
Vol.:(0123456789)

Machine Learning (2021) 110:2729–2762
https://doi.org/10.1007/s10994-021-06010-w

1 3

Ordinal regression with explainable distance metric learning
based on ordered sequences

Juan Luis Suárez1  · Salvador García1  · Francisco Herrera1 

Received: 1 October 2020 / Revised: 22 May 2021 / Accepted: 25 May 2021 /
Published online: 7 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
The purpose of this paper is to introduce a new distance metric learning algorithm for ordi-
nal regression. Ordinal regression addresses the problem of predicting classes for which
there is a natural ordering, but the real distances between classes are unknown. Since ordi-
nal regression walks a fine line between standard regression and classification, it is a com-
mon pitfall to either apply a regression-like numerical treatment of variables or underrate
the ordinal information applying nominal classification techniques. On a different note,
distance metric learning is a discipline that has proven to be very useful when improving
distance-based algorithms such as the nearest neighbors classifier. In addition, an appro-
priate distance can enhance the explainability of this model. In our study we propose an
ordinal approach to learning a distance, called chain maximizing ordinal metric learning.
It is based on the maximization of ordered sequences in local neighborhoods of the data.
This approach takes into account all the ordinal information in the data without making
use of any of the two extremes of classification or regression, and it is able to adapt to data
for which the class separations are not clear. We also show how to extend the algorithm to
learn in a non-linear setup using kernel functions. We have tested our algorithm on several
ordinal regression problems, showing a high performance under the usual evaluation met-
rics in this domain. Results are verified through Bayesian non-parametric testing. Finally,
we explore the capabilities of our algorithm in terms of explainability using the case-based
reasoning approach. We show these capabilities empirically on two different datasets,
experiencing significant improvements over the case-based reasoning with the traditional
Euclidean nearest neighbors.

Keywords  Distance metric learning · Ordinal regression · Nearest neighbors

Our work has been supported by the research project TIN2017-89517-P and by a research scholarship
(FPU18/05989), given to the author Juan Luis Suárez by the Spanish Ministry of Science, Innovation
and Universities.

Editors: João Gama, Alípio Jorge, Salvador García.

 *	 Juan Luis Suárez
	 jlsuarezdiaz@decsai.ugr.es

Extended author information available on the last page of the article

http://orcid.org/0000-0001-8587-4345
http://orcid.org/0000-0003-4494-7565
http://orcid.org/0000-0002-7283-312X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06010-w&domain=pdf

2730	 Machine Learning (2021) 110:2729–2762

1 3

1  Introduction

Ordinal regression is a machine learning task which aims to predict variables that take
values in an ordered and non-numerical set. It is an interesting research topic with appli-
cations in many areas, such as weather forecasting (Guijo-Rubio et al., 2020), medicine
(Kuráňová, 2016; Sánchez-Monedero et al., 2018; Beckham & Pal, 2017), psychology
(Bürkner & Vuorre, 2019), social media mining (Chakraborty & Church, 2020) or com-
puter vision (Antoniuk et al., 2016; Fu et al., 2018; Liu et al., 2017). This type of problem
arises in many situations with human labelers, since they usually prefer to quantify data
using categorical values rather than continuous values. The key element that differentiates
ordinal regression from standard classification and regression is the presence of an order
relation among the labels and of unquantifiable differences between two consecutive labels.
This makes it necessary to adapt the traditional classification and regression techniques or
to design new approaches to deal with ordinal regression problems in an appropriate way
(Gutierrez et al., 2016).

Since ordinal regression walks a fine line between classification and regression, it was
traditionally common to approach the problem from one of these naive perspectives. This
could lead to suboptimal approaches, as they might not take adequate advantage of the
ordinal information in the data. Over time, the problem of ordinal regression has become
increasingly important, due to its presence in many real problems, and new methods have
been developed. Frank and Hall (2001) propose to decompose the ordinal regression prob-
lem into binary subproblems considering the inequalities with each of the possible classes.
For each subproblem a binary classifier is trained and finally the prediction probabilities
are aggregated to obtain the final ordinal class. Cheng et al. (2008) propose a generaliza-
tion of the perceptron for ordinal regression, modifying the output layer to handle ordi-
nal labels. Chu and Keerthi (2007) extend support vector machines for ordinal regression
problems by imposing constraints on the classes, both explicit and implicit. Cardoso and
da Costa (2007) propose an original method to address this problem, which consists in
adding additional dimensions to the data and replicating them in these dimensions. In this
new scenario, the problem is transformed into a binary problem where the binary label
assigned to each dimension will depend on the original ordinal class. The problem then
can be solved using a binary classifier. Lin and Li (2009) extend the AdaBoost ensemble
to adapt it to ordinal classes. More recently, Shi et al. (2019) propose an encoding and a
kernel version of extreme learning machines to deal with ordinal regression problems, and
Halbersberg et al. (2020) extend the Bayesian network classifiers by maximizing several
metrics that better adapt to imbalanced and ordinal problems.

Learning using similarities between data is quite effective and adaptable to a wide
variety of problems. It is inspired by the human ability to detect similarities among
different objects, and it is one of the oldest practices carried out in machine learning
(Cover and Hart 1967). Since similarity-based learning is based on human reason-
ing, it also allows us to develop explainable models for which their learned knowledge
can be interpreted (Arrieta et al., 2020; Belle & Papantonis, 2020). Similarity-based
approaches need to establish a similarity measure, or equivalently, a distance metric,
among the data. Typically, standard distances, such as the Euclidean distance, are used
for this purpose. However, standard distances may not fit our data as well as a distance
that has been learned from the dataset itself. Learning a suitable distance that allows
us to facilitate a subsequent knowledge extraction is the task of distance metric learn-
ing (Suárez et al., 2021). Distance metric learning has proven to be highly effective for

2731Machine Learning (2021) 110:2729–2762	

1 3

many different problems in machine learning, such as multi-dimensional classification
(Ma & Chen, 2018) and multi-output learning (Liu et al., 2018).

Distance metric learning can be really useful for ordinal regression, since the learned
distances can help to capture the ordinal information of the data. By learning a distance,
we can get similar data to have similar labels as well, according to the order relation
among the classes. In this way, the subsequent similarity learning will be more effective.

Several proposals to learn distances for ordinal regression problems have been for-
mulated (Xiao et al., 2009; Fouad & Tiňo, 2013), but they use the differences between
classes internally, which may make them more appropriate for standard regression
problems.

A more recent proposal (Nguyen et al., 2018) attempts to overcome this drawback by
drawing inspiration from one of the most popular distance metric learning algorithms,
LMNN (Weinberger & Saul, 2009). This algorithm relies on the large margin principle
to locally bring same-class data closer together, while preventing data from other classes
from getting close to a specific limit. The extension to the ordinal case is made by adding
further constraints so that, for a given sample, the samples with the most distant classes in
the output space cannot be brought as close together in the input space as others with closer
labels. This algorithm also supports a kernel version that is able to learn a distance in very
high dimensional spaces. We will refer to the linear and kernel version of this proposal as
LODML and KODML, respectively. However, seeking an airtight separation of classes,
like this algorithm does, may be undesirable in many ordinal regression problems. Ordinal
datasets are usually small and suffer from a high degree of subjectivity in their labeling
(Agresti, 2010). Examples of this subjectivity are datasets that are generated from likert
scales (Joshi et al., 2015) or pain intensity scales for medical purposes. In these cases the
perception of the classes may be different for each labeler. This results in heterogeneous
datasets with unclear class boundaries. The underlying order is what actually contains the
information in the dataset, rather than the true classes assigned to each sample.

from which the existing distance metric learning algorithms tend to suffer when applied
to ordinal regression are:

•	 The quantification of differences between classes during the operation of the algo-
rithms.

•	 The assumption that classes in ordinal datasets can be easily separated.

In this paper we propose a new distance metric learning algorithm for ordinal regression
that overcomes these drawbacks. Our algorithm, which we have called chain maximizing
ordinal metric learning (CMOML), is based on the premise that no matter how hetero-
geneous our dataset is, a distance-based classifier can better predict a sample when labels
gradually become more and more different as we move away from the sample in any direc-
tion. In order to support our proposal, Fig. 1 illustrates a good data layout for distance-
based ordinal regression. This figure is a snapshot of a bidimensional dataset around the
point x ∈ ℝ

2 . We can see here that, although there is not a clear boundary between each
class in the dataset, when we move away from x in most directions we notice that the labels
begin to increase (marked with the red dashed arrows) or decrease (marked with the blue
dashed arrows) gradually. Therefore, a distance-based classifier is expected to perform well
around x. CMOML is based on this idea in order to transform the data such that a good
arrangement for a subsequent distance-based learning can be achieved. If many same-class
samples are found, they will move closer to one another. If there is more variety, an optimal
local sorting will be sought like in Fig. 1.

2732	 Machine Learning (2021) 110:2729–2762

1 3

CMOML looks for a distance that respects the local ordinal trend in our dataset as much
as possible. This is achieved by introducing the concept of ordered sequences. For each
sample we take a neighborhood from which we construct two types of sequences around
the sample: sequences of samples, in the input space, and the corresponding sequences of
labels, in the output space. An order relation can be established in both types of sequences,
and when a pair of sequences is ordered in both the input and output space, we will refer
to that pair as a chain. The goal of CMOML is to maximize the number of chains in the
dataset. The configuration of the algorithm also allows it to be applied in high dimensional
spaces with the support of the kernel functions. We will refer to the kernel version of
CMOML as KCMOML.

The design of CMOML makes it possible to solve the problems of the previous propos-
als, since (a) the labels are not treated numerically, as the sequences will only consider the
relative positions between them, and (b) the sequential approach fits the structure of the
data regardless of the quality of the class separation.

In order to analyze the time complexity of CMOML we have performed a computa-
tional analysis of the algorithm, which includes a comparison with the time complexity of
the state-of-the-art of metric learning for ordinal regression. The analysis shows that the
compared algorithms have similar time complexities and, due to the nature of CMOML, it
can highly benefit from parallelization.

To evaluate the performance of CMOML we have carried out several experiments on
datasets for ordinal regression. The results, supported by a Bayesian statistical analysis,
show that CMOML is an outstanding algorithm within the family of distance metric learn-
ing algorithms for ordinal regression, in addition to being competitive with the ordinal
regression state-of-the-art.

CMOML also offers benefits in terms of explainability that the compared algo-
rithms lack. The case-based reasoning approach (Lamy et al., 2019) allows nearest

Fig. 1   A snapshot of a 2D
ordinal dataset around the point
x. When we move away from
x in most directions, the labels
gradually increase or decrease.
This benefits similarity-based
or distance-based classification
around x (Color figure online)

2733Machine Learning (2021) 110:2729–2762	

1 3

neighbors-based algorithms to show their learned knowledge in an understandable way
(Belle & Papantonis, 2020; Arrieta et al., 2020). By combining nearest neighbors with the
distance that CMOML learns, we can make the neighbors we obtain much more intuitive
to our human reasoning. We will show this empirically. To do this, we will analyze on
two different datasets how the nearest neighbors behave with the Euclidean distance and
with the distance learned by CMOML. Additionally we will see that CMOML can perform
dimensionality reduction and we will explore its benefits in terms of understandability.

