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Abstract
The theoretical and empirical performance of Empirical Risk Minimization (ERM) often 
suffers when loss functions are poorly behaved with large Lipschitz moduli and spurious 
sharp minimizers. We propose and analyze a counterpart to ERM called Diametrical Risk 
Minimization (DRM), which accounts for worst-case empirical risks within neighborhoods 
in parameter space. DRM has generalization bounds that are independent of Lipschitz 
moduli for convex as well as nonconvex problems and it can be implemented using a prac-
tical algorithm based on stochastic gradient descent. Numerical results illustrate the abil-
ity of DRM to find quality solutions with low generalization error in sharp empirical risk 
landscapes from benchmark neural network classification problems with corrupted labels.

Keywords Empirical risk minimization · Generalization error · Solution stability

1 Introduction

In stochastic optimization, the minimum value of the empirical risk exhibits a down-
ward bias and the corresponding minimizers are therefore often poor in terms of their 
true (population) risk. Lipschitz continuity1 is often brought in as a critical component 
in attempts to assess the quality of such minimizers, with the Lipschitz moduli of loss 
functions relative to model parameters (weights) entering in generalization bounds and 
other results for Empirical Risk Minimization (ERM) problems; see for example Bar-
tlett et  al. (2017), Bousquet and Elisseeff (2002), Charles and Papailiopoulos (2018), 
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Hardt et al. (2016) and Shalev-Shwartz et al. (2010). In this work, we propose a coun-
terpart to ERM called Diametrical Risk Minimization (DRM) that possesses a generali-
zation bound which is independent of Lipschitz moduli for convex as well as nonconvex 
loss functions. Preliminary simulations on benchmark Neural Network (NN) classifica-
tion problems with MNIST and CIFAR-10 datasets support the hypothesis that when 
problems have large Lipschitz moduli, DRM is able to locate quality solutions with low 
generalization error, while ERM comparatively struggles.

The empirical risk as a function of model parameters in a learning problem has 
a graph, which we refer to as the empirical risk landscape; see the solid red line in 
Fig. 1a. The process of training the model then amounts to determining parameters that 
correspond to the bottom of a “valley” in this landscape. A large Lipschitz modulus 
tends to produce a sharp empirical risk landscape, where the empirical risk is highly 
variable with sudden “drops” of the kind labelled as a sharp minimizer in Fig. 1a. If the 
Lipschitz modulus is low, at least locally, then the empirical risk landscape is flat as to 
the left in Fig. 1a and the resulting minimizer is flat.

Instead of the empirical risk, DRM considers the diametrical risk at a point in the 
parameter space, which is given by the worst-case empirical risk in a neighborhood of 
the point. This provides DRM with a broader view of the empirical risk landscape than 
ERM and results in improved performance when the landscape is sharp.

Dealing with empirical risk landscapes that have large Lipschitz moduli and sharp 
minimizers is a challenge that has seen renewed attention in recent years under the head-
ing of sharp vs flat minimizers in landscapes generated by NN. It is hypothesized that the 
landscape of NN problems are chaotic (Li et  al., 2018; Nguyen & Hein, 2017) and that 
flat minimizers have better generalization properties compared to sharp ones (Chaudhari 
et al., 2017; Hochreiter & Schmidhuber, 1997; Keskar et al., 2016; Sagun et al., 2016). The 
potential effects can be seen in Fig. 1a, which also depicts the true risk in a learning prob-
lem (black dashed line). The spurious dip (right-most valley) of the empirical risk land-
scape is caused by a large Lipschitz modulus. Since ERM seeks out such dips, the result-
ing minimizer is poor when assessed using the true risk. We would have preferred that 
ERM found the left-most valley where any of its obtained minimizers would have had a 
low true risk. Although the figure is conceptual, it is believed that landscapes of NNs may 
exhibit similar behavior (Keskar et al., 2016). Thus, it has been a goal of many researchers 
to either locate the flat minimizers of such problems or to construct loss functions and/or 
NN architectures which do not have a large number of sharp minimizers (Chaudhari et al., 
2017; Gouk et al., 2018; Keskar et al., 2016; Sagun et al., 2016).

(b)(a)

Fig. 1  The empirical risk forms the empirical risk landscape and can be quite different than the true risk
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Figure  1b illustrates a different kind of sharpness, which can be induced by intro-
ducing label noise as explored in Zhang et al. (2016) and Oymak et al. (2019). When a 
portion of labels are randomly flipped, it has been shown that NNs are capable of fitting 
the training data perfectly, achieving a zero-training error solution. However, this solu-
tion clearly will not generalize and lies near a sharp minimizer which is associated with 
the fitting of the incorrectly labeled training data. Nevertheless, it has been shown that, 
even in the presence of label noise, there still exist flat minimizers such as the left-most 
one in Fig.  1b. It is immediately clear that DRM may perform well and achieve flat 
minimizers even in landscapes with spurious sharp minimizers due its broader view of 
the empirical risk landscape.

Lipschitz moduli frequently play a direct role in statistical learning theory. For exam-
ple, a paradigm in learning theory is the analysis of algorithmic stability (Bousquet & 
Elisseeff, 2002; Charles & Papailiopoulos, 2018; Hardt et  al., 2016; Shalev-Shwartz 
et  al., 2010). However, a majority of these learning bounds require some notion of 
smoothness in terms of either a Lipschitz continuous objective function and/or Lip-
schitz continuous gradient. The Lipschitz moduli then enter the resulting generalization 
bounds and influence the (theoretical) stability of the algorithm used to perform ERM. 
The reliance of these and other generalization bounds (Bartlett et  al., 2017) on the 
magnitude of the Lipschitz moduli, as well as the growing support for the sharp-vs-flat 
hypothesis, have even given rise to research centered on Lipschitz regularization (Gouk 
et al., 2018; Oberman & Calder, 2018; Qian & Wegman, 2018) for improving the gener-
alization of NNs. We provide generalization bounds, however, that do not rely upon the 
Lipschitz moduli: DRM can be applied to sharp empirical risk landscapes with resulting 
solutions having low generalization error. Eliminating the dependence on the Lipschitz 
modulus does, however, come with a cost. The provided bounds rely somewhat unfa-
vorably on the dimension of the parameter space. Still, experiments indicate that this is 
a limitation of the proof approach and not a fundamental limitation of DRM in general. 
We carry out experiments in a NN setting where the dimension of the parameter space 
is larger than the number of training samples. Even in this setting, we find that DRM 
solutions generalize favorably compared to solutions found via ERM.

