
Vol.:(0123456789)

Machine Learning (2021) 110:2993–3013
https://doi.org/10.1007/s10994-021-06052-0

1 3

MLife: a lite framework for machine learning lifecycle
initialization

Cong Yang1 · Wenfeng Wang1 · Yunhui Zhang1 · Zhikai Zhang1 · Lina Shen1 ·
Yipeng Li2 · John See3

Received: 29 December 2020 / Revised: 14 May 2021 / Accepted: 27 August 2021 /
Published online: 14 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Machine learning (ML) lifecycle is a cyclic process to build an efficient ML system.
Though a lot of commercial and community (non-commercial) frameworks have been pro-
posed to streamline the major stages in the ML lifecycle, they are normally overqualified
and insufficient for an ML system in its nascent phase. Driven by real-world experience
in building and maintaining ML systems, we find that it is more efficient to initialize the
major stages of ML lifecycle first for trial and error, followed by the extension of specific
stages to acclimatize towards more complex scenarios. For this, we introduce a simple yet
flexible framework, MLife, for fast ML lifecycle initialization. This is built on the fact that
data flow in MLife is in a closed loop driven by bad cases, especially those which impact
ML model performance the most but also provide the most value for further ML model
development—a key factor towards enabling enterprises to fast track their ML capabilities.
Better yet, MLife is also flexible enough to be easily extensible to more complex scenarios
for future maintenance. For this, we introduce two real-world use cases to demonstrate that
MLife is particularly suitable for ML systems in their early phases.

Keywords  Machine learning · Machine learning lifecycle · Machine learning system ·
Deep learning · Data flow

1  Introduction

A significant difference between academic research and industrial development in machine
learning (ML) is the stability of data. In academia, data is relatively stable, especially for
domains where standard datasets have been established, such as ImageNet (Deng et al.

Editors: João Gama, Alípio Jorge, Salvador García.

 *	 Yipeng Li
	 yipeng.li@outlook.com

1	 Horizon Robotics, Nanjing, China
2	 Clobotics, Seattle, USA
3	 Heriot-Watt University Malaysia, Putrajaya, Malaysia

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06052-0&domain=pdf

2994	 Machine Learning (2021) 110:2993–3013

1 3

2009) for image classification. The goal then pivots towards the quest for better algorithms
to improve the performance of ML models on these established datasets. More often than
not, there are no datasets readily available for ML model development in industrial applica-
tions. Even with datasets to start with, they may not be representative of real life scenarios
since many badcases (a phrase which collectively denotes failure cases, rare cases and long
tail cases in literature Bengio 2015) can only be captured in the late “using” phase (Zaha-
ria et al. 2018). While algorithms in industrial applications are relatively stable after the
delivery phase, ML model development is mostly enabled through the accumulated variety
of data driven by badcases (Sculley et al. 2015). In other words, ML models are iteratively
updated using data collected from unseen scenarios to ensure the robustness and stability
of the ML system. For example, Fig. 1 presents the normalized number of reported bad-
cases in two real-world ML systems (Clobotics 2021; Horizon Robotics 2021). We found
that most cases were solved in the first 4–6 weeks while the rest were constantly returned
from customers. In practice, ML lifecycle is seen as an important mechanism to clarify the
stages involved in each ML model iteration. Following the convention in Ashmore et al.
(2019), Miao et al. (2017), ML lifecycle is a cyclic process to build an efficient ML system.

Figure 2 illustrates the five major stages in a complete ML lifecycle. Two important
characteristics can be observed: (1) ML model iteration is driven by the existence of bad-
cases in data flow. (2) All five stages have high intrinsic complexity, and are dependent
on other stages. As a result, the stability of an ML system is highly dependent on the effi-
ciency of data processing and collaboration between these stages. However, considering
the complications and coverage, we find that both commercial (Datatron 2021; Peltarion
2021; Algorithmia 2021; 5Analytics 2021) and community (i.e. non-commercial) (kube-
flow 2021; airflow 2021; Miao et al. 2017) solutions are sub-optimal for initializing an
ML system, particularly in its early phases. This is because commercial frameworks are
normally overqualified and expensive for an ML system which requires trial-and-error pro-
cedure to fix its business-facing (i.e. live) model. Moreover, community solutions are hard
to be applied directly as they either do not streamline all stages in the ML lifecycle, or have
limited ability on data and badcases management. The instability of data which contributes
to these badcases, and the inability to make the most out of them is the greatest limiting
factor for companies, particularly startups, to initiate their ML capabilities as well as to
successfully build industrial applications (Sculley et al. 2015).

In this paper, we introduce a simple yet efficient framework, MLife, for fast and effective
initialization of the major stages of ML lifecycle. Particularly, it contains a set of data man-
agement tools especially catered for badcase management, which can effectively guild ML

B
ad

ca
se

s
in

 P
R

S

B
ad

ca
se

s
in

 D
M

S

WeeksWeeks
1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fig. 1   Normalized number of reported badcases along with the weekly ML model iteration in two real-
world systems: product recognition system (PRS Clobotics (2021), left) and driver monitoring system
(DMS Horizon Robotics (2021), right)

2995Machine Learning (2021) 110:2993–3013	

1 3

model development for industrial applications. MLife is built on the assumption that the
components in Fig. 2 can be reorganized into a set of hierarchical layers, as depicted in dif-
ferent concentric circles shown in Fig. 3: (1) The middle layer (line patterned background)
is a set of simplified and standardized operations for modeling and initializing each stage
within the ML lifecycle. The main purpose of this layer is to provide crucial and general
tools so that all stages can be quickly activated. All tools in this layer are fully furnished
with web-based user interface thereby only negligible configuration works are required for
adaptation. (2) The outer layer (gray background) is more flexible as it contains various
APIs in each stage to support future extension on workflows and scenarios. (3) The inner
layer (white background) is a set of generic tools to support the middle and outer layers.
Tools in this layer can be updated to ensure the scalability of ML lifecycle on data volume
and user numbers.

Fig. 2   A typical ML lifecycle in practice (Ashmore et al. 2019; Clobotics 2021; Horizon Robotics 2021).
In the first step, Data Management mainly focuses on gathering and processing data for training and test-
ing ML models. For gathering, some tools for data uploading and labeling are normally required (Russell
et al. 2008) while in processing, tasks ranged from data analysis (Liu et al. 2017) to preparation and aug-
mentation (Lee et al. 2019). Model Training is the actual machine learning stage whereby pre-designed ML
models are properly selected, configured, trained and validated via an inner loop until a promising model
is obtained (Amazon 2020). Model Testing is responsible for checking the performance and limitations of
the trained model. By comparing with requirements, the model can either be deployed or dropped based on
the results. In Model Deployment, the trained and tested models are integrated with other models, or are
used to replace their predecessors in the ML system. In this stage, an end-to-end system testing is typically
required. Once the first 4 stages are finished, the ML system is released to users in the Using and Monitor-
ing Stage whereby the operational data from sensors, user feedback and execution results are periodically
send to maintainers for further steps

Fig. 3   Motivation of MLife: the
ML lifecycle can be reorganized
into the hierarchical layers

