
Vol.:(0123456789)

Machine Learning (2021) 110:3095–3133
https://doi.org/10.1007/s10994-021-06039-x

1 3

A unified framework for closed‑form nonparametric 
regression, classification, preference and mixed problems 
with Skew Gaussian Processes

Alessio Benavoli1   · Dario Azzimonti2 · Dario Piga2

Received: 27 January 2021 / Revised: 14 June 2021 / Accepted: 8 July 2021 /  
Published online: 13 September 2021 
© The Author(s) 2021

Abstract
Skew-Gaussian Processes (SkewGPs) extend the multivariate Unified Skew-Normal distri-
butions over finite dimensional vectors to distribution over functions. SkewGPs are more 
general and flexible than Gaussian processes, as SkewGPs may also represent asymmetric 
distributions. In a recent contribution, we showed that SkewGP and probit likelihood are 
conjugate, which allows us to compute the exact posterior for non-parametric binary classi-
fication and preference learning. In this paper, we generalize previous results and we prove 
that SkewGP is conjugate with both the normal and affine probit likelihood, and more in 
general, with their product. This allows us to (i) handle classification, preference, numeric 
and ordinal regression, and mixed problems in a unified framework; (ii) derive closed-form 
expression for the corresponding posterior distributions. We show empirically that the pro-
posed framework based on SkewGP provides better performance than Gaussian processes 
in active learning and Bayesian (constrained) optimization. These two tasks are fundamen-
tal for design of experiments and in Data Science.

Keywords  Skew Gaussian process · Regression · Classification · Preference · Closed-form

1  Introduction

Gaussian Processes (GPs) are powerful nonparametric distributions over functions. For 
real-valued outputs, we can combine the GP prior with a Gaussian likelihood and perform 
exact posterior inference in closed form. However, in other cases, such as classification, 
preference learning, ordinal regression and mixed problems, the likelihood is no longer 
conjugate to the GP prior and a closed-form expression for the posterior is not available.
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In this paper, we show that is actually possible to derive closed-form expression for the 
posterior process in all the above cases (not only for regression), and that it is a Skew Gaussian 
Process (SkewGP), a stochastic process whose finite dimensional marginals follow a multi-
variate Skew-Normal distribution.

Consider, for example, a classification task with a probit likelihood and a GP prior on the 
latent function. We can show that the posterior is a SkewGP and that the posterior latent func-
tion can be computed analytically on the training points. By exploiting the closure properties 
of SkewGPs, we can compute the distribution of the latent function at any new test point. We 
can easily obtain posterior samples at any test point by exploiting an additive representation 
for Skew-Normal vectors which decomposes a Skew-Normal vector into a linear combination 
of a normal vector and a truncated-normal vector. This decomposition has two main advan-
tages. First of all, it just requires normal and truncated-normal samples. Truncated-normal 
samples can be obtained with rejection-free Monte Carlo sampling by using the linear ellipti-
cal slice sampling (lin-ess) method (Gessner et al. 2020); this avoids the need of expensive 
Markov Chain Monte Carlo methods. Secondly, the closure of the SkewGP family requires 
only sampling of the posterior at the training points. These samples can then be reused for any 
new test point, thus greatly reducing the computational cost for predicting many test points. 
Such scenario comes up, for instance, in Bayesian optimization tasks as we explain in Sect. 5.

As a prior class, SkewGPs are more general and more flexible nonparametric distribu-
tions than GPs, since SkewGPs may also represent asymmetric distributions. Moreover, 
SkewGPs include GPs as a particular case. By exploiting the closed-form expression for 
the posterior and predictive distribution, we compute inferences for regression, classifica-
tion, preference and mixed problems with computation complexity of O(n3) and storage 
demands of O(n2) , i.e. identical to GP regression.

This allows us to provide a unied framework for nonparametric inference for a large 
class of likelihoods and, consequently, supervised learning problems, as illustrated in 
Table 1.

1.1 � Different types of observations and likelihood models

In supervised learning applications, we deal with the problem of learning input-output 
mappings from data. Consider a dataset consisting of n samples. Each of the samples is 
a pair of input vector �i ∈ ℝ

d and output yi . Depending on the type of the output variable, 
supervised learning problems can be divided into the following categories.

Continuous dependent: In the regression setting the outputs are real values yi ∈ ℝ and the 
input-output mapping is usually modelled as yi = f (�i) + vi , where vi is an additive inde-
pendent, identically distributed Gaussian noise with zero mean and variance �2

v
 . The likeli-

hood model is, for the i-th observation, given by:

where �(⋅) is the PDF of the standard Normal distribution.

(1)p(yi|f (�i)) = �

(
yi − f (�i)

�v

)
, i = 1,… , n,
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Binary: In the binary classification setting the outputs are categories that we can be labeled 
as yi = −1 and yi = +1 , that is yi ∈ {−1, 1} . The probit likelihood model is:1

that is a Bernoulli distribution with probability �(f (�i)) , where �(⋅) is the CDF of the 
standard Normal distribution.

Ordinal: In ordinal regression, yi ∈ {1, 2,… , r} , where the integer 1, 2,… , r are used to 
denote order categories such as, for instance, movies’ ratings. In ordinal regression, we 
map these ordered categories into a partition of ℝ , that is j → (bj−1, bj] with b0 = −∞ and 
br = ∞ so that ℝ = (−∞, b1] ∪ (b1, b2] ∪⋯ ∪ (br−1,∞) . The likelihood can be modelled as 
an indicator function p(yi|f (�i)) = I(byi−1 ,byi ]

(f (�i)) . In case this observation model is con-
taminated by noise, we assume a Gaussian noise with zero mean and unknown variance �2

v
 , 

the likelihood model becomes (Chu & Ghahramani, 2005a), for i = 1,… , n,

The bi defining the partition (−∞, b1], (b1, b2],… , (br−1,∞) are unknown, that is they are 
hyperparameters of the model. Note also that binary classification can be see as a special 
case of ordinal regression with r = 2.

Preference: In preference learning, yi is a preference relation over a set of predefined labels. 
For instance, assume we label each input �i with the label i, then we can define a preference 
relation over the inputs. The label preference i ≻ j means that the input �i is preferred to �j . 
This can be modelled by assuming that there is an unobservable latent function f associated 
with each input �k , and that the function values {f (�k)}k preserve the preference relations 
observed in the dataset. Then the likelihood can be modelled as an indicator function 
p(�i ≻ �j|f (�i), f (�j)) = I[f (�j),∞)(f (�i)) . This constrains the latent function values of the 
instances to be consistent with their preference relations. To allow some tolerance to noise 
in the inputs or the preference relations, one can assume the latent functions are contami-
nated with Gaussian noise (Chu & Ghahramani, 2005b):

More generally, the preferences of each input can be presented in the form of a preference 
graph (Chu & Ghahramani, 2005b), where the labels are the graph vertices. Some exam-
ples are shown in Chu and Ghahramani (2005b, Fig. 1). Therefore, in this more general 
case, yi = {(c

j+

i
, c

j−

i
)}

gi
j=1

 , where cj
−

i
 is the initial label vertex of the j-th edge and cj

+

i
 is the 

terminal label, and gi is the number of edges. This setting can be modelled by introducing a 

(2)p(yi|f (�i)) = �(yif (�i)), i = 1,… , n,

(3)
p(yi|f (�i)) = ∫ I(byi−1 ,byi ]

(f (�i) + v)�
(

v

�v

)
dv

= �

(
byi − f (�i)

�v

)
−�

(
byi−1 − f (�i)

�v

)
.

(4)

p(�i ≻ �j�f (�i), f (�j)) = ∫ I[f (�j)+v1,∞)(f (�i) + v2)𝜙
�

v1

�v

�
𝜙

�
v2

�v

�
dv1dv2

= 𝛷

�
f (�i) − f (�j)√

2�v

�
.

1  In Machine Learning literature, the probit function is known as sigmoid function, please see Bishop 
(2006, Sec. 4.3.5).
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latent function fl for each predefined label (Chu & Ghahramani, 2005b). The observed 
edge (cj

+

i
, c

j−

i
) is modelled as the following constraint f

c
j+

i

(�i) ≥ f
c
j−

i

(�i) and the likelihood is

where � denotes the vector of latent function (one for each label). For instance, note that 
standard Multiclass Classification (Williams & Barber, 1998), Ordinal Regression, Hierar-
chical Multiclass classification, can be formulated in this way (Chu & Ghahramani, 2005b).

Mixed: In some applications, we may have scalar, binary and preference observations at the 
same time. Assuming independence, the likelihood model of n mixed observations can in 
general be written as the product of normal PDFs and normal CDFs. An example of mixed 
type data is shown in Fig. 1. The dotted line represents the function we used to generate 
the observations. The left (blue) points are numeric (non-noisy) observations and the right 
points represent preferences. We used the colored points (red and gold) to visualise the 30 
preferential observations. The meaning of these points is as follows: (i) the value of the 
functions computed at the x’s corresponding to the bottom gold points is less than the value 
of the function computed at the x corresponding to the red point; (ii) the value of the func-
tion computed at the x’s corresponding to the the top gold points is greater than the value 
of the function computed at the x corresponding to the red point. These 30 qualitative judg-
ments is the only information we have on the function for x ∈ [2.5, 5].

State-of-the-art: The state-of-the-art (nonparametric) Bayesian approach to deal with the 
above problems is to impose a Gaussian Process (GP) prior on the (latent) function(s) f. 
For scalar observations, due to the conjugacy between normal likelihood and normal prior, 
the posterior model is still a GP and its mean and covariance functions can be computed 
analytically (O’Hagan, 1978; Rasmussen & Williams, 2006, Ch.2).

For binary data (classification), the posterior process is not a GP. Several algorithms for 
approximate inference have been proposed, which are based on approximating the non-
Gaussian posterior with a tractable Gaussian distribution. There are three main types of 
approximation: (i) Laplace Approximation (LP) (MacKay, 1996; Williams & Barber, 1998; 
ii) Expectation Propagation (EP) (Minka, 2001; iii) Kullback–Leibler divergence (KL) mini-
mization (Opper & Archambeau, 2009), comprising Variational Bounding (VB) (Gibbs & 
MacKay, 2000) as a particular case. An exhaustive theoretical and empirical analysis of the 
above approaches was performed by Nickisch and Rasmussen (2008). They conclude that EP 
approximation is, in terms of accuracy, always the method of choice, except when you cannot 
afford the slightly longer running time compared to the fastest LP approximation.

(5)p({(c
j+

i
, c

j−

i
)}

gi
j=1

�� (�i)) =
gi�
j=1

�

�
f
c
j+

i

(�i) − f
c
j−

i

(�i)

√
2�v

�
,

Table 1   SkewGPs are conjugate to a larger class of likelihoods
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Ordinal regression with GPs was proposed by Chu and Ghahramani (2005a) using the 
likelihood (3). The posterior is not a GP and so two approximations of the posterior were 
derived: LP and EP. The authors show that both LP and EP outperform the support vector 
approach (SVM), and that the EP approach is generally better than LP.

Preference learning based on GPs was proposed in Chu and Ghahramani (2005b) using 
the likelihoods (4) and (5). Again, the posterior is not a GP and the LP approximation is 
used to approximate the posterior with a GP; the approach outperforms SVMs.

