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Abstract
Neural networks can learn complex, non-convex functions, and it is challenging to guar-
antee their correct behavior in safety-critical contexts. Many approaches exist to find fail-
ures in networks (e.g., adversarial examples), but these cannot guarantee the absence of 
failures. Verification algorithms address this need and provide formal guarantees about a 
neural network by answering “yes or no” questions. For example, they can answer whether 
a violation exists within certain bounds. However, individual “yes or no" questions can-
not answer qualitative questions such as “what is the largest error within these bounds”; 
the answers to these lie in the domain of optimization. Therefore, we propose strategies to 
extend existing verifiers to perform optimization and find: (i) the most extreme failure in 
a given input region and (ii) the minimum input perturbation required to cause a failure. 
A naive approach using a bisection search with an off-the-shelf verifier results in many 
expensive and overlapping calls to the verifier. Instead, we propose an approach that tightly 
integrates the optimization process into the verification procedure, achieving better runtime 
performance than the naive approach. We evaluate our approach implemented as an exten-
sion of Marabou, a state-of-the-art neural network verifier, and compare its performance 
with the bisection approach and MIPVerify, an optimization-based verifier. We observe 
complementary performance between our extension of Marabou and MIPVerify.

Keywords  Neural network verification · Optimization · Adversarial examples · Marabou

1  Introduction

Artificial deep neural networks (DNNs) have demonstrated great promise in a wide vari-
ety of applications (Schmidhuber 2015; Liu et al. 2017). These applications include image 
recognition  (Krizhevsky et  al. 2012), control (Hunt et  al. 1992), and natural language 
processing (Otter et  al. 2020), among many others. Because of these successes, there is 
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naturally interest in incorporating DNNs into other applications, including safety-critical 
systems (Bojarski et al. 2016; Julian et al. 2016). Although DNNs are obtaining unprec-
edented results, their opacity poses significant challenges—especially in the context of 
safety-critical systems, where mistakes can endanger lives and cause significant damage. A 
notable example includes DNNs in autonomous driving systems, where unexpected behav-
ior of the DNN could harm passengers or pedestrians. Consequently, it is especially desir-
able to formally reason about DNNs, providing rigorous guarantees about their behaviors.

Recent research has focused on neural network verification  (Huang et  al. 2017; Katz 
et al. 2017; Gehr et al. 2018; Wang et al. 2018b). Verification involves answering “yes or 
no” questions about DNNs, and can be used to rule out undesirable behaviors. For exam-
ple, a verification query for an autonomous driving DNN could ask whether an input exists 
that encodes a situation in which the autonomous vehicle is approaching an obstacle, but 
for which the DNN advises the vehicle to maintain the current course. If the verification 
engine answers no, we are guaranteed that this particular behavior can never happen for 
any possible input. If it answers yes, then it returns an input that leads to the undesirable 
outcome. The verification problem has been shown to be NP-complete (Katz et al. 2017); 
however, large strides have been made in recent years in solving networks that arise in 
practice (Wang et al. 2018a; Weng et al. 2018; Katz et al. 2019; Tran et al. 2020b; Wu et al. 
2020).

Although tremendous effort has been put into answering yes or no questions about 
DNNs, formally answering quantitative questions about them has received less attention. 
Such questions can be highly important when verifying a system: for example, we may 
want to know how close an obstacle can be before the DNN controller turns the vehicle, 
or how much the steering of the car can be affected by small errors in the input image 
(e.g., caused by a malfunctioning camera). Finding answers to these questions requires an 
optimization process. Existing techniques can provide bounds on the answers to these ques-
tions, but the bounds may be too loose to effectively reason about the performance of the 
system (Singh et  al. 2018a; Wang et  al. 2018a, b; Weng et  al. 2018; Zhang et  al. 2018; 
Boopathy et al. 2019; Liu et al. 2021). For example, knowing that the most extreme steer-
ing angle for a self-driving car is somewhere between − 40◦ and 80◦ is likely not suffi-
ciently informative to deduce guarantees about the car’s behavior.

Global optimization of neural networks is also useful in the context of interpreting the 
patterns that a network has learned. For example, the activation of a hidden node can be 
maximized or minimized with respect to the input, in order to acquire a sense of the input 
properties that that node is tuned for. This has been done with local optimizers, but to our 
knowledge has not been explored with global optimizers (Le 2013; Ribeiro et al. 2016).

Many approximate techniques for answering these questions use heuristics and local 
optimization to find inputs that lead to undesired behavior from the network. Such tech-
niques are referred to as adversarial attacks, and the corresponding inputs that lead to 
the undesired behavior are known as adversarial examples. Various techniques have been 
proposed, both for performing such attacks and defending against them (Goodfellow et al. 
2015; Carlini and Wagner 2017; Chakraborty et al. 2021; Yuan et al. 2019). Additionally, a 
variety of techniques have been proposed to find certified lower bounds on the perturbation 
required to produce an adversarial example (Weng et al. 2018; Zhang et al. 2018; Boopa-
thy et al. 2019). Although approximate techniques typically scale much more effectively 
to large networks (Müller et al. 2020), we may need a stronger guarantee on the behavior 
of a safety-critical system than we can find with existing approximate techniques. Existing 
strategies to solve global optimization problems on neural networks include performing a 
binary search for the optimal value by repeatedly calling neural verifiers, as well as mixed 
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integer programming (MIP) approaches that explicitly encode the network as constraints in 
an optimization problem. Repeatedly calling a neural verifier is often computationally pro-
hibitive, while MIP approaches work well on some problem types but struggle with others 
(Carlini et al. 2017; Tjeng et al. 2019). It is thus desirable to develop new approaches for 
better accommodating different problem domains.

In order to have a wider variety of approaches for neural optimization, we introduce 
a framework for converting existing verifiers into optimizers. We demonstrate our frame-
work by extending the Marabou verifier, which implements the Reluplex algorithm (Katz 
et  al. 2019). Our extended version of Marabou, which we refer to as MarabouOpt, per-
forms a branch-and-bound search over the activation space of the network. We compare the 
runtime of our solver to MIPVerify, a MIP approach that also solves global optimization 
problems, and we find that the two approaches are complementary to each other on the 
benchmarks tested. Additionally, we compare the approximate optima found by adversarial 
attack algorithms to the true optima found by MarabouOpt.

This paper is organized as follows: Sect. 2 provides background and descriptions of the 
notation used in the rest of the paper; Sect. 3 describes high-level approaches for modify-
ing four categories of verifiers to perform optimization; Sect. 4 describes in detail how the 
Reluplex algorithm can be modified to perform optimization; Sect. 5 presents our experi-
mental setup and results; Sect. 6 summarizes related work; and Sect. 7 concludes and sug-
gests future research directions.

2 � Background and problem formulation

Neural networks  We denote the function represented by a neural network N with n inputs 
and m outputs as f (�) ∶ ℝ

n
→ ℝ

m . Let a network N with K layers, including the input and 
output layers, have input to layer � denoted by �̂

�
 and output of layer � denoted by �

�
 . The 

input to each layer (besides the first) is computed by applying an affine transformation to 
the previous layer followed by an activation function. We consider two activation functions 
in this paper: the identity function and the rectified linear unit (ReLU). For a rectified linear 
unit (ReLU) layer � , we have

For identity layers, we have

Let �
�
 and �

�
 be the weights and biases connecting layer � to layer � + 1 such that

The output of the network will be referred to as � , with

This section introduces notation and defines the neural network verification and neural net-
work optimization problems. It also provides a categorization of neural network verifica-
tion algorithms and explains existing local optimizers.