Our paper is organized as follows. Section 2 describes the distance metric learning
and ordinal regression problems. Section 3 shows our proposal of distance metric learn-
ing for ordinal regression. Section 4 describes the experiments developed to evaluate the
performance of our algorithm, and the results obtained. Section 5 shows how to combine
CMOML and case-based reasoning to obtain explainable models and discusses the ben-
efits of this approach on two different datasets. Finally, Sect. 6 ends with the concluding
remarks.

2 � Background

In this section we will describe the problems and tools that will be used throughout the
paper.

2.1 � Distance metric learning

Distance metric learning (Suárez et al., 2021) is a discipline of machine learning that aims
to learn distances from the data, where distance refers to a map d ∶ X × X → ℝ , with X a
non-empty set, satisfying the following conditions:

1.	 Coincidence: d(x, y) = 0 ⟺ x = y , for every x, y ∈ X .
2.	 Symmetry: d(x, y) = d(y, x) , for every x, y ∈ X .
3.	 Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) , for every x, y, z ∈ X .

Distance metric learning frequently focuses on learning Mahalanobis distances, since they
are parameterized by matrices, and therefore they are easy to handle from a computational
perspective. Given a positive semidefinite (also called metric) matrix M of dimension d,
the Mahalanobis distance associated with M, for each x, y ∈ ℝ

d , is given by

Since every metric matrix M can be decomposed as M = LTL , where L is a matrix with the
same number of columns as M, and verifying that dM(x, y) = ‖L(x − y)‖2 , a Mahalanobis
distance can also be understood as the Euclidean distance after applying the linear map
defined by the matrix L. Thus, distance metric learning comes down to learning a metric
matrix M or to learning a linear map matrix L. Both approaches are equally valid, and each
one has different advantages. For instance, learning M usually leads to convex optimization
problems, while learning L can be used to guarantee a dimensionality reduction with no
additional cost.

dM(x, y) =
√
(x − y)TM(x − y).

2734	 Machine Learning (2021) 110:2729–2762

1 3

2.2 � Ordinal regression and similarity approaches

Ordinal regression (Gutierrez et al., 2016) is a machine learning problem consisting in,
similarly to classification and regression, predicting the output label y ∈ Y of an input
vector x ∈ ℝ

d , given a training set of labeled samples S = {(x1, y1),… , (xN , yN)} , with
x1,… , xN ∈ ℝ

d and y1,… , yN ∈ Y . What differentiates ordinal regression from classifica-
tion and regression is the nature of the set Y . Y is a finite set Y = {l1,… , lC} of length
C ≥ 3 , over which an order relation < is defined so that li < li+1 , for i = 1,… ,C − 1 . In
addition, although the values in Y are ordered, their differences are not quantifiable, that is,
the operations li − lj are not defined, for any i, j ∈ 1,… ,C . Therefore, the exclusive infor-
mation that Y provides in ordinal regression problems is the relative positions between the
labels. It is often common to represent Y as Y = {1,… ,C} together with the order relation
of the natural numbers, always taking into account that the differences between the values
in Y should not be used in this problem.

In ordinal regression, committing a prediction error with a class close to the real one in
Y is not as serious as committing an error predicting the class furthest away from the true
one. Therefore, both the algorithms and the evaluation metrics have to be adapted to face
this problem and evaluate their solutions adequately. For this purpose, traditional methods
such as support vector machines have been adapted to this problem by imposing constraints
in order to respect the ordering of the classes (Chu & Keerthi, 2007; Gu et al., 2020), or by
reducing to binary problems in an appropriate way (Lin & Li, 2012). Other proposals try to
adapt conventional loss or gain functions in order to handle ordinal data in the best possible
way. These functions have been tested with algorithms such as decision trees (Singer et al.,
2020), Bayesian networks (Halbersberg et al., 2020) or extreme learning machines (Shi
et al., 2019), as well as with gradient-based learners (Fathony et al., 2017; Mensch et al.,
2019), such as back-propagation neural networks. Finally, deep learning has also taken a
leading role in this problem, with proposals that are mainly applied in fields related to com-
puter vision (Vargas et al., 2020; Beckham & Pal, 2017; Fu et al., 2018).

In the context of similarity-based learning, the k-nearest neighbors (k-NN) approach
(Cover & Hart, 1967) can be easily extended to the ordinal case. To do this, we have to
consider the general aggregation function for a k-NN algorithm (Dudani, 1976; Calvo &
Beliakov, 2010), given by

where x is the sample to be predicted, ij, j = 1,… , k are the indices of the k-nearest neigh-
bors of x in the training set, wj are weights to be considered for each neighbor, and p is a
penalty function that measures how wrong it might be to label x with each of the classes,
according to the information given for each of the neighbors. Observe that if all the weights
are equal and p(y, y∗) = [[y ≠ y∗]] , f becomes the classic majority-vote aggregation function
of the k-NN (here, [[⋅]] denotes the indicator function for the condition inside the brackets).
When the labels are ordinal, we can use additional penalty functions that take into account
the order relation between the labels. According to Tang et al. (2020), one of the most pop-
ular penalty functions is the L1 penalty1, given by p(y, y∗) = |y − y∗|. This penalty function

f (x) = argmin
y∈Y

k∑
j=1

wjp(yij , y),

1  Observe that, although this penalty function is considering the differences between the labels, their
numerical values do not influence the final value of the aggregation function. In fact, the median or
weighted-median resulting from the aggregation does not depend on the differences between the labels, but
depends only on the weights wj and the relative positions between the labels of the k-nearest neighbors.

2735Machine Learning (2021) 110:2729–2762	

1 3

leads to the median-vote or weighted-median-vote k-NN approaches, both of them being
immediate extensions of this algorithm to ordinal regression.

In the context of distance metric learning for ordinal regression, Nguyen et al. (2018)
recently proposed the distance metric learning approach LODML (linear ordinal distance
metric learning). This approach is based on the classic large margin nearest neighbors
(LMNN) algorithm for distance metric learning. LMNN searches for a distance that brings
each sample as close as possible to a predefined set of same-class target neighbors while
keeping data from other classes out of a large margin defined by the target neighbors. This
distance can be obtained by optimizing the following objective function, defined for a posi-
tive semidefinite matrix M

In this function, the first term is a regularization term and �ijl slack variables that measure
to what degree the margins have been violated. The set R1 is the set of triplets (i, j, l) such
as xj is a target neighbor of xi and xl is a sample with a different class to xi . The first con-
straint is the large margin constraint, which enforces that, for each triplet (i, j, l) ∈ R1 , xi
and xj are close, and xl does not invade the large margin defined by xj around xi , as long as
it is feasible.

The extension to the ordinal case that LODML performs is done by replacing the set
of triplets R1 with a new set R = R1 ∪ R2 ∪ R3 , where R1 is the previous set of triplets,
and R2 and R3 include triplets (i, j, l) so that yl < yj < yi or yi < yj < yl , respectively, thus
forcing the large margin criterion to also be applied with all the possible combinations of
ordered classes. The algorithm can be extended to non-linear metric learning using ker-
nel functions. The kernel version is referred to as kernel ordinal distance metric learning
(KODML).

3 � Chain maximizing ordinal metric learning

In this section we will describe the CMOML algorithm. This algorithm looks for a distance
for which the dataset has a high number of chains. As such, it achieves an optimal configu-
ration for the data, since close samples according to the distance obtained will also have
close labels.

First, we will explain in detail the concepts needed to understand the algorithm, Then,
we will show the objective function and how to proceed with its calculation. Afterwards,
we will demonstrate how to extend the algorithm to high dimensional spaces using ker-
nels. We will conclude the section by performing a complexity analysis of the proposed
methods.

3.1 � Preliminary definitions

Suppose that our training set is given by X = {x1,… , xN} ⊂ ℝ
d , with corresponding

labels y1,… , yN ∈ Y = {1,… ,C} . As already mentioned, given xi ∈ X  , the goal of our

fL(M) = � tr (M) +
∑

(i,j,l)∈R1

�ijl

s.t. ∶d2
M
(xi, xl) − d2

M
(xi, xj) ≥ 1 − �ijl

�ijl ≥ 0

M ≥ 0.

2736	 Machine Learning (2021) 110:2729–2762

1 3

algorithm is to increase the difference between the labels as we move away from xi in any
direction, for each xi ∈ X  . To do this we introduce several concepts. First, we will work
with the distance defined by a linear map L ∶ ℝ

d
→ ℝ

d� , with d′ ≤ d . The value of d′ is
the desired dimension of our dataset in the transformed space, so we are able to perform a
dimensionality reduction with this setup. The associated matrix, which we will also refer
to as L, is of dimension d� × d . A common value for d′ is to use d� = d , so that the trans-
formed data remains in the input space. If the transformation learned in this way is not
full-rank, that is, all the elements in ℝd are mapped to a subspace of dimension lower than
d, this dimension can be used as a new value for d′ to ensure that no information from the
full-rank method is lost. Another possibility is to estimate d′ from specialized dimensional-
ity reduction methods. For example, to set d′ according to the reconstruction errors pro-
vided by principal components analysis (Jolliffe, 2002), up to the amount of reconstruction
error we are willing to admit for our data.

Then, for each xi ∈ X we define a neighborhood UL(xi) , which consists of the Ki near-
est neighbors of xi (including xi ), according to the distance determined by L. Ki ∈ ℕ
denotes the size of the neighborhood around xi , and can be either a fixed value for every
i ∈ {1,… ,N} , a value estimated to make equal-radius neighborhoods that better adapts to
the data densities, or any value that can be established with any kind of prior information.
We will consider these neighbors as already projected onto the transformed space, that is,
the elements of UL(xi) will be of the form Lxj , with j ∈ {1,… ,N} . We also fix � ∈ ℕ ,
which will be the length of the sequences that we define below.

Definition 1  Let � be an injective mapping from the set {1,… , �} to the set of the indices
of the samples that belong to UL(xi) . A sequence (of samples) around xi ∈ X (with respect
to L) is a �-tuple (Lx�(1),… , Lx�(k)) , with Lx�(1),… , Lx�(�) ∈ UL(xi) . We refer to the tuple
(y�(1),… , y�(�)) as the corresponding sequence of labels.

In other words, sequences of samples are successions of � items taken from UL(xi)
without replacement, and their labels in the same order of choice form the corresponding
sequence of labels. Since we are working on an ordinal regression problem, there is a natu-
ral order relation among the labels. We will say that a sequence of labels (y�(1),… , y�(�))
around xi is ordered if either yi ≤ y�(1) ≤ ⋯ ≤ y�(�) or yi ≥ y�(1) ≥ … y�(�).

The next step is to establish a relation on the sequences of samples so that they can be
paired with the corresponding order in the sequences of labels. As we are interested in
increasing the difference between the labels while we are moving away from xi , we define
this (pre-)order relation as follows.

Definition 2  An ordered sequence of samples around xi ∈ X (with respect to L) is a
sequence of samples (Lx�(1),… , Lx�(�)) verifying that

Definition 3  A chain around xi ∈ X (with respect to L) is an ordered sequence of labels
(y�(1),… , y�(�)) associated with an ordered sequence of samples (Lx�(1),… , Lx�(�)) . We
denote the total number of chains around xi (with respect to L) as SL(xi).

In short, chains represent sequences that are ordered in both the label space and the
sample space. Observe that, if we assume that there are no points in UL(xi) at the exactly
same distance from xi we have that

‖Lx�(1) − Lxi‖ ≤ ‖Lx�(2) − Lxi‖ ≤ ⋯ ≤ ‖Lx�(�) − Lxi‖.