Tr
ai

ni
ng

 a
nd

 V
al

id
at

io
n

Testing
Management

Tr
ai

ni
ng

M
an

ag
em

en
t

Data

Preparation

Data ManagementBadca
se

Management

S
erving

M
anagem

ent

Formal Testing Specific Testing
Requirement Encoding

U
pdating

Integration

S
ystem

 Testing
U

se
rs

Devices
Maintainers Gathering

Augmentation

Cleaning

Analysis

C
on

fig
ur

at
io

n

M
od

el
 S

el
ec

tio
n

Model
Testing

Model

Deployment Model
Training

Using and
Monitoring

2996	 Machine Learning (2021) 110:2993–3013

1 3

Building upon these tools and APIs in three layers, MLife is advantageous in two
aspects. (1) Lite: A primary benefit of the middle layer is that users can quickly initialize an
ML lifecycle without overloading the development and adaptation works. This is particu-
larly meaningful for a ML system in early phases since MLife can effectively simplify the
intrinsic complexity of each stage and reduce over-collaboration between different teams.
(2) Flexible: Both inner and outer layers are flexible enough such that they can be extended
to meet different requirements in terms of complexity and scalability. The rationale behind
MLife is that we do not intent to build an end-to-end ML framework in the middle layer
to cover the plurality of use cases. Instead, we explore and focus on the requirements with
stability and consistency in different stages. This is because production ML is still in flux
as developments in this field changes very rapidly, such as ML libraries, ML models, the
large number of startups and their commercial fields (Polyzotis et al. 2018). Therefore, on
one hand, MLife tries to standardize and enhance the tooling for individual tasks in each
stage, while it also attempts to keep an appropriate level of flexibility to support the data
workflow within the ML lifecycle.

The main contribution of this article is in the introduction of a framework, MLife, to
facilitate quick and effective initialization of an ML lifecycle. Also, its flexibility in sup-
porting future extensions after the initialization renders it useful for maintenance of the
ML lifecycle. To evaluate its usability, two real use cases were introduced to show the effi-
cacy and suitability of MLife particularly in the early phases of ML systems.

2 � Related works

In this section, we systematically review existing tools and frameworks for the ML lifecy-
cle. For a more detailed treatment of this topic in general, the recent compilations by Ash-
more et al. (2019) and Polyzotis et al. (2018) also offer sufficiently good insights.

2.1 � Tools in stages

Real-world ML applications normally require feature generation from multiple input
sources, the building of ensembles from different models, and they frequently target hard-
to-optimize business metrics (Schelter et al. 2018). In such cases, many of these challenges
necessitate the need for practical and open-source tools that address different aspects within
the ML lifecycle stages. For instance, Chen et al. proposed BigGorilla for data preparation
and integration (Chen et al. 2018) during the data management stage. Particularly, Big-
Gorilla provides a set of packages for information extraction, schema matching, and entity
matching. Vartak and Madden introduced MODELDB for model management (Vartak and
Madden 2018) during the model training stage. Unlike the commercial model management
system deployed in the SAS platform (SAS 2021), MODELDB provides various libraries
to track and retrieve provenance information of a model during the experimentation phase.
In the model deployment stage, most existing tools (Microsoft machine learning server
2021; Mxnet model server (mms) 2021; Crankshaw et al. 2017; Olston et al. 2017) aim to
minimize the burden of deployment by reusing the interfaces in model training and testing
stages. For example, Interlandi et al. proposed PRETZEL, a high-performance prediction
serving system (Lee et al. 2018a). Kaiser et al. released a serving infrastructure, Cortex,
for deploying model locally and on web services such as AWS (2021). Both approaches
are fully engaged with the interfaces for model training and prediction. Meanwhile, in the

2997Machine Learning (2021) 110:2993–3013	

1 3

using and monitoring stage, several works (Lee et al. 2019; Fan and Li 2018) have been
proposed to better involve human-in-the-loop (e.g. observation and supervision) thereby
to prepare and wrangle data more efficiently in the following iteration of stages. Though
the aforementioned tools can improve the efficiency of specific tasks in specific stages,
they cannot streamline the entire ML lifecycle due to their independent nature. Moreover,
it is also challenging to integrate them in practice because of their duplicated functions and
diverse requirements for setting up. Different from the ‘independent’ tools above, MLife
not only provides a set of built-in tools in the middle layer for fast initialization, but also
can be extended via the API and existing tools in the outer and inner layers, respectively.
With this advantage, MLife is convenient and flexible enough to elicit different require-
ments from users.

2.2 � Frameworks

Table 1 lists some existing frameworks and their covered stages. We find that most com-
mercial and internal works have powerful tools to cover all stages of the ML lifecycle.

Table 1   Comparison between different frameworks and platforms for managing the ML Lifecycle

Init System setup and initialization, DM Data Management, TR Model Traning, TS Model Testing, DE
Model Deployment, UM Using and Monitoring
(need additional works[▵ ]; support[

√

 ]; nonsupport[× ]; unclear[−])

Frameworks Usage Init DM TR TS DE UM

Datatron (Datatron 2021) Commercial
√ √ √ √ √ √

Peltarion (Peltarion 2021) Commercial
√ √ √ √ √ √

SELDON (Seldon 2021) Commercial
√ √ √ √ √ √

Algorithmia (Algorithmia 2021) Commercial
√ √ √ √ √ √

5 Analytics (5Analytics 2021) Commercial
√ √ √ √ √ √

craft ai (craft ai 2021) Commercial
√ √ √ √ √ √

KNIME (KNIME 2021) Commercial
√ √ √ √ √ √

valohai (valohai 2021) Commercial
√ √ √ √ √ √

AML (Microsoft 2021) Commercial
√ √ √ √ √ √

SageMaker (SageMaker 2021) Commercial
√ √ √ √ √ √

Tfx Baylor et al. (2017) Internal – –
√ √ √ √

FBLearner (FBLearner 2021) Internal –
√ √ √ √ √

Michelangelo (Michelangelo 2021) Internal –
√ √ √ √ √

kubeflow (kubeflow 2021) Community ▵ ▵ ▵ ▵ ▵ ▵

Airflow (airflow 2021) Community ▵ × ▵ ▵ ▵ ×

Flyte (Flyte 2021) Community ▵ × × × ▵ ▵

NiFi (NiFi 2021) Community ▵ ▵ × × × ▵

MLflow Zaharia et al. (2018) Community × ▵ ▵ ▵ ▵ ×

Cortex (Cortex 2021) Community ▵ × × ×
√

×

JupyterHub (JupyterHub 2021) Community ▵ × ▵ ▵ × ×

ModelHub Miao et al. (2017) Community –
√ √

× × ×

MLife Community
√ √

▵ ▵ ▵
√

2998	 Machine Learning (2021) 110:2993–3013

1 3

In this table, ▵ denotes that a framework or API cannot be used for practical deployment
before considerable works on adaptation such as reconstruction, coding and compiling, etc.
are added. As most commercial and internal frameworks are deployed in cloud platforms,
they can be easily configured and employed via web interface. The community frame-
works, in contrast, are quite disorganized to some extent. We can find that model develop-
ment stages such as training and evaluation have received tremendous attention while using
and monitoring is barely covered. For instance, although MLflow (mlflow 2021; Zaha-
ria et al. 2018) contains various tools and APIs for tracking experiments, packaging ML
codes, managing and deploying ML models, there is no components specially designed for
data and badcase management. As a result, ML model development is loosely guided by
badcases in the data workflow. In fact, 4 complications are normally addressed to evaluate
the usability of a framework (Baylor et al. 2017):

•	 One for many: A framework should be generic enough to handle use cases from differ-
ent domains.