Let L denote the set of indices of ReLU layers and I  denote the set of indices of identity 
layers. A ReLU is considered active if its input is greater than or equal to 0, and inactive 

(1)�
�
= max(0, �̂

�
).

(2)�
�
= �̂

�
.

(3)�̂
�+1 = �

�
�
�
+ �

�
.

(4)� = �K .
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otherwise. An activation state is a representation of whether a node is active or not for each 
ReLU in a network. For a given activation state, let A be the set of indices (i, j) of active 
ReLUs where i is the layer and j is the node in the layer. Similarly, let N  be the set of indi-
ces (i,  j) of inactive ReLUs. A partial activation state is an activation state where some 
nodes are left unknown. In this case, let U be the set of indices (i, j) of undetermined nodes 
for the partial activation state.

Geometric objects  We refer to sets described by the intersection of affine inequalities as 
polytopes. A polytope P can be described by a matrix � and vector � as P = {� ∶ �� ≤ �} . 
We refer to the complement of a polytope as a polytope complement. Polytope comple-
ments can be used to represent non-convex and unbounded spaces. Hyperrectangles are 
convex polytopes that can be described by an upper and lower bound on each variable. The 
radius of a hyperrectangle is a vector r containing values equal to half the interval between 
the upper and lower bound for each dimension. We assume that the domain of f given by 
dom(f ) is a hyperrectangle, although this domain is not included in the formulations pre-
sented here. Hypercubes are hyperrectangles with a uniform radius. Let

be input and output sets which we will use in our problem definitions.

Neural verification problem  One approach to verifying a network is to show that an 
input-output property holds. Such a property can be specified as

We will refer to any algorithm that solves verification problems as a verifier. Different veri-
fiers can handle different types of input and output sets. There are approaches to verifica-
tion that are sound, complete, or both. If a sound algorithm reports that a property holds, 
then it must actually hold. If a complete algorithm reports that a property is violated, then 
it must actually be violated. An algorithm that is both sound and complete must always 
give a correct answer if it terminates.

2.1 � Approaches to verification

In this section, we present several categories of verification algorithms described by Liu 
et  al. (2021). Each approach can be extended to perform optimization as described in 
Sect. 3. There are four categories: reachability, optimization, search with reachability, and 
search with optimization. Although we focus on sound and complete verifiers, there are 
many interesting incomplete verifiers in these categories as well.

2.1.1 � Reachability

Complete reachability methods compute an exact output reachable set, then use this reach-
able set to solve verification problems. The reachable set is found by propagating the input 
set through the network layer by layer. Once an exact output reachable set is found, the ver-
ification problem can be solved by checking whether the reachable set is contained within 
the set Y . If the input set is a polytope or union of polytopes, then the reachable set will 

(5)X ⊆ ℝ
n Y ⊆ ℝ

m

(6)� ∈ X ⟹ � = f (�) ∈ Y
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also be a union of polytopes (Xiang et al. 2018). In this case, the test for inclusion requires 
solving several linear programs (LPs). If the exact reachable set is contained within the 
output set Y , the property holds. If it is not, then the property does not hold.

ExactReach is a reachability method which propagates polytopes through the network 
(Xiang et al. 2018). The more recent NNV uses other set representations, for example star 
sets, to greatly improve the efficiency of the propagation (Tran et al. 2019, 2020a, b).

2.1.2 � Optimization

Optimization methods encode the network and property as a constrained optimization 
problem. They typically constrain the input to be in X  and the output to be in Y∁ , represent-
ing the region outside of the output region of the property (Liu et al. 2021; Lomuscio and 
Maganti 2017). If the resulting optimization problem is feasible, then we know some input 
in the input space X  can reach outside of the output space Y , and the property must not 
hold. Conversely, if the optimization problem is infeasible then there must be no input in X  
that reaches outside of the output set and the property holds.

NSVerify is an optimization method which uses a mixed integer encoding for the net-
work and linear input and output constraints (Lomuscio and Maganti 2017). MIPVerify is 
another optimization method which improves on NSVerify in two ways. It adopts a tighter 
encoding of the ReLU and it performs a progressive bound tightening process. MIPVerify 
has been used to solve both output and minimum adversarial perturbation optimization 
problems described in Sect. 2.3.

2.1.3 � Search

Search with reachability and search with optimization methods search for a counter-exam-
ple to the property by breaking the problem into a series of subproblems. The search space 
commonly consists of input ranges or neuron activations (Katz et  al. 2017; Wang et  al. 
2018a, b; Liu et  al. 2021; Botoeva et  al. 2020). The search ends immediately if it finds 
an input that violates the property. If a region is proven to satisfy the property, the search 
proceeds to the next region. If neither conclusion is reached, the region is broken down 
further. At each step, a reachability or optimization approach is taken to determine whether 
the property in the region holds or is violated.

Neurify is an example of a search with reachability algorithm. It performs a type of 
symbolic reachability analysis called symbolic linear relaxation to find an approximate 
reachable set and reason about the property for a given region (Wang et al. 2018a). Relu-
plex is an example of a search with optimization algorithm which searches the activation 
space, solving a constrained linear program at each step to reason about the region (Katz 
et al. 2017). An extension of the Reluplex algorithm to perform optimization is described 
in more detail in Sect. 2.2.

2.2 � The Reluplex algorithm

The Reluplex algorithm searches for a counter-example to the property, i.e., an input � ∈ X  
such that the output � ∈ Y∁ . The Reluplex algorithm explores the activation space by fix-
ing ReLUs to be either inactive or active, one at a time. The search space is a binary tree, 
where each node represents a set of fixed ReLUs, which is equivalent to a partial activation 
state. Each edge leaving a node represents another ReLU becoming fixed to be active or 
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inactive respectively. At each node, a relaxed linear feasibility problem is solved using the 
simplex algorithm. If a satisfying assignment is obtained, it is checked against the remain-
ing non-linear constraints. If the obtained assignment satisfies the non-linear constraints, a 
counterexample has been found and the search stops. However, if the assignment violates 
some non-linear constraints, then Reluplex can either fix the assignment and continue solv-
ing the linear relaxation, or perform a case split. A case split fixes the phase of a single 
ReLU and adds its—now linear—constraints to the relaxation, simplifying the problem. 
Reluplex judiciously explores and trims the search space until it either finds a satisfying 
assignment or proves that one does not exist.

Note the similar pattern of search in Reluplex and Neurify—both decompose the prob-
lem into smaller problems and then solve each independent feasibility problem. This search 
structure enables these algorithms to perform optimization, as we will show in Sect. 3.

2.3 � Neural optimization problem

Neural verification problems allow us to answer yes or no questions about properties of the 
network. However, we would like to be able to answer qualitative questions. To that end, 
we define an output optimization problem and a minimum adversarial perturbation prob-
lem. The first consists of optimization on the output of the network subject to constraints 
on the input. The second consists of optimization on the input of the network subject to 
constraints on the output. Both can be used to answer questions that provide insight into 
the robustness of a system. The first problem can be used to ask questions like, “If there is 
at most 5% error in each pixel in an image used to control the steering wheel of a car, how 
drastically could the wheel mistakenly be turned?” The second problem can be used to ask 
questions like, “What is the smallest perturbation to my input image which would lead to 
me misclassifying a person as a stop sign?” For our problems, we will consider input and 
output constraints given by polytopes. These can each be represented with a set of linear 
inequalities. 