2737Machine Learning (2021) 110:2729–2762	

1 3

since, as there is a unique ordering of the samples under this assumption, the total number
of ordered sequences of samples is the total number of non-repeating combinations of �
items taken from UL(xi) , and SL(xi) attains its maximum when every ordered sequence of
samples is a chain. The case with equal distances will be discussed later on. Let us illus-
trate these concepts with an example.

Example 1  Suppose that we set K0 = 7 , � = 3 , and, for a linear map L ∶ ℝ
d
→ ℝ

2 , we have
a snapshot of a 2D ordinal dataset around the point Lx0 as in Fig. 2. Under these assump-
tions we have that UL(x) = {Lx0, Lx1, Lx2, Lx3, Lx4, Lx5, Lx6} , and the distance orders in
the neighborhood verify that ‖Lxj − Lx‖ < ‖Lxj+1 − Lx‖ for j = 0,… , 6 . The labels corre-
sponding to each of the samples in UL(x0) are:y0 = , y1 = , y2 = , y3 = , y4 = , y5 =

 and y6 = . We have that:

•	 The sequences of samples are any � different items taken from UL(x) in any order. For
example, (Lx5, Lx0, Lx3) (the gray dotted arrows). This sequence is not ordered, since
Lx0 and Lx3 are closer to Lx0 than the first element of the sequence, Lx5 . Its correspond-

(1)SL(xi) ≤

(
Ki

�

)
,

Fig. 2   A neighborhood of the sample Lx
0
 , for L of length K

0
= 7 , with sequences of samples and labels

(gray dotted arrows), ordered sequences of samples (red dashed arrows), ordered sequences of labels (blue
dashed arrows) and chains (golden solid arrows) of length � = 3 (Color figure online)

2738	 Machine Learning (2021) 110:2729–2762

1 3

ing sequence of labels is (y5, y0, y3) =(, ,), which is also not ordered, since neither
y5 ≤ y0 ≤ y3 nor y5 ≥ y0 ≥ y3.

•	 The sequence of samples (Lx0, Lx2, Lx6) (the red dashed arrows) is ordered, since each
term in the sequence is further away from Lx0 than the previous one. However, it is not
a chain, since its corresponding sequence of samples is (y0, y2, y6) = (, ,), and this
sequence is not ordered.

•	 The sequence of labels (y6, y3, y5) = (, ,) (the blue dashed arrows) is ordered,
since it is decreasing (≥ ≥) and all the elements in the sequence are lower than
or equal to the label of the central sample of the neighborhood, y0 = . However, it is
not associated with an ordered sequence of samples, because in (Lx6, Lx3, Lx5) , the sec-
ond item is closer to Lx0 than the first one. Therefore, this sequence is not a chain.

•	 The sequences of samples (Lx0, Lx1, Lx2) and (Lx3, Lx4, Lx5) are chains, since they are
ordered sequences of samples, and their corresponding sequences of labels are, respec-
tively, (, ,) and (, ,), which are also ordered.

•	 Observe that the central point, Lx0 , may or may not belong to a chain. But when Lx0
does not belong to a chain candidate the label y0 is still used to compute if the sequence
of labels is ordered. For example, although the sequence (Lx2, Lx4, Lx5) is an ordered
sequence of samples and its corresponding sequence of labels, (y2, y4, y5) =(, ,

), is decreasing, it is not an ordered sequence of labels under our definition, since
y0 ≱ y2 ≥ y4 ≥ y5 . Therefore, this sequence is not a chain.

The reason why we do not consider this last sequence a chain under our definition is
because, from the point of view of distance-based ordinal regression, this chain does not
move away from the base class of the neighborhood, y0 , gradually. The first element, y2 , is
higher than y0 , while the second, y4 , is lower than y0 . Since in an ordinal regression prob-
lem the true distances between the class labels are unknown, to consider a sequence as a
chain we are only interested in whether it ascends or descends from the base class of the
neighborhood, y0 in this case. Therefore, even though y0 does not belong to the sequence,
we impose this restriction to the definition of chain.

3.2 � Optimization

Once the concept of chain has been defined, the problem that CMOML optimizes is

Observe that the objective function only takes integer values and therefore, it is not dif-
ferentiable or even continuous. As a result, it is necessary to make use of black-box non-
differentiable optimization methods in order to maximize Eq. (2). We will discuss the opti-
mization method used in our experimental analysis in Sect. 4.2.

In order to avoid the brute force counting of SL(xi) , which would be computationally
expensive according to the inequality in Eq. (1), it is possible to obtain the value of SL(xi)
using a dynamic programming approach. We will assume that there are no points in UL(xi)
at the exactly same distance from xi . If this is not the case, the uniqueness in the order of
the sequences of samples, which is needed for the dynamic programming approach, is lost.
However, we will show at the end of the section that when we find several samples at the

(2)max
L∈ℝd�×d

N∑
i=1

SL(xi).

2739Machine Learning (2021) 110:2729–2762	

1 3

same distance from xi we can still apply this algorithm by following a pessimistic optimiza-
tion approach.

First, let us consider the sequence of all the labels associated with all the samples in
UL(xi) , ordered by the distances of the corresponding samples to xi ; in other words, the
sequence of length Ki , u = (y�(1),… , y�(Ki)

) so that UL(xi) = {Lx�(1),… , Lx�(Ki)
} and

Observe that the inequality above holds when using the strict order (<) thanks to the
assumption of unequal distances around xi . We will focus on counting the ascending chains
around xi . The process for counting descending chains is similar. From the sequence u we
construct a subsequence v containing only the items in u that are greater than yi , that is,

where R ≤ Ki and � ∶ {1,… ,R} → {1,… ,Ki} is a strictly increasing map so that y��(j) ≥ yi
for every j ∈ {1,… ,R} , and � is also surjective over the set {j ∈ {1,… ,Ki} ∶ y�(j) ≥ yi}

Now, the problem of counting the ascending chains around xi is reduced to finding
all the increasing subsequences of length � inside v, since v contains all the labels in the
neighborhood of xi which are greater than yi , ordered by the distances to xi . This new prob-
lem can be easily solved using dynamic programming, by iteratively filling a � × R matrix,
where the (l, m) entry represents the number of sequences of length l which end at the m-th
item in v, and can be recovered from the entries in the row l − 1 . This process can be done
in O(�R2).

The process of counting descending chains is done by constructing v with the elements
of u that are lower than yi , and counting the decreasing sequences in the new v. Observe
that the constant chains are counted twice, since they appear in both ascending and
descending chains. So, to obtain the final number of chains SL(xi) , we have to add the
increasing chains and decreasing chains, and subtract the number of constant chains, which

can be easily obtained as
(
H

�

)
 , where H = |{j ∈ {1,… ,Ki} ∶ y�(j) = yi}|.

Example 2  We return to the dataset of Example 1 to show how to construct the sequence
needed for the dynamic programming algorithm. To facilitate the calculations, we will
identify the classes in the dataset with integer numbers: = 0 , = 1 , = 2 , = 3 , = 4 .
Since the samples in UL(x) verify that ‖Lxj − Lx‖ < ‖Lxj+1 − Lx‖ for j = 1,… , 5 , we
obtain the sequence u by adding the labels from y0 to y6 , that is, u = (2, 3, 4, 1, 1, 0, 2) . To
count the ascending chains, we compute v by removing the elements that are lower than
y0 from u, obtaining v = (2, 3, 4, 2) . Now we can apply the dynamic programming algo-
rithm, obtaining one single chain: (2, 3, 4), associated with the samples (Lx0, Lx1, Lx2) (the
ascending chain obtained in Example 1). To count the descending chains we follow a simi-
lar process, removing the labels greater than y0 from u, and obtaining v = (2, 1, 1, 0, 2) .
Now we apply the dynamic programming algorithm, obtaining three descending chains:
(2, 1, 1), (2, 1, 0) and (1, 1, 0). The last one is the descending chain shown in Example 1.

Finally, let us explain how to handle the case where there are examples at the same
distance from xi . Observe that, if the points that are at the same distance from xi share the
same label, they can be swapped in u without affecting the final value of SL(xi) , so it does
not matter in what order they are added to u, since both positions will have the same class
label.

‖Lx𝜏(1) − Lxi‖ < ‖Lx𝜏(2) − Lxi‖ < ⋯ < ‖Lx𝜏(Ki)
− Lxi‖.

v = (y��(1),… , y��(R)),

2740	 Machine Learning (2021) 110:2729–2762

1 3

For the general case, let us note, first of all, that this situation is dependent on L, and
we can apply a small disturbance to it that would break this equality (unless the samples
at the same distance to xi and xi are aligned)2. This means that when we have two different
samples being mapped by L to points at the same distance to xi , it is easy to find another
map in an arbitrarily small neighborhood of L that sends them to different points at differ-
ent distances to xi.

Moreover, having two different samples from different classes mapped to points at the
same distance to xi is not a positive thing from the point of view of a distance-based clas-
sification. For example, consider a sample x1 , of class 1, for which its nearest neighbors
(for the distance provided by L) are x2 and x3 , with classes 2 and 3, respectively, and x2
and x3 are at the same distance to x1 . To classify x1 using the information from x2 and x3 ,
a distance-based classifier would consider that x1 has the same probability to belong to
classes 2 and 3. However, in an ordinal regression problem we would expect that class 2
had a greater probability, since it is closer to the real class of x1 than class 3.

Since we are using a black-box optimizer we propose a pessimistic approach, in which
in case of equality, the vector u is constructed by adding the farther classes first. Thus, the
number of chains obtained by the optimizer will be lower than the real one, and therefore
we will be forcing the optimizer to search for a distance that breaks the equality in the most
suitable way. In the previous example, with x2 and x3 at the same distance to x1 , we would
add to u the class 3 before the class 2. In this way, the objective function for L will get a
lower number of chains than the objective function for the disturbances of L for which x2 is
closer to x1 than x3 (which will add to u the class 2 before the class 3). Therefore the opti-
mizer will be guided to find distances in this second scenario, which is more appropriate
for a distance-based ordinal regression.

In any case, the occurrence of equal distances in a dense space like ℝd is a very unlikely
case, even assuming the finite precision of the floating point variables. Note that the pes-
simistic approach also covers the case of duplicate samples with different labels, for which
this approach also allows a unique ordering to be established when constructing u, although
in this case the duplicates will always be mapped to equal points. In this case, preprocess-
ing techniques to reduce label noise may be useful before the execution of the algorithm
(Frénay & Verleysen, 2013; García et al., 2015).

To sum up, the core of CMOML consists in counting the number of chains for a given
linear map matrix L, which can be done using the procedure described above. This evalu-
ation will be repeated for different matrices by a black-box optimizer in order to find an
optimum value of chains. The optimizer we have used in our experimental analysis will be
discussed in Sec. 4.2.