Although not studied in detail, DRM may also support training in the context of 
quantification where parameters are represented with lower precision (Dong et  al., 
2019). There, the explicit robustification in DRM against parameter perturbations could 
emerge as beneficial.

The downward bias associated with ERM has been known since the early days of sto-
chastic optimization and M-estimators. Traditional remedies include a variety of regu-
larization schemes, focused on alteration of the objective function (Bertsimas & Copen-
haver, 2018; Bousquet & Elisseeff, 2002; Liu et al., 2019) or the optimization procedure 
itself with, for example, early stopping (Hardt et  al., 2016; Royset, 2013; Royset & 
Szechtman, 2013). Another remedy is to replace ERM by the problem of minimizing 
the distributionally worst-case empirical risk; see for example Bertsimas et al. (2018), 
Duchi et  al. (2018), Royset and Wets (2017), Wiesemann et  al. (2014), Zhang et  al. 
(2016) and references therein. Typically, the worst-case is defined in terms of a ball in 
some metric on a space of probability measures centered on the empirical distribution 
generated by the available data. Adversarial training (Madry et  al., 2018) is a closely 
related approach where the worst-case is computed by perturbing the data directly as 
for classical robust M-estimators in statistics; see also Carmon et  al. (2019), Cohen 
et al. (2019), Liao et al. (2018) and Zhang et al. (2019) for other efforts to achieve NNs 
that are robust against data perturbations. DRM is distinct from these approaches by 
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perturbing the parameter vector instead of the distribution governing the data or the 
data itself.

Perturbation of a parameter vector as a means to account for “implementation error” of 
a decision or design specified by the vector is included as a motivation for Robust Optimi-
zation (Ben-Tal & Nemirovski, 1998); see Stinstra and den Hertog (2008) for application 
in the context of meta-models and Men et al. (2014) for fabrication problems. The latter 
reference as well as Lewis (2002) and Lewis and Pang (2010) lay theoretical and compu-
tational foundations for minimizing functions of the form w ↦ supv∈V f (w + v) that include 
establishing Lipschitz continuity even if f is rather general. In particular, the minimization 
of such sup-functions can be achieved by semidefinite programming (Lewis, 2002; Luo 
et al., 2004) when f is convex and quadratic. Examples of “robustification” by considering 
a worst-case parameter vector are also found in signal processing (Luo, 2003; Pinar & Ari-
kan, 2004). Concurrent to the present work, Wu et al. (2020) develops an approach based 
on perturbation of parameters and data with strong empirical performance. The theoreti-
cal results are limited to a PAC-Bayes bound where an assumption on the distribution of 
parameters allows one to conclude that the approach has a robust generalization bound that 
involves the expectation of the “flatness” of the empirical risk landscape. Though, details 
of the argument are omitted. A more detailed theoretical analysis is carried in Tsai et al. 
(2021) for the specific class of feed-forward neural networks with non-negative monotone 
activation functions against norm-bounded parameter perturbations. In contrast, we con-
sider nearly arbitrary neural networks and in fact stochastic optimization more generally as 
well.

The remainder of this paper is organized as follows. Section  2 introduces DRM and 
illustrates the difficulties faced by ERM when loss functions are poorly behaved. In Sect. 3, 
we provide a theoretical analysis of DRM that includes generalization bounds independ-
ent of Lipschitz moduli. In Sect. 4, we propose a practical algorithm for performing DRM 
based on stochastic gradient descent (SGD). We then provide an experimental study in 
Sect. 5, with a focus on supporting the idea that DRM can find good solutions to problems 
with sharp empirical risk landscapes. Code for the experiments is available online.2

2  Diametrical Risk Minimization

For a loss function � ∶ ℝ
n ×ℝ

d
→ ℝ and sample S = {z1,… , zm} ⊂ ℝ

d , it is well known 
that the ERM problem

can be a poor surrogate for the actual problem of minimizing the true risk 
R(w) = �z[�(w, z)] . Here, Rm(w) is the empirical risk of parameter vector w. Specifically, 
a (near-)minimizer w⋆

m
 of Rm tends to have true risk R(w⋆

m
) significantly higher than that 

stipulated by Rm(w
⋆

m
) ; cf. the difference between the solid red line illustrating Rm and the 

dashed black line illustrating R in Fig. 1a. The effect worsens when the loss �(w, z) varies 
dramatically under changing parameters w, which is the case when 𝓁(⋅, z) has a large Lip-
schitz modulus.

minimize
w∈ℝn

Rm(w) =
1

m

m∑

i=1

�(w, zi)

2 https:// github. com/ matth ew- norton/ Diame trical_ Learn ing.

https://github.com/matthew-norton/Diametrical_Learning
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In this section, we propose an alternative that we coin Diametrical Risk Minimization 
(DRM). In contrast to common robustification strategies based on perturbing the data set, 
DRM perturbs the parameters and thereby obtains stability even for poorly behaved loss 
functions. Instead of minimizing Rm directly as in ERM, any learned parameter vector w is 
“diametrically” modified before the empirical risk is minimized.

Definition 2.1 For a loss function � ∶ ℝ
n ×ℝ

d
→ ℝ and sample S = {z1,… , zm} ⊂ ℝ

d , 
the diametrical risk of a parameter vector w ∈ ℝ

n is given as

where � ∈ [0,∞) is the diametrical risk radius.

We see that the diametrical risk of parameter vector w ∈ ℝ
n is the worst possible empir-

ical risk in a neighborhood of w. Any norm ‖ ⋅ ‖ can be used to define the neighborhood. 
Trivially, R0

m
(w) = Rm(w) , but generally R�

m
(w) ≥ Rm(w).