1.	 Output optimization problem: We would like to find the maximum of a linear func-
tion of the output given constraints on the input. Let our objective be g(�) = �⊤f (�) , 
described by the user-defined parameter � ∈ ℝ

m . More complex non-linear objectives 
can be approximated by augmenting the network with extra layers. For example, for 
a single output network with output y, if we wanted to maximize y2 we could add on 
layers which approximate the function f (y) = y2 and then perform verification on this 
augmented network. The problem formulation is 

 with corresponding optimal value p∗ and optimizing input �∗.
2.	 Minimum adversarial perturbation problem: We would like to find the minimum 

adversarial perturbation to some original input �0 that causes undesired behavior. What 
it means to be a small perturbation can differ between applications and algorithms, with 
typical distance metrics including the L1 , L2 , and L∞ norms (Carlini et al. 2017; Tjeng 
et al. 2019). Typically, algorithms search for the smallest possible perturbation that 
causes a mistake (Szegedy et al. 2014; Carlini and Wagner 2017; Yuan et al. 2019). In 
our case, we will focus on the L∞ norm for simplicity. The L1 norm is also commonly 

(7)
maximize

�
�⊤f (�)

subject to � ∈ X
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used, as it can also be represented with linear constraints (Tjeng et al. 2019). A per-
turbed input � is considered adversarial if it is in some output set Y which can be used 
to represent undesired behavior. Our problem is then 

 with corresponding optimal value p∗ and optimal input �∗.
These two general problems can be used to represent the two approaches for limiting the 
size of the perturbation and requiring adversarial behavior in the taxonomy of adversarial 
examples given by Yuan et al. (2019). Adversarial examples must be close to a nominal 
input and lead to undesirable behavior. The first problem can achieve this “closeness” by 
constraining the input set, and the undesirable behavior through the linear objective, while 
the second can achieve “closeness” by optimizing the size of the perturbation and the unde-
sirable behavior through the output constraints.

2.4 � Approximate methods for optimization

There are a variety of approximate approaches for solving neural optimization problems. 
We highlight several that we use to compare to MarabouOpt. Approximate methods pro-
vide bounds on the optima for these problems.

Many adversarial attacks provide approximate solutions to one or the other of our opti-
mization problems (Yuan et al. 2019). The Fast Gradient Sign Method (FGSM) and Pro-
jected Gradient Descent (PGD) provide approximate solutions to the output optimization 
problem by making use of the gradient of the objective with respect to the input (Goodfel-
low et al. 2015; Madry et al. 2018). FGSM takes a single step in the direction of the gradi-
ent to the boundaries of the input set, while PGD takes many gradient steps, projecting into 
the input set after each step. LBFGS, a quasi-Newtonian optimization method (Zhu et al. 
1997), can also be used to find an approximate solution to the output optimization problem. 
We compare MarabouOpt  on these problems to these three methods.

3 � Strategies for converting verifiers into optimizers

The main observation of this paper is that many existing approaches to neural network 
verification can be extended to solve optimization problems. To substantiate our claim, we 
illustrate strategies for four major categories of verification algorithms outlined in the sur-
vey of verification methods (Liu et al. 2021). As summarized in Sect. 2.1, these categories 
are reachability, optimization, search with reachability, and search with optimization. Each 
of these categories poses different advantages and challenges when being extended to sup-
port optimization. We describe how to modify algorithms in each of these categories, and 
as a proof of concept, we showcase the extension of Marabou, a state-of-the-art search 
and optimization verifier (Katz et al. 2019), and evaluate the performance of the resulting 
optimizer. Although in this work we only extend Marabou, there are a wide variety of other 
verifiers that once extended could provide a suite of optimizers each with their own disad-
vantages or advantages (Johnson and Liu 2020; Bak et al. 2021; Liu et al. 2021).

First, however, we present how to solve optimization problems by combining a deci-
sion procedure with bisection search. This is a well-established approach that serves as a 

(8)
minimize

�

‖‖� − �0
‖‖∞

subject to f (�) ∈ Y
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baseline for comparison with the integrated approaches that we propose. While our focus 
is on complete verification procedures, we discuss extensions of incomplete approaches in 
Sect. 7. Throughout the section we consider a network N represented by function f with n 
inputs, m outputs, and K layers.

3.1 � Optimization using bisection search

A complete verifier answers yes or no to the question: “Does � ∈ X  imply � ∈ Y ?” An 
optimization problem seeking to maximize some function g(�) subject to either � ∈ X  or 
� ∈ Y can be solved by asking a series of yes/no questions where a verification problem 
is constructed to represent the question, “can the optimal value p∗ be greater than d” for 
some value d. If we start with inital bounds on p∗ , � ≤ p∗ ≤ u , we can then select d to per-
form bisection and update the bounds on the optimal value, halving the remaining search 
space with each step. If the answer to a query is yes, the lower bound � is strengthened; 
otherwise, the upper bound u is weakened. This procedure finds the optimal solution when 
� = u ; alternatively, it can be made to halt when a user-defined minimum optimality gap is 
achieved. This approach has been used to find optimal solutions (Julian et al. 2020; Carlini 
et al. 2017) and often relies on bracketing techniques (Kochenderfer and Wheeler 2019) to 
narrow in on the optimal solution. Meta strategies can be applied to further speed up the 
convergence, like solving multiple instances in parallel, and splitting the region into sets 
of disjoint intervals, rather than two halves (Julian et al. 2020). This algorithm always ter-
minates if the bounds are represented with floating point numbers but may not terminate if 
they are represented with real numbers.

3.2 � Reachability

Reachability methods operate on sets of points rather than individual points in order to 
compute an exact output reachable set for a network. Sets of points are represented using 
abstract domains, such as polytopes or star sets, with efficient operations to propagate 
these domains through the layers of the network. The verification property is of the form 
� ∈ X ⟹ � ∈ Y , where X  is the input and Y the output set. Reachability methods prop-
agate abstract representations of the input set X  through the network layers, until a reacha-
ble set R for the output layer is computed. The property holds if R ⊆ Y . To reason soundly 
about the output set, the abstract domain needs to be either: 1. exact—no values are lost 
or added during the computation, or 2. an over-approximation—no values are lost during 
the computation. In case of over-approximations, the subset check may fail even though 
the property holds. Over-approximated output reachable sets can still be used in complete 
methods when incorporating search in the process. The remainder of this section focuses 
on methods using exact representation. ExactReach (Xiang et  al. 2018) and NNV (Tran 
et al. 2020b) represent reachable sets using a union of convex sets—polytopes and star sets, 
respectively. A star set is a polytope encoding that supports efficient computation of propa-
gation through a network.