In a recent paper (Benavoli et  al., 2020), by extending a result derived by Durante 
(2019) for the parametric case, we showed that: (i) although the probit likelihood (2) and 
the GP are not conjugate, the posterior process can still be computed in closed form and is 
a Skew Gaussian Process (SkewGP); (ii) SkewGP prior and probit likelihood are conju-
gate. Such a novel result allowed us to compute the exact posterior for binary classification 
and for preference learning (Benavoli et al., 2021).

In a parallel line of research, Alodat and Al-Momani (2014) and Alodat and Shakhatreh 
(2020) considered a GP regression problem (with either a GP or a SkewGP prior) but with 
measurement errors following a skew normal distribution (resulting into a special case of 
“mixed likelihood” model discussed in this paper). The authors proved that the resulting 
posterior is SkewGP.

In the next sections, we unify these results by showing that SkewGP is conjugate with 
both the normal and affine probit likelihood and, more in general, with their product. This 
shows that SkewGP encompasses GP for both regression and classification.

The rest of the paper is organised as follows. Section 2 reviews the properties of the 
Skew Normal distribution and defines Skew Gaussian Processes. Section 3, which includes 
the main results of the paper, shows that SkewGPs provide closed-form solution to nonpar-
ametric regression, classification, preference and mixed problems. Section 4 provides algo-
rithms to efficiently compute predictions for SkewGPs and to compute a fast approximation 
of the marginal likelihood. Section 5 discusses the application of SkewGPs to active learn-
ing and Bayesian optimisation. We show that SkewGPs outperform the Laplace and Expec-
tation Propagation approximation. Finally, Sect. 6 concludes the paper.

2 � Background on the Skew‑Normal distribution and Skew Gaussian 
Processes

Skew-normal distributions have long been seen (O’Hagan & Leonard, 1976) as generaliza-
tions of the normal distribution allowing for non-zero skewness. Here we follow O’Hagan 
and Leonard (1976) and we say that a real-valued continuous random variable has skew-
normal distribution if it has the following probability density function (PDF)

where � and � are the PDF and Cumulative Distribution Function (CDF), respectively, 
of the standard univariate Normal distribution. The numbers 𝜉 ∈ ℝ,� > 0, 𝛼 ∈ ℝ are the 
location, scale and skewness parameters respectively.

The generalization of a univariate skew-normal to the multivariate case is not com-
pletely straightforward and over the years many generalisations of this distribution were 
proposed. Arellano and Azzalini (2006) provided a unification of those generalizations 
in a single and tractable multivariate Unified Skew-Normal distribution. This distribution 

p(z) =
2

�
�

(
z − �

�

)
�

(
�

(
z − �

�

))
, z ∈ ℝ,
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satisfies closure properties for marginals and conditionals and allows more flexibility due 
the introduction of additional parameters.

2.1 � Unified Skew‑Normal distribution

The Unified Skew-Normal is a very general family of multivariate distributions that allows 
for skewness on different directions through latent variables. We say that a p-dimensional 
vector � ∈ ℝ

p is distributed as a Unified Skew-Normal distribution with latent skewness 
dimension s, � ∼ SUNp,s(�,�,�, � ,� ) , if its probability density function (Azzalini, 2013, 
Ch.7):

where �p(� − �;�) is the PDF of a multivariate Normal distribution with mean � ∈ ℝ
p and 

covariance 𝛺 = D𝛺𝛺̄D𝛺 ∈ ℝ
p×p , 𝛺̄ is a correlation matrix and D� a diagonal matrix con-

taining the square root of the diagonal elements in � . The notation �s(�;A) denotes the 
CDF of a s-dimensional multivariate Normal distribution with zero mean and covariance 
matrix A, Ns(0,A) , evaluated at � ∈ ℝ

s . The distribution is parametrized by a location vec-
tor � , a covariance matrix � and the latent variable parameters � ∈ ℝ

s,� ∈ ℝ
s×s,�p×s . In 

particular � is the skewness matrix.
The PDF (6) is well-defined provided that the matrix M below is positive definite, i.e.2

Note that when � = 0 , (6) reduces to �p(� − �;�) , i.e. a skew-normal with zero skewness 
matrix is a normal distribution. Moreover we assume that �0(⋅) = 1 , so that, for s = 0 , (6) 
becomes a multivariate Normal distribution.

Figure  2 shows the density of a univariate SUN distribution with latent dimensions 
s = 1 (a1) and s = 2 (a2). The effect of a higher latent dimension can be better observed 
in bivariate SUN densities as shown in Fig. 3. The contours of the corresponding bivariate 

(6)p(�) = 𝜙p(� − �;𝛺)
𝛷s

(
𝛾 + 𝛥T𝛺̄−1D−1

𝛺
(� − �);𝛤 − 𝛥T𝛺̄−1𝛥

)
𝛷s(𝛾;𝛤 )

,

(7)M ∶=

[
𝛤 𝛥T

𝛥 𝛺̄

]
∈ ℝ

(s+p)×(s+p) > 0.

Fig. 1   Mixed numeric and preference observations

2  In Azzalini (2013), it is assumed that M is a correlation matrix. This means that �  must be a correlation 

matrix. However, from (6) note that, 𝛷s(𝛾+𝛥T 𝛺̄−1D−1
𝛺
(�−�);𝛤−𝛥T 𝛺̄−1𝛥)

𝛷s(𝛾;𝛤 )
 is equal to 𝛷s(�−1𝛾+�−1𝛥T 𝛺̄−1D−1

𝛺
(�−�);�−1 (𝛤−𝛥T 𝛺̄−1𝛥)�−1)

𝛷s(�−1𝛾;�−1𝛤�−1)
 

where � is the diagonal matrix that makes �−1��−1 a correlation matrix. Therefore, in this paper, for sim-
plicity we do not restrict �  to be a correlation matrix. In any case, this does not have any impact on the 
properties of the SUN distribution we discuss in this section.
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normal are dashed. We also plot the skewness directions given by 𝛺̄−1𝛥 . Note that a SUN 
with two latent dimensions (Fig. 3(a3), (a4)) has two direction of skewness.

Derivations of the moment generating function and of the first two multivariate central 
moments for the SUN distribution can be found in Gupta et al. (2013).

2.2 � Additive representations

The role of the latent dimension s can be briefly explained as follows. Consider a random 

vector 
[
�0
�1

]
∼ Ns+p(0,M) with M as in (7) and define � as the vector with distribution 

(�1 ∣ �0 + 𝛾 > 0) . The density of y can be written as

where the first equality comes from a basic property of conditional distributions, see, e.g. 
Azzalini (2013), Ch. 1.3, and the second equality is a consequence of the multivariate nor-
mal conditioning properties. Then we have that

Note that the skewness of � is determined by the correlation � of �1 with the latent s-dimen-
sional vector �0.

The previous representation is useful for understanding the role of the latent dimension 
s in a skew-Gaussian vector. We report below another representation which is more practi-
cal for sampling. Consider the independent random vectors �0 ∼ Np(0, 𝛺̄ − 𝛥𝛤 −1𝛥T ) and 
�1,−� , the truncation below −� of �1 ∼ Ns(0,� ) . Then the random variable

is distributed as (6), Azzalini (2013, Ch.7) and Benavoli et al. (2021, Sec.A.1). The addi-
tive representation introduced above can be used to draw samples from the distribution as it 
will be discussed in Sect. 4.

2.3 � Closure properties

Among the many interesting properties of the Skew-Normal family (see Azzalini, 2013, 
Ch.7 for details), here we are particularly interested in its closure under marginalization 
and affine transformations. Consider � ∼ SUNp,s(�,�,�, � ,� ) and partition � = [�1, �2]

T , 
where �1 ∈ ℝ

p1 and �2 ∈ ℝ
p2 with p1 + p2 = p , then

Moreover, Azzalini (2013, Ch.7) the conditional distribution is a unified skew-Normal, i.e., 
(�2|�1 = �1) ∼ SUNp2,s

(�2|1,�2|1,�2|1, �2|1,�2|1) , where

f (�) =
∫
�0+𝛾>0

𝜙s+p((�0, �);M)d��

∫
�0+𝛾>0

𝜙s(�;𝛤 )d�
= 𝜙p(�;𝛺̄)

P(�0 + 𝛾 > 0 ∣ �1 = �)

𝛷s(𝛾;𝛤 )

= 𝜙p(�;𝛺̄)
𝛷s

(
𝛾 + 𝛥T𝛺̄−1�;𝛤 − 𝛥T𝛺̄−1𝛥

)
𝛷s(𝛾;𝛤 )

,

� = � + D�� ∼ SUN p,s(�,�,�, � ,� ).

(8)�u = � + D�(�0 + �� −1�1,−� ),

(9)
�1 ∼ SUNp1,s

(�1,�11,�1, � ,� ),

with � =

[
�1
�2

]
, � =

[
�1

�2

]
, � =

[
�11 �12

�21 �22

]
.
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and 𝛺̄−1
11

∶= (𝛺̄11)
−1.

In Sect. 3, we exploit this property to obtain samples from the predictive posterior dis-
tribution at a new input �∗ given samples of the posterior at the training inputs.

2.4 � SkewGP

The unified skew-normal distribution can be generalized (Benavoli et al., 2020) to a sto-
chastic process. We briefly recall here its construction.

Consider a location function � ∶ ℝ
d
→ ℝ , a scale (kernel) function3 � ∶ ℝ

d ×ℝ
d
→ ℝ , 

a skewness vector function � ∶ ℝ
d
→ ℝ

s and the parameters � ∈ ℝ
s,� ∈ ℝ

s×s . We 
say f ∶ ℝ

d
→ ℝ is a SkewGP with latent dimension s, if for any sequence of n points 

�1,… , �n ∈ ℝ
d , the vector [f (�1),… , f (�n)] ∈ ℝ

n is skew-normal distributed with param-
eters � ,�  and location, scale and skewness matrices, respectively, given by

�2|1 ∶= �2 +𝛺21𝛺
−1
11
(�1 − �1), 𝛺2|1 ∶= 𝛺22 −𝛺21𝛺

−1
11
𝛺12,

𝛥2|1 ∶= 𝛥2 − 𝛺̄21𝛺̄
−1
11
𝛥1,

𝛾2|1 ∶= 𝛾 + 𝛥T
1
𝛺−1

11
(z1 − �1), 𝛤2|1 ∶= 𝛤 − 𝛥T

1
𝛺̄−1

11
𝛥1

Fig. 2   Density plots for SUN1,s(0, 1,�, � ,� ) . For all plots �  is a correlation matrix, � = 0 , dashed lines are 
the contour plots of y ∼ N1(0, 1)

Fig. 3   Contour density plots for four unified skew-normal. For all plots p = 2 , � = [0, 0]T , � and �  are cor-
relation matrices with �1,2 = 0.7 , � = 0 , dashed lines are the contour plots of y ∼ N2(�,�)

3  With an abuse of notation, we denote the mean, covariance and skewness vector functions by �,�,� as 
for the parametric case in the previous sections.
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The skew-normal distribution is well defined if the matrix M =

[
𝛤 𝛥(X)

𝛥(X)T 𝛺̄(X,X)

]
 is posi-

tive definite for all X = {�1,… , �n} ⊂ ℝ
d and for any n. Benavoli et al. (2020) shows that 

SkewGp is a well defined stochastic process. In that case we write 
f ∼ SkewGPs(�,�,�, � ,� ).