For some set W ⊂ ℝ
n of permissible parameter vectors, the DRM problem amounts to

and results in a solution w�

m
 , which might be a global minimizer, a local minimizer, a sta-

tionary point, or some other parameter vector with “low” diametrical risk.
As we show in Theorem 3.3, under mild assumptions,

with high probability for some constant � regardless of the exact nature of w�

m
 . In particu-

lar, w�

m
 generalizes even if obtained after aggressive minimization of the diametrical risk; 

DRM is inherently resistant to overfitting.
Two examples illustrate the challenge faced by ERM when loss functions have large 

Lipschitz moduli (with respect to parameters w). In both examples, we will see that the 
generalization error for DRM is dramatically smaller than for ERM. For � ∈ (1,∞) and 
� ∈ (0, 1) , let

If z takes the values 0 and 1, each with probability 1
2
 , then R(w) = �z[�(w, z)] = 0 for all 

w ∈ ℝ . In contrast,

R�

m
(w) = sup

‖v‖≤�

Rm(w + v) = sup
‖v‖≤�

1

m

m�

i=1

�(w + v, zi),

minimize
w∈W

R�

m
(w)

(1)R(w�

m
) − R�

m
(w�

m
) ≤ �m−1∕2

�(w, z) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

�w∕� + � if w ∈ [−� , 0), z = 0

−�w∕� − � if w ∈ [−� , 0), z = 1

−�w∕� + � if w ∈ [0, �), z = 0

�w∕� − � if w ∈ [0, �), z = 1

0 otherwise.

Rm(w) =

⎧
⎪
⎨
⎪
⎩

1

m
�m(�w∕� + �) if w ∈ [−� , 0)

1

m
�m(−�w∕� + �) if w ∈ [0, �)

0 otherwise,
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where �m is the number of zeros minus the number of ones in the data {z1,… , zm} . Viewing 
the data as random, we obtain that with probability nearly 1

2
 , 𝜌m < 0 and thus w⋆

m
= 0 mini-

mizes Rm for such outcomes of the data and Rm(w
⋆

m
) = 𝜌m𝜅∕m . Also with probability near 

1

2
 , �m ≥ 0 and then w⋆

m
= 1 minimizes Rm and Rm(w

⋆

m
) = R(w⋆

m
) = 0 . Consequently, Rm(w

⋆

m
) 

has a downward bias. Although

with probability one, the right-hand side includes the constant � , which is proportional to 
the Lipschitz modulus �∕� of 𝓁(⋅, z) . This illustrates the well-known fact that generaliza-
tion tends to be poor for loss functions with large Lipschitz moduli. However, considering 
diametrical risk, we have that R(w�

m
) − R�

m
(w�

m
) ≤ 0 with probability one.

The situation deteriorates further when the loss function is not Lipschitz continuous. Let

Again, with z and �m as above, R(w) = �z[�(w, z)] = 0 for all w ∈ ℝ and

Then, infw∈ℝ Rm(w) = −∞ when 𝜌m < 0 , which takes place with probability nearly 1
2
 . The 

downward bias is now unbounded. Considering diametrical risk, we have the much more 
favorable bound R(w�

m
) − R�

m
(w�

m
) ≤ ��

−1m−1∕2 with high probability for some constant �.
From these simple examples, it is clear that ERM can lead to arbitrarily slow learning 

when the loss function is poorly behaved. In the first example above, DRM has a gener-
alization error equal to zero and thus is independent of the Lipschitz modulus. In the sec-
ond example, DRM reduces the unbounded generalization error encountered by ERM to a 
quantity proportional to m−1∕2 as we also see in the following section.

3  Rates of convergence

We begin by formalizing the setting and recall that f ∶ ℝ
n × Ω → ℝ is a Caratheodory 

function relative to a probability space (Ω,A,P) if for all � ∈ Ω , f (⋅,�) is continuous 
and for all w ∈ ℝ

n , f (w, ⋅) is A-measurable. In the following, we assume that the data 
comprises d-dimensional random vectors generated by independent sampling according 
to the distribution ℙ and thus consider the m-fold product probability space (Zm,Zm,ℙm) 
constructed from a probability space (Z,Z,ℙ) , with Z ⊂ ℝ

d . If � ∶ ℝ
n × Z → ℝ is 

a Caratheodory function relative to (Z,Z,ℙ) , then Rm , now viewed as a function on 
ℝ

n × Zm , is a Caratheodory function relative to (Zm,Zm,ℙm) ; see for example Rockaf-
ellar and Wets (1998, Prop. 14.44; Ex. 14.29). Likewise, we view R�

m
 as a function on 

ℝ
n × Zm . It is real-valued by virtue of being the maximum value of the continuous Rm 

over a compact set.3 For all w ∈ ℝ
n , R�

m
(w) is Zm-measurable when Rm is a Caratheodory 

(2)R(w⋆

m
) − Rm(w

⋆

m
) ≤ max{0,−𝜌m}𝜅∕m

�(w, z) =

⎧
⎪
⎨
⎪
⎩

1∕w if w ∈ (0,∞), z = 0

−1∕w if w ∈ (0,∞), z = 1

0 otherwise.

Rm(w) =

{ 1

m
�m∕w if w ∈ (0,∞)

0 otherwise.

3 A set C ⊂ ℝ
n is compact if it is closed and bounded.
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function (Rockafellar & Wets, 1998, Thm. 14.37). Since R�

m
 is continuous (in w) for all 

(z1,… , zm) ∈ Z
m by Rockafellar and Wets (1998, Thm. 1.17), we conclude that R�

m
 is a 

Caratheodory function relative to (Zm,Zm,ℙm) . In view of Rockafellar and Wets (1998, 
Thm. 14.37; Ex. 14.32), supw∈WR�

m
(w) is Zm-measurable as long as W ⊂ ℝ

n is closed. In 
effect, any concern about measurability in the below statements are put to rest if � is a 
Caratheodory function and W is closed.

We denote by � the expectation with respect to ℙ so that for w ∈ ℝ
n , 

R(w) = 𝔼[�(w, z)] = ∫ �(w, z)dℙ(z) . When � ∶ ℝ
n × Z is a Caratheodory func-

tion, we say it is locally sup-integrable if for all w̄ ∈ ℝ
n , there exists 𝜌 > 0 such that 

∫ max{0, sup{�(w, z) � ‖w − w̄‖ ≤ 𝜌}}dℙ(z) < ∞ . It is locally inf-integrable if “max-
sup” is replaced by “min-inf” in the above statement. The moment-generating function 
of a random variable X is � ↦ E[exp(�X)].

We start with a preliminary fact, which follows from Fatou’s Lemma.