The reachable set can be represented as

(9)R =

k⋃

i=1

Pi,
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where Pi are convex sets for i ∈ {1, 2,… , k} . Therefore, there are two equivalent reachabil-
ity problems to check whether the property holds:

Checking whether R ⊆ Y is challenging because R may be non-convex. However, we can 
check whether a convex set Pi is contained within the polytope Y in polynomial time. The 
polytope subset problem P ⊆ P′ , where P, P′ are polytopes and P′ consists of j linear con-
straints, is answered by solving j linear programs (LPs). Suppose Y consists of � linear 
constraints, then solving a total of k ⋅ 𝓁 LPs answers the verification problem in polynomial 
time.1

Given the basic overview of reachability techniques, how do we solve an output optimi-
zation problem using the exact reachable set R ? Let �⊤y with � ∈ ℝ

m be the objective func-
tion. The optimal value p∗ can be expressed in several ways:

There are two ways to answer the optimizing query using reachability: 1. using the non-
convex set R as shown in Eq. (12), or 2. using the set of convex sets Pi, i ∈ {1, 2,… , k} 
as shown in Eq.  (13). In the latter case, the inner maximization of the final expression 
maxy∈Pi

�⊤� has a linear objective and linear constraints, so it is an LP. Consequently, solv-
ing an LP for each index i yields an exact value of p∗.

Note that, whereas solving the subset problem uses � LPs per polytope, a single LP 
per polytope Pi is sufficient to find the optimal value. The maximum of the local maxima 
for each Pi yields the global optimum. Given the reduction in the number of LP problems 
solved, there are likely to be cases where the optimization problem is more efficient than 
the verification problem with the same input set. Understanding when this is the case is 
an interesting area for future investigation. We also expect this approach to outperform 
the bisection approach, as the latter requires many more calls to the verifier (albeit with 
smaller input sets each time).

Exact reachability-based methods can readily be extended to solve output optimization 
problems. This means that ExactReach and NNV with minimal modifications could be 
applied to an output optimization problem; the only change required is replacing the poly-
tope subset check with a single optimizing LP call.

Although the approach outlined above guarantees an optimal value, it does not provide 
a method to find the corresponding optimizing input. Doing so would require tracking 
additional information linking input regions to the Pi polytopes. Specific implementations 
of reachability-based approaches may or may not track this information. Those that do 
typically maintain a one-to-one correspondence between polytopes in the input space and 

(10)(� ∈ X ⟹ � ∈ Y) ⟺ (R ⊆ Y) ⟺

(
Pi ⊆ Y, i = 1,… , k

)

(11)p∗ = max
�∈X

�⊤f (�)

(12)= max
�∈R

�⊤�

(13)= max
i∈{1,2,…,k}

max
�∈Pi

�⊤�

1  Solving each LP takes polynomial time, but note that k may be exponentially large compared to the input 
representation. This exponential growth in the number of output sets is a challenge for both reachability 
verifiers and optimizers.
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output space (Tran et al. 2020b; Vincent and Schwager 2021). Tracking this correspond-
ence provides an additional benefit: we can find the exact input set that maps to a specified 
output polytope. This is accomplished by mapping the intersection of the output polytope 
with the exact reachable set back to the input space as a union of polytopes (Vincent and 
Schwager 2021). We can use this to solve the minimum adversarial perturbation problem. 
We first find the pre-image of the output set Y in the input space. We then apply the same 
approach to analyzing this union of polytopes as we did with the output optimization prob-
lem: we can iterate one by one through the polytopes, solving a convex program at each 
step. In this case the objective is to minimize ‖‖� − �0

‖‖∞ over each polytope. As a result, we 
can extend exact reachability-based methods that maintain a correspondence between the 
input and output sets to solve the minimum adversarial perturbation problem.

3.3 � Optimization

In this section, we discuss the extension of optimization-based verification approaches to 
solve optimization problems. This is a fairly direct modification from a theoretical stand-
point. Optimization approaches, such as NSVerify and MIPVerify (Lomuscio and Maganti 
2017; Tjeng et al. 2019), exactly encode the network as a mixed integer program (MIP). 
The input set X  and the complement of the output set Y are added as linear constraints to 
the MIP, resulting in a feasibility problem

The original property � ∈ X ⟹ � ∈ Y does not hold if and only if the MIP is feasible. 
These optimization-based approaches are sound and complete.

As the problem statement in Eq.  (14) suggests, extending this formulation to support 
optimization problems only requires the embedding of a goal function. Indeed, MIPVerify 
uses this approach to solve these classes of problems (Tjeng et al. 2019).

For output optimization problems, the output constraint is removed and an objective is 
added to the mixed integer program, resulting in

The input set and network constraints remain unchanged. This is still an MIP, since we 
assume a linear output objective. Most MIP solvers readily admit MIPs with an objective, 
requiring no further modification in practice.

The process is similar for encoding a minimum adversarial perturbation problem 
described by output set Y and original point �0 . In this case, an objective is added for the 
input and the input constraint is removed, while the network and output constraints remain 
unchanged. Alternatively, we can also replace the output constraint with � ∈ Y≃ , where 
Y≃ represents a target set of adversarial behaviors, resulting in

(14)

maximize
�

0

subject to � ∈ X

� = f (�)

� ∈ Y∁

(15)

maximize
�

�⊤�

subject to � ∈ X

� = f (�)
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As shown in this section, optimization-based verifiers need an appropriate objective 
added in order to solve output optimization or minimum adversarial input problems. 
This approach translates directly to search with optimization solvers as well. In practice, 
this requires minimal modification to the source in order to solve a whole new class of 
problems.

3.4 � Search

Search-based approaches break down the space into smaller regions, typically by constrain-
ing the input or the activation space (Liu et al. 2021). Algorithm 1 gives the pseudocode for 
search-based verification. At each search state, a procedure Violated(S, P) is invoked. This 
procedure takes as input a state in the search space S and problem P and returns one of the fol-
lowing three outputs: 

1.	 A status of Violated and an assignment that violates the property;
2.	 A status of Holds, indicating that the property holds in this region;
3.	 A status of Unknown, indicating that it is unknown whether the property holds in this 

region.

If a violating assignment is found, the search returns the discovered solution. If the answer is 
inconclusive, the search state is decomposed into multiple smaller—i.e., further constrained—
states and the search continues. If the property holds in a state, the search proceeds with the 
next unexplored state. If all states have been explored, the search procedure determines that 
the property holds. 

(16)

minimize
�

‖‖� − �0
‖‖∞

subject to � = f (�)

� ∈ Y≃
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Algorithm  2 extends the search-based verification approach to solve optimization 
problems instead. S is still a state, and P is an optimization problem which includes 
an objective function and constraints. The Violated procedure is replaced by an 
OptimumForRegion(state, P, optSoFar) optimizing procedure. This can return one of the 
following three outputs: 

1.	 A status of WorseThanOpt which indicates that the optimal value in this region is less 
than the true optimum. The function can make use of optSoFar to make this assertion.

2.	 A status of Unknown, indicating that it is unknown whether the true optimum could be 
contained in this region.

3.	 A status of Optimal, an objective value guaranteed to be the optimum in this region, 
and an assignment which achieves this objective value. This indicates that it has found 
a true global optimum.

In order to be terminating it also must be guaranteed to find the optimal, and not return 
Unknown, once the region has been split enough times. One example of an implementation 
of OptimumForRegion(state, P, optSoFar) would be to solve a relatively tractable relaxed 
problem, providing an upper bound on the solution. If this upper bound is less than opt-
SoFar, it can return WorseThanOpt since the upper bound being lower than an objective 
value that has already been achieved will guarantee the region cannot achieve the optimum. 
If the assignment from solving the relaxed problem achieves the upper bound, it can return 
the objective value and assignment along with a status of Optimal. Otherwise, it can return 
Unknown. The way that the problem is relaxed and the upper bound is computed differs 
between search with reachability and search with optimization strategies.