We briefly review here a possible choice for the functions �,� and the matrix �  that 
guarantees that M is always positive definite. We follow Benavoli et  al. (2020) and we 
choose a positive definite kernel stationary function4 K ∶ ℝ

d ×ℝ
d
→ ℝ which we will 

use to generate both � and � . Given n points and X = {�1,… , �n} ⊂ ℝ
d , s pseudo-points 

U = {�1,… , �s} ⊂ ℝ
d and a phase diagonal matrix L ∈ ℝ

s×s with elements Lii ∈ {−1, 1} , 
we build the matrix M as

where K̄(�, ��) = 1

�2
K(�, ��) . This structure guarantees that M is a positive definite matrix 

for any X. Pseudo-points allow for a flexible handling of the skewness determined by �  
and � . See Benavoli et al. (2020) for several examples of the effect of the pseudo-points 
positions.

SkewGPs can then be used as prior for f in a Bayesian model. Note that, with s = 0 , this 
construction recovers a GP with covariance kernel � = K . Below we show that this larger 
family of prior distributions for f present remarkable conjugacy properties with many com-
mon likelihoods.

3 � Conjugacy of SkewGP

This section includes the main results of the paper: we will prove that SkewGP is conjugate 
with both the normal and probit affine likelihood and, more in general, with their product.

3.1 � Normal likelihood

Consider n input points X = {�i ∶ i = 1,… , n} , with �i ∈ ℝ
d , and mr output points 

Y = {yi ∶ i = 1,… ,mr} , with yi ∈ ℝ and the likelihood

(10)
�(X) ∶=

⎡
⎢⎢⎢⎣

�(�1)

�(�2)

⋮

�(�n)

⎤
⎥⎥⎥⎦
, �(X,X) ∶=

⎡
⎢⎢⎢⎣

�(�1, �1) �(�1, �2) … �(�1, �n)

�(�2, �1) �(�2, �2) … �(�2, �n)

⋮ ⋮ … ⋮

�(�n, �1) �(�n, �2) … �(�n, �n)

⎤
⎥⎥⎥⎦
,

�(X) ∶=
�
�(�1) �(�2) … �(�n)

�
.

(11)M =

[
𝛤 𝛥(X,U)

𝛥(U,X) 𝛺(X,X)

]
=

[
LK̄(U,U)L LK̄(U,X)

K̄(X,U)L K̄(X,X)

]
,

(12)p(Y ∣ f (X)) =

mr∏
i=1

�

(
yi − �T

i
f (X)

�v

)
= �mr

(Y − Cf (X);R),

4  This construction can easily be generalised to non-stationary kernels.
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with �mr
(Y − Cf (X);R) denotes a multivariate normal PDF with zero mean and covariance R 

computed at Y − Cf (X) , where ℝmr×n ∋ C = [�T
i
]
mr

i=1
 and �i ∈ ℝ

n is a data dependent vector 
and R = �2

v
Imr

 is a covariance matrix, with Imr
 being the identity matrix of dimension mr.5

Lemma 1  Let us assume that f (�) ∼ SkewGPs(�(�),�(�, ��),�(�), � ,� ) and consider the 
Normal likelihood p(Y ∣ f (X)) = �mr

(Y − Cf (X);R) where C ∈ ℝ
mr×n and R = ℝ

mr×mr . The 
posterior distribution of f(X) is a SUN:

where, for simplicity of notation, we denoted �(X),�(X,X),�(X) as �,�,� , and 
𝛺 = D𝛺𝛺̄D𝛺 and 𝛺p = D𝛺p

𝛺̄pD𝛺p
.

All the proofs are in the Appendix. For either s = 0 or � = 0 , the SkewGP prior becomes 
a GP and it can noted that, in this case, the posterior is Gaussian with posterior mean �p 
and posterior covariance �p (that is the terms in (14)–(16) disappear).

In practical applications of SkewGP, the hyperparameters of the scale function �(�, ��) , 
of the skewness vector function �(�) ∈ ℝ

s and the hyperparameters � ∈ ℝ
s,� ∈ ℝ

s×s 
must be selected. As for GPs, we use Bayesian model selection to set such hyperparam-
eters and this requires the maximization of the marginal likelihood with respect to these 
hyperparameters.

Corollary 1  Consider the probabilistic model in Lemma 1, the marginal likelihood of the 
observations Y is

Observe again that for either s = 0 or � = 0 , the marginal likelihood coincides with that 
of a GP because the ratio �s(�p; �p)∕�s(�; � ) disappears. The computation of the marginal 

(13)
p(f (X)|Y) = SUNmr ,s

(�p,�p,�p, �p,�p) with

�p = � +�CT (C�CT + R)−1(Y − C�),

(14)�p = � −�CT (C�CT + R)−1C�,

(15)𝛥p = 𝛺̄pD𝛺p
D−1

𝛺
𝛺̄−1𝛥,

(16)𝛾p = 𝛾 + 𝛥T𝛺̄−1D−1
𝛺
(�p − �),

(17)𝛤p = 𝛤 − 𝛥T𝛺̄−1𝛥 + 𝛥T
p
𝛺̄−1

p
𝛥p,

(18)p(Y) = �mr
(Y − C�(X);C�(X,X)CT + R)

�s(�p; �p)

�s(�; � )
.

5  Note that, in regression, one usually has that mr = n . However, in this paper, we are interested in mixed-
type data problems and so we will consider cases where one has numeric observations for a subset of 
dimension mr (the subscript r stands for regression) of the x’s (the subset is selected via the matrix C), and 
binary/preference observations for another subset of dimension ma (the subscript a stands for affine) of the 
x’s and so on. This will become clear in Sect. 3.3 where we consider mixed-type data. In this section, we 
will consider the case mr ≠ n to keep this generality.
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likelihood (18) requires the calculation of two multivariate CDFs. We will address this point 
in Sect. 4.

We now prove that, a-posteriori, for a new test point � , the function f (�) is SkewGP dis-
tributed under the Normal likelihood in (12).

Theorem  1  Let us assume a SkewGP prior f (�) ∼ SkewGPs(�(�),�(�, ��),�(�), � ,� ) , 
the likelihood p(Y ∣ f (X)) = �mr

(Y − Cf (X);R) , then a-posteriori f is SkewGP with mean, 
scale, and skew functions:

and parameters �p,�p as in Lemma 1.

The posterior mean (19) and posterior covariance (20) coincide with those of the poste-
rior GP. The term (21) is the posterior skewness. This results proves that SkewGP process 
and the Normal likelihood are conjugate.

3.2 � Probit affine likelihood

Consider n input points X = {�i ∶ i = 1,… , n} , with �i ∈ ℝ
d , and a data-dependent matrix 

W ∈ ℝ
ma×n and vector Z ∈ ℝ

ma . We define an affine probit likelihood as

where �ma
(�;�) is the ma-variate Gaussian CDF evaluated at � ∈ ℝ

m with covariance 
� ∈ ℝ

ma×ma . Note that this likelihood model includes the classic GP probit classification 
model (Rasmussen & Williams, 2006) with binary observations y1,… , yn ∈ {0, 1} encoded 
in the matrix W = diag(2y1 − 1,… , 2yn − 1) , where m = n , Z = 0 and � = Ima

 (the identity 
matrix of dimension ma ), that is

Moreover, the likelihood in (22) is equal to the preference likelihood (4) for Z = 0 and a 
particular choice of W. In fact, consider the likelihood

where �i, �j ∈ X . If we denote by W ∈ ℝ
ma×n the matrix defined as Wi,j = Vi,j − Ui,j where 

Vi,j =
1

�v

 if �i = �j and 0 otherwise and Ui,j =
1

�v

 if �i = �j and 0 otherwise. Then we can 

(19)�̃(�) = �(�) +𝛺(�,X)CT (C𝛺(X,X)CT + R)−1(Y − C𝜉(X)),

(20)𝛺̃(�, �) = 𝛺(�, �) −𝛺(�,X)CT (C𝛺(X,X)CT + R)−1C𝛺(X, �),

(21)
𝛥(�) = D−1

𝛺̃(�,�)
D𝛺(�,�)𝛥(�) − D−1

𝛺̃(�,�)
𝛺(�,X)CT (C𝛺(X,X)CT + R)−1CD𝛺(X,X)𝛥(X),

(22)p(W, Z ∣ f (X)) = �ma
(Z +Wf (X);�),

(23)�ma

⎛⎜⎜⎝

⎡⎢⎢⎣

2y1 − 1

⋱

2yn − 1

⎤⎥⎥⎦
f (X);Ima

⎞⎟⎟⎠
.

(24)�ma

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣

f (�1)−f (�1)

�v

⋮
f (�m)−f (�m)

�v

⎤⎥⎥⎥⎦
;Ima

⎞⎟⎟⎟⎠
,
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write the likelihood (24) as in (22).6 The conjugacy between SkewGP and the likelihood 
(23) was proved in Benavoli et al. (2020) extending to the nonparametric setting a result 
proved in Durante (2019, Th.1 and Co.4) for the parametric setting. The conjugacy between 
SkewGP and the likelihood (24) was derived in Benavoli et al. (2021) extending the results 
for classification. In this paper, we further expand those results by including the shifting 
term Z (which, for instance, allows us to deal with the likelihood (3)) and a general covari-
ance matrix � , as in (22).

Lemma 2  Let us assume that f (�) ∼ SkewGPs(�(�),�(�, ��),�(�), � ,� ) and consider the 
likelihood �ma

(Z +Wf (X);�) where � ∈ ℝ
ma×ma is symmetric positive definite, W ∈ ℝ

ma×n 
and Z ∈ ℝ

ma are an arbitrary data dependent matrix and, respectively, vector. The poste-
rior of f(X) is a SUN:

where, for simplicity of notation, we denoted �(X),�(X,X),�(X) as �,�,� respectively 
and 𝛺 = D𝛺𝛺̄D𝛺.

In this case, the posterior is a skew normal distribution even for either s = 0 or �(�) = 0 . 
This shows that, for GP classification and GP preference learning, the true posterior is a 
skew normal distribution.7

Corollary 2  Consider the probabilistic model in Lemma2, the marginal likelihood of the 
observations Z, W is

Note that, both the posterior in (13) and the marginal likelihood in (30) require the accu-
rate computation of �s+ma

 – a multi-dimensional integral whose dimension increases with 
the number of observations ma . We will discuss how to tackle this issue in Sect. 4.

(25)p(f (X)|W,Z) = SUN n,s+ma
(�p,�p,�p, �p,�p)

(26)�p = �, �p = �,

(27)𝛥p = [𝛥, 𝛺̄D𝛺W
T ],

(28)�p = [� , Z +W�]T ,

(29)�p =

[
� �TD�W

T

WD�� (W�WT + �)

]
,

(30)p(Z,W) =
�s+ma

(�p; �p)

�s(�; � )
.

