regarded as the meta-information. We transfer 
this knowledge to the interpretation learner to extract the symbolic logic program precisely 
and effectively.

� =
1

1 + e−�x
,

(5)�o = �(�
NOR

P
�i − �),

(6)loss = �1 ⋅ H(�, �) + �2 ⋅

m∑
c=1

2n∑
b=1

�
NOR

P
[c, b].
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3.2.2  Interpretation learner

An interpretation learner uses the meta-information Lpk (1 ≤ k ≤ m) to learn how logic vari-
ables and their negation are connected by the operators of logical conjunction and disjunc-
tion. Before defining the deductive reasoning and inference process in the second module, 
given a head atom pk(1 ≤ k ≤ m) , we show a proposition stating the relationship between 
the number of different literals Lpk and the number of rules for an SHV program P with pk 
as the head atom for all rules.

Proposition 1 Given a set of literals B containing n elements, and an SHV program P 
whose body literals are chosen from B, the number of different rules in the SHV program 
P is less than or equal to the number of ⌊ n

2
⌋-combinations from the set B, represented as 

C(n, ⌊ n

2
⌋).

Proof For all rules in the SHV program, we also merge all the bodies of those rules into 
a single rule r and convert the body of r in the DNF. Each clause, connected by operator 
of logical disjunction in the DNF formula, is a conjunction of different literals. Hence, the 
maximum number of clauses equals the maximum number of different rules in the SHV 
program. Considering the relationship of logical entailment between different clauses, no 
two clauses have a logical entailment relationship if and only if all clauses have the same 
number of literals. Hence, we distribute different combinations of literals from B into each 
clause so that no two of clauses have a logical entailment relationship. In conclusion, the 
maximum possible number of clauses in rule r is the maximum number of combinations 
from the set B, represented as C(n, ⌊ n

2
⌋) . Thus, C(n, ⌊ n

2
⌋) is the maximal number of differ-

ent rules in the SHV program.   ◻

To extract the symbolic logic program, we utilize multiple SHV matrices to embed the 
target logic program. We consider that a normal logic program with m rules and an SHV 
program Pk corresponding to the rule in the normal logic program with head atom 
pk (1 ≤ k ≤ m) has Lpk different literals. Then, the SHV matrix for Pk is defined as 
�

SHV
Pk

∈ [0, 1]C(Lpk ,⌊
1

2
×Lpk

⌋)×2n , where n is the number of ground atoms in the Herbrand base 
BP , and C(Lpk , ⌊ 1

2
× Lpk⌋) is the maximal number of rules in Pk according to Proposition 1. 

We revise the definition of deductive reasoning in the second module as follows:

The successive Boolean value for Boolean variable pk is a disjunction of the products of 
the input interpretation vector and rows in matrix �SHV

Pk
 . To implement the inference pro-

cess in the interpretation learner, we utilize the same approach that transfers the � function 
into the sigmoid-like function described in Sects. 3.2.1. In addition, fuzzy logic semantics 
must be applied to differentiably compute the operator of logical disjunction (or). There are 
several methods that represent the disjunction in fuzzy logic. In our setting, we need a 
fuzzy semantics or that satisfies the following properties:

– Commutativity: or(x, y) = or(y, x)

– Associativity: or(or(x, y), z) = or(x, or(y, z))

(7)�o[k] =

C(Lpk
,⌊ Lpk

2
⌋)�

c=1

�

�
2n�
b=1

�
SHV
Pk

[c, b] ⋅ �i[b]

�
, 1 ≤ k ≤ m,
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– Monotonicity: x1 ≤ x2 implies or(x1, y) ≤ or(x2, y) , and x1 ≤ x2 implies 
or(y, x1) ≤ or(y, x2)

– Identity element: or(x, 0) = x

– Zero element: or(x, 1) = 1

The semantics satisfying the above properties include the Gödel t-norm: 
or(x, y) = max(x, y) , Łukasiewicz t-norm: or(x, y) = min(1, x + y) , and product t-norm: 
or(x, y) = 1 − (1 − x) ⋅ (1 − y) . In Gödel t-norm and Łukasiewicz t-norm semantics, it is 
easy to obtain a zero gradient (Evans and Grefenstette 2018). Hence, the loss of the 
gradient information in the Gödel t-norm and Łukasiewicz t-norms makes the backprop-
agation process unfeasible. We hence use the product t-norm as the semantics of the 
fuzzy disjunction in the interpretation learner as follows:

Accordingly, we implement the deductive reasoning defined in Eq. (7) into the differentia-
ble inference process and let the dimensions of the trainable matrix �

SHV

Pk
 be consistent 

with those of �SHV
Pk

 in Eq. (7). We define the inference process and loss function of the 
second module in Eqs. (8) and (9), respectively.

According to the ranges of parameters in the trainable SHV matrices as well as the defini-
tions of the inference process and loss function, neural networks fit the sum of the parame-
ters in each row of �

SHV

Pk
 to one. Hence, the optimal solution searched for by neural net-

works corresponds to the SHV matrices of the logic program. The number of rows 
C(Lpk , ⌊

Lpk

2
⌋) in trainable matrix �

SHV

Pk
 is the maximal number of possible rules in SHV 

matrix Pk . Hence, the trained rows may be duplicates if the real number of rules is less than 
the maximal number. After generating all of �

SHV

Pk
 , its elements are floating-points values 

ranging from zero to one, and we use the min-max feature scaling function, taking the ele-
ments in �

SHV

Pk
 as inputs. Then, we set a small threshold to filter out the insignificant ele-

ments and extract the symbolic logic program according to the position information of 
those elements in the trained �

SHV

Pk
(1 ≤ k ≤ m).

Because the mapping from logic programs to SHV matrices is bijective, we can add 
background knowledge to the inference process or implement curriculum learning in the 
interpretation learner. Hence, in the interpretation learner, we add a curriculum learning 
strategy: once we find some rules are correct, we embed them into the corresponding 
SHV matrices and fix them in the following episodes. The curriculum learning strategy 
helps the interpretation learner generate logic programs faster and more precisely.

x1 ∨ x2 ∨⋯ ∨ xn ⇒ 1 − (1 − x1)(1 − x2)… (1 − xn).

(8)�̄o[k] = 1 −

C
(
Lpk

,
⌊
Lpk

2

⌋)
∏
c=1

(
1 − 𝜙

(
2n∑
b=1

�
SHV

Pk
[c, b] ⋅ �i[b] − 1

))
, 1 ≤ k ≤ m.

(9)loss =

m�
k=1

⎛⎜⎜⎜⎝
�1 ⋅ H(�[k], �[k]) + �2 ⋅

C
�
Lpk

,
�
Lpk

2

��
�
c=1

�
1 −

2n�
b=1

�
SHV

Pk
[c, b]

�⎞⎟⎟⎟⎠
.
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3.2.3  Learning from relational data using interpretation transition

To use the LFIT setting to perform deductive and inductive inferences on the relational 
datasets, we propose a method for generating pairs of interpretation transitions from the 
relation datasets. In the LFIT setting, because the bottom clauses G can be regarded as a 
hypothesis describing the relational datasets, we set I as an input interpretation including 
the ground atoms from the body of ground(G) and J as an output interpretation includ-
ing the ground atoms from the head of ground(G), where for I and J, J = TG(I) holds. 
In addition, the generated first-order features from the BCP and the bottom clauses can 
be regarded as propositional atoms and propositional logic programs, respectively. Hence, 
the Herbrand base for the bottom clauses includes all first-order features in the bottom 
clauses. Then, depending on the defined embeddings of the examples and their labels, 
the pairs of interpretation transitions can be generated as follows: for the input interpre-
tation corresponding to the example ei , we let the Boolean values of the first-order fea-
tures appearing in the body of bottom clauses be the same as the values of corresponding 
bits in the embedding of the example ei , and we set the Boolean values of the remain-
ing first-order features in the head of the bottom clauses to zero. For the output interpre-
tation corresponding to an example ei , we let the Boolean values of the head first-order 
features in the bottom clauses be the same as the label of the example ei , and we set the 
Boolean values of the rest of first-order features in the body of the bottom clauses to 
zero. Using the motherInLaw example in Sect. 2.3, according to the two bottom clauses 
generated from the family relationship example, two pairs of interpretation transi-
tions are generated: (I1, J1) = ({mother(A,C),wife(C,B)}, {motherInLaw(A,B)}) and 
(I2, J2) = ({wife(A,C)}, {}).