Search with reachability verification methods will typically use approximate reachabil-
ity methods in place of Violated (Wang et  al. 2018a, b). To convert these verifiers into 
optimizers, their Violated procedure can be modified to implement OptimumForRegion 
in a similar way to the extension of pure reachability-based methods covered in Sect. 3.2. 
This could be applied to extend verifiers such as Neurify and ReluVal, which compute an 
approximate reachable set at each step (Wang et al. 2018a, b). Similarly, search with opti-
mization   methods use constrained optimization problems to implement Violated (Katz 
et al. 2017; Botoeva et al. 2020), which naturally extend to optimization as discussed in 
Sect. 3.3. In our extension of Reluplex we take this approach, solving a relaxed problem 
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that can provide an upper bound on the true optimal value for a partial activation state 
(Katz et al. 2017). This is described in more detail in Sect. 4.

In practice, the search structure largely remains the same as verification, with the excep-
tion that finding a counter-example does not end the search. Instead, such intermediate val-
ues are used to facilitate the branch-and-bound strategy.

4 � Extending Reluplex to solve optimization problems

Reluplex is a search with optimization technique. As such, we can make use of the strategy 
presented in Sect. 3.4 to convert Reluplex from a verifier into an optimizer. First, we define 
the Split(S, P) and Violated(S, P) functions used in the original Reluplex; then, we discuss 
how to convert the Violated(S, P) function into a corresponding OptimumForRegion(S, P, 
optSoFar) function.

In order to solve a verification problem with a search with optimization technique, we 
need to define two functions: Split(S, P) and Violated(S, P). The Split function is meant to 
take a state and break it down into two (or more) states which will be easier to solve. This 
guides the search process. Reluplex searches over the activation states of the network. It 
does this in an incremental fashion, starting at a state where no ReLUs are fixed and then 
proceeding to fix ReLUs one by one during the search. Here, the state S will be a partial 
activation state. The implementation of Split will choose a node (i, j) that is undetermined 
in the current state and return two new states: the first state will be the current state with 
the additional node (i,  j) fixed to be active, and the second state will be the same except 
with node (i, j) fixed to be inactive. There are a variety of possible strategies to pick this 
node to fix, including choosing the earliest unfixed ReLU or choosing the ReLU with the 
largest violation. Bounds on the variables may fix some ReLUs to be a certain phase, in 
which case those ReLUs will not need to be split.

The function Violated(S, P) should reason about whether a property P holds for the 
partial activation state S. Reluplex accomplishes this by relaxing each undetermined ReLU 
from z = max(0, ẑ) to z ≥ 0 ∧ z ≥ ẑ . A variety of other relaxations for a ReLU are possible 
(Liu et al. 2021). Using this relaxation means that these undetermined ReLUs can each be 
written with two linear constraints, allowing the relaxed feasibility problem to be an LP. 
Recall that L represents the indices of ReLU layers, I  represents the indices of identity lay-
ers, A gives the set of active nodes in the activation state, N  gives the set of inactive nodes 
for the activation state, and U gives the set of undetermined nodes for the activation state. 
We also assume we have upper and lower bounds on each variable denoted as Û(i,j) and L̂(i,j) 
for pre-activation variables, and Ui,j and Li,j for post activation variables for each node (i, j). 
With all of these variables defined, the relaxed feasibility problem can now be formulated 
as
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Recall that the complement of the output set is applied as a constraint, representing the 
search for a counter-example.

Since this problem is a relaxation, if the problem is infeasible then the exact problem must 
also be infeasible. If the problem is feasible, then the satisfying assignment from the LP can be 
checked to see if it is consistent with the exact problem. If it is, then we have found a counter-
example. If not, then the feasibility of the exact problem remains unknown. These observa-
tions can be used to construct the Violated function.

To extend the Reluplex algorithm to perform optimization, we need to extend the function-
ality of the Violated(S, P) procedure to create a OptimumForRegion(S, P) procedure. We will 
convert the feasibility problem used to implement Violated(S, P), Eq. (17) into a linear pro-
gram which will provide us an upper bound on the objective. This requires adding an objective 
to the problem being solved just like with purely optimization approaches in Sect. 3.3. If we 
have an objective function g(�) and assume without loss of generality the objective is being 
maximized, we arrive at the formulation

The objective function, input set, and output set can be used to represent output optimiza-
tion problems and minimum input perturbation problems. The resulting optimal value p∗ 

(17)

maximize
�,�̂,�

0

subject to � ∈ X

�K ∈ Y∁

�̂i+1 = �i�i + �i, i = 1,… ,K − 1

�i = �̂i, i ∈ I

zi,j = ẑi,j, (i, j) ∈ A

zi,j = 0, (i, j) ∈ N

zi,j ≥ zi,j (i, j) ∈ U

zi,j ≥ 0 (i, j) ∈ U

L̂i,j ≤ ẑi,j ≤ Ûi,j

Li,j ≤ zi,j ≤ Ui,j

(18)

maximize
�,�̂,�

g(�)

subject to � ∈ X

�K ∈ Y∁

�̂i+1 = �i�i + �i, i = 1,… ,K − 1

�i = �̂i, i ∈ I

zi,j = ẑi,j, (i, j) ∈ A

zi,j = 0, (i, j) ∈ N

zi,j ≥ �i,j (i, j) ∈ U

zi,j ≥ 0 (i, j) ∈ U

L̂i,j ≤ ẑi,j ≤ Ûi,j

Li,j ≤ zi,j ≤ Ui,j
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from this LP provides an upper bound on the true optimal value for this activation state 
since the LP comes from a relaxation of the exact optimization problem for this region.

In order to implement OptimumForRegion(S, P, optSoFar) we first solve the LP in 
Eq.  (18). If the optimal value, representing an upper bound on the objective, is lower 
than optSoFar, then status WorseThanOpt is returned. Otherwise, the procedure checks 
whether the found upper bound can actually be achieved—this is done by passing the cor-
responding input value through the network, or checking whether all ReLU constraints are 
met. If it does, it is the optimum value for the region, and status Optimal with this optimal 
objective value and assignment is returned. Otherwise, status Unknown is returned, indi-
cating that the search should continue in sub-regions. The relaxed LP becomes exact when 
all activation states are defined; therefore, this approach is guaranteed to find the optimum 
in a fully defined activation state, i.e., in a leaf node of the binary search tree representing 
the activation space. This ensures that the procedure will return an optimum in every leaf 
node, ensuring termination of the algorithm.

4.1 � Example

The optimization process is illustrated in Fig. 1. Each node contains the optimum value 
of the relaxed LP associated with that partial activation state. Gray shading indicates that 
the optimum of the relaxed LP satisfies all linear and ReLU constraints and so is a valid 
candidate for global optimum. This figure shows that the algorithm performs two splits and 
then finds a solution that satisfies both the linear and nonlinear constraints (the gray shaded 
node). The maximum value found is 9. This can then be used to trim the branch to its right, 
where the best value found is only 7. The rightmost node is found to be infeasible, complet-
ing the search. The optimal value is 9.

5 � Experiments and results

In this section, we evaluate the performance of MarabouOpt on a diverse set of optimiza-
tion queries, including safety properties of control systems and robustness properties of 
perception models.