7  Since here we are basically considering a parametric setting (the posterior of f computed at the training 
points), this lemma extends the results derived in Durante (2019, Th.1 and Co.4), for the parametric case to 
general probit affine likelihoods �ma

(Z +W� ;�) . In the proofs of Theorem 1 and Corollary 4 in Durante 
(2019), �p (posterior �  ) is rescaled to make it a correlation matrix. As explained in Sect. 2.1, we do not do 
it for simplicity of notation.

6  We omitted the constant 
√
2 for simplicity.
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We now prove that, a-posteriori, for a new test point � , the function f (�) is SkewGP dis-
tributed under the affine probit likelihood in (22).

Theorem 2  Let us assume that f (�) ∼ SkewGPs(�(�),�(�, ��),�(�), � ,� ) and consider the 
likelihood �ma

(Z +Wf (X);�) where � ∈ ℝ
ma×ma is symmetric positive definite, W ∈ ℝ

ma×n 
and Z ∈ ℝ

ma , then a-posteriori f is SkewGP with mean, covariance and skewness functions:

and parameters �p,�p as in Lemma 2.

This results proves that SkewGP process and the probit affine likelihood are conjugate, 
which provides closed-form expression for the posterior for both classification and prefer-
ence learning.

Example 1D preference learning. In this paragraph, we provide a one-dimensional exam-
ple of how we can use the above derivations to compute the exact posterior for preference 
learning. Consider the non-linear function g(x) = cos(5x) + e

−
x2

2  which is in Fig. 4.
We use this function to generate 45 random pairwise preferences between 25 random 

points xi ∈ [−2.6, 2.6] . Our aim is to infer f(x), that is the latent function that models the 
preference relations observed in the dataset. We will then use the learned model to com-
pute f (x) − f (0.05) , which can tell us the points x which are preferred to xr = 0.05 (0.05 is 
the point corresponding to the maximum value of g in the dataset).

In all cases we consider a GP prior with zero mean and radial basis function (RBF) 
kernel over the unknown function f. We will compare the exact posterior computed via 
SkewGP with two approximations: Laplace (LP) and Expectation Propagation (EP). We 
discuss how to compute the predictions for SkewGP in Sect. 4.

Figure   5(top) shows the predicted posterior distribution f (x) − f (0.05) (and relative 
95% credible region) computed according to LP, EP and SkewGP. All the methods use the 
same prior: a GP with zero mean and RBF covariance function (the hyperparameters are 
the same: lengthscale 0.33 and variance �2 = 50 ). Therefore, the only difference between 
the exact posterior (SkewGP) and the posteriors of EP and LP is due to the different 
approximations. The true posterior (SkewGP) of the preference function is skewed as it can 
be seen in Fig. 5(bottom-left), which reports the skewness statistics for h(x) = f (x) − f (xr) 
as a function of x, defined as:

with � ∶= E[h(x)] , and E is computed via Monte Carlo sampling from the posterior.
The strong skewness of the posterior is the reason why both the LP and EP approxi-

mations are not able to correctly approximate the posterior as shown in Fig. 5(top). Fig-
ure  5(bottom-right) shows the predictive posterior distribution for f(0.77) for the three 
models. It can be noticed that the true posterior (SkewGP) is skewed, which explains why 
the LP and EP approximations are not accurate.

(31)

�̃(�) = 𝜉(�)

𝛺̃(�, �) = 𝛺(�, �),

𝛥(�) =
[
𝛥(�) D−1

𝛺(�,�)
𝛺(�,X)WT

]
,

SS(h(x)) ∶=
E[(h(x)−�)3]

(E[(h(x)−�)2])3∕2
,
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3.3 � Mixed likelihood

Consider n input points X = {�i ∶ i = 1,… , n} , with �i ∈ ℝ
d , and the product likelihood:

where C,R,Y ,W, Z,� have the same dimensions as before. To obtain the posterior we 
apply first Theorem 2 and then Theorem 1.

Theorem  3  Let us assume a SkewGP prior f (�) ∼ SkewGPs(�(�),�(�, ��),�(�), � ,� ) , 
the likelihood (32), then a-posteriori f is SkewGP with mean, covariance and skewness 
functions:

with

and �p,�p as in Lemma 2.

Corollary 3  The marginal likelihood of the observations Y is

with 𝛾̃ ,𝛤  in Theorem 3.

This general setting shows that SkewGPs are conjugate with a larger class of likeli-
hoods and, therefore, encompass GPs. Note that, also in this case, the posterior and the 
marginal likelihood in (39) require the accurate computation of �s+ma

 – a multi-dimen-
sional integral whose dimension increases with the number of observations ma . We will 
discuss how to tackle this issue in Sect. 4.

In the next paragraphs, we provide two one-dimensional examples of (i) mixed numeric 
and preference regression; (ii) mixed numeric and binary output regression. Another 

(32)p(Y , Z,W ∣ f (X)) = �ma
(Z +Wf (X);�)�mr

(Y − Cf (X);R).

(33)�̃(�) = �(�) +𝛺(�,X)CT (C𝛺(X,X)CT + R)−1(Y − C𝜉(X)),

(34)𝛺̃(�, �) = 𝛺(�, �) −𝛺(�,X)CT (C𝛺(X,X)CT + R)−1C𝛺(X, �),

(35)

𝛥(�) = D−1

𝛺̃(�,�)
D𝛺(�,�)

[
𝛥(�) D−1

𝛺(�,�)
𝛺(�,X)WT

]

− D−1

𝛺̃(�,�)
𝛺(�,X)CT (C𝛺(X,X)CT + R)−1

CD𝛺(X,X)

[
𝛥(X) D−1

𝛺(X,X)
𝛺(X,X)WT

]
,

(36)𝛾̃ = 𝛾p +
[
𝛥(X) D−1

𝛺(X,X)
𝛺(X,X)WT

]T
𝛺̄(X,X)−1D−1

𝛺(X,X)
(�̃(X) − �(X))

(37)
𝛤 = 𝛤p −

[
𝛥(X) D−1

𝛺(X,X)
𝛺(X,X)WT

]T
𝛺̄−1(X,X)

[
𝛥(X) D−1

𝛺(X,X)
𝛺(X,X)WT

]

+ 𝛥T
p
𝛺̃(X,X)−1𝛥p,

(38)𝛥p = 𝛺̃(X,X)D𝛺̃(X,X)D
−1
𝛺(X,X)

𝛺̄−1(X,X)
[
𝛥(X) D−1

𝛺(X,X)
𝛺(X,X)WT

]
,

(39)p(Y) = 𝜙mr
(Y − C𝜉(X);C𝛺(X,X)CT + R)

𝛷s+ma
(𝛾̃; 𝛤 )

𝛷s(𝛾; 𝛤 )
,
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application where the “mixed likelihood” model arises is GP regression with skew-normal 
measurement errors, see Alodat and Shakhatreh (2020).

Example 1D mixed numeric and preference regression Consider again the regression prob-
lem discussed in Sect. 1 and the dataset shown in Fig. 1.

Figure 6(top) shows the posterior mean and relative credible region of the regression 
function f computed according to SkewGP, LP and EP. All the methods use the same prior: 
a GP with zero mean and RBF covariance function (the hyperparameters are the same: 
lengthscale 0.19, variance �2 = 1 and noise variance �2 = 0.001).

Figure  6(bottom-left) reports the skewness statistics for SkewGP and Fig.  6(bottom-
right) the predictive posterior distribution for f(4.7) for the three models. It can be noticed 
that the true posterior (SkewGP) is very skewed for x ≥ 2.5 , which explains why the LP 
and EP approximations are not accurate. The LP approximation heavily underestimates the 

Fig. 4   1D function 
g(x) = cos(5x) + e

−
x2

2

Fig. 5   Preference learning. The top plot shows the posterior means and credible intervals for LP, EP and 
SkewGP. The bottom-left plot shows the skewness statistics for the SkewGP posterior as a function of x. 
The right plot the predictive distribution of f (0.77) − f (0.05) for the three models
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mean and the “support” of the true posterior (SkewGP), as also evident from Fig. 6(bot-
tom-right). The EP approximation estimates a large variance to “fit” the skewed posterior. 
This confirms, also for the mixed case, what was observed by Kuss and Rasmussen (2005) 
and Nickisch and Rasmussen (2008) for classification.8 The symmetry assumption for the 
posterior for LP and EP affects the coverage of their credible intervals (regions).

It can be noticed that the three models coincide for x < 2.5 , that is in the region includ-
ing the numeric observations. The SkewGP posterior is indeed symmetric in this region, as 
it can be seen from Fig. 6(bottom-left).

Example 1D mixed numeric and binary regression This mixed problem arises when binary 
judgments (valid or non-valid) together with scalar observations f(x) are available. Such 
situation often comes up in industrial applications. For example imagine a process f that 
produces a certain noisy output f (x) + v which depends on input parameters x. Given a 
certain input xk , assume now that when f (xk) + v ≤ h no output is produced. In this case, 
observations are pairs and the space of possibility is {(valid, y), (non-valid,None)}. with 
y = f (x) + v . The above setting can be modelled by the likelihood:

Fig. 6   Mixed numeric and preference learning. Top: dataset, true function (blue), mean and credible inter-
vals for LP, EP, SkewGP. Bottom-left: skewness statistics for the SkewGP posterior as a function of x. Bot-
tom-right: predictive distribution of f(4.7) for the three models (color figure online)

8  In Kuss and Rasmussen (2005) and Nickisch and Rasmussen (2008), it was observed that, in classifica-
tion, the LP mean is always closer to zero than the true mean. This is what we mean here with “underesti-
mating” the mean. Moreover, it was observed that the credible intervals of the LP approximation are usually 
too small, while EP tends to overestimate their width.
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and, therefore, formulated as a mixed regression problem.9 Figure 7(top) shows the true 
function we used to generate the data (in blue), the numeric data (blue points) and binary 
data (gray points where y1 = 1 means valid and yi = −1 means non-valid). The thresh-
old h has been set to h = 0 and so the non-valid zone is the region in gray. We report 
the posterior means and credible regions of LP, EP and SkewGP. All the methods use the 
same prior: a GP with zero mean and Radial Basis Function (RBF) covariance function 
(the hyperparameters were estimated using EP: lengthscale 0.497, variance �2 = 0.147 
and noise variance �2 = 0.0021 ). Figure 7(bottom-left) reports the skewness statistics for 
SkewGP and Fig.  7(bottom-right) the predictive posterior distribution for f(3.3) for the 
three models. It can be noticed that the true posterior (SkewGP) is very skewed in the 
non-valid zone ( 2 ≤ x ≤ 4 ), which explains why the LP and EP approximations are not 
accurate. Again the LP approximation heavily underestimates the mean and the support of 
the true posterior (SkewGP) and the EP approximation estimates a large variance to “fit” 
the skewed posterior.