In addition, we present an example to illustrate the architecture of D-LFIT in Fig. 1. 
In the example, D-LFIT learns a logic program with two head atoms and Bp = {p, q} . 
Through the inference and backpropagation processes, the meta-info learner generates 
the normal matrix representing the target symbolic logic program and the meta-infor-
mation consists of Lp = 2 and Lq = 1 . The interpretation learner receives the meta-
information Lp,q and sets the number of rows in the two SHV matrices to C(2, 1) = 2 
and C(1, 0) = 1 , respectively. Hence, the maximal number of rules with head varia-
ble p is equals 2, and the maximal number of rules with head variable q equals 1. 
Through the inference and propagation processes, the interpretation learner learns the 

Fig. 1  An example depicting the architecture of D-LFIT
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parameters in the two SHV matrices. Consequently, we extract the specific rules from 
these two SHV matrices as the generated normal logic program.

3.2.4  D‑LFIT algorithm

In this section, we describe the algorithm of D-LFIT and analyze the space and 
time complexity of the algorithm. The whole process of D-LFIT is described in 
Algorithm 1.

Then, we analyze the space complexity when the algorithm is running and the time 
complexity when extracting the symbolic programs from the trained SHV matrices. 
We assume that the maximal number of different literals among all rules of a nor-
mal logic program is Lmax . According to the dimensions of normal matrices and SHV 
matrices, the space complexity is O(n × m × C(Lmax, ⌊ Lmax

2
⌋)) . Remarkably, Lmax is much 

less than n in common Boolean networks; hence, D-LFIT can handle most Boolean 
network datasets. Considering the time complexity, given the logic program embed-
dings and the algebraic method to compute the logic program semantics, we translate 
the symbolic logic programs by checking the valid values in the trained SHV matrices. 
Hence, the time complexity when extracting the logic programs is O(n), where n is the 
number of entries in the trained SHV matrices.
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4  Experimental results

To validate the accuracy and efficiency of our model, several Boolean networks of dif-
ferent sizes, the networks for control of flower morphogenesis in Arabidopsis thaliana 
(Chaos et  al. 2006), budding yeast cell cycle regulation (Li et  al. 2004), fission yeast 
cell cycle regulation (Davidich and Bornholdt 2008), and mammalian cell cycle regula-
tion (Fauré et  al. 2006), were used as benchmarks in this study. In addition, to check 
the learning ability of D-LFIT in relational datasets, we tested it on the relational data-
sets including Mutagenesis (Srinivasan et al. 1994), UW-CSE (Davis et al. 2005), and 
Alzheimers-amine (King et al. 1995). We used BCP to transfer positive examples and 
negative examples into their bottom clauses. Then, we embedded the bottom clauses 
into the corresponding vector and label the vector according to the class of the example. 
According to these bottom clause vectors and their labels, we then used D-LFIT to learn 
clause embedding and extract a simpler first-order logic program.

In this study, the complexity of a Boolean network dataset refers to the number of 
nodes in the Boolean network and the number of total data instances in the dataset. The 
complexity of a relational dataset is the number of first-order features generated by the 
BCP algorithm and the number of bottom clauses generated by the BCP algorithm. The 
complexities for all benchmarks are listed in Table  1. In addition, the learning abili-
ties of D-LFIT on the corresponding incomplete data and mislabeled data were tested 
in this study. The learning abilities include deductive reasoning ability, as reflected by 
the mean squared error (MSE) and inductive reasoning ability, as reflected by the accu-
racy of the rules generated from D-LFIT. The MSE is calculated between the predicted 
output interpretations from the meta-info learner and the label output interpretations. 
The accuracy is calculated according to the logic programs generated from interpre-
tation learner. For the accuracy of the logic programs describing the relational data-
sets, because the Boolean values of the predicates in the body of the bottom clauses are 
always zero in the output interpretations, only one significant rule whose head predicate 
is the same as the head first-order feature in the bottom clauses is considered. The accu-
racy of the logic programs describing the Boolean network datasets is calculated by 
averaging the accuracy of each rule. The accuracy of a single rule is defined as follows:

where TP, TN, FP, and FN are the true positives, true negatives, false positives, and false 
negatives, respectively, in the confusion matrix of the rule.