2  If xq, xr verify that ‖Lxq − Lxi‖ = ‖Lxr − Lxi‖ and xi, xq, xr are not aligned, then xq − xi and xr − xi are
linearly independent, and therefore we can define a linear transformation that maps them to different
length vectors, resulting in different distances to xi . This transformation can be arbitrarily close to L, since
we could construct such a transformation by defining the image of xq − xi and xr − xi as �L(xq − xi) and
L(xr − xi) , respectively, with 1 − 𝜀 < 𝜆 < 1 , for any 𝜀 > 0.
  If xi, xq and xr are aligned and verifying ‖Lxq − Lxi‖ = ‖Lxr − Lxi‖ , then xq = xr or xi is the middle point
between xq and xr . The first case may be caused by class noise, and is discussed in the text. For the second
case, the pessimistic approach described in the text will cause the objective function not to count chains that
contain opposing elements within the neighborhood. This is also desirable, since those opposing samples
cannot be modified by a linear transformation.

2741Machine Learning (2021) 110:2729–2762	

1 3

3.3 � Non‑linear CMOML

Since learning a Mahalanobis distance is equivalent to learning a linear transformation,
there are many problems where the inherent non-linearity of the data cannot be properly
handled by these distances. To solve this problem, we can use kernel functions in order
to be able to learn a linear transformation in a higher dimensional feature space gener-
ated by a non-linear mapping. This idea has been successfully applied to other distance
metric learning algorithms (Torresani & Lee, 2007; Nguyen et al., 2017), as well as being
a fundamental piece in the success of an algorithm of the relevance of the support vector
machines (Burges, 1998). We can apply the kernel trick to CMOML to obtain its kernel
version, KCMOML.

We consider a non-linear mapping � ∶ ℝ
d
→ F  , where F is a Hilbert space of high

dimension (or even infinite), denoted as the feature space. To learn a distance given by
L ∶ F → ℝ

d using CMOML in the feature space we only need to compute the distances
between the data after sending them to F  . Then the ordered sequences can be obtained in
the same way as in the linear case once the distances are known. Assuming that a kernel
function K ∶ ℝ

d ×ℝ
d
→ ℝ associated with � is known, if we search for the components of

L in the span of {�(x1),… ,�(xN)} , we can express L in terms of K and a new matrix A, of
dimension d� × N (Suárez et al., 2021) as

From this identity, we can compute the distances ‖L�(xi) − L�(xj)‖ , as well as applying
L to any point in F  . Therefore, by optimizing the matrix A in order to find the maximum
number of chains in the feature space, using again a black-box non-differentiable optimi-
zation method (which will be discussed in Sect. 4.2) we obtain the kernelized version of
CMOML.

3.4 � Complexity analysis of CMOML and comparison with LODML

In this section we will compare the computational time complexity required by the
CMOML and LODML methods and their kernel versions.

The parameters that determine the time complexity of LODML are: the number of sam-
ples N, the number of features d, the number of target neighbors k, the neighborhood size
� , and the size of the set of triplets m = |R| (Nguyen et al., 2018). Both the target neighbors
and the neighborhoods can be built at the first stage of the algorithm using a linear nearest
neighbors search, which can be performed in O(kN2 + dN2) and O(�N2 + dN2) , respec-
tively. The second stage of the algorithm is the optimization procedure, which is an itera-
tive projected gradient descent method consisting of two parts: the gradient computation
and its projection onto the positive semidefinite cone. The gradient computation requires
the calculation of outer products involving all the constraints in R, which, in the worst case,
can be performed in O(md2) . However, in practice, only a few outer products are required
to be computed, which are those corresponding to the constraints that switched their acti-
vation state between consecutive iterations of the gradient update. Finally, the projection
of the obtained gradient onto the positive semidefinite cone is performed in O(d3) and

L�(x) = A

⎛⎜⎜⎝

K(x, x1)

…

K(x, xN)

⎞⎟⎟⎠
.

2742	 Machine Learning (2021) 110:2729–2762

1 3

the metric update is performed in O(d2) , thus the overall time complexity of LODML is
O(d3 + md2) per iteration (Nguyen et al., 2018).

In the case of CMOML, the parameters that determine its complexity are: the number
of samples N, the number of features d, the sizes of the neighborhoods {Ki ∶ i = 1,… ,N} ,
the sequence length � and the output dimension d′ . For the worst case estimation, let us
assume that d� = d and K = max{Ki ∶ i = 1,… ,N} . The objective function of CMOML
requires transforming the dataset using L, which can be performed in O(Nd2) , and the com-
putation of the pairwise distances for the transformed dataset, which can be performed in
O(N2d) . Then, computing the number of chains in each neighborhood requires first the
neighborhood calculation, which can be performed in O(KN) since all the pairwise dis-
tances in the transformed data were already computed. Then, the sequences u and v can be
built in O(K) as shown in Sect. 3.2, and finally the counting operation can be performed in
O(kK2) (also shown in Sect. 3.2 and using that R ≤ K in any neighborhood). This is done
for each xi ∈ X  , resulting in an overall time complexity of the objective function of

To the objective function cost of CMOML we have to add the overhead of the differential
evolution steps, which consists of O(Pd2) after every P evaluations of the objective func-
tion (Das and Suganthan 2010), where P is the population size.

With respect to the kernel versions, both methods include an initial kernel matrix com-
putation, of size N × N , which can be performed in O(N2d) . Then, all the dimension-
dependent (d) complexities in LODML scale to samples-dependent (N) complexities in
KODML due to the kernel trick, resulting in an overall complexity of O(N3 + mN3) for the
gradient iterations of KODML. For KCMOML, since we still count the chains after apply-
ing the transformation, the output dimension d remains in this stage and only the transfor-
mation operation and the differential evolution overhead scale to N, resulting in an overall
complexity of O(N(Nd + �K2) + N2(d + K)) for the objective function, and O(PN2) for the
differential evolution overhead.

In summary, we see that both methods run in cubic orders of complexity with respect to
(N, d), which is common in most metric learning methods, since at a minimum they usually
require operations such as matrix products or decompositions.

Within the cubic order, LODML seems to be a lighter algorithm, and its gradient com-
putation depends only on d. However, CMOML has the advantage that the evaluations of
the objective function can be highly parallelized, and a whole generation can be evalu-
ated simultaneously. In contrast, LODML is inevitably iterative as every iteration depends
on the completion of the previous one. Finally, KCMOML scales somewhat better than
KODML since it still depends on d in many terms of its overall complexity, rather than N.

4 � Experiments

In this section we describe the experiments we have developed with CMOML and
KCMOML, and the results we have obtained. The results obtained show a high perfor-
mance of CMOML with respect to the compared algorithms.

First we describe the experiments, datasets and parameters we have used to evaluate the
performance of CMOML. Then, we perform a distance metric learning comparison frame-
work that involves CMOML, the Euclidean distance and the state-of-the-art of distance
metric learning for ordinal regression. We compare these algorithms using always the same

O(Nd2 + N2d + N(KN + K + �K2)) = O(N(d2 + �K2) + N2(d + K)).

2743Machine Learning (2021) 110:2729–2762	

1 3

nearest neighbors classifier. We do this for the linear case and for the kernelized versions
of the algorithms. We show the results and verify them using Bayesian statistical analysis.
Finally, we show the position of CMOML with respect to the state-of-the-art for ordinal
regression, beyond distance metric learning and nearest neighbors classifiers.

4.1 � Experimental framework

We have evaluated the distance learned by CMOML using a distance-based classifier.
Since we will consider ordinal datasets in the experiments, the classifier used in the experi-
ments is the median-vote k-neighbors classifier (Tang et al., 2020), which is the natural
adaptation for the common majority-vote k-neighbors classifier to ordinal regression, as
discussed in Sect. 2.2. We have used a number of neighbors k = 7 . This number of neigh-
bors was chosen due to the fact that starting from this value the median and the mode of
the neighbor labels begin to differ significantly. For smaller values they will be very similar
in most cases. We have compared our algorithm with the results that the same classifier
obtains when using the Euclidean distance, and the distance learned by LODML.

The different distances used by the classifier will be evaluated by a stratified 5-fold cross
validation, that is, a cross validation that preserves the original class proportions in each
fold. We have used 36 datasets, 23 of them being real-world ordinal regression datasets.
The list of datasets has been completed by adding equal-frequency discretized regression
datasets. All these datasets are numeric, without missing values, and have been min-max
normalized to the interval [0, 1] prior to the execution of the experiments. The datasets,
their dimensions and the sources from which they have been gathered are shown in Table 1.

Let h ∶ ℝ
d
→ Y be the hypothesis obtained by the classifier. To evaluate it, we have

used the concordance index (C-Index), which is one of the most popular metrics for ordinal
regression (Cruz-Ramírez et al., 2014; Gönen & Heller, 2005). C-Index measures the ratio
between the number of ordered pairs in both true labels and predictions and the number of
all comparable pairs, that is

where [[⋅]] denotes the indicator function, that takes the value 1 if the condition inside is
satisfied and 0 otherwise. C-Index is not influenced by the numerical representation of the
class labels and can be understood as a generalization of the area under the ROC curve
(Hanley & McNeil, 1982) for the ordinal case.

To the results on the different datasets we add the average score obtained for each met-
ric, and an average ranking that has been calculated by assigning integer values starting
from 1, according to the relative quality of the different algorithms for each dataset.

For CMOML and KCMOML we have used a fixed neighborhood size Ki = 20 for
every sample in the dataset, a sequence length � = 7 , an output dimension d� = d and a
differential evolution optimizer that is described in detail in Sect. 4.2. For LODML and
KODML we have used a number of 7 target neighbors. Target neighbors are set, for each
sample, as the nearest same-class neighbors to the sample for the Euclidean distance. Both
the sequence length in CMOML and KCMOML and the number of target neighbors in
LODML and KODML are set in order to match the number of nearest neighbors used in
the subsequent k-NN classification.

C =

∑
i,j∶yi<yj

�
[[h(xi) < h(xj)]] +

1

2
[[h(xi) = h(xj)]]

�

#{yi, yj ∶ yi < yj}

2744	 Machine Learning (2021) 110:2729–2762

1 3

Given that the purpose of this study is to draw a fair comparison between the algo-
rithms and assess their robustness in a common environment with multiple datasets, we
have not included a tuning step to maximize any particular performance metric.

The implementations of LODML, CMOML and their kernel versions used in this
experimental analysis can be found in our Python library, pydml (Suárez et al., 2020).