4 � Sampling from the posterior and hyperparameters selection

The computation of predictive inference (mean, credible intervals etc.) is achieved 
by sampling the posterior SkewGP. This can be obtained using the additive represen-
tation discussed in Sect.  2.2. Recall that � ∼ SUNp,s(�,�,�, � ,� ) can be written as 
� = � + D�(�0 + �� −1�1,−� ) with �0 ∼ 𝜙p(0;𝛺̄ − 𝛥𝛤 −1𝛥T ) and �1,−� is the truncation 
below � of �1 ∼ �s(0;� ) . Note that sampling �0 can be achieved efficiently with standard 
methods, however using standard rejection sampling for the variable �1,−� would incur 
in exponentially growing sampling time as the dimension ma increases. In Benavoli 
et al. (2020, 2021) we used the recently introduced sampling technique linear elliptical 
slice sampling (lin-ess, Gessner et al., 2020) which improves Elliptical Slice Sampling 
(ess, Murray et al., 2010) for multivariate Gaussian distributions truncated on a region 
defined by linear constraints. In particular this approach derives analytically the accept-
able regions on the elliptical slices used in ess and guarantees rejection-free sampling. 
We report the pseudo-code for lin-ess in Algorithm 1.10 Since lin-ess is rejection-free,11 
we can compute exactly (deterministically) the computation complexity of (8): O(n3) 
with storage demands of O(n2) . SkewGPs have similar bottleneck computational com-
plexity of full GPs. Finally, it is important to observe that �1,−� does not depend on test 
point � and, therefore, we do not need to re-sample �1,−� to sample f at another test point 

(40)

⎧
⎪⎨⎪⎩

�

�
y−f (x)

�v

�
�

�
f (x)−h

�v

�
, (valid, y)

�

�
h−f (x)

�v

�
, (non-valid,None),

9  In Benavoli et al. (2021), we considered mixed preferential-binary observations, where binary judgments 
(valid or non-valid) together with preference judgments are available.
10  The pseudo-code reports the main steps of the algorithm. We omitted some implementation details for 
simplicity, for instance how to select �0 or how to deal with empty intersections. The full code of the algo-
rithm is available at https://​github.​com/​benav​oli/​SkewGP.
11  Its computational bottleneck is the Cholesky factorization of the covariance matrix 𝛤  , same as for sam-
pling from a multivariate Gaussian.

https://github.com/benavoli/SkewGP
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�′ . This is fundamental in active learning and Bayesian optimisation because acquisition 
functions are functions of � and we need to optimize them with respect to � . 

Fig. 7   Mixed numeric and binary regression. Top: dataset, true function (blue), mean and credible intervals 
for LP, EP, SkewGP. Bottom-left: skewness statistics for the SkewGP posterior as a function of x. Bottom-
right: predictive distribution of f(3.3) for the three models (color figure online)
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We demonstrate this computational savings in a 1D classification task – probit likeli-
hood and GP prior on the latent function. We generated 8 datasets of size

as follows �i ∼ N(0, I3) for i = 1,… , n , �2 ∈ U(1, 10) , �j ∈ U(0.1, 1.1) for j = 1,… , 3 , the 
latent function f is sampled from a GP with zero mean and Radial Basis Function (RBF) 
kernel:

and yi ∼ Bernoulli(�(f (xi))) for i = 1,… , n.
We evaluated the computational load to approximate the posterior using Laplace’s 

method (GP-LP), Expectation Propagation (GP-EP), Hamiltonian Monte Carlo (GP-HMC) 
and Elliptical Slice Sampling (GP-ess).12 We compared these four approaches against 
our SkewGP formulation of the posterior (denoted as SkewGP-LinEss), which allows us 
exploit the decomposition discussed above to speed-up sampling time. For each value of n, 
we generated 3 datasets and averaged the running time to: (i) compute 3100 samples (for 
SkewGP-liness, GP-HMC and GP-ess) using the first 100 samples for tuning; (ii) analyti-
cally approximate the posterior for GP-LP and GP-EP.13

The computational time in seconds (on a standard laptop) for the 5 methods is shown 
in Fig.  8(left). It can be noticed that GP-HMC is the slowest method and GP-LP is the 
fastest; however it is well-known that GP-LP provides a bad approximation of the poste-
rior. Among the remaining three methods, SkewGP-LinEss is the fastest for n > 2200 . The 
computational cost of drawing one sample using LinEss is O(n2) . This is comparable with 
that of ess. However, for large n, the constant can be much smaller for Lin-Ess because, 
contrarily to ess, Lin-Ess does not need to compute the likelihood at each iteration.This 
is also the main reason why both GP-EP and GP-ess become much slower at the increase 
of n. It is important to notice that this computational advantage derives by our analytical 
formulation of the posterior process as a SkewGP.

Our goal was only to compare the running time to obtain 3000 samples but we also 
checked the convergence of the posterior. Figure 8(right) reports the Gelman–Rubin (GR) 
(Gelman & Rubin, 1992) statistics for GP-ess and SkewGP-LinEss.14 (Gelman & Rubin, 
1992) suggest that GR values greater than 1.2 should indicate nonconvergence. The GR sta-
tistics is below 1.2 for SkewGP-LinEss, while for GP-ess is greater than 1.2 for n > 2500 . 
This means that GP-ess needs additional tuning for n > 2500 (so it is even slower).

It is also worth to notice that, for SkewGP, two alternative approaches to approximate 
the posterior mean have been proposed in Cao et al. (2020): (i) using a tile-low-rank Monte 

n ∈ {1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500}

(41)�(�, ��) ∶= �2 exp
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12  For GP-LP and GP-EP, we use the implementations in GPy (GPy, 2012), while for GP-HMC and GP-
Ess we implemented the probabilistic model in PyMC3 (Salvatier et  al., 2016) using the default values 
for acceptance rate. Note that, for GP-HMC and GP-Ess, we apply the Monte Carlo methods directly to 
the probabilistic model comprising the probit likelihood and the GP prior on the latent function f. In other 
words we do not exploit the fact that the posterior process is SkewGP.
13  Note that, all methods use the true kernel hyperparameters which are kept fixed.
14  To compute the Gelman–Rubin statistics, we have sampled an extra chain (3100 samples) in each experi-
ment.
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Carlo methods for computing multivariate Gaussian probabilities; (ii) approximating func-
tionals of multivariate truncated normals which via a mean-field variational approach. The 
cost of the tile-low-rank version of is expensive in high dimensional setting (Cao et  al., 
2020), while the variational approximation scales up to large n. The drawback of the vari-
ational approximation is that it is query dependent (it approximates an expectation). Con-
versely, the lin-ess based approach is both efficient and agnostic of the query.

Hyperparameters selection In the GP literature (Rasmussen & Williams, 2006), a GP is usu-
ally parametrised with a zero mean function �(�) = 0 and a covariance kernel �(�, ��) which 
depends on hyperparameters � ∈ � . Typically � contains lengthscale parameters and a vari-
ance parameter. For instance, the RBF kernel in (41) has � = [�1,�2,�3,�,�v] , where �2

v
 is 

the variance of the measurement noise. To fully define a SkewGP, we must also select the latent 
dimensions s, the additional parameters �,�  and the skewness function �(�) . The function 
�(�) may also have hyperparameters, which we denote by � , so that � = [�,�,�v, �,� ,�] . A 
choice of �,� , � is discussed in Benavoli et al. (2020) for classification.

The parameters � are chosen by maximizing the marginal likelihood, that for (30) and 
(39), involves computing the CDF �s+ma

 of a multivariate normal distribution, whose 
dimensions grows with ma . Quasi-randomized Monte Carlo methods (Genz, 1992; Genz 
& Bretz, 2009; Botev, 2017) have been proposed to calculate �s+ma

 for small ma (few hun-
dreds observations). These approaches are not in general suitable for medium and large ma 
(apart from special cases Phinikettos & Gandy, 2011; Genton et al., 2018; Azzimonti & 
Ginsbourger, 2018). Another approach is to use EP approximations as in Cunningham et al. 
(2013), which has a similar computational load of GP-EP for learning the hyperparameters.

We overcome this issue by using the approximation introduced in Benavoli et al. (2020, 
[Prop.2]):

Proposition 1  Lower bound of the CDF:

where B1,… ,Bb are a partition of the training dataset into b random disjoint subsets, |Bi| 
denotes the number of observations in the i-th element of the partition, 𝛾̃Bi

, 𝛤Bi
 are the 

parameters of the posterior computed using only the subset Bi of the data (in the experi-
ments |Bi| = 70).

To compute �|Bi|(⋅) in (42), we use the routine proposed in Trinh and Genz (2015), that 
computes multivariate normal probabilities using bivariate conditioning. This is very fast 
(fractions of a second for |Bi| = 70 ) and returns a deterministic quantity. We therefore opti-
mise the hyperparameters of the kernel by maximising the lower bound in (42) using the 
Dual Annealing optimization routine.15 Another possible way to learn the hyperparameters 
is to exploit the following result.

Proposition 2  Assume that 𝛾̃ does not depend on �i,16 the derivative of log𝛷m(𝛾̃; 𝛤 ) with 
respect to �i is

(42)𝛷m(𝛾̃; 𝛤 ) ≥
b∑
i=1

𝛷|Bi|(𝛾̃Bi
; 𝛤Bi

) − (b − 1),

15  For local search, we use the L-BFGS algorithm with numerical computation of the gradient.
16  The result can easily be extended to the case where 𝛾̃ depends on �i by using a change of variables.
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where 𝛤 �
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Note that, M is the second order moment matrix of a multivariate truncated normal. We 
plan to investigate the use of (batch) stochastic gradient descent methods based on Propo-
sition 2 to learn the hyperparameters on future work. In the next sections, we will use the 
approximation in (42) to optimise the hyperparameters.

5 � Application to active learning and optimisation

The ability of providing a calibrated measure of uncertainty is fundamental for a Bayes-
ian model. In the previous one-dimensional examples, we showed that the true posterior 
(SkewGP) can be highly skewed and so very different from LP and EP’s posteriors. LP 
tends underestimating the uncertainty and EP tends overestimating it. Both methods are not 
able to capture the skewness (asymmetry) of the posterior which, in turn, can lead to sig-
nificant differences in the computed posterior means. In this section we will compare LP, 
EP and SkewGP in two tasks, Bayesian Active Learning and Bayesian Optimization, where 
a wrong representation of uncertainty can lead to a significant performance degradation. In 
all experiments, we employ a RBF kernel and we estimate its parameters by maximising 
the respective marginal likelihood for LP, EP and SkewGP. The Python implementation of 
SkewGPs for regression, classification and mixed problems is available at https://​github.​
com/​benav​oli/​SkewGP. Although the derivations in the previous sections were carried out 
for a generic SkewGP, in the numerical experiments below we will consider as a prior a 
SkewGP with latent dimension s = 0 , that is a GP prior. In this way the only difference 
between LP, EP and SkewGP is the computation of the posterior. For all the models (LP, 
EP and SkewGP) we compute the acquisition functions via Monte Carlo sampling from the 
posterior (using 3000 samples).17

𝜕

𝜕𝜃i
log𝛷m(𝛾̃; 𝛤 ) = −

1

2
Tr
(
𝛤 −1𝛤 �

𝜃i

)
+

1

2
Tr
(
𝛤 −1𝛤 �

𝜃i
𝛤 −1N

)
,

Fig. 8   Left: running time for sampling from the posterior latent function at the training point as a func-
tion of the number of training points for the five methods. Right: Gelman–Rubin statistics for GP-ess and 
SkewGP-ess

17  Although for LP and EP some analytical formulas are available (for instance to compute the Upper 
Credible Bound used in the Bayesian Optimisation section), by using random sampling for all models we 
remove any advantage of SkewGP over LP and EP due to the additional exploration effect of Monte Carlo 
sampling.

https://github.com/benavoli/SkewGP
https://github.com/benavoli/SkewGP
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5.1 � Bayesian active learning

A key problem in machine learning and statistics is data efficiency. Active learning is a 
powerful technique for achieving data efficiency. Instead of collecting and labelling a large 
dataset, which often can be very costly, in active learning one sequentially acquires labels 
from an expert only for the most informative data points from a pool of available unla-
belled data. After each acquisition step, the newly labelled point is added to the training 
set, and the model is retrained. This process is repeated until a suitable level of accuracy is 
achieved. As for optimal experimental design, the goal of active learning is to produce the 
best model with the least possible data. In a nutshell, Bayesian Active Learning consists of 
four steps. 