•	 Continuous training and serving: A framework should support model iteration not only
over fixed data, but also evolving data.

•	 Human-in-the-loop: A framework should be easy to install and configure. Besides, it
should provide simple user interfaces and pipelines for maintainers and engineers at
different stages of the ML lifecycle. Furthermore, it should provide minimal configura-
tion for users to quickly check their data and models.

•	 Production-level reliability and scalability: A framework should be robust against dis-
ruptions from data, configuration and environment. Furthermore, it also should scale
gracefully to the high data volume that is common in training, testing and monitoring.

Considering these complications, we find that MLife has higher usability compared to
most other community solutions. Particularly, as MLife contains three layers to support dif-
ferent levels of requirements, users can easily initialize and extend the ML lifecycle based
on even the middle and outer layers. Moreover, since MLife contains simple yet efficient
tools for data management, especially in handling badcases which have a significant impact
on model performance, MLife presents an essential solution to enable companies to fast
track their ML lifecycle.

3 � MLIFE

To simplify the stages of ML lifecycle, some tools in Fig. 3 are integrated based on their
intrinsic coherence. For instance, trained ML models are normally registered and uploaded
to a temporary location for testing. For each model, testing results are also attached for
future management and serving reference. Thus, Model Training and Model Testing have a
high intrinsic coherence and are integrated into a single component to reduce the system’s
complexity. As a result, as presented in Fig. 4, there are four major components in MLife:
Badcase Analysis & Management (BAM), Data Analysis & Management (DAM), Model
Training & Testing (MTT) and Model Serving & Management (MSM). To support the
major components, a data storage system (including file and database systems) should be
provided by default. In this section, we detail the tools and motivations of the middle layer
in MLife followed by the overview of functions in the outer and inner layers. For better

2999Machine Learning (2021) 110:2993–3013	

1 3

description, we use a simple but typical example, expression recognition (Li and Deng
2020), to clarify the usage of components (see Fig. 5). Expression recognition is one of
the key functions in driver monitoring system (DMS). The recognition results (happy, sad,
angry and fear) is used for driving safety analysis, multimedia recommendation and inter-
action with video games, etc. In practice, the expression recognition model is iteratively
updated via BAM, DAM, MTT and MSM so as to meet system requirements on accuracy
and stability.

3.1 � The middle layer

To streamline the major components in the middle layer, the collected badcases are ana-
lysed in BAM so as to determine the appropriate strategies for data collection and ML
model training (or testing) in DAM and MTT, respectively.

BAM A badcase contains at least three pieces of information: the original data (e.g.
links of image, video and audio, etc.), recognition results and ground truth. In addition
to that, other attributes and operations are also necessary to collaborate with other stages.
For instance, as shown in Fig. 6, ML System Functions and ML System Version indicate
different gradings of badcases, e.g. system level and model level. Frequency is one of the
important factors to determine the priority of a badcase. Description of a badcase should
be formatted in such a way to avoid duplicated items. Besides attributes, there are also

Fig. 4   Major components of MLife (the gray blocks) and its connection with other systems. (Color figure
online)

(a)

...

(b) (c)

(d)

1.jpg

(e)

...

...

Task 1 (1.csv)

Happy

M.jpg
Happy

...

(f)

(g)

Labeling
System

ID: 2507

Result: Happy

GT: Neutral

Training
&Testing

Deployment
&Monitoring

Task N (N.csv)

Fig. 5   Major steps of an iteration of the expression recognition model. a Badcase analysis. Cases of half-
wearing-mask (marked in green) are valuable for expression recognition. b Badcase management in BAM.
c Data collection and cleaning. The full-wearing-mask images (marked in red) are removed. d Data label-
ling system. e Data management in DAM. f Model training and testing in MTT. g Model serving and mon-
itoring in MSM 

3000	 Machine Learning (2021) 110:2993–3013

1 3

some operations to improve the efficiency in badcase management. Among the operations,
Retrieval is meaningful for different teams to avoid duplicated items as well as to clarify
the targets in the next iteration. Add to Test Data is a process to add the badcase-related
data into testing sets in DAM. It can maintain the richness of testing data thereby improv-
ing the effectiveness of model testing in MTT.

DAM Figure 7 presents the general idea of DAM. In the left part, File Data is used to
store raw data that are collected with the guidance of badcases. For this, the Data Storage
System (the left bottom block in Fig. 4) is used as a data store for different types of files
and their meta data. After labelling, the MD5, path and annotation of files are stored in
different documents with data exchange format, such as CSV (Comma-Separated Values),
JSON (JavaScript Object Notation) and XML (Extensible Markup Language), etc. MD5 is
used as a checksum to avoid duplicated files during the file uploading process. Data path
links the raw data and its corresponding annotations. Depending on different scenarios,
additional columns such as file format, file type, collection place, etc. could be added. As
the data collection and labelling tasks are flexible and normally conducted with groups, or
what we call tasks (see Fig. 7(middle)), it is more efficient to operate these tasks using the
documents. Before labelling, the annotations in the documents are filled with pre-labelled
data using ML models). Users can conveniently convert the documents into different format

Fig. 6   Badcase attributes and the
operations of BAM

Fig. 7   General idea of DAM. *.def means the documents with data exchange format (e.g. CSV, JSON,
XML, etc.) for easy handling and preservation of file locations and their annotations

3001Machine Learning (2021) 110:2993–3013	

1 3

to meet the requirements of labelling systems. With annotations in the documents, the Data
Analysis and Group Items operations are dynamically used to check data distribution of
selected documents as well as to integrate them into training and testing sets for MTT (see
Fig. 7(right)), respectively. Particularly, users can dynamically analyse the data distribution
in terms of classes, types and sizes using Retrieval, Selection and Data Analysis operations
thereby determining additional data collection and annotation strategies. Such analysis is
extremely important to ensure the quality of training and testing data is maintained at a
consistent level. This is because highly balanced data with a small domain gap is one of the
key contributing factors towards ML model performance (Deng et al. 2009). Specifically,
these grouped documents are used for ML model training and testing. Since each document
contains both file path and annotation, users can directly parse through them to download
and pack the file data with labels suited for different training frameworks.

MTT The general idea and workflow of MTT is presented in Fig. 8. In the preparation
step, once the documents are grouped into training or testing set using the Group Items
operation in DAM, a Task ID is automatically generated and assigned. This ID is important
to link all the relevant data/metadata of training and testing tasks including the documents,
ML models, training logs and testing results. For the testing tasks, the Model ID should be
selected in the preparation step, unlike that for the training tasks. This is understandable as
the testing set and the target ML model should be well clarified before the testing process.
Once the training and testing tasks are configured and initialized, the corresponding train-
ing and testing codes can be triggered. As shown in Fig. 8 (middle), we encourage users to
organize their codes under three parts: (1) Training: For ML model training and validation.
Once the training process is finished, the trained ML model is automatically uploaded to
BAM. In addition, the training logs and configuration files will be stored in the Data Stor-
age System. (2) Testing: For ML model testing. Similar to training, the testing results and
related configuration files are stored in the Data Storage System. (3) Common: the shared
libraries.