Table 1   Datasets used in the experiments

Dataset # Samples # Features # Classes Source

affairs 265 17 6 Gagolewski (2020)
automobile 202 71 5 Gutierrez et al. (2016)
autoMPG8 392 7 5 Triguero et al. (2017)
auto-riskness 157 15 5 Gagolewski (2020)
balance 625 4 3 Triguero et al. (2017)
boston-housing 506 13 5 Gagolewski (2020)
car 1728 6 4 Triguero et al. (2017)
cement-strength 998 8 5 Gagolewski (2020)
cleveland 297 13 5 Triguero et al. (2017)
conctact-lenses 25 6 3 Gutierrez et al. (2016)
eucalyptus 736 91 5 Gutierrez et al. (2016)
glass 213 9 6 Gagolewski (2020)
newthyroid 215 5 3 Triguero et al. (2017)
pasture 36 25 3 Gutierrez et al. (2016)
squash-stored 52 26 3 Gutierrez et al. (2016)
squash-unstored 52 25 3 Gutierrez et al. (2016)
tae 151 54 3 Triguero et al. (2017)
winequality-red 1359 11 6 Gutierrez et al. (2016)
winsconsin-breast-ord 194 32 5 Gagolewski (2020)
ERA 1000 4 9 Gutierrez et al. (2016)
ESL 482 4 7 Gutierrez et al. (2016)
LEV 1000 4 5 Gutierrez et al. (2016)
SWD 1000 10 4 Gutierrez et al. (2016)
baseball [Discretized] 337 16 5 Triguero et al. (2017)
dee [Discretized] 365 6 5 Triguero et al. (2017)
ele-1 [Discretized] 495 2 5 Triguero et al. (2017)
forestFires [Discretized] 517 12 5 Triguero et al. (2017)
machineCPU [Discretized] 209 6 5 Triguero et al. (2017)
pyrim [Discretized] 74 26 5 Gutierrez et al. (2016)
stock [Discretized] 950 9 5 Gutierrez et al. (2016)
abalone [Discretized] 4177 11 5 Gutierrez et al. (2016)
bank1 [Discretized] 8192 8 5 Gutierrez et al. (2016)
bank2 [Discretized] 8192 32 5 Gutierrez et al. (2016)
computer1 [Discretized] 8192 12 5 Gutierrez et al. (2016)
computer2 [Discretized] 8192 21 5 Gutierrez et al. (2016)
calhousing [Discretized] 20,640 8 5 Gutierrez et al. (2016)

2745Machine Learning (2021) 110:2729–2762	

1 3

4.2 � Black‑box optimizer in CMOML and KCMOML

In order to run the CMOML and KCMOML algorithms it is necessary to establish some
kind of black-box optimizer that can evaluate its objective function. In this experimental
analysis we have used a differential evolution (Storn & Price, 1997) algorithm. This evolu-
tionary model is updated by taking differences between individuals in order to find a global
optimum. Since the function to be optimized is not of high complexity, we have opted for
this standard model of differential evolution, in both CMOML and KCMOML. The linear
map matrices that define the distances are codified as a real vector of dimension d� × d that
contains all the entries in the matrix added by rows (in the kernel version the matrix A is
codified in the same way, but in this case we obtain a d� × N vector). We have taken the dif-
ferential evolution implementation available in Scikit-Learn3 and the parameters we have
used are:

•	 A population size of 100, initialized using the latin hypercube strategy, in order to max-
imize the coverage of the parameter space (Park, 1994).

•	 The algorithm has been executed during 150 generations.
•	 The strategy used to generate new candidates has been best1bin, in which the best solu-

tion is updated, depending on the recombination probability, with the difference of a
pair of individuals taken randomly.

•	 The decision of updating each of the parameters is made using a binomial distribution
with a recombination probability of 0.7. The differential weight that determines how
much a parameter is updated in case of recombination is taken randomly, for each gen-
eration, from the interval [0.5, 1[. When the new individual is constructed, its fitness is
calculated using Eq. (2) (after rewriting it as a matrix) and it replaces the original indi-
vidual if the new fitness is higher.

4.3 � Results for the linear case

Table 2 shows the C-Index results obtained by the algorithms. According to these results,
we see a clear dominance of CMOML over the other algorithms. This shows once again
the main ability of our algorithm, since a high C-Index indicates that the data are ordered
in both the input and the output space.

In order to evaluate to what extent CMOML outperforms the compared algorithms
and vice-versa, we have conducted a series of Bayesian statistical tests. We have pre-
pared several Bayesian sign tests (Benavoli et al., 2017) that compare CMOML with
each of the other algorithms. These tests take into account the differences between
the C-Index scores obtained from the two algorithms being compared, assuming
that their prior distribution is a Dirichlet Process (Benavoli et al., 2014), defined by
a prior strength s = 1 and a prior pseudo-observation z0 = 0 . After reading the score
observations obtained for each dataset, the tests produce a posterior distribution. This
distribution provides us with the probabilities that each of the compared algorithms
will outperform the other. The tests also introduce a region of practically equivalent
(rope) performance, where it is assumed that neither of the algorithms is better than
the other. We have designated the rope region as the one where the score differences

3  https://​docs.​scipy.​org/​doc/​scipy/​refer​ence/​gener​ated/​scipy.​optim​ize.​diffe​renti​al_​evolu​tion.​html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html

2746	 Machine Learning (2021) 110:2729–2762

1 3

are in the interval [−0.01, 0.01] . In summary, from the posterior distribution we obtain
three probabilities: the probability that the first algorithm will outperform the second,

Table 2   C-Index score for the
linear version of the algorithms
in each dataset

The results of the best algorithm for each dataset are highlighted in
bold

Euclidean LODML CMOML

affairs 0.569363 0.565897 0.554959
automobile 0.808623 0.880245 0.815365
autoMPG8 0.927234 0.895400 0.917576
auto-riskness 0.614520 0.627593 0.651275
balance 0.925787 0.960857 0.976474
boston-housing 0.795998 0.825344 0.846487
car 0.972751 0.980798 0.978543
cement-strength 0.738981 0.734096 0.844991
cleveland 0.783723 0.788992 0.767258
contact-lenses 0.700000 0.700000 0.828571
eucalyptus 0.823725 0.881438 0.804636
glass 0.774106 0.752447 0.794482
newthyroid 0.889352 0.945833 0.943981
pasture 0.867593 0.801852 0.845370
squash-stored 0.665731 0.721389 0.773538
squash-unstored 0.721429 0.772857 0.803571
tae 0.686458 0.636642 0.677773
winequality-red 0.701366 0.649910 0.703374
wisconsin-breast-ord 0.651560 0.621095 0.589265
ERA 0.689033 0.693902 0.680311
ESL 0.912828 0.906105 0.917878
LEV 0.808138 0.792477 0.810350
SWD 0.744839 0.749787 0.748572
baseball 0.863565 0.766930 0.877246
dee 0.875449 0.846101 0.879377
ele-1 0.878193 0.855523 0.877938
forestFires 0.519372 0.519587 0.540831
machineCPU 0.854202 0.860928 0.871658
pyrim 0.764274 0.805812 0.800085
stock 0.962147 0.688421 0.962486
abalone 0.802877 0.724529 0.805626
bank1 0.773963 0.942145 0.949363
bank2 0.587407 0.770863 0.784161
computer1 0.903586 0.784361 0.910165
computer2 0.906698 0.855022 0.909880
calhousing 0.866630 0.778105 0.910898
AVG SCORE 0.786986 0.780091 0.815398
AVG RANK 2.229730 2.256757 1.513514

2747Machine Learning (2021) 110:2729–2762	

1 3

the probability that the second algorithm will outperform the first, and the probabil-
ity that both algorithms will have an equivalent performance. The distribution can be
displayed in a simplex plot for a sample of the posterior distribution, where a greater
tendency of the points towards one of the regions will represent a greater probability.

To carry out the Bayesian sign tests we have used the R package rNPBST (Carrasco
et al., 2017). Figure 3 shows the results of the comparisons using the C-Index metric.

By examining the results of the tables and the corresponding Bayesian analyses, we
can draw several conclusions. The Bayesian analysis shows us that there is a very low
probability that Euclidean distance will outperform CMOML, while CMOML has a
greater chance of outperforming Euclidean distance, although there is also a remark-
able probability that both distances have an equivalent performance. In the comparison
between LODML and CMOML we observe again that CMOML has a very high prob-
ability of outperforming LODML, with low probabilities for the reciprocal and rope
cases.

Fig. 3   Bayesian sign test results for the comparison between CMOML with Euclidean distance and
LODML using C-Index. Simplex diagrams and posterior distributions are shown (Color figure online)

2748	 Machine Learning (2021) 110:2729–2762

1 3

In general, according to the results observed with this ordinal regression metric, we
can conclude that CMOML could be an interesting alternative when looking for dis-
tances aimed at ordinal regression problems.

4.4 � Results for the non‑linear case

Finally, we will show the results of the experiments with the kernelized versions of
CMOML and LODML. We have evaluated KCMOML and KODML over the datasets pre-
viously described in Table 1, using the same classifier, validation strategies, parameters
and metrics. Since both kernel versions learn linear transformations that scale quadratically
with the number of samples, which can be computationally expensive for large datasets
(Nguyen et al., 2018), we have set a time limit of one week for the kernel experiments. We
have evaluated both algorithms using two of the most popular kernels, namely:

•	 The polynomial kernel, K(x, x�) = �⟨x, x�⟩p . We have used p = 2 , thus we have obtained
a quadratic transformation of the data.

•	 The radial basis function kernel, or RBF. It is defined as K(x, x�) = exp(−�‖x − x�‖2) .
The image of the non-linear mapping associated with this kernel is an infinite-dimen-
sional space.

The value � in both kernels has been tuned by cross-validation using the set of values
{10−3, 10−2, 10−1, 1, 10, 100, 1000}.

The results of the kernelized versions using the C-Index score are shown in Table 3. The
symbol (−) in a cell of the table indicates that the corresponding algorithm has exceeded
the established time limit. Observing these results we can see that the kernel versions are
able to obtain better results than the linear versions in most of the datasets. The improve-
ment observed for KODML with respect to LODML is higher than the improvement of
KCMOML with respect to CMOML, but KCMOML still obtains better average results,
with the RBF kernel obtaining the best average scores and the polynomial kernel obtain-
ing the best average rankings. Analyzing the results of the Bayesian tests4 from Fig. 4 we
can see there is pretty level playing field between the two algorithms when using the poly-
nomial kernel, with a very high probability that the algorithms will have equivalent per-
formances, while with the RBF kernel the probability distribution in the three regions is
very even, although slightly biased towards KCMOML. This tells us that KCMOML has
a slightly higher probability of performing better than KODML, although a similar prob-
ability for the KODML region implies that the algorithms are able to complement each
other well for different datasets. It is also interesting to observe that KCMOML with the
RBF kernel outstands in most of the real-world ordinal regression datasets, while its per-
formance on the discretized regression datasets slightly worsens. Finally, it should be noted
that KCMOML only times out in 2 of the large datasets used in the experiments, while
KODML times out in 5 of them. This confirms what the complexity analysis showed about
KCMOML scaling better than KODML with respect to the number of samples.