1.	 Train a Bayesian model on the labeled training dataset.
2.	 Use the trained model to select the next input from the unlabeled data pool.
3.	 Send the selected input to be labeled (by human experts).
4.	 Add the labeled samples to the training dataset and repeat the steps.

In step 2, the next input point is usually selected by maximising an information criterion. 
In this paper, we focus on active learning for binary classification and, consider the Bayes-
ian Active Learning by Disagreement (BALD) information criterion introduced in Houlsby 
et al. (2011):18

with h(p) = −p log(p) − (1 − p) log(1 − p) being the binary entropy function of the prob-
ability p. The next point � is therefore selected by maximising Bald(�).

As Bayesian model we consider a GP classifier (GP prior and probit likelihood) and we 
compute the expectations in (43) via Monte Carlo sampling from the posterior distribution 
of the latent function f.

Our aim is to compare the two approximations for the posterior LP, EP versus the full 
model SkewGP in the above active learning task. We consider eight UCI classification 
datasets.19 Table 2 displays the characteristics of the considered datasets.

They are multiclass dataset which we transformed into binary classification problems 
considering the first class (class 0) versus rest (class 1).20 We start with a randomly selected 
initial labelled pool of 10 data points and we run active learning sequentially for 90 steps. 
We perform 10 trials by starting from a different randomly selected initial pool. Figure 9 
shows, for each dataset, the accuracy (averaged over the 10 trials) as a function of the num-
ber of iterations for LP, EP and SkewGP.

LP performs poorly, in many cases its accuracy does not increase with the number of 
iterations. SkewGP is always the best algorithm and clearly outperforms EP in 6 datasets. 
The reason of this significant difference in performance can be understood from Fig. 10 

(43)Bald(�) = h
(
Ef∼p(f |W)(�(f (�))

)
− Ef∼p(f |W)(h(�(f (�))))

18  It corresponds to the information gain computed in y space.
19  These datasets have recently been used for GP classification in Villacampa-Calvo et al. (2020).
20  Our goal in this section is to assess the effect of the approximation of the posterior process in an active 
learning task by comparing the full posterior (SkewGP) versus LP and EP approximations. For this reason, 
we have preferred to focus on simple binary classification problems where such effect is easier to under-
stand. However, note that, SkewGP can be applied to multiclass classification problems (without binaria-
tion) using the likelihood in (5).
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which reports, for each dataset, the percentage (averaged over 10 trials) of unique input 
instances in the final labelled pool (that is at the end of the 90 iterations). We call it pool 
diversity. A low pool diversity means that the same instance has been included in the pool 
more than once, which is the result of a poor representation of uncertainty. Note in fact that 
LP has always the lowest pool diversity. EP, which provides a better approximation of the 
posterior, performs better, but SkewGP has always the highest pool diversity. SkewGP per-
forms a better exploration of the input space.

5.2 � Bayesian optimisation

We consider the problem of finding the global maximum of an unknown function which is 
expensive to evaluate. For instance, evaluating the function requires conducting an experi-
ment. Mathematically, for a function g on a domain X, the goal is to find a global maxim-
iser �o:

Bayesian optimisation (BO) poses this as a sequential decision problem – a trade-off 
between learning about the underlying function g (exploration) and capitalizing on this 
information in order to find the optimum �o (exploitation).

In BO, it is usually assumed that g(�) can be evaluated directly (numeric (noisy) obser-
vations). However, in many applications, measuring g(�) can be either costly or not always 
possible. In these cases, the objective function g may only be accessed via preference 
judgments, such as “this is better than that” between two candidate solutions �i, �j (like in 
A/B tests or recommender systems). In such situations, Preferential Bayesian optimization 
(PBO) (Shahriari et al., 2015; González et al., 2017) or more general algorithms for active 
preference learning should be adopted  (Brochu et  al., 2008; Zoghi et  al., 2014; Sadigh 
et al., 2017; Bemporad & Piga, 2021). These approaches require the users to simply com-
pare the final outcomes of two different candidate solutions and indicate which they prefer.

There are also applications where either 

1.	 numeric (noisy) measurements and preference, or
2.	 numeric (noisy) measurements and binary observations,

may be available together;
In the next sections, we show how we can use SkewGP as surrogated model for BO in 

these situations and how it outperforms BO based on LP and EP.

5.2.1 � Preferential optimisation

The state-of-the-art approach for PBO (Shahriari et al., 2015; González et al., 2017) uses a 
GP as a prior distribution of the latent preference function and a probit likelihood to model 
the observed pairwise comparisons. The posterior distribution of the preference function 
is approximated via the LP approach. In a recent paper (Benavoli et al., 2021), we showed 
that, by computing the exact posterior (SkewGP), we can outperform LP in PBO. In this 
section, we further compare SkewGP with EP (but we also report LP for completeness). 
For EP, we use the formulation for preference learning discussed by Houlsby et al. (2011), 
which shows that GP preference learning is equivalent to GP classification with a particular 

�o = argmax
�∈X

g(�).
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transformed kernel function. Therefore, we compare three different implementation of 
Bayesian preferential optimisation based on LP, EP, SkewGP.21

In PBO, since g can only be queried via preferences, the next candidate solution � is 
selected by optimizing (w.r.t. � ) a dueling acquisition function �(�, �r) , where �r (reference 
point) is the best point found so far.22 By optimizing �(�, �r) , one aims to find a point that 
is better than �r (but also considering the trade-off between exploration and exploitation). 
After computing the optimum of the the acquisition function, denoted with �n , we query 
the black-box function for �n

?

≻�r . If �n ≻ �r then �n becomes the new reference point ( �r ) 
for the next iteration.

We consider two dueling acquisition functions: (i) Upper Credible Bound (UCB); (ii) 
Expected Improvement Info Gain (EIIG).

UCB: The dueling UCB acquisition function is defined as the upper bound of the mini-
mum width � % (in the experiments we use � = 95 ) credible interval of f (�) − f (�r).

EIIG: The dueling EIIG was proposed in Benavoli et  al. (2021) by combining the 
expected probability of improvement (in log-scale) and the dueling BALD (Houlsby et al., 
2011) (information gain):

where IG(�, �r) = h
�
Ef∼p(f �W)

�
�

�
f (�)−f (�r)√

2�

���
− Ef∼p(f �W)

�
h
�
�

�
f (�)−f (�r)√

2�

���
. This last 

acquisition function balances exploration-exploitation by means of the nonnegative scalar k 
(in the experiments we use k = 0.1).

We have considered for g(�) six benchmark functions: g(x) = cos(5x) + e
−

x2

2  denoted as 
‘1D’ (1D), ‘Six-Hump Camel’ (2D), ‘Langer’ (2D), ‘Colville’ (4D), ‘Rosenbrock5’ (5D) 
and ‘Hartman6’ (6D). These are minimization problems.23 Each experiment begins with 
5 initial (randomly selected) duels and a total budget of 100 duels are run. Further, each 
experiment is repeated 20 times with different initialization (the same for all methods) as in 
González et al. (2017) and Benavoli et al. (2021).

k log
�
Ef∼p(f �W)

�
�

�
f (�)−f (�r)√

2�

���
− IG(�, �r),

Table 2   Characteristics of the 
datasets

Dataset #Instances #Attributes #Classes

Glass 214 9 6
New-thyroid 215 5 3
Satellite 6435 36 6
Svmguide2 391 20 3
Vehicle 846 18 4
Vowel 540 10 6
Waveform 5000 21 3
Wine 178 13 3

21  For LP and EP, we use GPy (2012).
22  More precisely, we assume that preferential observation compares the current input with the best input 
found so far �r.
23  We converted them into maximizations so that the acquisition functions are well-defined.
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Figure  11 reports the performance of the different methods. Consistently across 
all benchmarks PBO-SkewGP outperforms both PBO-LP and PBO-EP (no matter the 
acquisition function.) This confirms for PBO what previously noticed for active learn-
ing: a wrong uncertainty representation leads to a non optimal exploration of the input 
space and, therefore, to a slower convergence in active learning tasks.

Fig. 9   Averaged results over 10 trials for LP, EP and SkewGP on the 8 UCI datasets. The x-axis represents 
the number of iterations and the y-axis represents the classification accuracy
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5.2.2 � Mixed numerical and preferential BO

We repeat the previous experiments considering mixed type observations, that is g can be 
queried directly (numeric data) and via preferences. Each experiment begins with 5 initial 
(randomly selected) duels (preferences) and 5 numeric (scalar) observations of g. A total 
budget of 100 iterations is considered and we assume that at the iteration 4, 8, 12, 16,… g 
is queried directly and in all the other iterations is queried via preferences (with respect 
to xr ). Each experiment is repeated 20 times with different initialization (the same for all 
methods). In this case, we only consider the UCB acquisition function, which is valid for 
both numeric and preference data.24

Fig. 10   Averaged pool diversity (percentage) in the active learning task

Fig. 11   Averaged results over 20 trials for PBO for LP, EP and SkewGP on the 6 benchmark functions 
considering 2 different acquisition functions. The x-axis represents the number of iterations and the y-axis 
represents the value of the true objective function at the current optimum �r

24  Observe in fact that the Bald criterion assumes binary observations.
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Figure 12 shows the performance of the different methods. As expected,25 the dif-
ferences between the three approaches tend to be smaller than preference-only BO, 
especially in the low dimensional problems. However, also in this case, BO-SkewGP 
outperforms both BO-LP and BO-EP.

5.2.3 � Safe Bayesian optimisation

Safe BO (Sui et al., 2015) is an extension of BO, which aims to solve the constrained opti-
mization problem:

where g is an unknown function and h ∈ ℝ is a safety threshold. The set 
S = {� ∈ X ∣ g(�) ≥ h} is called the safe set. This safe set is not known initially (because 
g is unknown), but is estimated after each function evaluation. Note that, in safe optimisa-
tion, the algorithm should avoid (with high probability) unsafe points. Therefore, the chal-
lenge is to find an appropriate strategy, which at each iteration not only aims to find the 
global maximum within the currently known safe set Ŝ  (exploitation), but also aims to 
increase the size of Ŝ  including inputs � that are known to be safe (exploration). Different 
strategies and approaches are discussed in Sui et al. (2015).