For the Boolean networks datasets, we compared the MSE with NN-LFIT, which is 
based on the neural networks proposed by Gentet et al. (2016) and Tourret et al. (2017). 
We compared the accuracy of the logic rules with LF1T, which is based on the purely 
symbolic ILP method proposed by Inoue et al. (2014), the WEKA (Witten et al. 2016) 
JRip implementation of RIPPER (Cohen 1995), which is a fast and accurate purely sym-
bolic rule learner algorithm, and NN-LFIT. For relational datasets, we compared the 
accuracy of the proposed method with that of JRip and CILP++, proposed by França 
et al. (2015). CILP++ combines a three-layer feedforward neural network and the BCP 
algorithm to perform deduction tasks on relational datasets. All experiments described 
in this section were performed on a 6-core Intel Xeon Gold 6142.

(10)accuracy =
TP + TN

TP + TN + FP + FN
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4.1  Handing incomplete data

In the real world, data are often incomplete, especially in biology, so we tested D-LFIT 
on multiple split datasets of the Boolean network datasets and relational datasets. To 
obtain the split datasets, we used different split rates from 10 to 100%. After obtain-
ing the split datasets, we computed the values of MSE and accuracy for two repeats of 
5-fold cross-validation experimental setting. Figure 2a shows the accuracy and MSE on 
the split fission dataset. These results lead to two conclusions: First, when the training 
data consist of at least 40% of the total data, the MSE floats around the optimal value, 
and the error becomes negligible. Second, the accuracy of the logic program becomes 
stable when the split rates of the dataset are greater than 45%.

We compared the MSE and accuracy of the proposed method with those of the other 
baselines. We particularly care about the performance on the small sizes of datasets; 
hence, the experimental datasets include datasets that are 10% and 20% of the whole 
data. We also conducted experiments on half of datasets and whole datasets. The results 
of NN-LFIT, LF1T, JRip, and the proposed model are compared in Table 1. The accu-
racy of the logic programs on the relation datasets and the results of CILP++ are com-
pared in Table 2. In the paper, we used run out of time (ROT) to stand that the baselines 
exceeded the maximal running time, and omitted the values of MSE on the purely sym-
bolic algorithms including LFIT and JRip. In all tables of the paper, the results in bold 
are the best ones.  According to Table  1, our proposed model obtains a slightly lower 
accuracy and higher MSE than NN-LFIT on the fission and mammalian datasets. How-
ever, our model generated more accurate logic programs than LF1T and JRip on most 
split datasets. Because the rule extraction process in NN-LFIT and LF1T is computa-
tionally expensive, the running time when extracting rules from the budding and Arabi-
dopsis datasets exceeded the limit (5 hours). However, our model runs fast because it 
directly maps the symbolic logic programs from the trained SHV matrix. According to 
Table 2, D-LFIT also obtains results comparable to those of CILP++.

In addition, we tested the maximal number of nodes in a Boolean network that 
our model can execute under the same experimental settings. We manually generated 
a Boolean network with n nodes; then, we used all data instances in the datasets to 
train D-LFIT. We found that D-LFIT can handle a Boolean network with 20 nodes and 

Fig. 2  Mean accuracy of the logic program and the MSE of the predicted Boolean value with respect to dif-
ferent split rates and mislabeling rates of the fission dataset
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220 training instances in the corresponding dataset under the stipulated experimental 
environment.

4.2  Handing mislabeled data

In this section, we present the results obtained by D-LFIT on mislabeled training data. 
For the Boolean network datasets, the mislabeled training data were generated by changing 
the Boolean value of the input interpretations at random positions. For the relational data-
sets, we stochastically changed the labels of the examples. Then, we compare the MSE and 
accuracy with those obtained on the original clean test datasets.