5.1 � Implementation and experimental setup

We extend Marabou (Katz et  al. 2019), an open-source neural network verification tool 
implementing the Reluplex algorithm, to support solving optimization queries, using the 

Fig. 1   Example search tree with 
LP objective values No ReLUs fixed 20

1 ReLU fixed 17 −∞

2 ReLUs fixed 9 7
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method described in Sects. 3.4 and 4. Marabou integrates the symbolic bound tightening 
techniques introduced in Wang et  al. (2018b) and a modified version of the progressive 
bound tightening preprocessing pass introduced in Tjeng et al. (2019).2 Note that while the 
tool supports parallelism in both preprocessing and solving (Wu et al. 2020), the results 
here do not make use of any parallelism. Integrating our optimizing extension with the par-
allel features of Marabou is a promising avenue for future work.

We refer to the optimizing extension of Marabou as MarabouOpt. Given an optimiza-
tion query and a timeout, MarabouOpt  returns Infeasible, Timeout, or the variable assign-
ment for the optimal solution. We compare MIPVerify (Tjeng et al. 2019) to MarabouOpt, 
as it can directly solve the same set of benchmarks. By extending other verifiers according 
to our framework, for example those described in the survey by Liu et al. (2021) or those in 
the international verification of neural networks competitions (Johnson and Liu 2020; Bak 
et al. 2021), it may be possible to create a stronger tool to compare against than MIPVerify.

As an additional baseline, we implement a binary search to solve optimization problems 
with a series of calls to the Marabou verifier and the approach described in Sect. 3.1. We 
refer to this optimizer as MarabouBin. For output optimization queries, we first perform 
calls to the verifier to find an upper bound for the objective, and then begin the binary 
search. For minimum adversarial input queries we begin with an upper and lower bound 
and can thus immediately start the binary search in the middle of that interval. In all cases, 
we continue narrowing the interval until an optimality gap less than 10−4 is achieved. Since 
the minimum adversarial input queries chosen have the potential to be unsatisfiable (there 
is no adversarial input in the given region), the binary search will return that the query is 
unsatisfiable if it does not find an adversarial example to within 10−4 of the border of the 
region. We choose to start in the middle instead of first checking whether the full region 
is satisfiable, as we expect many queries to be satisfiable and queries that include the full 
input region to be quite expensive. By starting in the middle, we potentially avoid ever 
needing to consider substantial portions of the full input region if we find an adversarial 
example early enough. This is a design choice for MarabouBin which we expect to pro-
duce different times for satisfiable and unsatisfiable queries than if we had first checked 
satisfiability.

MIPVerify tightens the bounds of the input to each neuron with an MIP-solver and then 
solves the preprocessed queries using a Mixed-integer encoding of the problem. Marabou 
employs a similar preprocessing pass, except that the tightening is done on both the input 
variable and the output variable of each neuron. The timeout per preprocessing query for 
both MarabouOpt  and MIPVerify is 1 s, while that for MarabouBin is 0.5 s. We obtain 
these values by performing a grid search of this parameter for each solver on a subset of the 
benchmarks.

In addition to complete methods, we also compare against three approximate 
approaches, including Projected GradientDescent (PGD), Limited-memory BFGS 
(LBFGS), and the Fast Gradient SignedMethod (FGSM).

2  Marabou also later integrated the DeepPoly analysis from Singh et al. (2019b), which can derive tighter 
bounds then the symbolic bound tightening technique. This experimental evaluation was conducted before 
DeepPoly was made available in Marabou.
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5.2 � Benchmarks

The benchmark sets consist of network-query pairs, with networks from three different 
application domains: aircraft collision avoidance (ACAS Xu), aircraft localization (Tiny-
TaxiNet), and digit recognition (MNIST). Optimization queries include both output opti-
mization problems and minimum adversarial perturbation problems.

ACAS Xu Family  The ACAS Xu family of benchmarks, introduced in Katz et al. (2017), 
implements a prototype aircraft collision avoidance system—advising course corrections 
based on the relative positions of two aircraft. The system consists of 45 fully-connected 
feed-forward neural networks, each with 6 hidden layers and 50 ReLU nodes per layer. 
Each network uses 5 inputs to describe the encounter geometry and produces 5 outputs—
the predicted cost of following each action. The system chooses the action with the lowest 
cost as the advisory. We consider both output optimization queries and minimum adver-
sarial perturbation queries on the 45 networks.

For output optimization queries, the objective is maximizing yreal − yadv , where yreal is 
the expected output in the given input region, and yadv is an adversarial output. For mini-
mum adversarial perturbation queries, the objective is to minimize the perturbation on one 
input dimension that would result in an adversarial output. The input regions used in the 
output optimization queries are from properties 1–4 in Katz et al. (2017), which apply to 
all 45 networks. To construct the minimum adversarial perturbation queries we adopt the 
input and output constraints from property 2. We then consider perturbations on a single 
input at a time. We set the objective for each query to be to minimize the perturbation from 
the center for a single input dimension. This results in 5 distinct queries per network, one 
for each input dimension. In total, this yields 180 ( 45 × 4 ) output optimization queries and 
225 ( 45 × 5 ) input optimization queries.

TinyTaxiNet  The TinyTaxiNet family of benchmarks consist of perception networks that 
predict the aircraft position on the taxiway relative to the center-line. The output is used by 
a controller that adjusts the trajectory to correct the position of the aircraft. The input to the 
network is a gray-scale image compressed to 16 × 8 pixels, with values ranging between [0, 
1]. The networks produce two outputs: the lateral distance to the runway center-line and the 
heading angle with respect to the center-line. We evaluated on three network architectures, 
each consisting of one convolution layer and 2 feed-forward layers. The networks have a 
total of 32, 64, and 128 ReLUs, respectively.

We consider the problem of output optimization on these benchmarks. The task is to 
maximize the predicted lateral distance to the runway center-line. The input region is a 
hyper-cube parameterized by the centroid and the radius. For each network, we generate 60 
such queries, with centroids randomly sampled from the training data and the radius sam-
pled evenly from the set {0.04, 0.08, 0.016}.

MNIST  We also evaluated MarabouOpt   on four fully-connected feed-forward networks 
trained on the MNIST dataset of handwritten digits. Each network has 784 inputs (rep-
resenting a grey-scale image) with value range [0, 1] and 10 outputs (each representing a 
digit). We trained 4 models. MNIST1 and MNIST2 consist of 10 layers each, with 10 and 
20 ReLU nodes per layer respectively. MNIST3 and MNIST4 consist of 20 layers each, 
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with 20 and 40 ReLU nodes per layer respectively. The networks have approximately 95% 
accuracy on the MNIST test set. The range of widths and depths of these networks, with 
a maximum of 800 ReLUs, allows for queries of varying computational difficulty. State-
of-the-art approximate verification techniques on local robustness queries can often scale 
to much larger networks, even some with hundreds of thousands of nodes (Müller et  al. 
2020).

We consider minimum adversarial perturbation queries on the MNIST networks. The 
task is to minimize the L∞ perturbation on the input image that results in an adversarial out-
put. We generate 50 such queries for each network by randomly choosing training images, 
5 from each class, and corresponding target labels. We set the radius of the input region to 
be 0.05, which corresponds to a maximal perturbation of 13 pixel-values. These queries 
will be infeasible if there is no adversarial input within the input region. The extended veri-
fiers we propose can handle infeasible queries.