4.5 � Comparison with state‑of‑the‑art methods for ordinal regression

Since CMOML has proven to be an outstanding algorithm within the family of distance
metric learning algorithms for ordinal regression, in this section we compare the proposed

2749Machine Learning (2021) 110:2729–2762	

1 3

Table 3   C-Index score for the
kernel version of the algorithms
in each dataset

The results of the best algorithm for each dataset are highlighted in
bold
a In order to conduct a fair comparison between the two methods,
the average score, the average ranking and the Bayesian test results
exclude the datasets bank1, bank2, computer1, computer2 and cal-
housing in the kernel experiments

KODML KCMOML

POLY-2 RBF POLY-2 RBF

affairs 0.586422 0.545643 0.567910 0.601115
automobile 0.814357 0.802392 0.862178 0.851728
autoMPG8 0.927905 0.908938 0.921637 0.928632
auto-riskness 0.664561 0.708308 0.660411 0.671843
balance 0.965443 0.986929 0.993742 0.991133
boston-housing 0.834244 0.814329 0.814222 0.807763
car 0.978700 0.973873 0.984611 0.985772
cement-strength 0.784070 0.760296 0.818427 0.806169
cleveland 0.797910 0.814295 0.778811 0.785053
contact-lenses 0.857143 0.857143 0.871429 0.885714
eucalyptus 0.874315 0.851291 0.827302 0.793716
glass 0.774331 0.774331 0.797583 0.802359
newthyroid 0.948843 0.949769 0.943981 0.966435
pasture 0.861111 0.846296 0.867593 0.831481
squash-stored 0.753582 0.718582 0.771637 0.858450
squash-unstored 0.780714 0.815000 0.757857 0.815000
tae 0.700905 0.725865 0.675628 0.700214
winequality-red 0.703518 0.681436 0.705966 0.702759
wisconsin-breast-ord 0.656351 0.659343 0.616383 0.603888
ERA 0.702709 0.703945 0.706104 0.702813
ESL 0.923134 0.920086 0.926032 0.920399
LEV 0.813103 0.808132 0.813145 0.810783
SWD 0.755780 0.757707 0.752039 0.756966
baseball 0.863850 0.805774 0.866594 0.865433
dee 0.882748 0.861711 0.889650 0.888016
ele-1 0.881161 0.877794 0.879256 0.870785
forestFires 0.538324 0.541348 0.520120 0.517618
machineCPU 0.877991 0.864206 0.872821 0.854135
pyrim 0.779829 0.815556 0.837949 0.782308
stock 0.963650 0.955048 0.958975 0.961427
abalone 0.731883 0.736535 0.768793 0.756074
bank1 – – 0.844700 0.884079
bank2 – – – –
computer1 – – 0.888985 0.899613
computer2 – – 0.865846 0.913115
calhousing – – – –
AVG SCOREa 0.805760 0.801351 0.807379 0.808903
AVG RANKa 2.532778 2.859521 2.217482 2.390218

2750	 Machine Learning (2021) 110:2729–2762

1 3

algorithm to other state-of-the-art algorithms for ordinal regression. The experiments were
performed using the two methods that obtained the best results in the experimental analysis
of Gutierrez et al. (2016), namely, SVOREX (Chu & Keerthi, 2007) and REDSVM (Lin
& Li, 2012). These two algorithms are adaptations of support vector machines for ordi-
nal regression. The first adds explicit constraints concerning adjacent classes for threshold
determination, while the second reduces the ordinal regression problem to be applied to
binary SVM classifiers.

In addition to these SVM variants we have included two more recent proposals for
ordinal regression in our comparison. The first is an adaptation of the extreme learning
machines, kernel extreme learning machine for ordinal regression (KELMOR) (Shi et al.,
2019). The second is an extension of the Bayesian network classifiers (Halbersberg et al.,
2020). This extension learns a Bayesian network that jointly maximizes accuracy and
mutual information, in order to better adapt to imbalanced and ordinal problems. We will
refer to this algorithm as EBNC (extended Bayesian network classifier).

Both SVMs and KELMOR have been used with a Gaussian kernel and an adjusting
parameter C = 10 . For the Bayesian network classifier, the features were discretized to a

With polynomial kernel With RBF kernel

Fig. 4   Bayesian sign test results for the comparison between KCMOML and KODML, with polynomial and
RBF kernels, using C-Index. Simplex diagrams and posterior distributions are shown (Color figure online)

2751Machine Learning (2021) 110:2729–2762	

1 3

maximum of ten values per attribute, using equal-length bins, so that they could be han-
dled by the network. CMOML has been used with the same settings as in Sect. 4.3. As in
the previous experiments, we have carried out a stratified 5-fold cross validation. We have

Table 4   C-Index score for the state-of-the-art methods and CMOML in each dataset

The results of the best algorithm for each dataset are highlighted in bold

REDSVM SVOREX EBNC KELMOR CMOML

affairs 0.543764 0.479077 0.544441 0.570416 0.554959
automobile 0.853380 0.759912 0.776466 0.838471 0.815365
autoMPG8 0.921465 0.933516 0.915756 0.918324 0.917576
auto-riskness 0.696078 0.763215 0.740496 0.696718 0.651275
balance 0.988387 0.994224 0.930498 0.949678 0.976474
boston-housing 0.838319 0.838910 0.763829 0.851915 0.846487
car 0.956863 0.982058 0.974778 0.952840 0.978543
cement-strength 0.836725 0.864907 0.702598 0.799276 0.844991
cleveland 0.820070 0.794660 0.733414 0.835190 0.767258
contact-lenses 0.700000 0.685714 0.614286 0.885714 0.828571
eucalyptus 0.882360 0.854718 0.853683 0.868132 0.804636
glass 0.717674 0.773195 0.642967 0.734655 0.794482
newthyroid 0.750463 0.857407 0.833796 0.776157 0.943981
pasture 0.827778 0.757407 0.846296 0.854630 0.845370
squash-stored 0.777310 0.811784 0.830044 0.766608 0.773538
squash-unstored 0.761429 0.775000 0.710000 0.775714 0.803571
tae 0.604379 0.684285 0.636560 0.594199 0.677773
winequality-red 0.723094 0.730985 0.726721 0.720977 0.703374
wisconsin-breast-ord 0.615969 0.599485 0.516718 0.604256 0.589265
ERA 0.710939 0.680576 0.692489 0.720854 0.680311
ESL 0.929687 0.932802 0.908091 0.929938 0.917878
LEV 0.811428 0.822995 0.801398 0.809583 0.810350
SWD 0.744378 0.761199 0.780408 0.735707 0.748572
baseball 0.881180 0.856130 0.830042 0.875346 0.877246
dee 0.900075 0.894234 0.868829 0.889131 0.879377
ele-1 0.885381 0.884788 0.848548 0.870766 0.877938
forestFires 0.515009 0.512263 0.499984 0.523941 0.540831
machineCPU 0.885147 0.882376 0.777610 0.865265 0.871658
pyrim 0.852821 0.732393 0.729316 0.792393 0.800085
stock 0.922424 0.959384 0.940706 0.924979 0.962486
abalone 0.813377 0.823557 0.769140 0.813790 0.805626
bank1 0.953372 0.952471 0.714695 0.923420 0.949363
bank2 0.824870 0.773617 0.708871 0.801277 0.784161
computer1 0.899223 0.910422 0.808520 0.899727 0.910165
computer2 0.910846 0.927012 0.880130 0.914840 0.909880
calhousing 0.862286 0.874078 0.801631 0.857212 0.910898
AVG SCORE 0.808832 0.808910 0.768160 0.809501 0.815398
AVG RANK 2.729730 2.405405 4.162162 2.891892 2.810811

2752	 Machine Learning (2021) 110:2729–2762

1 3

taken the implementations of the SVMs from Sánchez-Monedero et al. (2019) and the code
of EBNC provided by Halbersberg et al. (2020). We also provide an implementation of
KELMOR4. The C-Index scores obtained by CMOML and each of the state-of-the-art clas-
sifiers are shown in Table 4.

Looking at the results, we can observe that CMOML is slightly behind the SVMs in
terms of rankings. However, although CMOML only ranks first in 6 of the datasets in
C-Index, it achieves outstanding wins in datasets such as newthyroid, glass or calhousing,
with convincing wins in the rest of its top positions as well. Moreover, in most of the cases
where CMOML performs worse than the other algorithms, its results are still competitive
with the results of the rest of algorithms. This translates into the best average C-Index.

In summary, CMOML has the ability to excel in several ordinal datasets where other
state-of-the-art methods do not perform well, in addition to having decent overall perfor-
mance. Finally, as we will see in the next section, CMOML stands out from the compared
methods in terms of explainability, regarding case-based reasoning, dimensionality reduc-
tion and visualization. Both support vector machines and extreme learning machines are
considered by design complex black-box learning algorithms (Arrieta et al., 2020; Adadi
& Berrada, 2018). Their opaque structure turns them into undesirable algorithms for high-
risk automated tasks. In contrast, the transparency of the nearest neighbors-based algo-
rithms and the information provided by the neighbors themselves make them much more
useful in these tasks (Lamy et al., 2019). We will see in the next section that the distance
learned by CMOML, besides considerably improving the performance of the k-NN, makes
the interpretable information produced by the classifier much more intuitive.

5 � Nearest neighbors and metric learning for an explainable learning
process

In this section we will explore the explainability possibilities offered by CMOML when it
is applied together with the nearest neighbors classifier. Explainable artificial intelligence
(XAI) (Arrieta et al., 2020; Belle & Papantonis, 2020) has recently gained new relevance as
a research topic as a consequence of the growing need for transparency and interpretability
in the large amount of highly complex models, such as ensembles or deep neural networks,
that currently dominate machine learning.

We saw in the previous section that CMOML obtains results close to those of the state-
of-the-art for ordinal regression. The purpose of this section is to show that, in addition to
the foregoing, CMOML has the advantage over the state-of-the-art algorithms in that, since
it can be used in combination with a distance-based algorithm such as the nearest neigh-
bors classifier, it can benefit from the strengths that k-NN provides in terms of explainabil-
ity, and even polish them in several ways, as we will see throughout the section.

The nearest neighbors classifier, like most similarity-based classifiers, can be interpreted
in terms of case-based reasoning (Lamy et al., 2019). The k-NN makes its decisions based
on the similarity with previous experiences (the k nearest neighbors in the learned training
set). Therefore, it is possible to analyze these experiences to decide to what extent the deci-
sion made by the algorithm can be trusted. This is very similar to human decision making,
which often relies on previous experiences. In addition, when our data is low-dimensional

4  https://​github.​com/​jlsua​rezdi​az/​KELMOR

https://github.com/jlsuarezdiaz/KELMOR

2753Machine Learning (2021) 110:2729–2762	

1 3

it is possible to visualize why the k-NN has decided to make a certain choice, thanks to the
simplicity of the “nearest neighbor” concept.

If we want to classify a new sample using the k-NN and we fit an appropriate distance to
our training data, the nearest neighbors of the sample may change and become even more
similar to the sample. In this way, these neighbors will be more informative when interpreting
a decision. This is possible with distance metric learning. In particular, while the CMOML
optimization algorithm improves the layout of the data to perform better under ordinal regres-
sion metrics, it also modifies nearby instances to be more related to the sample to be predicted.
In addition, we can pick the dimension to which we want CMOML to project the data.

Therefore, in terms of explainability, CMOML improves the traditional k-NN in two
aspects:

•	 Comprehensibility The knowledge the k-NN with CMOML learns can be represented by
the nearest neighbors, and these neighbors will be much more informative than the neigh-
bors the Euclidean distance would obtain.

•	 Understandability The ability to reduce the dimensionality of CMOML allows data to be
represented in spaces of lower complexity where it is easier to understand why the classi-
fier makes a certain decision.

We will test these CMOML capabilities in two different datasets: balance and newthyroid.
In these datasets, CMOML outperforms the Euclidean distance and also obtains good results
compared to the state-of-the-art algorithms, as shown in Table 4. CMOML clearly outper-
forms all the algorithms in newthyroid and it is very close to the SVMs in balance. In this last
case, the gains in interpretability that we are going to show may compensate the minimal loss
in the ordinal metrics.

Fig. 5   A case-based reasoning approach with nearest neighbors and CMOML (Color figure online)

2754	 Machine Learning (2021) 110:2729–2762

1 3

5.1 � Knowledge representation with CMOML

Here we will analyze how the distance learned by CMOML improves knowledge represen-
tation for a case-based reasoning, with the neighbors obtained by the k-NN. To do this, we
follow the outline in Fig. 5. In short, once the distance is learned, we use it to transform
the new sample that is to be classified. In the transformed space we retrieve its nearest
neighbors. With them, on the one hand, the classifier makes its prediction, aggregating the
classes of the neighbors (for the ordinal case, we use the median class here again). On the
other hand, we retrieve the neighbors in the original space and visualize them together with
the case to be predicted.