Proposition 3.1 If � ∶ ℝ
n × Z → ℝ is a locally inf-integrable Caratheodory function, then 

R is lower semicontinuous. If locally inf-integrable is replaced by locally sup-integrable, 
then R is upper semicontinuous.

Proof Suppose that w𝜈
→ w̄ . Since � is a inf-integrable Caratheodory function, Fatou’s 

Lemma establishes that liminf�[�(w𝜈 , z)] ≥ �[liminf�(w𝜈 , z)] = �[�(w̄, z)] . Thus, R is 
lower semicontinuous. A similar argument confirms the claim about upper semicontinuity; 
see Royset and Wets (2021, Propositions 8.54, 8.55) for details.   ◻

The first main result bounds the amount the diametrical risk can fall below the true 
risk.

Theorem  3.2 (generalization error in DRM). Suppose that W ⊂ ℝ
n is compact, 

� ∶ ℝ
n × Z → ℝ is a locally sup-integrable Caratheodory function, and for all w ∈ W , 

the moment generating function of 𝓁(w, ⋅) − R(w) is real-valued in a neighborhood of zero. 
Then, for any 𝜀, 𝛾 > 0 and m, there exist 𝜂, 𝛽 > 0 (independent of m) such that

Proof By Proposition 3.1, R is upper semicontinuous. Let {Wk ⊂ ℝ
n, k = 1,… ,N} be a 

finite cover of W consisting of closed balls with radius �∕2 . Without loss of generality, sup-
pose that Wk ∩W ≠ � for all k = 1,… ,N . Let wk ∈ argmaxw∈Wk∩W

R(w) , which exists for 
all k = 1,… ,N because Wk ∩W is nonempty and compact, and R is upper semicontinuous.

For k = 1,… ,N , let � ↦ Mk(�) be the moment generating function of R(wk) − 𝓁(wk, ⋅) 
and Ik(�) = sup

�∈ℝ{�� − logMk(�)} , which is positive since Mk is real-valued in a neigh-
borhood of zero. Then, by the upper bound in Cramer’s Large Deviation Theorem (see for 
example Shapiro et al., 2009, Sec. 7.2.8)

Moreover, with � = mink=1,…,N Ik(�),

ℙ
m
(
supw∈W

{
R(w) − R�

m
(w)

}
≤ �

)
≥ 1 − �e−�m.

ℙ
m
(
R(wk) − Rm(w

k) ≥ �

)
≤ e−mIk(�).

ℙ
m
(

max
k=1,…,N

{
R(wk) − Rm(w

k)
}
≥ �

)
≤

N∑

k=1

e−mIk(�) ≤ Ne−�m.
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Consider an event for which maxk=1,…,N{R(w
k) − Rm(w

k)} ≤ � , which takes place with 
probability at least 1 − Ne−�m , and let w̄ ∈ W . There exists ̄k ∈ {1,… ,N} such that 
w̄ ∈ W̄k . Since R𝛾

m
(w̄) = sup‖v‖≤𝛾Rm(w̄ + v) ≥ Rm(w

k̄),

where the last inequality follows by the fact that R(wk̄) = supw∈Wk̄
R(w) . The conclusion 

then follows with � = N because w̄ is arbitrary.   ◻

The theorem furnishes a uniform bound on R, which implies in particular that

for any parameter vector w�

m
 produced by DRM. Thus, there is a strong justification for 

minimizing R�

m
 : lower values of the diametrical risk ensure better guarantees on the true 

risk. The goal now becomes to develop good methods for producing w�

m
 with low R�

m
(w�

m
) . 

The issue of overfitting is largely removed: it is unlikely that a parameter vector w�

m
 with a 

low diametrical risk, i.e., low R�

m
(w�

m
) , has a high true risk R(w�

m
).

The assumptions in the theorem are generally mild: 𝓁(⋅, z) only needs to be continu-
ous and the condition on the moment generating function is just checked pointwise. The 
requirement about locally sup-integrable amounts to determine an integrable random vari-
able at every w̄ that upper bounds � in a neighborhood of w̄ . The constant � depends on 
� , while � is a function of � and the diameter of W, i.e., supw,w�∈W ‖w − w�‖ , in the norm 
underpinning the diametrical risk. In particular, � and � are independent of Lipschitz mod-
uli of � , which may not even be finite.

If the value of the moment generating function of 𝓁(w, ⋅) − R(w) can be quantified near 
zero, then we can examine the effect as the error � vanishes as seen next. We recall that 
a random variable X is subgaussian with variance proxy �2 if its mean E[X] = 0 and its 
moment generating function satisfies E[exp(�X)] ≤ exp(

1

2
�
2
�
2) for all � ∈ ℝ.

Theorem  3.3 (rate of convergence in DRM). Suppose that W ⊂ ℝ
n is compact, 

� ∶ ℝ
n × Z → ℝ is a locally sup-integrable Caratheodory function, and for all w ∈ W , 

𝓁(w, ⋅) − R(w) is subgaussian. Then, for any � ∈ (0, 1) , 𝛾 > 0 , and m, there exists 𝛽 > 0 
(independent of m) such that

Proof By Proposition 3.1, R is upper semicontinuous. Let wk be as in the proof of Theo-
rem 3.2. There exists � ∈ (0,∞) , which may depend on n, such that the number of closed 
balls N of radius �∕2 required to cover W is no greater than (�∕�)n . Since 𝓁(wk, ⋅) − R(wk) 
is subgaussian, say with variance proxy �2

k
 , we have by Bernstein’s inequality that

Let � = maxk=1,…,N �k . Thus,

provided that � ≥ �m−1∕2 and

R(w̄) − R𝛾

m
(w̄) ≤ R(w̄) − Rm(w

̄k) ≤ R(w̄) − R(w
̄k) + 𝜀 ≤ R(w

̄k) − R(w
̄k) + 𝜀 = 𝜀,

R(w�

m
) ≤ R�

m
(w�

m
) + � with high probability

ℙ
m
(
supw∈W

{
R(w) − R�

m
(w)

}
≤ �m−1∕2

)
≥ 1 − �.

ℙ
m
(
R(wk) − Rm(w

k) > 𝜀

)
≤ exp

(
−

1

2
m𝜀2∕𝜎2

k

)
for all 𝜀 ∈ [0,∞).