�o = argmax
�∈X

g(�) s.t. g(�) ≥ h,

Fig. 12   Averaged results over 20 trials for mixed-PBO for LP, EP and SkewGP on the 6 benchmark func-
tions considering the UCB acquisition function. The x-axis represents the number of iterations and the 
y-axis represents the value of the true objective function at the current optimum �r

25  LP, EP and SkewGP coincides in case the observations are all numeric.
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In Safe BO, it is usually assumed that g can be queried directly. Given a certain input 
�k , we instead assume that when g(�k) < h no output is produced. As discussed for (40), in 
this case the space of possibility is {(valid, g(�k)), (non-valid,None)} – an input � is valid 
whether � ∈ S .

We can address this BO problem using the general framework (Berkenkamp et  al., 
2016a, b), that is we employ a GP regression model to learn g using only valid data and 
a GP classifier (with two classes valid and non-valid) to learn the sign of the constraint.26

We compare the above approach with a BO strategy that uses SkewGP as conjugate prior 
for the likelihood (40) and, therefore, addresses the two types of observations as a mixed 
numeric and binary regression problem. As acquisition function we use UCB plus a a 
term that penalises violations of the constraint with high probability 1000(P[f < 0] < 0.7) , 
where P is computed by sampling the function f from SkewGP.

In the experiments, we sample (using rejection sampling) a set of 100 random functions 
g from a zero-mean GP with RBF kernel (with variance 2 and lengthscale uniformly sam-
pled in the interval [1, 2]), which satisfies g(0) ≥ 0 . This ensures that x = 0 is an initial safe 
input. This point serves as a starting point for both the algorithms.

The dependence between the kernel hyperparameters and the acquired data can lead to 
poor results in BO (especially in the first iterations). In fact, hyperparameters estimated 
by maximising the marginal likelihood can lead to a GP estimate which does not have a 
calibrated uncertainty. In Safe BO (Berkenkamp et al., 2016a, b), one critically relies on 
the uncertainty to guarantee safety (avoiding constraint violation with high probability). As 
a consequence, the hyperparameters are kept fixed and we treat the kernel as a prior over 
functions in the true Bayesian sense – the kernel hyperparameters encode our prior knowl-
edge about the functions. Therefore, in the experiment we set the variance of the RBF ker-
nel to 2 and the lengthscale to 1.5.27

Figures 13 and 14 report 7 iterations of the two approaches, which we call as SafeOpt 
and SkewGP-BO, for one of the 100 trials. Figure 13(Iter. 0, left) shows the true function g 
in gray; the estimated GP regression model (mean and 99.7 credible interval) after observ-
ing the safe point x = 0 (top plot); the estimated GP classifier (mean and 99.7 credible 
interval of the latent function) after observing the valid point x = 0 (bottom plot). The x 
in the plots corresponds the value of g(0) in the top-plot and to the binary observation 1 
(which means valid) in the bottom-plot. Figure 13(Iter. 0, right) shows the posterior mean 
and 99.7 credible interval for SkewGP, which solves the mixed numeric and binary regres-
sion problem. We use xs to mark numeric observations and circle to mark binary observa-
tions (the ordinate +4 corresponds to valid and −4 to non-valid).

At iteration 1, SkewGP-BO selects a non-valid point Fig.   13(Iter. 1, right), while 
SafeOpt selects a valid one, finding a better maximum Fig. 13(Iter. 1, left).

At iteration 2, SkewGP-BO selects a valid point and finds a better maximum Fig. 13(Iter. 
2, right), while GP-SafeOpt violates the constraint Fig. 13(Iter. 2, left).

At iteration 3, SkewGP-BO selects a non-valid point Fig.  13(Iter. 3, right), while 
SafeOpt selects a valid point Fig. 13(Iter. 3, left).

At iteration 4 and 5, SkewGP-BO finds the maximum Fig. 14(Iter. 4 and 5, right), while 
SafeOpt explores the valid region Fig. 14(Iter. 4 and 5, left).

At iteration 6, SafeOpt violates the constraint Fig. 14(Iter. 6, left).

26  We have used the SafeOpt library (Berkenkamp et al., 2016a, b) with � = 0.85 and used the EP approxi-
mation for GP classification.
27  The lengthscale can be different from the true one which is uniformly sampled in [1, 2].
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At iteration 7, SafeOpt finally finds the maximum Fig. 14(Iter. 7, left).
Figure 15 reports the averaged results over 100 trials for SafeOpt versus SkewGP-BO. 

The x-axis represents the number of iterations and the y-axis represents the value of the 
true objective function at the current optimum �r . SkewGP-BO achieves the best perfor-
mance. Both SafeOpt and SkewGP-BO are very unlikely to explore the unsafe region (51 
violations for SafeOpt and 53 for SkewGP-BO in the 3000 acquisitions). This shows that, 
when Safe BO can be modelled as a mixed problem,28 SkewGP provides faster conver-
gence than using two separated surrogated models (GPs) for objective and constraint.

6 � Conclusions

We have shown that Skew Gaussian process (SkewGP) are conjugate to the normal like-
lihood, the probit affine likelihood and with their product, and provided marginals and 
closed form conditionals. SkewGPs allow us to compute the exact posterior in all these 
cases and, therefore, provide an accurate representation of the uncertainty. From a theo-
retical point of view, this shows that SkewGPs encompass GPs in nonparametric regres-
sion, classification, preference learning and mixed problems. From a practical point of 
view, we compared SkewGPs with GPs (Laplace and Expectation Propagation approxima-
tion) in two tasks, Bayesian Active Learning and Bayesian Optimization, where a wrong 
representation of uncertainty can lead to a significant performance degradation. SkewGP 
achieved an improved performance over GPs (Laplace’s method and Expectation Propaga-
tion approximations).

As future work, we plan to investigate the possibility of using inducing points, as for 
sparse GPs (Quiñonero-Candela & Rasmussen, 2005; Snelson & Ghahramani, 2006; Tit-
sias, 2009; Hensman et  al., 2013; Hernández-Lobato & Hernández-Lobato, 2016; Bauer 
et  al., 2016; Schuerch et  al., 2020), to reduce the computational load for matrix opera-
tions (complexity O(n3) with storage demands of O(n2) ). We also plan to derive tighter 
approximations of the marginal likelihood. Moreover, we plan to study different ways to 
parametrize the skewness matrix � and select the prior parameters �,�  , which allows one 
to fully exploit the flexibility of SkewGPs. We also plan to investigate the possibility of 
extending these results to a larger class of processes, Extended SkewGPs, studied in Alodat 
and Al-Rawwash (2014).

Appendix: Proofs of the results in the paper

Proof Lemma 1 and Corollary 1  The likelihood is �mr
(Y − Cf ;R) , where Y ∈ ℝ

ma is the 
vector of observations; f ∈ ℝ

n is the vector of function values at the input points �i for 
i = 1,… , n and the prior is:

(44)p(f ) = 𝜙n(f − �;𝛺)
𝛷s

(
𝛾 + 𝛥T𝛺̄−1D−1

𝛺
(f − �);𝛤 − 𝛥T𝛺̄−1𝛥

)
𝛷s(𝛾;𝛤 )

.

28  The framework for safe BO in Berkenkamp et  al. (2016a, b) is more general and cannot always be 
expressed as a mixed problem.
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Fig. 13   Iterations 0–3, GP-SafeOpt (left) and SkewGP-SafeOpt (right)
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Fig. 14   Iterations 4–7, GP-SafeOpt (left) and SkewGP-SafeOpt (right)
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First, note that

with

Now consider 𝛷s

(
𝛾 + 𝛥T𝛺̄−1D−1

𝛺
(f − 𝜉);𝛤 − 𝛥T𝛺̄−1𝛥

)
 and observe that

with

Finally observe that

with 𝛤p = 𝛤 − 𝛥T𝛺̄−1𝛥 + 𝛥T
p
𝛺̄−1

p
𝛥p . Putting everything together

By considering the derivations of the above expression, we can derive the marginal 
likelihood

�mr
(Y − Cf ;R)�n(f ; �,�) ∝ �n(f − �p;�p),

(45)�p = � +�CT (C�CT + R)−1(Y − C�),

(46)�p = � −�CT (C�CT + R)−1C�.

𝛾 + 𝛥T𝛺̄−1D−1
𝛺
(f − 𝜉) = 𝛾 + 𝛥T𝛺̄−1D−1

𝛺
(f − 𝜉p + 𝜉p − 𝜉)

= 𝛾 + 𝛥T𝛺̄−1D−1
𝛺
(𝜉p − 𝜉) + 𝛥T𝛺̄−1D−1

𝛺
(f − 𝜉p)

= 𝛾 + 𝛥T𝛺̄−1D−1
𝛺
(𝜉p − 𝜉) + 𝛥T𝛺̄−1D−1

𝛺
D𝛺p𝛺̄p𝛺̄

−1
p
D𝛺

−1
p
(f − 𝜉p)

= 𝛾p + 𝛥T
p
𝛺̄−1

p
D𝛺

−1
p
(f − 𝜉p)

(47)𝛾p = 𝛾 + 𝛥T𝛺̄−1D−1
𝛺
(𝜉p − 𝜉)

(48)𝛥T
p
= 𝛥T𝛺̄−1D−1

𝛺
D𝛺p𝛺̄p

𝛤 − 𝛥T𝛺̄−1𝛥 = 𝛤 − 𝛥T𝛺̄−1𝛥 + 𝛥T
p
𝛺̄−1

p
𝛥p − 𝛥T

p
𝛺̄−1

p
𝛥p = 𝛤p − 𝛥T

p
𝛺̄−1

p
𝛥p

p(f |Y) = 𝜙n(f − 𝜉p;𝛺p)
𝛷s

(
𝛾p + 𝛥T

p
𝛺̄−1

p
D𝛺

−1
p
(f − 𝜉p);𝛤p − 𝛥T

p
𝛺̄−1

p
𝛥p

)

𝛷s

(
𝛾p;𝛤p

)

Fig. 15   Averaged results over 
100 trials for GP-SafeOpt versus 
SkewGP. The x-axis represents 
the number of iterations and the 
y-axis represents the value of 
the true objective function at the 
current optimum �r
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	�  ◻

Proof Theorem 1  Consider the test point � ∈ ℝ
d and the vector f̂ =

[
f (X)

f (�)

]
∶= [�⊤ f∗]

⊤ we 

have

and the predictive distribution is by definition

We can then apply Lemma  1 with f̂  and the likelihood 

p([C ∣ �] ∣ f̂ ) = 𝜙n

(
Y − [C ∣ �]

[
f (X)

f (�)

]
;R

)
 which results in a posterior distribution

with

For 𝛥 , from Lemma 1, one has

where

�n(Y − C�;C�CT + R)
�s(�p,�p)

�s(� ,� )
.

p(� , f∗) = SkewGP

([
�(X)

�(�)

]
,

[
�(X,X) �(X, �)

�(�,X) �(�, �)

]
,

[
�(X)

�(�)

]
, � ,�

)

p(f∗ ∣ Y) = ∫ p(f∗ ∣ � )p(� ∣ Y)d�

= ∫ p(f∗ ∣ � )
p(Y ∣ � )p(� )

p(Y)
d�

∝ ∫ p(f∗, � )p(Y ∣ � )d�

p

([
f (X)

f (�)

]
∣ [Y ∣ �]