It should be noted that we do not intend to provide the Training, Testing and Common
codes in MTT since different users may use different frameworks, ML models and testing
strategies. To ensure the usability of MLife, a set of APIs can be provided in MTT for the
purpose of uploading ML models, logs and results. Moreover, the final results of training
and testing could be easily uploaded, accessed, retrieved via a web-based user interface
(Fig. 8(right)). To better understand the testing results, users can also add badcases using
the hyperlink between BAM and MTT. Those badcases will be used as the references of
each ML model during the deployment process in MSM. Thus, users can either adapt their

Fig. 8   General idea and workflow of MTT. For each training and testing task, a Task ID is assigned for the
purpose of tracking and retrieval

3002	 Machine Learning (2021) 110:2993–3013

1 3

training and testing codes using the proposed APIs, or directly manage the configurations
and final results using the operations via the user interface. Either way, the training and
testing workflow cans be easily initialized in MTT.

MSM As shown in Fig. 9, MSM contains two major parts: ML model management and
ML model serving. Here, each uploaded ML model is assigned with a Model ID for index-
ing and connection with MTT. The Model Management part aims to store, annotate, dis-
cover, revert, and manage models in a central repository. If a trained ML model has passed
the testing, users can trigger the model serving process using the Deployment operation
(Fig. 9(middle)). MSM also has an operation that links with BAM for the purpose of bad-
case management. In practice, this operation is useful as there might be some badcases that
were returned from testing in MTT or were based on feedback from customers, for before
or after serving, respectively. Thus, the Badcase ID list in BAM is actively updated and
attached in each deployment so as to identify the weaknesses for the benefit of subsequent
iterations of ML models.

In the middle layer of MLife, Model serving is a standardized workflow. Firstly, a
Deployment Task ID is created once the deployment operation is triggered. After that,
users should select the target ML models (multiple or single) to be deployed. With this
step, the Model IDs and their corresponding Deployment Task ID are linked. In addition
to the existing badcases of each ML model from MTT, users can add more badcases based
on feedback and observations from various resources. Since different metrics (e.g. Client
ID, Device ID, Pending Time, etc.) may be needed in different scenarios, MSM should also
be sufficiently flexible to modify the metric list. Similar to MTT, the middle layer of MSM
mainly focuses on workflow initialization. The deployment action is performed via the
extended APIs in the inner and outer layers. This is because the deployment techniques are
different on cloud-based and edge-based ML systems (Lee et al. 2018b) while their model
management and serving workflows are similar. Thus, the proposed multi-layer MSM is
flexible and general enough to initialize workflows in ML systems.

Based on attributes and operations in the four components, efficiency of human-in-the-
loop can be standardized and improved. This is built on the fact that ML lifecycle is essen-
tially a process to transfer knowledges from human into machine (ML models) to solve
similar and repetitive problems. The transferring process normally include data labelling as
well as different operations in each iteration. For instance, most badcases regarding expres-
sion recognition were the drivers with masks during the pandemic of COVID-19 (Fanelli
and Piazza 2020). To timely alarm the instability, as shown in Fig. 5a, b, operations
like Retrieval, Statistics and Preview can be employed to explore the major reasons and

Fig. 9   General idea for model management and serving in MSM. Each serving task contains multiple fixed
and user-defined metrics

3003Machine Learning (2021) 110:2993–3013	

1 3

solutions. Based on analysis, we found that collecting data of half-wearing-mask (wear-
ing a mask around/below the chin) has the most significant effect. This is because robust
expression recognition normally require eye and month regions. Moreover, Data Analy-
sis operation in DAM indicated that most drivers intend to drop-down their masks below
the chin when they drive alone. Thus, removing full-wearing-mask images from the train-
ing data can potentially improve model generalization and system stability (see Fig. 5c–e).
After training, operations like Add to Test Data in BAM and Group Items in DAM were
used to create testing data with different type of masks to validate the effectiveness of the
trained model in MSM. The detailed improvements on efficiency is reported in Sect. 5.2.

3.2 � The inner and outer layers

Figure 10 presents the details of inner and outer layers (as illustrated earlier in Fig. 4). We
can find that the outer layer is more flexible for maintaining tasks while the inner layer is
more general for supporting different tasks and tools in the middle and outer layers. The
rational behind is that APIs in the outer layer are designed to adapt different domains and
operations, ranging from data processing to visualization, target classification to detection
and edge- to cloud-based systems. In contrast, APIs in the inner layer are mainly designed
to adapt various frameworks and different volume of data and users. In some cases, APIs in
both outer and inner layers are involved. For instance, automatic training requires not only
data preparation, model training, testing and management in the outer layer, but also work
flow management and monitoring in the inner layer.

Specifically, the inner layer contains a set of tools and classes comprising of three major
components: (1) Data Storage System, which stores training and testing data (e.g. 0.jpg
and 1.def in Fig. 7), ML models and different types of result files (e.g. log1.txt and
results1.txt in Fig. 8). It should be noted that databases (e.g. SQL and NoSQL)
are employed for storing annotations in some startups. For this, the documents with data
exchange format can be easily imported and exported using the built-in tools in data-
bases. (2) Deep Learning Framework, which is meant for supporting a variety of popular
frameworks including Tensorflow (Tensorflow serving 2021), Pytorch (Pytorch 2021) and
mxnet (mxnet 2021). (3) MLflow (Zaharia et al. 2018), which is for recording and track-
ing the metrics in training, testing and serving tasks. (4) AirFlow (airflow 2021), which is
for scheduling and running complex pipelines. It can ensure each task of a pipeline will

Fig. 10   APIs and tools in the inner and outer layers. IAV: image (I), audio (A), video (V)

3004	 Machine Learning (2021) 110:2993–3013

1 3

get executed in the correct order and each task gets the required resources. The rationale
behind providing these components is to ensure the scalability of MLife in terms of data,
framework and workflow.

To ensure the flexibility of the outer layer, each component of MLife contains differ-
ent APIs for specific purposes: (1) In BAM, APIs are mainly used for data (image, audio
and video) editing, conversion and visualization to support various badcase forms and to
provide detailed analysis. For instance, users may localize segments within a video that the
badcase had occurred by extending APIs in IAV Editing. By extending APIs in IAV Con-
verting, the badcase data could be converted to different formats prior to adding them to
the testing set. (2) APIs in DAM are mostly focusing on data processing and statistics. For
example, APIs in Data Cleaning can be extended to clean duplicated and unqualified data.
APIs in Data Statistics can be used to analyze the distribution of data and the domain gap
for different tasks like classification, segmentation, regression and detection, etc. Mean-
while, APIs in Create Labelling Tasks can be extended to connect with other data labelling
tools for fast creation of annotations. (3) In MTT, APIs can be extended to improve the
automation of training and testing tasks. For instance, Airflow (airflow 2021) can be used
to incorporate an end-to-end testing pipeline by encapsulating and connecting data pro-
cessing approaches and ML models. Similar to BAM and DAM, a set of APIs are also pro-
vided for data visualisation. Moreover, they can be extended to support different data for-
mats and layout forms. (4) Different from other components, the APIs in MSM only focus
on Docker Generation and Model Compression. This is motivated by the fact that existing
ML models are mostly deployed in clouds and edges (Pan and McElhannon 2018). For
this, docker generation and model compression are commonly required functions in cloud-
and edge-based ML systems, respectively. In addition, the above APIs can be used to work
with existing popular ML frameworks. For example, one may use the APIs in MTT and
MSM to call Kubeflow (kubeflow 2021) pipelines, which in turn may include operations
that employ Tensorflow (Tensorflow serving 2021) framework for model training, testing
and serving. If a user employs public cloud services [e.g. AWS sagemaker (SageMaker
2021), Azure (Microsoft 2021)] for model training, testing and management, the APIs (and
operations) in BAM and DAM can be used to manage badcases and data thereby improv-
ing the efficiency of model iteration. On the whole, MLife can be used for not only ML
lifecycle initialization, but also for various maintenance and subtasks in the ML lifecycle.