Table 1  Comparison of MSE (%) and accuracy (%) on partial datasets with different split rates

Datasets (Complexity) Model The split rates

10% 20% 50% 100%

Fission (10, 210) NN-LFIT 1.2, 98.80 0.2, 99.80 0.00,99.92 0.00,99.87
D-LFIT 1.91, 80.45 1.27, 85.33 0.17, 93.13 0.06, 92.89
LF1T –, 76.85 –,77.03 –,77.15 – ,100
JRip –,79.14 –,78.05 –,80.04 –, 78.47

Mammalian (10, 210) NN-LFIT 1.3, 96.6 0.4 , 94.35 0.00,99.89 0.00,99.91
D-LFIT 1.73, 71.67 1.21 ,75.9 0.79, 80.09 0.52,82.84
LF1T –,76.01 –,76.48 –,76.73 91.56
JRip – ,77.84 –,75.44 –,76.41 –, 74.66

Budding (12, 212) NN-LFIT ROT ROT ROT ROT
D-LFIT 1.03, 71.96 0.43,71.39 0.15,70.5 0.09,76.52
LF1T ROT ROT ROT ROT
JRip –,67.97 –,68.55 –, 67.91 –,68.32

Arabidopsis (15, 215) NN-LFIT ROT ROT ROT ROT
D-LFIT 0.57, 84.35 0.51, 86.83 0.48, 88.56 0.45, 89.70
LF1T ROT ROT ROT ROT
JRip –, 68.84 –, 69.00 –, 68.79 –,68.67

Mutagenesis (1111, 188) D-LFIT 77.78 94.44 88.88 83.33
JRip 58.37 59.46 65.97 66.45

UW-CSE (601, 1614) D-LFIT 75.00 78.12 78.44 79.44
JRip 70.18 70.81 73.85 74.35

Alzheimers-amine (1084, 686) D-LFIT 58.42 60.29 63.24 67.65
JRip 58.74 57.66 57.14 54.81

Table 2  Comparison of the 
accuracy (%) of rules obtained by 
CILP++

Model Datasets

Mutagenesis UW_CSE Alzheimer-amine

CILP++ 77.72 81.98 78.70
D-LFIT  83.33 79.44 67.75
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In this experiment, we set the mislabeling rates from 5% to 50% . After obtaining the 
mislabeled datasets, we computed the MSE and accuracy values under two repeats of 
5-fold cross-validation experiments. Figure 2b shows the accuracy and MSE achieved by 
the model in the fission dataset at different mislabeling rates. From Fig. 2b, we conclude 
that the accuracy decreases as the mislabeling rate increases and stabilizes when the misla-
beling rates are larger than 30%. The results of the performance of the proposed method on 
mislabeled data with respect to those of other baselines are shown in Table 3. The results 
reveal the following: First, the proposed method and NN-LFIT obtain comparable results 
on the fission dataset. Second, D-LFIT performs better than other baselines on all datasets 
except for the Arabidopsis dataset with 50% mislabeled data.

5  Related work

The field of ILP has a long history and many sub-fields. LFIT, as a growing and impor-
tant sub-field of ILP, has received increasing attention. LF1T, proposed by Inoue et  al. 
(2014), was the first model to learn the logic programs representing the Boolean networks 
from traces of interpretation transitions. LF1T uses a purely logic framework to learn the 

Table 3  Comparison of the MSE (%) and accuracy (%) on the mislabeled data with different mislabeling 
rates

Datasets Model name The rates of mislabeled data

5% 20% 35% 50%

Fission NN-LFIT 3.25, 96.75 10.56,89.43 15.14,84.86 17.74,82.25
D-LFIT 2.23, 92.34 8.53, 87.25 10.89, 84.34 12.08, 84.96
LF1T –,77.25 –,77.16 –,77.38 –,77.32
JRip – ,78.91 – ,78.54 –,78.55 – ,78.15