)
= SUNn+1,s(�̂, 𝛺̂,𝛥, 𝛾̂ ,𝛤 )

(49)�̂ =

[
𝜉(X)

𝜉(�)

]
+

[
𝛺(X,X)

𝛺(�,X)

]
CT (C𝛺CT + R)−1(Y − C𝜉(X))

(50)𝛺̂ =

[
𝛺(X,X) 𝛺(X, �)

𝛺(�,X) 𝛺(�, �)

]
−

[
𝛺(X,X)

𝛺(�,X)

]
CT (C𝛺CT + R)−1C

[
𝛺(X,X) 𝛺(X, �)

]

𝛥 = D−1

𝛺̂
𝛺̂

[
𝛺(X,X) 𝛺(X, �)

𝛺(�,X) 𝛺(�, �)

]−1
D𝛺

[
𝛥(X)

𝛥(�)

]
= D−1

𝛺̂

[
A1 A2

A3 A4

]
D𝛺

[
𝛥(X)

𝛥(�)

]

=

[
D−1

𝛺̂(X,X)
A1D𝛺(X,X)𝛥(X) + D−1

𝛺̂(X,X)
A2D𝛺(�,�)𝛥(�)

D−1

𝛺̂(�,�)
A3D𝛺(X,X)𝛥(X) + D−1

𝛺̂(�,�)
A4D𝛺(�,�)𝛥(�)

]
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Since we are interested in the marginal, we only need to compute A3 and A4:

and

Finally, we will show that:

By Lemma 1

Note that

and so 𝛾̂ = 𝛾p as in Lemma 1. Similarly, one can show that 𝛤 = 𝛤p.
By exploiting the marginalization properties of the SUN distribution, see Sect. 2.3 and 

in particular (9), we can derive that

�
A1 A2

A3 A4

�
= 𝛺̂

�
𝛺(X,X) 𝛺(X, �)

𝛺(�,X) 𝛺(�, �)

�−1

= 𝛺̂

⎡⎢⎢⎢⎣

𝛺(X,X)−1 +𝛺(X,X)−1𝛺(X, �)
�
𝛺(�, �) −𝛺(�,X)𝛺(X,X)−1𝛺(X, �)

�−1
𝛺(�,X)𝛺(X,X)−1

−𝛺(X,X)−1𝛺(X, �)
�
𝛺(�, �) −𝛺(�,X)𝛺(X,X)−1𝛺(X, �)

�−1
−
�
𝛺(�, �) −𝛺(�,X)𝛺(X,X)−1𝛺(X, �)

�−1
𝛺(�,X)𝛺(X,X)−1

�
𝛺(�, �) −𝛺(�,X)𝛺(X,X)−1𝛺(X, �)

�−1

⎤⎥⎥⎥⎦

A3 =
(
�(�,X) −�(�,X)CT (C�(X,X)CT + R)−1C�(X,X)

)
(
�(X,X)−1 +�(X,X)−1�(X, �)

(
�(�, �) −�(�,X)�(X,X)−1�(X, �)

)−1

�(�,X)�(X,X)−1
)

−
(
�(�, �) −�(�,X)CT (C�(X,X)CT + R)−1C�(X, �)

)

(
�(�, �) −�(�,X)�(X,X)−1�(X, �)

)−1
�(�,X)�(X,X)−1

= −�(�,X)CT (C�(X,X)CT + R)−1C

A4 = −
(
�(�,X) −�(�,X)CT (C�(X,X)CT + R)−1C�(X,X)

)

�(X,X)−1�(X, �)
(
�(�, �) −�(�,X)�(X,X)−1�(X, �)

)−1

+
(
�(�, �) −�(�,X)CT (C�(X,X)CT + R)−1C�(X, �)

)

(
�(�, �) −�(�,X)�(X,X)−1�(X, �)

)−1
= I�

𝛾̂ = 𝛾p,

𝛤 = 𝛤p.

𝛾̂ = 𝛾 + [𝛥(X),𝛥(�)]D𝛺𝛺
−1(𝜉p − 𝜉)

= 𝛾 + [𝛥(X),𝛥(�)]D𝛺

[
𝛺(X,X) 𝛺(X, �)

𝛺(�,X) 𝛺(�, �)

]−1

[
𝛺(X,X)

𝛺(�,X)

]
CT (C𝛺CT + R)−1(Y − C𝜉(X))

[
�(X,X) �(X, �)

�(�,X) �(�, �)

]−1 [
�(X,X)

�(�,X)

]
=

[
�(X,X)−1

0

]
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with mean, scale, and skewness functions:

	�  ◻

Lemma 2 This proof is based on the proofs in Durante (2019, Th.1 and Co.4), and consider the 
more general class of affine probit likelihoods.

The joint distribution of f(X), W, Z is

where we denoted � = f (X) ∈ ℝ
n and omitted the dependence on X. First, note that

Therefore, we can write

with

and

From (55)–(56) and the definition of the PDF of the SUN distribution (6), we can easily 
show that we can rewrite (55) as a SUN distribution with updated parameters:

(51)p(f (�) ∣ C, Y , f (X)) = SUN1,s

(
𝜉(�), 𝛺̃(�, �),𝛥(�), 𝛾p,𝛤p

)
.

(52)�̃(�) = �(�) +𝛺(�,X)CT (C𝛺(X,X)CT + R)−1(Y − C𝜉(X)),

(53)𝛺̃(�, �) = 𝛺(�, �) −𝛺(�,X)CT (C𝛺(X,X)CT + R)−1C𝛺(X, �),

(54)
𝛥(�) = D−1

𝛺̂(�,�)
D𝛺(�,�)𝛥(�) − D−1

𝛺̂(�,�)
𝛺(�,X)CT (C𝛺(X,X)CT + R)−1CD𝛺(X,X)𝛥(X).

(55)

p(W, Z|f (X))p(f (X))
= 𝛷ma

(Z +W� ;𝛴) SUNn,s(�,𝛺,𝛥, 𝛾 ,𝛤 )

= 𝛷ma
(Z +W� ;𝛴) 𝜙n(� − �;𝛺)

𝛷s

(
𝛾 + 𝛥T𝛺̄−1D−1

𝛺
(� − �);𝛤 − 𝛥T𝛺̄−1𝛥

)
𝛷s(𝛾;𝛤 )

∝ 𝜙n(� − �;𝛺)𝛷ma
(Z +W� ;𝛴)𝛷s

(
𝛾 + 𝛥T𝛺̄−1D−1

𝛺
(� − �);𝛤 − 𝛥T𝛺̄−1𝛥

)
,

𝛷ma
(Z +W� ;𝛴) = 𝛷ma

(
Z +W� + (𝛺̄D𝛺W

T )T𝛺̄−1D−1
𝛺
(� − �);(W𝛺WT + 𝛴)

−WD𝛺𝛺̄D𝛺W
T
)
.

(56)

𝛷ma
(Z +W� ;𝛴)𝛷s

(
𝛾 + 𝛥T𝛺̄−1D−1

𝛺
(� − �);𝛤 − 𝛥T𝛺̄−1𝛥

)

= 𝛷ma

(
Z +W� + (𝛺̄D𝛺W

T )T𝛺̄−1D−1
𝛺
(� − �);(W𝛺WT + 𝛴) −WD𝛺𝛺̄D𝛺W

T
)

⋅𝛷s

(
𝛾 + 𝛥T𝛺̄−1D−1

𝛺
(� − �);𝛤 − 𝛥T𝛺̄−1𝛥

)

= 𝛷s+ma
(m;M)

m =

[
𝛾 + 𝛥T𝛺̄−1D−1

𝛺
(� − �)

Z +W� + (𝛺̄D𝛺W
T )T𝛺̄−1D−1

𝛺
(� − �)

]
,

M =

[
𝛤 − 𝛥T𝛺̄−1𝛥 0

0 (W𝛺WT + 𝛴) −WD𝛺𝛺̄D𝛺W
T

]
.
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Theorem 2 Consider the test point � ∈ ℝ
d and the vector f̂ =

[
f (X)

f (�)

]
∶= [� f∗] we have

and the predictive distribution is by definition

We can then apply Lemma 2 with f̂  and the likelihood

which does not depend on f (�) . This results in a posterior distribution

with

with 𝛾̃ ,𝛤  from Lemma 2. By exploiting the marginalization properties of the SUN distribu-
tion, see Sect. 2.3, we obtain

𝜉 = 𝜉,

𝛺̃ = 𝛺,

𝛥 = [𝛥, 𝛺̄D𝛺W
T ],

𝛾̃ = [𝛾 , Z +W𝜉]T ,

𝛤 =

[
𝛤 𝛥TD𝛺W

T

WD𝛺𝛥 (W𝛺WT + 𝛴)

]
.

p(� , f∗) = SkewGP

([
�(X)

�(�)

]
,

[
�(X,X) �(X, �)

�(�,X) �(�, �)

]
,

[
�(X)

�(�)

]
, � ,�

)

p(f∗ ∣ W, Z) = ∫ p(f∗ ∣ � )p(� ∣ Z,W)d�

= ∫ p(f∗ ∣ � )
p(Z,W ∣ � )p(� )

p(Z,W)
d�

∝ ∫ p(f∗, � )p(Z,W ∣ � )d�

p

([
Z

�

]
, [W �] ∣ f̂

)
= 𝛷ma+1

([
Z

�

]
+ [W �]

[
f (X)

f (�)

]
;

[
𝛴 �

� 1

])

p

([
f (X)

f (�)

]
∣

[
Z

�

]
, [W �]

)
= SUNn+1,ma

(�̂, 𝛺̂,𝛥, 𝛾̂ ,𝛤 )

�̂ = [𝜉(X) 𝜉(�)]T

𝛺̂ =

[
𝛺(X,X) 𝛺(X, �)

𝛺(�,X) 𝛺(�, �)

]

𝛥 =

[[
𝛥(X)

𝛥(�)

]
D−1

𝛺

[
𝛺(X,X) 𝛺(X, �)

𝛺(�,X) 𝛺(�, �)

]
[W �]T

]
=

[
𝛥(X) D−1

𝛺(X,X)
𝛺(X,X)WT

𝛥(�) D−1
𝛺(�,�)

𝛺(�,X)WT

]

𝛾̂ = 𝛾̃ ,

𝛤 = 𝛤 ,

(57)p(f (�) ∣ W, f (X)) = SUN1,s+ma

(
𝜉(�),𝛺(�, �),

[
𝛥(�) D−1

𝛺(�,�)
𝛺(�,X)WT

]
, 𝛾̃ ,𝛤

)
.
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Proposition 2

where 𝛤 �
𝜃i
=

𝜕

𝜕𝜃i
𝛤  and N =

1

𝛷m(𝛾̃; 𝛤 )
∬ 𝛾̃

−∞
��T

1

|2𝜋𝛤 |e
−

1

2
�T𝛤−1�

d� . In the derivations, we have 

exploited that 𝜕

𝜕𝜃i
|𝛤 | = |𝛤 |Tr(𝛤 −1 𝜕

𝜕𝜃i
𝛤 ) and that 𝜕

𝜕𝜃i
𝛤 −1 = −𝛤 −1

(
𝜕

𝜕𝜃i
𝛤

)
𝛤 −1.
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