In summary, the full benchmark set consists of 225 minimum adversarial perturba-
tion queries on ACAS Xu networks (ACAS In.), 180 output optimization queries on the 
ACAS Xu networks (ACAS Out.), 180 output optimization queries on the TinyTaxiNets 
(Taxi Out.), and 200 minimum adversarial perturbation queries on the MNIST networks 
(MNIST Out.).

5.3 � Experimental evaluation

In this section, we present results of the following experiments: 

1.	 Evaluation of the runtime performance of MarabouOpt and MarabouBin on the three 
benchmark sets. We compare against MIPVerify, a state-of-the-art solver, on the same 
benchmarks.

2.	 Comparison of the objective values found by approximate methods with the true opti-
mums found by exact methods.

We run all experiments on a cluster equipped with Intel Xeon E5-2620 v4 cpus running 
Ubuntu 16.04. One processor with 8GB RAM was allocated for each job, and each job is 
given a 2-h CPU timeout.

5.4 � Runtime evaluation

We ran MarabouOpt, MarabouBin, and MIPVerify on all benchmarks. The number of 
solved instances and total runtime of the solved instances are shown in Table 1. For each 
benchmark set, we highlight the solver that solves the most instances.

MarabouOpt versus  MarabouBin  As shown by Table  1, MarabouOpt outperforms 
MarabouBin on three of the four benchmark sets, showing that our integrated optimization 
extension of the Marabou verifier is overall more effective than the black-box approach 
using bisection search. Figure 2 shows a scatter plot of the runtime of the two solvers on 
all benchmarks. Points with value 7200 on the x and y axes denote timeout of the tool on 
the respective axis. Figure 2 shows that MarabouOpt significantly outperforms Marabou-
Bin evidenced by the concentration of points below the dashed diagonal line. Surprisingly, 
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Fig.  2 shows that MarabouBin outperforms MarabouOpt on some of the MNIST and 
ACAS input queries, which merits further investigation.

MarabouOpt versus MIPVerify  On the other hand, MarabouOpt and MIPVerify show 
strengths on different benchmark sets. While MIPVerify outperforms MarabouOpt  on the 
MNIST and TinyTaxiNet benchmark sets, MarabouOpt   solves more instances of both 
input and output optimization queries on the ACAS Xu networks. The complementary 
nature of the two solvers is further illustrated by Fig. 3. The cluster of queries on the bot-
tom left boundary with x less than 300 and y up to 3000 suggests that a subset of output 
optimization problems on the ACAS Xu benchmarks can be quickly resolved by MIPVer-
ify while taking non-trivial time for MarabouOpt. On the other hand, the points in the right 
region with x equal to 7200 suggest that MarabouOpt  is able to solve some of the harder 
ACAS Xu queries that MIPVerify cannot handle. The horizontal cluster with y around 900 
suggests that a number of minimum adversarial perturbation benchmarks on ACAS Xu 
networks take Marabou around 900 s to solve. This is because many of those queries are 
quickly resolved by MarabouOpt after the preprocessing pass.

Comparing solved instances for all solvers  Figure 4 shows the number of commonly 
and uniquely solved benchmarks by the three solvers. There are 86 instances that can be 
uniquely solved by MIPVerify, and 36 instances that can be uniquely solved by Mara-
bouOpt. The two solvers combined can cover over 99% of the solved instances. Interest-
ingly, there are 3 instances that only MarabouBin can solve. Upon closer examination, they 
are all minimum adversarial input queries.

In total, 522 out of the 785 benchmarks are solved. MarabouOpt  solved 12 infeasi-
ble queries, while MIPVerify solved 6. Figures 5 and 6 are two examples of the min-
imum adversarial inputs found by MarabouOpt   on MNIST1. In particular, a hardly 
discernible perturbation (0.001) can result in a misclassification in Fig.  5, while it 
requires a perturbation with L∞ norm of at least 0.048 (corresponding to 12 pixel-
values) for the network to mistakenly classify the image as a “7” in Fig. 6, suggesting 
that the same network can exhibit very different local adversarial robustness properties 
in different input regions.

Table 1   Number of solved instances and runtime in seconds

The largest number of solved instances for each benchmark set is given in bold

Solver MNIST In. (200) ACAS In. (225) Taxi out. (180) ACAS Out. (180)

No. of 
solved

Time No. of 
solved

Time No. of 
solved

Time No. of 
solved

Time

MIPVerify 61 99,127 138 300,558 180 3150 90 1169.4
Marabou-

Bin
29 53,301 123 504,615 120 20,237 82 107,422

Mara-
bouOpt

14 13,209 174 226,431 126 6144 97 61,864
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5.5 � Objective value evaluation: exact versus approximate optimization

In this subsection, we compare the performance of exact and approximate optimization 
approaches. We evaluate several tools on output optimization queries, and discuss how 
additional tools could be applied to minimum adversarial input queries.

MIPVerify

MarabouOpt MarabouBin

86
(16.48%)

46
(8.81%)

315
(60.34%)

22
(4.21%)

36
(6.9%) 14

(2.68%)

3
(0.57%)

100

200

300
count

Fig. 4   Number of commonly and uniquely solved benchmarks

Fig. 5   The original image (left) 
and a minimum adversarial 
example (right) found by Mara-
bouOpt  (� = 0.001 , adv. label: 1)

Fig. 6   The original image (left) 
and a minimum adversarial 
example (right) found by Mara-
bouOpt  (� = 0.048 , adv. label: 7)
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Output optimization queries  We run three approximate methods on all of the out-
put optimization queries. We then compare the approximate values with the exact values 
and compare the runtimes. The exact values are obtained from MIPVerify, MarabouOpt, 
or MarabouBin, while the approximate values are obtained from the gradient-based opti-
mizers, which includes LBFGS, PGD, and FGSM. The values are compared in Fig.  7, 
with each point corresponding to a single query. The vertical distance between a point 
and the dotted line represents the gap between the approximate value and the true opti-
mum. We observe that LBFGS most closely matches the exact values. We also observe 
that the gap between exact and approximate optimizers can be substantial, as evidenced 
by the points on the right side of the figure. Table 2 provides statistics on the runtime of 
each approximate optimizer. Note that an issue with our implementation of LBFGS caused 
several queries to take much longer than the others, skewing its mean upwards. Comparing 
the medians, we see that FGSM was the fastest, followed by PGD, and then LBFGS. All 
three approximate solvers typically return within a second and should scale polynomially 
in the size of networks instead of the exponential scaling we observe for the exact optimiz-
ers. These results suggest that for scenarios where a guarantee of optimality is not needed, 
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approximate optimizers may often be “close enough” and provide a value in significantly 
less time. However, if strict guarantees are required, then an exact optimizer may be the 
better choice.

Minimum adversarial perturbation queries  A similar experiment could be per-
formed for the minimum adversarial perturbation queries. PGD or LBFGS could be run 
with a loss that incorporates the size of the perturbation as in the work of Yuan et  al. 
(2019) to upper bound the minimum perturbation. An experiment like this was performed 
by Carlini et al. (2017) to compare approximate and exact minimum adversarial perturba-
tions. Alternatively, Fast-Lin, Fast-Lip, CROWN, and CNN-Cert are designed to provide a 
certified lower bound on the minimum perturbation which could be compared with the true 
minimum (Weng et al. 2018; Zhang et al. 2018; Boopathy et al. 2019). Although we did 
not run these experiments, they remain of interest for future work.