4 � Implementation

MLife is developed using Flask (Aslam et al. 2015) which is a micro web service frame-
work written in Python. This is meaningful in practice since widely used deep learning and
machine learning libraries are all available on the Python ecosystem (Raschka and Mir-
jalili 2019). Hence, this encourages users to integrate and extend MLife within their ML
systems. In addition, Flask supports extensions that can add application features as if they
were implemented in Flask itself. Such a feature is inherently consistent with the motiva-
tions behind the design of inner and outer layers in MLife. In this part, we discuss the
details of the project structure and user interface of MLife. We intend to make MLife pub-
licly available to the developer and research community.

The infrastructure of MLife is presented in Fig. 11: (1) The top block is the web-based
user interface. Some basic operations such as checking null values and filtering are carried
out in this part using Python and JavaScript. (2) The middle block is a set of tools and APIs

3005Machine Learning (2021) 110:2993–3013	

1 3

to form different layers of MLife. Particularly, APIs in the outer layer and operations in the
middle layer are developed based on Python SDK. Tools like MLflow (Zaharia et al. 2018)
and Airflow (Zaharia et al. 2018) are employed for the purpose of monitoring and encapsu-
lating different tasks, respectively. This is based on the fact that there are various tasks and
sub-tasks within BAM, DAM, MTT and MSM. As such, it is more flexible to encapsulate
and connect them using Airflow. Meanwhile, MLflow is mainly used to monitor the train-
ing and testing tasks in MTT when users prepare the codes. The monitored data can be
shared and visualized via the hyperlink between MLife and MLflow. (3) The bottom block
is the database, file folders and monitoring tools. For instance, we monitor each folder
to control the maximum number of files. We also synchronize file paths, MD5 and other
metrics with the database using the monitoring tools. It is worth to clarify the difference
between MLife and MLflow. MLflow aims to record and track metrics in model training,
testing and serving tasks. In other words, MLflow is only correlated to some operations
in MTT and MSM. Differently, MLife covers all steps within the ML lifecycle. Particu-
larly, it provides various tools and APIs to improve the efficiency of badcase and data man-
agement in BAM and DAM. Besides, MLife provides APIs to encapsulate data collection
and processing, model training, testing and serving steps to improve workflow automation
based on AirFlow.

Figure 12 presents screen shots of MLife regarding badcase management (left) and statis-
tics (right). For a single case, more details can be observed after clicking its preview image.
For multiple retrieved and selected cases, automatic statistics can be applied to determine pri-
orities in the next round iteration. For instance, we can clearly find that more than half (57.1%)
of the retrieved badcases are related to emotion (expression recognition). Similarly, Fig. 13
presents the screen shots of data management (left) and statistics (right). We can use keywords
or Advanced Search to retrieve documents for further statistics on data quality and quantity. It
should be mentioned that Airflow and MLflow are not embedded in the middle layer of MLife
but merely used to supplement MLife. In other words, the middle layer is purely built on
Python SDK and only contains Flask-based APIs and web pages, SQLite database (Bhosale

Fig. 11   The infrastructure of
MLife is composed of three
major parts: Web-based user
interface (top), tools and APIs
(middle) as well as data storage
and supporting tools (bottom)

Fig. 12   Screen shots of MLife: Badcase management and retrieval (left) and statistics (right)

3006	 Machine Learning (2021) 110:2993–3013

1 3

et al. 2015) and folders for file storage. This can maximized the lightness and efficiency of
MLife for fast ML lifecycle initialization since additional adaptation is not required in the mid-
dle layer. For example, SQLite is a self-contained, serverless, zero-configuration and transac-
tional SQL database engine. Different from most other SQL databases, SQLite does not have
a separate server process. The benefit of this is that once the required packages are installed in
Python, the middle layer of MLife can be activated right away. For maintaining tasks with the
inner and outer layers, users can extend the database, file system and related APIs along with
data volume, user number and workflow complexity.

5 � Case study

To verify the usability of the proposed framework, we introduce two real use cases whereby
their ML lifecycle were initialized by MLife. We demonstrate its usage in ML systems for
cloud-based product recognition (Clobotics 2021) and edge-based driver monitoring (Horizon
Robotics 2021) in the domain of smart retail and transportation, respectively.

5.1 � SKU recognition in cloud

An SKU (Stock Keeping Unit) refers to a distinct item for sale in a retail business, such as a
product or service (Sawaya and Giauque 1986). SKU recognition is one of the core technolo-
gies that is applicable in smart retail scenarios. A typical workflow for smart retail is presented
in Fig. 14. Briefly, it aims to capture images in retail stores using an application (APP) in a
smart phone, upload these images to the cloud which recognizes the SKU class; the system
then generates a variety of reports and finally deliver the reports and business insights to cli-
ents. However, ML models for SKU recognition are sensitive to product view and camera
poses. Moreover, different brands and products of retail items may appear quite differently
when they are tightly packed together in shelves and bays. Some “sub-brands” (commonly
just a difference in packaging design, or flavour or version) are often distinguishable only by
fine-grained packaging differences. Even for the same sub-brand, the design and packaging
appearance can differ in different cities and seasons. Thus, ML models of a SKU recognition

Fig. 13   Screen shots of MLife: Data management (left) and statistics (right)

Fig. 14   A typical workflow in
smart retail scenarios

3007Machine Learning (2021) 110:2993–3013	

1 3

system should be iteratively updated to fit these ever-changing variations. Figure 15 presents
some ML tasks that are typically involved in the entire SKU recognition system. Without the
employment of MLife, most of these models are likely to be manually operated in each itera-
tion, which is rather inefficient, tedious, and with no proper mechanism to cater for badcases
that arose throughout the pipeline.