ℙ
m
(

max
k=1,…,N

{
R(wk) − Rm(w

k)
}
> 𝜀

)
≤ N exp

(
−

1

2
m𝜀2∕𝜎2

)
≤ 𝛼
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Consider the event for which maxk=1,…,N{R(w
k) − Rm(w

k)} ≤ � , which takes place with 
probability at least 1 − � for such � . The arguments in the proof of Theorem 3.2 establishes 
that supw∈W{R(w) − R�

m
(w)} ≤ � for this event and the conclusion follows.   ◻

The constant � in the theorem is given in the proof and depends on the largest variance 
proxy, denoted by �2 , for 𝓁(w, ⋅) − R(w) at a finite number of different w. It also depends on 
a parameter � given by the diameter of W. For example, if R�

m
 is defined in terms of the sup-

norm, then the balls W1,… ,WN in the proof can be constructed according to that norm and 
the number required is simply4 N = ⌈�∕�⌉n , where 𝛿 = supw,w̄∈W‖w − w̄‖∞ . This leads to

The constant � in the theorem depends unfavorably on n. One can attempt to reduce the 
effect of n by enlarging � as n increases. For example, under the sup-norm one may set 
� = �[exp(�n−�)]−1 for positive constants � and � . Then, assuming that �∕� is an integer 
(which can be achieved by enlarging � when needed),

For example, if � = 1 , then � becomes independent of n at the expense of having to grow � 
rather quickly as n increase. A compromise could be � =

1

2
 , in which case � grows only as 

n1∕4 and � grows somewhat slower too. Still, in the limit as n → ∞ , R�

m
 involves maximiza-

tion over all of W, which of course leads to an upper bound.
For fixed n, we may also ask what is the right value of � ? Since a large value might 

imply additional computational burden and also lead to overly conservative upper bounds, 
it would be ideal to select it as small as possible without ruining the rate (significantly). 
One possibility could be to set � proportional to m−1 because then the rate deteriorate only 
with a logarithmic factor from m−1∕2 to 

√
m−1 logm.

It is clear from the proof of the theorem that the assumptions about independent sam-
pling and subgaussian random variables can be relaxed. We only needed that the error in 
Rm(w) relative to R(w) can be bounded for a finite number of w; see Boucheron et al. (2016) 
and Oliveira and Thompson (2017) for possible extensions.

It may be of interest to determine the error of an obtained parameter vector w�

m
 relative 

to the set of actually optimal parameters argminw∈WR(w) . Theorem 3.3 yields immediately 
that for any � ∈ ℝ,

We now examine the harder question of confidence regions for “good” parameter vectors. 
For two sets A,B ⊂ ℝ

n , we denote the excess of A over B by

with the convention that exs(A;B) = ∞ if A ≠ ∅ and B = � ; exs(A;B) = 0 otherwise. 
Below, the sets of interest are lower level-sets of Rm , possible with a random level. Arguing 

� = �

√
2n log(�∕�) − 2 log �.

� = �

√
2n log⌈�∕�⌉ − 2 log �.

� = �

√
2n log⌈�∕�⌉ − 2 log � = �

√
2�n1−� − 2 log �.

{
w ∈ W | R𝛾

m
(w) ≤ 𝛿

}
⊂

{
w ∈ W | R(w) ≤ 𝛿 + 𝛽m−1∕2

}
with probability at least 1 − 𝛼.

exs(A;B) = sup
w∈A

inf
w̄∈B

‖w − w̄‖ for nonempty A,B;

4 We note by ⌈c⌉ be lowest integer at least as high as the scalar c.



2942 Machine Learning (2023) 112:2933–2951

1 3

by means of Prop. 14.33, Thm. 14.37, and Ex. 14.32 in Rockafellar and Wets (1998), we 
see that the excess involving such sets is measurable.

Theorem  3.4 (confidence region in DRM). Suppose that W ⊂ ℝ
n is compact, 

� ∶ ℝ
n × Z → ℝ is a locally inf-integrable Caratheodory function, and for all w ∈ W , 

𝓁(w, ⋅) − R(w) is subgaussian. Then, for any � ∈ (0, 1) , 𝛾 > 0 , � ∈ ℝ , and m, there exists 
𝛽 > 0 (independent of m) such that

Proof By Proposition 3.1, R is lower semicontinuous. From the compactness of 
W ⊂ ℝ

n , we obtain � ∈ (0,∞) , which may depend on n, such that the number of closed 
balls N with radius �∕2 required to cover W is no greater than (�∕�)n . Suppose that 
{Wk ⊂ ℝ

n, k = 1,… ,N} is a collection of such balls with Wk ∩W ≠ � for all k = 1,… ,N . 
Let wk ∈ argminw∈Wk∩W

R(w) , which exists for all k = 1,… ,N because Wk ∩W is non-
empty and compact, and R is lower semicontinuous.

Since 𝓁(wk, ⋅) − R(wk) is subgaussian, say with variance proxy �2
k
 , we have by Bern-

stein’s inequality that

Let � = maxk=1,…,N �k . Thus,

provided that � ≥ �m−1∕2 and

Consider the event for which maxk=1,…,N |Rm(w
k) − R(wk)| ≤ � . Let w̄ ∈ W satisfy 

R(w̄) ≤ 𝛿 . Then, there exists ̄k such that w̄ ∈ W̄k and because R(w̄k) = infw∈Wk̄∩W
R(w) we 

obtain that

Since ‖w̄ − w̄k‖ ≤ 𝛾 , we conclude that

We next turn to the result for argminw∈WR(w) and let w⋆ be a point in that set. Then, there 
is k⋆ such that w⋆ ∈ Wk⋆ and

Moveover, let w̄ ∈ argminw∈WR
𝛾

m
(w) . Then, there is ̄k such that w̄ ∈ W̄k and

ℙ
m

(

exs
({

w ∈ W |
| R(w) ≤ 𝛿

}
;
{
w ∈ W |

| Rm(w) ≤ 𝛿 + 𝛽m−1∕2
})

≤ 𝛾 ,

exs
(
argminw∈WR(w);

{
w ∈ W |

| Rm(w) ≤ inf
w̄∈W

R𝛾

m
(w̄) + 2𝛽m−1∕2

})
≤ 𝛾

)

≥ 1 − 𝛼.