Below we perform this procedure with several examples in balance and newthyroid.

5.1.1 � Balance dataset analysis

Balance is a dataset whose examples represent two objects placed at the sides of a scale.
Its attributes consist of the weight and the position of the left item and the weight and the
position of the right item. The goal is to predict whether the scale tilts to one side (right or
left) or whether it stays in balance. Due to the continuity of the scale movement it is logical
to assume the relation of order in the output variable left < balance < right . This dataset is
very useful to help visualize how CMOML improves the neighbors that the k-NN retrieves.

Fig. 6   Nearest neighbors of some test samples in balance using CMOML and Euclidean distance (Color
figure online)

2755Machine Learning (2021) 110:2729–2762	

1 3

Indeed, we will see that these neighbors are very similar to what a human being would con-
sider, if prompted to decide how the scale will move based on previous experiences.

We train CMOML with 80 % of the dataset and use the rest for testing. For the test data,
we retrieve the 3 nearest neighbors obtained by CMOML, and we also retrieve the nearest
neighbors that the Euclidean distance would obtain. Figure 6 shows the results for some of
the test samples.

From the results obtained we can draw several conclusions. On the one hand, for the
test data that are not in balance, the neighbors that the two distances obtain are often same-
class neighbors, especially for CMOML. This is reasonable due to the geometric properties
of the dataset. Observe that the true labels are determined by the sign of left_weight
* left_distance - right_weight * right_distance, so the left and right
classes are determined by half-spaces. Even so, we can see that the neighbors obtained
by CMOML are more intuitive than those obtained by the Euclidean distance. For exam-
ple, we can see, for the test sample 1, that the neighbors that CMOML obtains are always
objects of the same weight, which also keep ratios between the distances to the center of
the scale. Presumably, if we, as humans, had to decide where the scale would tilt to based
on the same previous experiences, we would have chosen those very same neighbors. With
the Euclidean distance this does not happen so clearly.

On the other hand, for the test data that are in balance, the Euclidean distance often
tends to choose neighbors that tilt to one of the sides. This is due to the fact that this dis-
tance is not optimized and the balance class is a hyperplane between the other two classes,
so as soon as a training sample of the left or right class is close to this border it can easily
interfere with the neighbors. Instead, the neighbors that CMOML obtains are mostly in
the balance position. And not only that, but again they are much more intuitive. Some of
the clearest cases are the test samples 3 and 4. There, both objects weigh the same and are
at the same distance from the center of the scale. All their neighbors share this property.
Therefore, the answer is clear when analyzing why these neighbors have been chosen.

Fig. 7   Nearest neighbors of some test samples in newthyroid using CMOML and Euclidean distance
(Color figure online)

2756	 Machine Learning (2021) 110:2729–2762

1 3

5.1.2 � Newthyroid dataset analysis

Newthyroid is a dataset whose input variables are the measurements of certain hormones
in the human body: T3 resin, thyroxin, triiodothyronine, thyroidstim-
ulating and TSH. The goal is to predict, with these measures, whether the individual
being evaluated suffers from hyperthyroidism, hypothyroidism or is healthy. As both dis-
orders can be considered opposed, it is assumed that the ordinal relationship of the output
variable is hypothyroidism < normal < hyperthyroidism.

Once again, we train CMOML with 80 % of the dataset, use the rest for testing, and
retrieve the 3 nearest neighbors obtained by CMOML and by the Euclidean distance for the
test data. In Fig. 7 we show the neighbors obtained for some of the most remarkable cases.
Here, we represent an instance by a heatmap, where each cell is each of the input variables
in the data set, in the same order as described above. These cells range from the lowest pos-
sible value for the attribute (green) to its highest possible value (red). We also highlight the
border of the heatmaps to specify the true labels of each instance. Blue borders represent
instances of class hypothyroidism, green borders represent instances of class normal and
red borders represent instances of class hyperthyroidism.

From the properties we have observed we can conclude several facts. First of all, it is
very common to always find neighbors of the class normal for the test samples in the nor-
mal class. This is reasonable, since the normal class is the most frequent and quite dense,
as we will see in the next section. It is also the least important class of the problem, since,
as with most medical-related problems, false positives in disease diagnosis are not as seri-
ous as false negatives. That is why in Fig. 7 we choose to focus on the possible positives
(both hypothyroidism and hyperthyroidism) to perform a case-based reasoning, taking only
the samples 9 and 10 from the normal class.

Focusing now on the samples with hyperthyroidism (samples 1-4) and hypothyroidism
(samples 5-8), we can see that the neighbors obtained by CMOML are much more label-
accurate than the neighbors obtained by the Euclidean distance. In fact, in some cases like
test samples 3 and 6, the k-NN with the Euclidean distance would misclassify the samples,
since the median class in these cases would be normal. CMOML can still classify these
samples correctly because most of the neighbors it obtains are from the correct class.

Finally, we analyze how the distance learned by CMOML influences the values of the
features of the nearest neighbors. We can observe that, while the Euclidean distance has
the limitation of only providing neighbors whose features are all very similar one-by-one to
the features of the test sample, CMOML can go a step further and provide neighbors with
more distinguishing properties. For example, it is known that low values of thyroxin
combined with very low or high values of TSH are usually a symptom of hypothyroidism.
For the test sample 6 we observe a low value of TSH and a medium-low value of thy-
roxin. The neighbors obtained by the Euclidean distance show thyroxin values that
are not low enough and, additionally, they are tagged as normal. However, CMOML pro-
vides neighbors with lower values of thyroxin, and values of TSH that are both low and
high. That is, the algorithm is discovering that both low and high values of TSH influence
hypothyroidism, and finds a new similarity between the data that the Euclidean distance
overlooks.

2757Machine Learning (2021) 110:2729–2762	

1 3

5.2 � Dimensionality reduction and visualization

To conclude, we will analyze how the dimensionality reduction applied by CMOML
allows for the visualization of the transformed data, so that the decision made by the near-
est neighbors classifier can be understood. To do this, we learn a distance with CMOML
for each dataset and impose a dimension of 3 and 2 in the transformed space. In this way,
the algorithm will obtain a projection of the data in the three- and bi-dimensional spaces
that will be adequate from an ordinal perspective, as shown throughout the paper. With this

Table 5   C-Index scores with
CMOML in balance and
newthyroid after applying a
dimensionality reduction

Dimension C-INDEX

Balance Newthyroid

MAX 0.976474 0.943981
3 0.973122 0.943981
2 0.970433 0.943981

Fig. 8   3D and 2D projections of balance learned by CMOML. The 2D projection shows the position of
the transformed test samples in Fig. 6 (Color figure online)

Fig. 9   3D and 2D projections of newthyroid learned by CMOML. The 2D projection shows the position
of the transformed test samples in Fig. 7 (Color figure online)

2758	 Machine Learning (2021) 110:2729–2762

1 3

dimensionality reduction, the results of the cross validation over balance decrease by less
than a hundredth for the 3D projection, using C-Index, and two hundredths more in the 2D
projection. In newthyroid the projections maintain the same results as at maximum dimen-
sion, as it is shown in Table 5. Therefore, we can conclude that the reduction does not sig-
nificantly affect the quality of the data, and thus the transformed data can be used to extract
human-understandable information.

In Figs. 8 and 9 we show how the data from balance and newthyroid, respectively, look
like when projected on three and two dimensions. In the 2D-projection we also include the
test samples from Figs. 6 and 7, to facilitate the understanding of the choices the classifier
makes. The test samples are marked with red numbers. Each number corresponds to the
sample number they had in the aforementioned figures.

By analyzing the 3D and 2D projections of balance we can see why the left and right
classes are so easy to classify and why the balance class presents a major difficulty.
Indeed, the latter class acts as a hyperplane that separates the other classes. Therefore, if
the training set is not very populated in this class, it is easy for neighbors of the left and
right classes to decrease the quality of the classification of true balance instances. In any
case, the projections learned by CMOML, especially at maximum dimension and to the
3D-space, have proven to be good enough on the central class. Moreover, on the 2D projec-
tion we can observe that, indeed, the test samples of Fig. 6 of the class balance always fall
on training samples of the class balance.

If we now analyze the projections of newthyroid, we see that the normal class stands
in the center between the two disorders, while the points of the other classes usually take
values that shoot up in some dimension. In general, there is a fairly clear separation among
the classes, with the exception of certain border points for which some doubts may arise
when it comes to classification. This can be corroborated with the test samples from Fig. 7
that are plotted in the 2D-projection: it is clear that most of them can be correctly classified
using the scatter plot, while the test samples 1 and 3 can cause some more confusion, as
can be seen in Fig. 7.

It should be noted that the projections respect the ordinal principle by which CMOML is
guided: that, as we move farther away from any sample, the classes will gradually become
more different. This happens with the two datasets analyzed. Finally, we have to mention
that 2D or 3D projections are not always possible with CMOML without a significant loss
of information. In any case, a dimensionality reduction even to dimensions greater than 2
and 3 can be beneficial in terms of efficiency and noise reduction. In addition, it is always
possible to use other visualization methods in larger dimensions (Maaten & Hinton, 2008),
which can perform better if we first apply CMOML properly.

6 � Conclusions

In this paper we have developed a new distance metric learning algorithm for ordinal
regression, following a new approach based on the optimization of ordered sequences. This
approach is purely ordinal, since it makes an extensive use of the relative positions among
the labels and it has proven to be effective in situations where other proposals on the same
topic cannot operate properly.

According to how the proposal has been developed and how the results have supported
it, we can conclude that CMOML is a promising algorithm with strong capabilities in
numerous ordinal regression problems. The sequence based approach provides CMOML

2759Machine Learning (2021) 110:2729–2762	

1 3

with a different and effective way of handling the ordinal regression problems, compared
to the previous distance metric learning proposals in the subject. In the general context of
ordinal regression, CMOML has also proven to be competitive and more explainable that
the best performing methods, and it improves significantly the explainablity provided by
the traditional Euclidean nearest neighbors, with additional advantages such as dimension-
ality reduction and understandability-focused visualization.

As future work we plan to further investigate the CMOML optimization method, in
order to handle even larger datasets than those used in this work. In particular, image data-
sets for ordinal regression are the order of the day (Li et al., 2019; Diaz & Marathe, 2019),
and dealing with them at the pixel level using Mahalanobis distances is computationally
challenging. In this situation it may be interesting to explore the behaviour of the algorithm
when it receives the feature maps extracted by a convolutional network (Min et al., 2009).
For the purpose of improving the optimization method, we will also explore both the use of
optimizers with higher convergence speed and programming paradigms and architectures
that maximize the parallel evaluation of the algorithm (Muñoz et al., 2015).

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

References

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelli-
gence (xai). IEEE Access, 6, 52138–52160.

Agresti, A. (2010). Analysis of Ordinal Categorical Data (Vol. 656). New York: John Wiley & Sons.
Antoniuk, K., Franc, V., & Hlaváč, V. (2016). V-shaped interval insensitive loss for ordinal classification.

Machine Learning, 103(2), 261–283.
Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., et al. (2020). Explain-

able artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsi-
ble ai. Information Fusion, 58, 82–115.