Mammalian NN-LFIT 4.77, 79.72 16,78.11 20.98,79.01 23.20,74.49
D-LFIT 3.45, 80.00 11.53,78.82 15.74, 80.29 16.35, 86.27
LF1T –, 76.72 –,76,73 –,76.62 –,77.32
JRip –,74.21 –,74.45 – , 74.43 –,74.00

Budding NN-LFIT ROT ROT ROT ROT
D-LFIT 4.9, 76.42 13.3, 74.28 16.53,73.41 18.21,74.71
LF1T ROT ROT ROT ROT
JRip – ,67.99 –,67.15 –,66.80 –,66.41

Arabidopsis NN-LFIT ROT ROT ROT ROT
D-LFIT 4.8 ,81.46 11.83,76.59 15.4 ,70.28 17.35,64.90
LF1T ROT ROT ROT ROT
JRip –,68.27 –, 67.34 –,66.94 –,66.65

Mutagenesis D-LFIT 88.89 83.33 88.89  88.89
JRip 66.49 62.23 62.77 62.23

UW-CSE D-LFIT 73.49 72.67 73.29  73.29
JRip 72.80 67.35 66.04 66.23

Alzheimers-amine D-LFIT 63.24 63.24 60.29 58.83
JRip 48.35 49.42 49.27 50.87
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propositional logic programs. Other well-known purely symbolic methods such as C4.5, 
proposed by Quinlan (1993) and Ripper, proposed by Cohen (1995), which is much faster 
than C4.5 and often provides more accurate logic rules, can also perform LFIT tasks. The 
shortcomings of these models are that they cannot handle incomplete and mislabeled data 
precisely. NN-LFIT, proposed by Gentet et al. (2016) and Tourret et al. (2017), uses neural 
networks to learn features from data. The NN-LFIT includes the initialization, construc-
tive, and pruning processes. The initialization process constructs feedforward networks. 
The constructive process adds hidden neurons to the feedforward networks to decrease 
the errors. The pruning process removes the useless weights to decrease complexity when 
extracting the final symbolic logic rules. However, the last process is slow to run, espe-
cially on large Boolean networks. Phua et al. (2019) proposed a model using recurrent neu-
ral networks to predict unseen interpretations from the traces of interpretation transitions. 
Their model is able to learn features from background knowledge. However, this model 
is not interpretable because of the complexity of recurrent neural networks. �-LFIT pro-
posed by Phua and Inoue (2019) regards ILP as a classification problem. �-LFIT embeds 
all possible logic programs into vectors and uses long short term memory (Hochreiter 
and Schmidhuber 1997) to learn the function mapping from a series of state transitions to 
the corresponding logic program embeddings. The shortcoming of their model is that the 
framework cannot learn logic programs with more than five Boolean variables under the 
same memory and runtime constraints as in our experimental environment. By contrast, 
D-LFIT has fewer parameters according to its definition; hence, D-LFIT is able to learn 
common logic programs with 20 nodes or less in our experimental setting.