ℙ
m
(
|
|Rm(w

k) − R(wk)|| > 𝜀

)
≤ 2 exp(−

1

2
m𝜀2∕𝜎2

k
) for all 𝜀 ∈ [0,∞).

ℙ
m
(

max
k=1,…,N

|
|Rm(w

k) − R(wk)|| > 𝜀

)
≤ 2N exp(−

1

2
m𝜀2∕𝜎2) ≤ 𝛼

� = �

√
2n log(�∕�) − 2 log(�∕2).

Rm(wk̄) ≤ R(wk̄) + � ≤ R(w̄) + � ≤ 𝛿 + �.

exs
(
{w ∈ W | R(w) ≤ �}; {w ∈ W | Rm(w) ≤ � + �}

)
≤ � .

Rm(w
k⋆ ) ≤ R(wk⋆ ) + 𝜀 ≤ R(w⋆) + 𝜀 = infw∈WR(w) + 𝜀.

infw∈WR
𝛾

m
(w) = sup‖v‖≤𝛾Rm(w̄ + v) ≥ Rm(w

k̄) ≥ R(wk̄) − 𝜀 ≥ infw∈WR(w) − 𝜀.
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Combining these inequalities, we obtain that

Since ‖w⋆ − wk⋆‖ ≤ 𝛾 , we have established that

and the conclusion follows.   ◻

Since the constant � is nearly of the same form as in Theorem 3.3, the discussion 
following that theorem carries over to the present context. In particular, we note that 
a lower-level set of Rm , enlarged with � , covers argminw∈WR(w) with high probability.

4  Algorithms for Diametrical Risk Minimization

Although there are some computational challenges associated with DRM, most of the 
existing optimization procedures for ERM can be adapted. Significantly, if the empiri-
cal risk function Rm is convex, then the diametrical risk function R�

m
 is also convex. 

Moreover, regardless of convexity,

is a subgradient (in the general sense, cf. Rockafellar & Wets, 1998, Ch. 8) of R�

m
 at w̄ under 

weak assumptions, where v̄ ∈ argmax‖v‖≤𝛾R
𝛾

m
(w̄ + v) ; see for example Rockafellar and Wet 

(1998, Cor. 10.9). This implies that standard (sub)gradient methods apply provided that 
v̄ can be computed. Since � might very well be small, this could be within reach, at least 
approximately, by carrying one iteration of gradient ascent. However, this could become 
costly as computation of such subgradients need to access all data points. This challenge is 
similar to the one faced by adversarial training (Madry et al., 2018), but there the gradient 
ascent is carried out relative to the data; see also Gong et al. (2020), Wong et al. (2020) and 
Zheng et al. (2018).

We utilize a less costly approach based on the application of SGD to an outer 
approximation formed via sampling. In short, we approximate the inner maximization 
by maximizing over a finite set of random points inside the �-neighborhood at the cur-
rent solution wt of each iteration. We find this approach to be effective, even when 
working with problems involving NNs where the dimension of w is in the millions. In 
these applications an outer approximation of R�

m
 using as little as 10-20 samples from 

{v � ‖v‖ = �} suffices to achieve improvement over ERM.
We observe also that DRM is related to but distinct from ERM with early termi-

nation. If from a minimizer w⋆

m
 of R�

m
 the process of maximizing Rm(w

⋆

m
+ v) subject 

‖v‖ ≤ � follows the trajectory along which the algorithm approached w⋆

m
 in the first 

place, then DRM would be equivalent to ERM that terminates a distance � from a min-
imizer. However, this equivalence will only take place when w⋆

m
 is approached along 

such direction. It appears that this will occur only occasionally.

Rm(w
k⋆ ) ≤ infw∈WR

𝛾

m
(w) + 2𝜀.

exs
(
argminw∈WR(w); {w ∈ W | Rm(w) ≤ inf

w̄∈W
R𝛾

m
(w̄) + 2𝜀}

)
≤ 𝛾

1

m

m∑

i=1

∇w�(w̄ + v̄, zi)
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4.1  Gradient based algorithm

We propose two variations of an SGD-based algorithm for DRM which we denote by Sim-
ple-SGD-DRM and SGD-DRM. We start with a simple version of the main algorithm that 
is easier to follow and then introduce the full algorithm with minor alterations aimed 
toward improving efficiency. In the following, let prjW (w) denote the projection of w on W 
and let RBt

(w) =
1

�Bt�

∑
z∈Bt

�(w, z) denote the empirical risk over a batch Bt ⊂ S.

   Algorithm 1: Simple‑SGD‑DRM

Step 0.  Initialize w0 ∈ W , r ∈ ℕ , t = 0 . Initialize sequence of batches Bt ⊂ S and learn-
ing rates 𝜆t > 0 for t = 1,… , T .

Step 1.  Sample r random perturbations (directions): U = {u1,… , ur � ‖u‖ = �}.
Step 2.  Select u⋆ ∈ argmaxu∈U

1

�Bt�

∑
z∈Bt

�(wt + u, z).
Step 3.  Compute wt+1 = prjW

(
wt − 𝜆t∇wRBt

(wt + u⋆)
)
.

Step 4.  If t = T  , stop. Else, t ← t + 1 and return to Step 1.

The Simple-SGD-DRM algorithm, at each iteration t, performs an SGD update towards 
minimizing the approximating objective function

The algorithm does so by first forming a set of r random directions (vectors) 
U = {u1,… , ur} with norm equal to � . Then, it determines the more critical u ∈ U , i.e., 
u⋆ ∈ argmaxu∈U

1

�Bt�

∑
z∈Bt

 �(wt + u, z) . A subgradient of the approximating objective func-
tion is then ∇wRBt

(wt + u⋆).
This algorithm, however, does have drawbacks. First, sampling r new vectors in Step 

1 at every iteration can be computationally expensive. It may be enough, as we will see 
in the experiments, to only perform Step 1 intermittently.5 Second, it may be beneficial to 
reuse one or more of the sampled vectors from Step 1 in future iterations, particularly if we 
decide to perform sampling only intermittently.

The following algorithm, which we simply call SGD-DRM, includes these options 
explicitly. One will notice that it can be made equivalent to simple-SGD-DRM with par-
ticular choices, and is thus an extension with more options to save computation by limiting 
sampling. 

   Algorithm 2: SGD‑DRM.