In Fig. 16, we compare some operations in the ML lifecycle before and after applying ini-
tialization using MLife. Particularly, we recorded the mean time taken by several known oper-
ations based on 5 model iterations and then normalized the results for comparison. We can
clearly observe the improvement in efficiency. For instance, since training data is an operation
which is possibly recorded by different teams, at different time and place, they are usually
stored in different folders in the data store. In such a case, it is inefficient to manually find the
specific required data and create labelling tasks. After the initialization using MLife, all data
are managed in DAM in the CSV format and users can easily extend the APIs in the outer
layer to connect with annotation systems so as to enable the automatic creation of labelling
tasks. Specifically, this would allow the annotation column in CSV files to be filled after label-
ling. Based on our statistics, the time needed for the labelling task (including data gathering,
uploading, cleaning and task creation) is reduced by around 50%. For badcase management,
though existing tools such as gitlab (Engwall and Roe 2020) and JIRA (Ortu et al. 2015) can
functionally meet the requirements, they are still not efficient enough and tailored for collabo-
ration between teams and handling various operations shown in Fig. 6. This is because they
have limited ability to (1) remove duplicated badcases from different testing teams and cus-
tomers, (2) apply complicated statistics and analysis, and (3) provide APIs to adapt different
domains, data formats, visualization and statistical requirements, etc. Theoretically, it is more
efficient if a badcase management system is in conjunction with DAM since ML model itera-
tion is driven by the existence of badcases in data flow. A main benefit of MLife is that all

Fig. 15   Sample ML tasks/algorithms in a typical SKU recognition system: a Recognition of SKUs in an
image. b Segmentation of shelves and bays. c Classification of unqualified images (e.g. moire patterns)

Fig. 16   Comparison of time cost
for labelling task creation, bad-
case management, model testing
and model iteration, before and
after initialization using MLife

3008	 Machine Learning (2021) 110:2993–3013

1 3

badcases are managed together in BAM and they can be easily visualized, retrieved, updated
and analysed so as to guide data collection and labelling in DAM as well as model testing in
MTT. We report a total savings of around 80% in badcase management time. For model test-
ing, the time cost is reduced by around 28% since the testing data can be prepared in MTT
with only limited work done on data analysis via web pages. Moreover, the time cost can be
further reduced by extending the APIs of MTT in the outer layer for automatic testing. Build-
ing gradually upon the improved efficiency at each stage, we can finally save around 26%
on overall time cost for each model iteration with the initialization of the ML lifecycle using
MLife.

5.2 � Driver monitoring in edge

A Driver Monitoring System (DMS) aims to monitor the driving status of a driver so as to
provide necessary assistance for safe and comfortable driving (Khan and Lee 2019). Typi-
cally, such monitoring systems are mainly focused on properties (e.g. gender, age, dressing,
etc.), behaviours (smoking, calling, distracting, drinking, hands-off-the-wheel, etc.), expres-
sions and drowsiness levels of a driver using vision-based approaches with infrared (IR) and
RGB cameras. Recently, microphones are also employed in DMS since some audio-visual
approaches (Srinivasan et al. 2019; Xu et al. 2019) are introduced to improve the experience
of multimodal human-vehicle interaction. To ensure the real-time capability of the DMS, sig-
nals (both video and audio) are normally processed on the edge side. Specifically, as shown in
Fig. 17, signals are captured and delivered to local processors for pre-processing and recogni-
tion. The recognition results are filtered and then combined with the results from the previous
frames. Using pre-defined strategies and conditions, the result sequence is analysed in order to
trigger different feedback to the driver. For instance, taking action such as turning on the air
conditioner and playing music when visual signs of drowsiness (e.g. yawning and prolonged
eye closure, etc.) in a driver are detected. Other actions include opening windows and turning
down the volume when smoking and calling behaviours are detected, respectively.

To address the recognition tasks above, there are multiple ML models involved in DMS.
As shown in Fig. 18, these models ranged from detection and regression to classification
tasks. For example, the detection of facial landmarks is employed to determine the mouth and
eye status for the purpose of classifying a driver’s drowsiness level. However, there are vari-
ous real-world challenges that are observed in practice after the deployment of DMS. Take
vision-based smoking detection as an example (Fig. 19a, b)—light beams from windows and
eating cylindrical shaped food or snacks are easily mistakenly recognized as that belonging to
a smoking action. Meanwhile, drowsiness detection could potentially fail due to the influence
of light spots on glasses and occlusion of eyes caused by the glass frame position (Fig. 19c).
Since such scenarios are barely considered and covered in the initial iteration of ML models, it
is meaningful to initialize the ML lifecycle so that these badcases can be timely observed and
effectively handled in the subsequent iterations.

Motivated by the complications introduced in Sect. 2.2, Table 2 illustrates a compre-
hensive comparison between before and after initialization using MLife, on several ML

Fig. 17   A typical workflow
in driver monitoring system
scenarios

3009Machine Learning (2021) 110:2993–3013	

1 3

lifecycle operations. We observe that operations among the ML lifecycle stages have dras-
tically improved in terms of workflow efficiency and simplicity, standardization and scal-
ability. Most manual works are replaced by semi-automatic operations accessible by users
via web pages in the BAM, DAM, MTT and MSM modules. Moreover, MLife also ensures
that the naming and storing of data name across different places are more standardized than
traditional unconstrained strategies. Finally, MLife allows a far more convenient and sys-
tematic way of extending the ML lifecycle in terms of scenarios and workflow complexity
among the operations.

To quantitatively evaluate the efficiency of the ML lifecycle and to demonstrate the
improvement brought upon by MLife, we count the deployed model numbers of two cus-
tomers before and after applying the initialization (see Fig. 20). Note that in this experi-
ment based on the DMS, the major functions of two customers are similar but their accu-
racy requirements are different. As such, the number of deployed models are normalized
for fair comparison. The right graph shows that the number of deployed models decreases
over time with certain predictability, while the left shows that the number fluctuates sig-
nificantly therefore unpredictable. In other words, the deployed model numbers are more
stable using MLife, demonstrating the effectiveness of MLife in managing badcases, the
use of data and training/testing models. Moreover, the workflow between data, algorithm
and testing teams are gradually standardized in the process. With MLife, we also observe
that the overall trend of the number of deployed models are also gradually reducing among
the first five weeks before stabilizing at a certain level of need. Without MLife, the over-
all trend of deployed models is quite unpredictable; we observe that there were no mod-
els deployed in certain weeks—the second, third and sixth weeks before the initialization.
Particularly, Fig. 20(right) presents the normalized number of expression-related badcases
introduced in Sect. 3. We can clearly observe the rapid increase of badcases in the week
7. A strong benefit of using MLife is that the performance of expression recognition sta-
bilizes much more within the model iteration process. The main reason is that MLife can
effectively incorporate human-in-the-loop in terms of timely badcase alarming, root reason

Fig. 18   ML tasks involved in DMS. a Body part/element (body, head, hand, eyes) detection. b Facial land-
mark extraction. c Gaze and head pose regression

Fig. 19   Challenges of DMS: a Indistinguishable actions between eating and smoking. b Illusion from light
beams. c Influences from light spots. d Occlusion from glass frame

3010	 Machine Learning (2021) 110:2993–3013

1 3

Table 2   Comparison of operations among stages before and after the initialization of ML lifecycle using
MLife

Top row: Badcase management and analysis; Second row: Data Management and Analysis; Third row:
Model training and testing; Bottom row: Model management and serving. Note that the number of custom-
ers is estimated based on the affordability of a fixed number of Algorithm, Engineering and Testing team
members

Before Initialization After Initialization

Tools: Excel and JIRA issues Tools: BAM in MLife
Workflow: At least 4 meetings between the Test-

ing, Engineering and Algorithm teams to align
badcases and discuss the plan for data collection
and ML model iteration

Workflow: The Testing Team uploads all badcases in
BAM. At most 2 meetings between the Engineering
and Algorithm teams to discuss the plan for data
collection and ML model iteration

Standardization: Hard to unify badcase names and
priorities

Standardization: All badcase related metrics are
standardized

Scalability: At most 3 customers due to redundant
manual works on badcase management and align-
ment.