6 � Related work

In this section, we summarize existing neural verification and neural optimization methods. 
We organize the discussion using the categorization of neural verifiers introduced by Liu 
et al. (2021). For optimization, we focus on works relevant to the two specific optimization 
problems addressed in this paper: output optimization problems and minimum adversarial 
input problems (see Sect. 2.3).

Neural verification methods  Neural verification methods check properties about the 
input–output relationship of a network. Specifically, given an input set and an output set, a 
verification method proves that all elements of the input set are mapped by the network into 
the output set. Section 2 provides notation for this problem.

Liu et al. (2021) separate verification algorithms into four categories: reachability, opti-
mization, search with reachability, and search with optimization. In this work we make 
particular reference to reachability verifiers ExactReach and NNV (Xiang et al. 2018; Tran 
et  al. 2020b), optimization verifiers NSVerify and MIPVerify (Lomuscio and Maganti 
2017; Tjeng et  al. 2019), search with reachability verifiers ReluVal and Neurify (Wang 
et  al. 2018b, a), and search with optimization verifiers Reluplex and Venus (Katz et  al. 
2017, 2019; Botoeva et al. 2020). We refer the reader to Sect. 2.1 or the survey paper (Liu 
et al. 2021) for a more thorough description and discussion. Additionally, the 1st and 2nd 
International Verification of Neural Networks Competitions boast an extensive list of par-
ticipating verification algorithms for a curious reader to explore (Johnson and Liu 2020; 
Bak et  al. 2021). These tools typically fit into the categorization presented by Liu et  al. 
(2021). Although we have not enumerated each solver here in favor of describing a few 

Table 2   Statistics on the runtime 
of FGSM, PGD, and LBFGS for 
their solved output optimization 
query instances

Optimizer Minimum (s) Mean (s) Median (s) Maximum (s)

FGSM 0.1 0.14 0.13 0.31
PGD 0.09 0.23 0.19 0.96
LBFGS 0.02 68.7 0.35 5893
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representative verifiers from each category, each verifier can be extended to perform opti-
mization using the framework described in this paper. Bunel et al. (2020) also provide a 
framework for neural verification in terms of a branch and bound search. Both frameworks 
are very useful for conceptualization of how different verification algorithms function and 
their common high-level structure.

Exact optimization methods  There are several existing techniques for solving gen-
eral optimization problems on neural networks. These problems are directly encoded as 
mixed integer programs (MIP) (Wolsey 1998; Cheng et  al. 2017; Fischetti and Jo 2018; 
Lomuscio and Maganti 2017) and solved by an MIP solver such as the open source solver 
GLPK (Makhorin 2004) or the highly optimized commercial solver Gurobi (Gurobi Opti-
mization 2020). MIPVerify (Tjeng et  al. 2019) employs a progressive bound-tightening 
preprocessing step and applies an MIP solver to the problem. This preprocessing pass has a 
significant impact on computation time, and a similar preprocessing pass is implemented in 
MarabouOpt. Another approach treats existing neural verifiers as a black box, performing 
a bisection method using multiple verification calls. This method has been applied in adap-
tive stress testing of a control network (Julian et al. 2020) and to find minimally distorted 
adversarial examples (Carlini et  al. 2017). Optimization modulo theory solvers can also 
handle complex, non-convex optimization problems (Bjorner et  al. 2015; Sebastiani and 
Trentin 2015, 2020). However, these solvers are based on satisfiability modulo theories 
(SMT) technology and perform computation over real arithmetic, which has been reported 
to scale poorly compared to the less precise floating point optimizers (Katz et al. 2017).

Approximate optimization methods  There is also a rich body of literature on 
approximate techniques for both optimization problems, particularly within the field 
focused on adversarial example discovery. Generation of adversarial examples typically 
combines a local optimization method with heuristics and applies it to a neural network. 
Approximate approaches exchange optimality for computational efficiency and often focus 
on minimum perturbation problems (Szegedy et al. 2014; Carlini and Wagner 2017). Yuan 
et al. (2019) offer a taxonomy of these techniques in their survey. We address the meth-
ods relevant for this work. LBFGS is a quasi-newtonian optimization method that finds 
an approximate minimum perturbation adversarial input (Zhu et al. 1997; Szegedy et al. 
2014). The verification tools Fast-Lin, Fast-Lip, CROWN, and CNN-Cert provide a lower 
bound on the minimum adversarial distortion and can be considered approximate optimiz-
ers as they yield an approximate value (lower bound) for the minimum distortion (Weng 
et al. 2018; Zhang et al. 2018; Boopathy et al. 2019). FGSM and PGD have been used to 
directly generate adversarial examples within a small input region, corresponding to our 
output optimization problem, instead of finding minimum perturbation adversarial exam-
ples (Goodfellow et al. 2015; Madry et al. 2018). LBFGS can be used in this way as well.

7 � Conclusions

This paper presents general strategies for extending different categories of neural verifi-
ers to solve global optimization problems. It focuses on two classes of problems: output 
optimization and minimum adversarial perturbation problems. We extended the Mara-
bou neural verifier to create an optimizer MarabouOpt and compared its runtime per-
formance against the black-box bisection search and MIPVerify. We observed that on a 
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significant majority of queries, MarabouOpt substantially outperformed a naive bisec-
tion based approach, showing the advantages of tight integration that can be achieved 
with proposed extension strategies. The comparison of MarabouOpt and MIPVerify 
shows complementary performance, indicating that different optimizers have both 
strengths and weaknesses and that extensions of each verifier should be explored. Our 
comparison of the global optima found by these solvers to local optima from several 
adversarial attacks found that although the optima were often similar, there were some 
marked differences.

Neural optimization problems have a wide variety of applications and merit deeper 
investigation. By encouraging the development of optimization techniques, we hope that 
more tools will be available to those working to verify safety critical systems.

Further work is needed to determine which verifiers will work best when extended to 
perform optimization tasks. This could consist of extending several more algorithms and 
comparing their performance against MarabouOpt  and MIPVerify. Additional work would 
also lie in incorporating some of the best practices from each technique into the others. 
For example, integrating MIPVerify’s optimization-based preprocessing step (Tjeng et al. 
2019) as we did with MarabouOpt  may provide other verifiers with a performance boost 
as well.

Incomplete solvers could also be used to obtain bounds on the optima for our optimiza-
tion problems. For example, Ai2 and its updated version ERAN can compute an approxi-
mate reachable set for each layer (Gehr et al. 2018; Singh et al. 2018a, b; Balunovic et al. 
2019; Singh et al. 2019a, b). Maximizing an output objective over this approximate reach-
able set will give us an upper bound on the true optimum. For optimization-based methods, 
these bounds on the objective can be applied as constraints before solving. For some use 
cases, these bounds may provide enough information if an exact solution is not needed.

There are several promising directions to improve MarabouOpt. Many of these involve 
reducing the depth of the tree the algorithm explores. Some directions include further 
developing our bound-tightening strategies, more intelligently choosing the node to split 
on, incorporating input splitting like in Marabou’s Split-and-Conquer strategy (Katz et al. 
2019), and incorporating MIPVerify’s preprocessing step. In addition, parallelization could 
be incorporated into the optimizer. Marabou has been able to use parallelism to great effect 
(Wu et al. 2020). The same extensions could be explored with MarabouOpt.
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