Step 0.  Initialize V−1 = {} , w0 ∈ W , q ∈ ℕ , r ∈ ℕ , p ∈ [0, 1] , t = 0 . Initialize sequence 
of batches Bt ⊂ S and learning rates 𝜆t > 0 for t = 1,… , T .

w ↦ max
u∈U

1

|Bt|

∑

z∈Bt

�(w + u, zi).

5 In experiments, we sample only every 5th iteration.
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Step 1.  Sample r random perturbations (directions): U = {u1,… , ur � ‖u‖ = �}.
Step 2.  Select u⋆ ∈ argmaxu∈U

1

�Bt�

∑
z∈Bt

�(wt + u, z).
Step 3.  Let Vt = Vt−1 ∪ {u⋆} . If |Vt| > q , remove oldest element from Vt.
Step 4.  Select v⋆ ∈ argmaxv∈Vt

1

�Bt�

∑
z∈Bt

�(wt + v, z).
Step 5.  Compute wt+1 = prjW

(
wt − 𝜆t∇wRBt

(wt + v⋆)
)
.

Step 6.  If t = T  , stop. Else, t ← t + 1 and with probability p, return to Step 1; with prob-
ability 1 − p return to Step 4 with Vt = Vt−1.

The primary difference between this and the former algorithm is within Steps 3–4 and 
Step 6. Step 6 allows one to skip the expensive sampling in Step 1 at some frequency rep-
resented by p. The new set Vt is introduced in Steps 3–4 to allow the reuse of one or more 
vectors u from previous iterations. As the algorithm progresses, the set Vt acts like a queue 
with maximal size q.6 Every time the sampling of Step 1 is not skipped, Vt will be equal to 
the set Vt−1 with its oldest element replaced by u⋆ . For iterations t ≤ q , the oldest element 
need not be removed since the queue has not reached its maximum length of q.

4.2  Implementation for neural networks

In the following experiments, we consider NN classifiers. Because of the structure of NNs 
we implement the perturbations w + v and w + u by considering the groupings of param-
eters that correspond to the structure of each NN layer. For example, a two layer NN might 
have parameter matrices {W1,W2} , each belonging to the separate network layers. Because 
of this, we select perturbations in Step 1 such that the Frobenius norm7 of each layer-wise 
perturbation matrix is equal to � . So, for the network with separable parameters {W1,W2} , a 
single sample from Step 1 would look like {U1,U2} with ‖U1‖F = � , ‖U2‖F = � . Addition-
ally, in the implementation, we first sample each component from a standard normal distri-
bution, then normalize the resulting vector (or matrix) to have norm equal to �.

Additionally, in the experiments we implement the coin flip (based on p) from Step 
6 deterministically. We only perform Step 2 and 3 at every 5th step. Otherwise, we let 
Vt = Vt−1 . This allows us to save computation time, particularly since the sampling of U 
can be expensive for NNs with millions of parameters.

5  Experiments

We aim to illustrate that DRM is resistant to overfitting and that its solutions have different 
local characteristics compared to those from ERM. In particular, we hypothesize that mini-
mizers found by DRM lie in flat portions of the empirical risk landscape. To illustrate these 
aspects, we focus on the problem of classification with NNs in the presence of label noise, 
which is suitable because it is prone to overfitting as ERM settles into sharp minimizers; 
see Oymak et  al. (2019) and Zhang et  al. (2016). These works show that NNs have the 
unique ability to perfectly fit (with zero training error) both a data set with label noise as 

6 In experiments, we set q = 1.
7 The Frobenius norm of a matrix A is defined as (

∑
i,j a

2

ij
)1∕2 , where aij are the elements of A.
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well as the same data with correct labels, with large generalization error in the former but 
small generalization error in the latter.

In these experiments, we train NNs on a subset of the MNIST and CIFAR-10 datasets 
with large amounts of label noise (50% of training labels flipped to an incorrect class). 
Using standard SGD for ERM (labelled SGD-ERM), the NNs indeed settle into solutions 
with high generalization error. On the other hand, SGD-DRM is remarkably resistant to 
overfitting, finding solutions with dramatically lower generalization error. Additionally, we 
find empirical evidence that the SGD-DRM solution lies in a flat portion of the empirical 
risk landscape compared to the SGD-ERM solution which appears in a sharper portion.

Code associated with these experiments and a PyTorch8 based implementation of SGD-
DRM is available online.9 The computational resources is a single Tesla V100 GPU, 16 
core Xeon processor and 64 GB memory. The operating system is Ubuntu. Generally, 
training time for DRM is approximately 3–5 times longer than those for ERM with the 
same architecture and data. We conjecture that the training times can be reduced by adapt-
ing the ideas from fast adversarial training; see for example Gong et al. (2020), Wong et al. 
(2020) and Zheng et al. (2018).

(a) (b)

(c) (d)

Fig. 2  MNIST experiments: a test accuracy when trained for 150 epochs. b Test accuracy when trained for 
350 epochs. c Distribution of empirical risk for 10,000 random points in �-neighborhood of final 150 epoch 
DRM and ERM solution. d Distribution of empirical risk for 10,000 random points in �-neighborhood of 
final 350 epoch DRM and ERM solution

8 https:// pytor ch. org/.
9 https:// github. com/ matth ew- norton/ Diame trical_ Learn ing.

https://pytorch.org/
https://github.com/matthew-norton/Diametrical_Learning
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5.1  MNIST

In the first set of experiments, we train a fully connected, 3 layer NN with hidden units per 
layer being (320, 320, 200) with ReLU nonlinearities and an additional fully connected 
output layer feeding into a 3-class softmax negative log-likelihood objective function. For 
the MNIST dataset, we use only the handwritten digits zero, one, and two so that SGD-
ERM achieves nearly zero training error. We flip 50% of the training labels to an incorrect 
class. For both SGD-ERM and SGD-DRM, we use standard SGD updates with batch size 
100 and learning rate .01 until the last 50 epochs when decreased to .001. For SGD-DRM, 
the Step 1 perturbations are treated on a layer-wise basis (see Sect. 4.2) with � = 10 . We 
also use r = 20 and q = 1 for the size of U and V, respectively. We implement Step 6 deter-
ministically with Step 1 being performed every 5th iteration (batch).