Scalability: Unlimited by extending the APIs in the
outer layer

Tools: Excel and folders in services Tools: DAM in MLife
Workflow: Manual moving, copying and analysis

using Excel and Linux commands
Workflow: Upload the raw images to MLife and then

carry out management and analysis in DAM using
the built-in functions

Standardization: Hard to reuse the scripts for data
analysis since algorithm engineers have different
places to store data, and different strategies to
name data

Standardization: All built-in functions and APIs can
be reused and extended by algorithm engineers and
data scientists from different teams

Scalability: At most 4 customers due to redundant
manual works on data management and prepara-
tion.

Scalability: Unlimited by extending the APIs in the
outer and inner layers

Tools: Python scripts and WIKI Tools: DAM, MTT and MSM in MLife
Workflow: Copy all the data to a specific location

manually or using scripts. After packaging, the
training and testing tasks can be triggered. Train-
ing and testing results need to be managed manu-
ally in different folders and WIKI pages

Workflow: All training and testing data are stored
in DAM and linked with the training and testing
scripts via CSV IDs. After that, the training logs
and testing results are stored in MTT. The trained
ML models are stored in MSM and linked with
MTT via model IDs

Standardization: Hard to standardize name and
stored places of trained ML models, logs and
testing results

Standardization: Name and stored places of ML
models, logs, and testing results are all standardized

Scalability: At most 4 customers due to redundant
manual works on data management and prepara-
tion.

Scalability: Unlimited by extending the APIs in the
outer and inner layers

Tools: Excel and folders in services Tools: MSM in MLife
Workflow: Manual moving and copying of ML

models from different services for serving. Send
emails to relevant people regarding the serving
details

Workflow: All ML models and serving logs are
stored and managed in MSM. Serving actions
can be configured and triggered in MSM. Serving
details are automatically sent to the relevant people
afterwards

Standardization: Hard to standardize the name and
stored place of ML models. Hard to automate the
serving workflow

Standardization: Name and storing places are stand-
ardized. Serving details and workflow are unified
after certain configurations

Scalability: At most 6 customers due to redundant
manual works on ML model management and
testing after serving.

Scalability: Unlimited and automated by extending
APIs in the two layers

3011Machine Learning (2021) 110:2993–3013	

1 3

and optimal solution exploration, semi-automatic training, testing and serving, etc. Thus,
we are able to conclude that MLife can effectively improve the robustness of ML systems
particularly in how the ML lifecycle is managed and handled.

6 � Conclusion

In this paper, we introduce a simple yet efficient framework, MLife, for quick and effec-
tive initialization of the ML lifecycle. MLife is motivated by the need for operations in the
ML lifecycle to be re-organized into inner, middle and outer layers where the middle layer
contains crucial, standardized operations for initialization while the inner and outer layers
provide APIs and tools that are extensible to various scenarios, data volume and user num-
ber after initialization. Therefore, MLife can be used for the purpose of both initialization
and maintenance. Intuitively, MLife thrives on the fact that ML systems are largely driven
by badcases and hence, the proposal of BAM, DAM, MTT and MSM stages for iteratively
circulating the workflow from badcases back to the data and ML models. We present two
real-world use cases to evaluate the usability of MLife on cloud- and edge-based ML sys-
tems. Our comparative (before-after) results show that MLife can effectively improve the
efficiency of ML model iteration and workflow standardization.

Acknowledgements  The work is supported by the funding from Clobotics and Horizon Robotics under the
Research Program of Smart Retail and Driver Monitoring System, respectively, and in part by CREST R&D
Grant T03C1-17, Malaysia.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

References

5Analytics. Retrieved from 08 May 2021. https://​www.​5anal​ytics.​com/
airflow. Retrieved from 08 May 2021. https://​airfl​ow.​apache.​org/
Algorithmia. Retrieved from 08 May 2021. https://​algor​ithmia.​com/
Amazon, (2020). Training ml models. In Amazon machine learning: Developer guide (pp. 72–73). Amazon

Web Services.
Amazon web services. Retrieved from 08 May 2021. https://​aws.​amazon.​com/
Ashmore, R., Calinescu, R., & Paterson, C. (2019). Assuring the machine learning lifecycle: Desiderata,

methods, and challenges. arXiv preprint arXiv:​1905.​04223

Fig. 20   Comparison of the normalized number of deployed models per week before (left) and after (mid-
dle) the initialization of ML lifecycle using MLife. Normalized number of expression-related badcases is
detailed in the right figure. The red mark indicates the start of pandemic

https://www.5analytics.com/
https://airflow.apache.org/
https://algorithmia.com/
https://aws.amazon.com/
http://arxiv.org/abs/1905.04223

3012	 Machine Learning (2021) 110:2993–3013

1 3

Aslam, F. A., Mohammed, H. N., Mohd, J. M., Gulamgaus, M. A., & Lok, P. (2015). Efficient way of
web development using python and flask. International Journal of Advanced Research in Computer
Science, 6(2), 54.

Baylor, D., Breck, E., Cheng, H. T., Fiedel, N., Foo, C. Y., Haque, Z., Haykal, S., Ispir, M., Jain, V., Koc,
L., & Koo, C. Y. (2017). Tfx: A tensorflow-based production-scale machine learning platform. In
ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1387–1395).

Bengio, S. (2015). Sharing representations for long tail computer vision problems. In ACM on interna-
tional conference on multimodal interaction (p. 1).

Bhosale, S., Patil, T., & Patil, P. (2015). Sqlite: Light database system. International Journal of Com-
puter Science and Mobile Computing, 4(4), 882.

Chen, C., Golshan, B., Halevy, A., Tan, W., & Doan, A. (2018). Biggorilla: An open-source ecosystem
for data preparation and integration. IEEE Data Engineering Bulletin, 41(2), 10–22.

Clobotics: Cloud image recognition. Retrieved from 08 May 2021. https://​clobo​tics.​com/​retail
Cortex. Retrieved from 08 May 2021. https://​www.​cortex.​dev/
craft ai. Retrieved from 08 May 2021. https://​www.​craft.​ai/
Crankshaw, D., Wang, X., Zhou, G., Franklin, M., Gonzalez, J., & Stoica, I. (2017). Clipper: A low-

latency online prediction serving system. In USENIX symposium on operating systems design and
implementation (OSDI) (pp. 613–627).

Datatron. Retrieved from 08 May 2021. https://​www.​datat​ron.​com/
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchi-

cal image database. In IEEE conference on computer vision and pattern recognition (pp. 248–255).
Engwall, K., & Roe, M. (2020). Git and GitLab in library website change management workflows.

Code4Lib Journal, 48. https://​journ​al.​code4​lib.​org/​artic​les/​15250.
Fan, J., & Li, G. (2018). Human-in-the-loop rule learning for data integration. IEEE Data Engineering

Bulletin, 41(2), 104–115.
Fanelli, D., & Piazza, F. (2020). Analysis and forecast of covid-19 spreading in China, Italy and France.

Chaos, Solitons & Fractals, 134, 109761.
FBLearner. Retrieved from 08 May 2021. https://​code.​fb.​com/​core-​data/​intro​ducing-​fblea​rner-​flow-​

faceb​ook-s-​ai-​backb​one/
Flyte. Retrieved from 08 May 2021. https://​lyft.​github.​io/​flyte/
Horizon Robotics: Driver monitoring system. Retrieved from 08 May 2021. https://​en.​horiz​on.​ai/​produ​

ct/​nebula
JupyterHub. Retrieved from 08 May 2021. https://​jupyt​er.​org/​hub
Khan, M. Q., & Lee, S. (2019). A comprehensive survey of driving monitoring and assistance systems.