For other systems combining neural networks and symbolic logic programs, there are 
some works that proves the feasibility to approximate the TP operator through neural net-
works given a logic program (Hölldobler and Kalinke 1994; Hölldobler 1993; Hölldobler 
et al. 1999; Hitzler and Seda 2000; Hitzler et al. 2004; Seda and Lane 2004; Bader et al. 
2005; Seda 2006). But the interpretability of the neural networks in these works is missing. 
Our model not only constructs a neural network to approximate the TP operator from the 
dataset, but also extracts the symbolic rules from the trained neural network. The surveys 
presented by Bader et al. (2004) and Bader et al. (2005) state some important problems in 
the neuro-symbolic field, which include the representation and extraction of knowledge. 
Our model solves those two problems by designing an embedding method that connects 
neural networks to logic programs. Garcez and Zaverucha (2004) proposed a mapping 
algorithm that converts the arbitrary first-order symbolic logic rules into neural networks. 
CILP++ proposed by França et al. (2014) learns from relational data and inferences like 
the first-order logic programs with neural networks using the BCP algorithm. Subsequently, 
França et al. (2015) proposed an algorithm to extract symbolic rules from CILP++. The 
most significant difference between D-LFIT and CILP++ is the architecture of the neural 
network. We designed a logic program embedding method and revised a novel loss func-
tion of the neural networks to learn logic programs based on the embedding method. After 
learning the optimal embedding of a logic program through a neural network, the sym-
bolic rules can be interpreted directly from the trained matrices in O(n) time complex-
ity in D-LFIT. By contrast, CILP++ uses standard three-layer neural networks to perform 
deduction. The extraction method from CILP++ uses a learned neural network as an oracle 
and through a set of examples, possibly distinct from the example set used for training the 
neural network, to recursively build a decision tree based on an information gain-based 
heuristic. NTPs proposed by Rocktäschel and Riedel (2016) performs first-order deduc-
tive inference task. However, D-LFIT focuses on performing inductive inference using 
neural networks. LRNN proposed by Šourek et al. (2018) uses first-order logic programs 
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as templates to find underlying relational structures. The connection between LRNN and 
D-LFIT is that the logic programs generated by D-LFIT can be the input to LRNN. RelNN 
proposed by Kazemi and Poole (2018) learns the relations between predicates and formulas 
with specific formats. However, D-LFIT, as an inductive logic programming system, can 
generate relations between predicates and arbitrary DNFs consisting of literals. Wang and 
Cohen (2016) also proposed embeddings for first-order logic programs and searched for 
them through optimization methods. However, they did not give constraints on the embed-
dings of first-order logic programs. Hence, it is hard to extract the corresponding symbolic 
rules from the embeddings. Yang et  al. (2017) made use of the connection between the 
matrix multiplication and logic inference. They built recurrent neural networks and atten-
tion vectors to perform the matrix computation. Evans and Grefenstette (2018) proposed �
ILP, which uses program templates to generate the set of candidate clauses and continu-
ous semantics proposed by Serafini and Garcez (2016) to calculate the Boolean value for 
each fact. �ILP computes the distance between the predicted values and labels to differenti-
ably optimize the weight of each candidate clause according to the loss value. Garcez et al. 
(2001) and Lehmann et al. (2008) proposed algorithms to extract the first-order symbolic 
logic rules from a pre-trained feedforward neural network. Evans et al. (2021) proposed the 
apperception engine, a purely symbolic algorithm to learn first-order logic rules to explain 
a sequence of sensory data in the first-order format. In contrast to their work, our model 
translates symbolic logic programs into embeddings according to the continuous semantics 
of the logic program. Hence, we can embed background knowledge into matrices. In addi-
tion, our model does not need logic program templates in advance, and we can interpret 
logic programs in linear time complexity from trained SHV matrices. Hence, curriculum 
learning can be applied: once the correct logic rules are obtained, we embed and fix them 
in the matrices in the following training process. This strategy reduces the search space for 
the following learning process.

6  Conclusion and future work

In this paper, we proposed D-LFIT, a framework that translates logic programs into 
embeddings, infers logical values through differentiable semantics of the logic programs, 
and searching for embeddings through an optimization algorithm. After learning the opti-
mal embeddings of the logic programs, we can interpret them to obtain the corresponding 
symbolic logic programs with linear time complexity. Experimental results showed that the 
proposed model is robust, precise, and fast in the LFIT field. More specifically, because of 
the optimization methods, D-LFIT performs well on incomplete and mislabeled data. In 
addition, we set precise embeddings for logic programs and rigorous semantics to describe 
the deductive inference process. Hence, we can embed background knowledge into neural 
networks, extract symbolic logic programs from the trained matrix directly, and implement 
curriculum learning. In addition, we embedded rules with the same head into a two-dimen-
sional matrix; hence, the model has a few parameters, and the learning processes are com-
putationally cheap. In future work, to improve the accuracy of the first-order logic program, 
we will build more connections, such as sharing the same values between the parameters of 
the trainable matrix, to ensure that the first-order logic program satisfies both spatial unity 
and conceptual unity (Evans et al. 2021). We will also adapt our neural-symbolic model to 
handle other task settings, such as knowledge base completion.
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