We train twice. First, we train the network for 150 epochs total with learning rate .01 
for the first 100 and .001 for the final 50. Test accuracy can be seen in Fig. 2a. We first 
note the behavior of SGD-ERM. It begins by finding a good solution that generalizes, but 
then continues minimizing the empirical risk and settles into a solution that fits the training 
data with incorrect labels and thus suffers from a sharp decline in test accuracy (a sharp 
increase in generalization error). In contrast, SGD-DRM resists overfitting. Once it finds a 
good solution that generalizes, it is able to stay there, resisting the fall into a poor solution. 
As mentioned earlier, it is hypothesized that solutions in flat portions of the empirical risk 
landscape generalize better than those in sharp portions. Figure 2c plots the distribution 
of empirical risk for 10,000 random points in the �-neighborhood of the final 150-epoch 
DRM and ERM solutions and illustrates that, indeed, the DRM solution is in a much flatter 
portion of the empirical risk landscape than the ERM solution. The dashed line represents 
the value of the empirical risk at the found solution and the rest of the plot is the distribu-
tion of empirical risk at points surrounding the solution.10 Figure 2c also illustrates that, 
while the empirical risk of the SGD-ERM solution is lower (the red dashed line) than that 
of SGD-DRM it has much larger diametrical risk.

To allow SGD-ERM enough time to achieve nearly zero training error, we also train 
for 350 epochs with learning rate .01 for the first 300 and .001 for the final 50. Figure 2b 
depicts test accuracy. Again, we see the same behavior for SGD-ERM, as it chaotically falls 
into a poor solution that does not generalize. SGD-DRM remains resistant to overfitting. 
While it does experience some degradation in test accuracy, it still ends at a much better 
solution and its path is not nearly as chaotic; see the smooth vs choppy lines in Fig. 2b. We 
also see, again, that the SGD-DRM solution lies in a flatter portion of the empirical risk 
landscape than that from SGD-ERM. Figure  2d illustrates that, while the empirical risk 
of the SGD-ERM solution is lower (the dashed line at zero) it has (approximately) much 
larger diametrical risk equal to around 6. The SGD-DRM solution, on the other hand, has 
higher empirical risk ( ≈.89) but much smaller diametrical risk ( ≈.98).

10 The points are sampled in the same way as for U in Step 1 of SGD-DRM, with neighborhood points 
sampled on a layer-wise basis as {w∗ + u � ‖u‖ = �} . Additionally, we use the same set of points u for 
approximating the neighborhood of ERM and DRM solutions.
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5.2  CIFAR‑10

We perform similar experiments on CIFAR-10 using subclasses airplane, bird, and car and 
two network architectures: a fully connected and ResNet20. First, we use the same fully 
connected architecture as before with hidden 3 layers of size (320, 320, 200) with ReLU 
nonlinearities and an additional fully connected output layer feeding into a 3-class softmax 
negative log-likelihood objective function. We train the network on a dataset with 50% of 
training labels flipped to an incorrect class. For both SGD-ERM and SGD-DRM, we use 
standard SGD updates with batch size 100 and learning rate .01 for 750 epochs and .001 
for the final 50 epochs. For SGD-DRM, the Step 1 perturbations are treated on a layer-wise 
basis (see Sect. 4.2) with � = 5 . We adopt r = 20 , q = 1 , and a deterministic implementa-
tion of Step 6 as above.

Results are nearly identical to those for MNIST; see Fig. 3a. SGD-ERM begins by finding 
a good solution that generalizes, but then continues minimizing the empirical risk and settles 
into a solution that fits the training data with incorrect labels and thus suffers from a sharp 
decline in test accuracy. SGD-DRM is again resistant to overfitting and is able to find a good 
solution that generalizes. Figure 3c illustrates that the DRM solution is in a much flatter por-
tion of the empirical risk landscape than the ERM solution and achieves much smaller diamet-
rical risk at the expense of larger empirical risk. The figure plots the distribution of empirical 
risk for 10,000 random points in the �-neighborhood of the final 800-epoch DRM and ERM 
solutions. The dashed line represents the value of the empirical risk at the found solution and 
the rest of the plot is the distribution of empirical risk at points surrounding the solution.

For the ResNet20 architecture, we utilize identical settings except that � = 1 due to 
the smaller number of parameters (per layer) and we omit perturbations to the batchnorm 
layer parameters. Figure 3b reports test accuracy. Unlike for the fully connect architecture, 

(a) (b)

(c) (d)

Fig. 3  CIFAR-10 experiments: a, b Test accuracy when trained for 800 epochs. c, d Distribution of empiri-
cal risk for 10,000 random points in �-neighborhood of final 800 epoch DRM and ERM solution
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SGD-DRM suffers nearly zero degradation of test accuracy as training progresses. It also 
achieves, and maintains, higher test accuracy than is achieved by SGD-ERM. Furthermore, 
Fig.  3d illustrates again the flatness of the landscape surrounding the SGD-SRM solution. 
While the diametrical risk is similar for both solutions, there is still a significant gap between 
the empirical risk of the SGD-ERM solution and points within its neighborhood. For SGD-
DRM, this gap is much smaller, indicating a flatter landscape.

5.3  Discussion

While these experiments support the proposition that minimization of diametrical risk 
leads to good generalization and can be used to handle problems with large Lipschitz mod-
uli, there is still much to be explored with DRM. In particular, SGD-DRM can be improved 
by considering different policies for choosing hyperparameters � , � , q, d, batch size, and p. 
The choice of diametrical risk radius � , for example, could be chosen adaptively at every 
iteration along with the step size � , mimicking adaptive SGD implementations such as 
Adam. Also, different choices of � could be made for different groupings of parameters 
corresponding to the layers in a NN.

An additional algorithmic component that could be made more efficient is the estima-
tion of the diametrical risk, which currently is a bottleneck. First, the sampling in Step 1 
can be expensive, especially if done at every iteration or for large value of d. Second, if 
d and/or q is large, the memory requirements of storing U and V can be large. Third, the 
maximization in Steps 2 and 4 can also be expensive, particularly if the batch size is large 
and the loss is expensive to compute. Many of these issues, however, can be reduced with 
parallel implementation. For example, independent workers can each produce a single sam-
ple ui and calculate the value of the objective function. Then, Step 2 can be performed by 
considering only the collection of d function values produced by the set of workers. We 
leave these tasks to future work, however, and use the presented results to encourage more 
work in this direction.
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