Sensors, 19(11), 2574.
KNIME. Retrieved from 08 May 2021. https://​www.​knime.​com/
kubeflow. Retrieved from 08 May 2021. https://​www.​kubef​low.​org/
Lee, D., Macke, S., Xin, D., Lee, A., Huang, S., & Parameswaran, A. (2019). A human-in-the-loop per-

spective on automl: Milestones and the road ahead. IEEE Data Engineering Bulletin, 42(2), 59–70.
Lee, Y., Scolari, A., Chun, B., Santambrogio, M., Weimer, M., & Interlandi, M. (2018). Pretzel: Open-

ing the black box of machine learning prediction serving systems. In USENIX symposium on oper-
ating systems design and implementation (OSDI) (pp. 611–626).

Lee, Y., Scolari, A., Chun, B., Weimer, M., & Interlandi, M. (2018). From the edge to the cloud: Model
serving in ml.net. IEEE Data Engineering Bulletin, 41(4), 46–53.

Li, S., & Deng, W. (2020). Deep facial expression recognition: A survey. IEEE Transactions on Affective
Computing. https://​doi.​org/​10.​1109/​TAFFC.​2020.​29814​46

Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. (2017). A survey of deep neural network
architectures and their applications. Neurocomputing, 234, 11–26.

Miao, H., Li, A., Davis, L., & Deshpande, A. (2017). Modelhub: Deep learning lifecycle management.
In International conference on data engineering (pp. 1393–1394).

Michelangelo. Retrieved from 08 May 2021. https://​eng.​uber.​com/​miche​lange​lo/
Microsoft. Retrieved from 08 May 2021. https://​docs.​micro​soft.​com/​en-​us/​azure/​machi​ne-​learn​ing/
Microsoft machine learning server. Retrieved from 08 May 2021. https://​docs.​micro​soft.​com/​en-​us/​

machi​ne-​learn​ing-​server
mlflow. Retrieved from 08 May 2021. https://​mlflow.​org/​docs/
mxnet. Retrieved from 08 May 2021. https://​mxnet.​cdn.​apache.​org/
Mxnet model server (mms). Retrieved from 08 May 2021. https://​github.​com/​awsla​bs/​

mxnet-​model-​server
NiFi. Retrieved from 08 May 2021. https://​nifi.​apache.​org/

https://clobotics.com/retail
https://www.cortex.dev/
https://www.craft.ai/
https://www.datatron.com/
https://journal.code4lib.org/articles/15250
https://code.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://code.fb.com/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://lyft.github.io/flyte/
https://en.horizon.ai/product/nebula
https://en.horizon.ai/product/nebula
https://jupyter.org/hub
https://www.knime.com/
https://www.kubeflow.org/
https://doi.org/10.1109/TAFFC.2020.2981446
https://eng.uber.com/michelangelo/
https://docs.microsoft.com/en-us/azure/machine-learning/
https://docs.microsoft.com/en-us/machine-learning-server
https://docs.microsoft.com/en-us/machine-learning-server
https://mlflow.org/docs/
https://mxnet.cdn.apache.org/
https://github.com/awslabs/mxnet-model-server
https://github.com/awslabs/mxnet-model-server
https://nifi.apache.org/

3013Machine Learning (2021) 110:2993–3013	

1 3

Olston, C., Li, F., Harmsen, J., Soyke, J., Gorovoy, K., Lao, L., Fiedel, N., Ramesh, S., & Rajashekhar, V.
(2017). Tensorflow-serving: Flexible, high-performance ml serving. In Workshop on ML systems at
NIPS 2017 (pp. 1–8).

Ortu, M., Destefanis, G., Kassab, M., Counsell, S., Marchesi, M., & Tonelli, R. (2015). Would you mind
fixing this issue? In International conference on Agile software development (pp. 129–140). Springer.

Pan, J., & McElhannon, J. (2018). Future edge cloud and edge computing for internet of things applications.
IEEE Internet of Things Journal, 5(1), 439–449.

Peltarion. Retrieved from 08 May 2021. https://​pelta​rion.​com/
Polyzotis, N., Roy, S., Whang, S., & Zinkevich, M. (2018). Data lifecycle challenges in production machine

learning: A survey. ACM SIGMOD Record, 47(2), 17–28.
Pytorch. Retrieved from 08 May 2021. https://​pytor​ch.​org/
Raschka, S., & Mirjalili, V. (2019). Python machine learning: Machine learning and deep learning with

Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd.
Russell, B., Torralba, A., Murphy, K., & Freeman, W. (2008). Labelme: A database and web-based tool for

image annotation. International Journal of Computer Vision, 77(1–3), 157–173.
SageMaker. Retrieved from 08 May 2021. https://​aws.​amazon.​com/​cn/​sagem​aker/
SAS: Sas model manager. Retrieved from 08 May 2021. https://​www.​sas.​com/​en_​us/​softw​are/​model-​manag​

er.​html
Sawaya, W., & Giauque, W. (1986). Production and operations management. Harcourt Brace Jovanovich.
Schelter, S., Bießmann, F., Januschowski, T., Salinas, D., Seufert, S., & Szarvas, G. (2018). On challenges

in machine learning model management. IEEE Data Engineering Bulletin, 41(4), 5–15.
Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V., Young, M., Crespo,

J. F., & Dennison, D. (2015). Hidden technical debt in machine learning systems. In International con-
ference on neural information processing systems (pp. 2503–2511).

Seldon. Retrieved from 08 May 2021. https://​www.​seldon.​io/
Srinivasan, T., Sanabria, R., & Metze, F. (2019). Analyzing utility of visual context in multimodal speech

recognition under noisy conditions. arXiv preprint arXiv:​1907.​00477
Tensorflow serving. Retrieved from 08 May 2021. https://​www.​tenso​rflow.​org/​servi​ng
valohai. Retrieved from 08 May 2021. https://​valoh​ai.​com/
Vartak, M., & Madden, S. (2018). Modeldb: Opportunities and challenges in managing machine learning

models. IEEE Data Engineering Bulletin, 41(4), 16–25.
Xu, H., Zhang, H., Han, K., Wang, Y., Peng, Y., & Li, X. (2019). Learning alignment for multimodal emo-

tion recognition from speech. arXiv preprint arXiv:​1909.​05645
Zaharia, M., et al. (2018). Accelerating the machine learning lifecycle with mlflow. IEEE Data Engineering

Bulletin, 41(4), 39–45.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://peltarion.com/
https://pytorch.org/
https://aws.amazon.com/cn/sagemaker/
https://www.sas.com/en_us/software/model-manager.html
https://www.sas.com/en_us/software/model-manager.html
https://www.seldon.io/
http://arxiv.org/abs/1907.00477
https://www.tensorflow.org/serving
https://valohai.com/
http://arxiv.org/abs/1909.05645

	MLife: a lite framework for machine learning lifecycle initialization
	Abstract
	1 Introduction
	2 Related works
	2.1 Tools in stages
	2.2 Frameworks

	3 MLIFE
	3.1 The middle layer
	3.2 The inner and outer layers

	4 Implementation
	5 Case study
	5.1 SKU recognition in cloud
	5.2 Driver monitoring in edge

	6 Conclusion
	Acknowledgements
	References