Beckham, C., & Pal, C. (2017) Unimodal probability distributions for deep ordinal classification. In: Pro-
ceedings of the 34th International Conference on Machine Learning, pp 411–419

Belle, V., & Papantonis, I. (2020) Principles and practice of explainable machine learning. arXiv preprint
arXiv:200911698

Benavoli, A., Corani, G., Mangili, F., Zaffalon, M., & Ruggeri, F. (2014) A bayesian wilcoxon signed-rank
test based on the dirichlet process. In: International Conference on Machine Learning, pp 1026–1034

Benavoli, A., Corani, G., Demšar, J., & Zaffalon, M. (2017). Time for a change: A tutorial for compar-
ing multiple classifiers through bayesian analysis. The Journal of Machine Learning Research, 18(1),
2653–2688.

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowl-
edge Discovery, 2(2), 121–167.

Bürkner, P. C., & Vuorre, M. (2019). Ordinal regression models in psychology: A tutorial. Advances in
Methods and Practices in Psychological Science, 2(1), 77–101.

Calvo, T., & Beliakov, G. (2010). Aggregation functions based on penalties. Fuzzy Sets and Systems,
161(10), 1420–1436.

Cardoso, J. S., & da Costa, J. F. P. (2007). Learning to classify ordinal data: The data replication method.
Journal of Machine Learning Research, 8(50), 1393–1429.

Carrasco, J., García, S., del Mar Rueda, M., & Herrera, F. (2017). rnpbst: An r package covering non-par-
ametric and bayesian statistical tests. In: International Conference on Hybrid Artificial Intelligence
Systems, Springer, pp 281–292

2760	 Machine Learning (2021) 110:2729–2762

1 3

Chakraborty, S., & Church, E. M. (2020). Social media hospital ratings and hcahps survey scores. Journal
of Health Organization and Management.

Cheng, J,, Wang, Z., & Pollastri, G, (2008) A neural network approach to ordinal regression. In: 2008 IEEE
International Joint Conference on Neural Networks (IEEE World Congress on Computational Intel-
ligence), IEEE, pp 1279–1284

Chu, W., & Keerthi, S. S. (2007). Support vector ordinal regression. Neural Computation, 19(3), 792–815.
Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information

Theory, 13(1), 21–27.
Cruz-Ramírez, M., Hervás-Martínez, C., Sánchez-Monedero, J., & Gutiérrez, P. A. (2014). Metrics to guide

a multi-objective evolutionary algorithm for ordinal classification. Neurocomputing, 135, 21–31.
Das, S., & Suganthan, P. N. (2010). Differential evolution: A survey of the state-of-the-art. IEEE Transac-

tions on Evolutionary Computation, 15(1), 4–31.
Diaz, R., & Marathe, A. (2019) Soft labels for ordinal regression. In: Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, pp 4738–4747
Dudani, S. A. (1976). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems Man

and Cybernetics, 4, 325–327.
Fathony, R., Bashiri, MA., & Ziebart, B. (2017) Adversarial surrogate losses for ordinal regression. In:

Advances in Neural Information Processing Systems, pp 563–573
Fouad, S., & Tiňo, P. (2013) Ordinal-based metric learning for learning using privileged information. In:

The 2013 International Joint Conference on Neural Networks (IJCNN), IEEE, pp 1–8
Frank, E., & Hall, M. (2001) A simple approach to ordinal classification. In: European Conference on

Machine Learning, Springer, pp 145–156
Frénay, B., & Verleysen, M. (2013). Classification in the presence of label noise: A survey. IEEE Transac-

tions on Neural Networks and Learning Systems, 25(5), 845–869.
Fu, H., Gong, M., Wang, C., Batmanghelich, K., & Tao, D. (2018) Deep ordinal regression network for

monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp 2002–2011

Gagolewski, M. (2020) Ordinal regression benchmark data. https://​www.​gagol​ewski.​com/​resou​rces/​data/​
ordin​al-​regre​ssion/, accessed: 2020-09-10 (YYYY-MM-DD)

García, S., Luengo, J., & Herrera, F. (2015). Data Preprocessing in Data Mining. Berlin: Springer.
Gönen, M., & Heller, G. (2005). Concordance probability and discriminatory power in proportional hazards

regression. Biometrika, 92(4), 965–970.
Gu, B., Geng, X., Shi, W., Shan, Y., Huang, Y., Wang, Z., & Zheng, G. (2020). Solving large-scale support

vector ordinal regression with asynchronous parallel coordinate descent algorithms. Pattern Recogni-
tion, 109(107592).

Guijo-Rubio, D., Casanova-Mateo, C., Sanz-Justo, J., Gutiérrez, P., Cornejo-Bueno, S., Hervás, C., &
Salcedo-Sanz, S. (2020). Ordinal regression algorithms for the analysis of convective situations over
madrid-barajas airport. Atmospheric Research, 236.

Gutierrez, P. A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro, F., & Hervas-Martinez, C.
(2016). Ordinal regression methods: Survey and experimental study. IEEE Transactions on Knowledge
and Data Engineering, 28(1), 127–146.

Halbersberg, D., Wienreb, M., & Lerner, B. (2020). Joint maximization of accuracy and information for
learning the structure of a bayesian network classifier. Machine Learning, 109, 1039–1099.

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating character-
istic (roc) curve. Radiology, 143(1), 29–36.

Jolliffe, I. (2002). Principal Component Analysis. Springer Series in Statistics, Springer
Joshi, A., Kale, S., Chandel, S., & Pal, DK. (2015). Likert scale: Explored and explained. Current Journal

of Applied Science and Technology, pp 396–403
Kuráňová, P. (2016). Modelling the results of the phadiatop test using the logistic and ordinal regression. In:

Applications of Computational Intelligence in Biomedical Technology, Springer, pp 103–118
Lamy, J. B., Sekar, B., Guezennec, G., Bouaud, J., & Séroussi, B. (2019). Explainable artificial intelligence

for breast cancer: A visual case-based reasoning approach. Artificial Intelligence in Medicine, 94,
42–53.

Li, W., Lu, J., Feng, J., Xu, C., Zhou, J., & Tian, Q. (2019). Bridgenet: A continuity-aware probabilistic
network for age estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp 1145–1154

Lin, HT., & Li, L. (2009). Combining ordinal preferences by boosting. In: Proceedings ECML/PKDD 2009
Workshop on Preference Learning, pp 69–83

Lin, H. T., & Li, L. (2012). Reduction from cost-sensitive ordinal ranking to weighted binary classification.
Neural Computation, 24(5), 1329–1367.

https://www.gagolewski.com/resources/data/ordinal-regression/
https://www.gagolewski.com/resources/data/ordinal-regression/

2761Machine Learning (2021) 110:2729–2762	

1 3

Liu, W., Xu, D., Tsang, I. W., & Zhang, W. (2018). Metric learning for multi-output tasks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 41(2), 408–422.

Liu, Y., Kong, AWK., Goh, CK. (2017). Deep ordinal regression based on data relationship for small
datasets. In: Proceedings of the 26th International Joint Conferences on Artificial Intelligence, pp
2372–2378

Ma, Z., & Chen, S. (2018). Multi-dimensional classification via a metric approach. Neurocomputing, 275,
1121–1131.

Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research,
9, 2579–2605.

Mensch, A., Blondel, M., Peyré, G. (2019). Geometric losses for distributional learning. In: Proceedings of
the 36th International Conference on Machine Learning, pp 4516–4525

Min, R., Stanley, DA., Yuan, Z., Bonner, A., Zhang, Z. (2009). A deep non-linear feature mapping for large-mar-
gin knn classification. In: 2009 Ninth IEEE International Conference on Data Mining, IEEE, pp 357–366

Muñoz, M. A., Sun, Y., Kirley, M., & Halgamuge, S. K. (2015). Algorithm selection for black-box continu-
ous optimization problems: A survey on methods and challenges. Information Sciences, 317, 224–245.

Nguyen, B., Morell, C., & De Baets, B. (2017). Supervised distance metric learning through maximization
of the jeffrey divergence. Pattern Recognition, 64, 215–225.

Nguyen, B., Morell, C., & De Baets, B. (2018). Distance metric learning for ordinal classification based on
triplet constraints. Knowledge Based Systems, 142, 17–28.

Park, J. S. (1994). Optimal latin-hypercube designs for computer experiments. Journal of Statistical Plan-
ning and Inference, 39(1), 95–111.

Sánchez-Monedero, J., Pérez-Ortiz, M., Saez, A., Gutiérrez, P. A., & Hervás-Martínez, C. (2018). Partial
order label decomposition approaches for melanoma diagnosis. Applied Soft Computing, 64, 341–355.

Sánchez-Monedero, J., Gutiérrez, P. A., & Pérez-Ortiz, M. (2019). Orca: A matlab/octave toolbox for ordi-
nal regression. Journal of Machine Learning Research, 20(125), 1–5.

Shi, Y., Li, P., Yuan, H., Miao, J., & Niu, L. (2019). Fast kernel extreme learning machine for ordinal regres-
sion. Knowledge Based Systems, 177, 44–54.

Singer, G., Anuar, R., & Ben-Gal, I. (2020). A weighted information-gain measure for ordinal classification
trees. Expert Systems with Applications, 152(113375).

Storn, R., & Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

Suárez, J. L., García, S., & Herrera, F. (2020). pydml: A python library for distance metric learning. Journal
of Machine Learning Research, 21(96), 1–7.

Suárez, J. L., García, S., & Herrera, F. (2021). A tutorial on distance metric learning: Mathematical founda-
tions, algorithms, experimental analysis, prospects and challenges. Neurocomputing, 425, 300–322.

Tang, M., Pérez-Fernández, R., & De Baets, B. (2020). Fusing absolute and relative information for aug-
menting the method of nearest neighbors for ordinal classification. Information Fusion, 56, 128–140.

Torresani, L., & Lee, Kc. (2007) Large margin component analysis. In: Advances in Neural Information
Processing Systems, pp 1385–1392

Triguero, I., González, S., Moyano, J. M., García, S., Alcalá-Fdez, J., Luengo, J., et al. (2017). Keel 3.0: an
open source software for multi-stage analysis in data mining. International Journal of Computational
Intelligence Systems, 10(1), 1238–1249.

Vargas, V. M., Gutiérrez, P. A., & Hervás-Martínez, C. (2020). Cumulative link models for deep ordinal
classification. Neurocomputing, 401, 48–58.

Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large margin nearest neighbor clas-
sification. Journal of Machine Learning Research, 10, 207–244.

Xiao, B., Yang, X., Xu, Y., & Zha, H. (2009). Learning distance metric for regression by semidefinite pro-
gramming with application to human age estimation. In: Proceedings of the 17th ACM International
conference on Multimedia, ACM, pp 451–460

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

2762	 Machine Learning (2021) 110:2729–2762

1 3

Authors and Affiliations

Juan Luis Suárez1  · Salvador García1  · Francisco Herrera1 

	 Salvador García
	 salvagl@decsai.ugr.es

	 Francisco Herrera
	 herrera@decsai.ugr.es

1	 Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data
Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain

http://orcid.org/0000-0001-8587-4345
http://orcid.org/0000-0003-4494-7565
http://orcid.org/0000-0002-7283-312X

	Ordinal regression with explainable distance metric learning based on ordered sequences
	Abstract
	1 Introduction
	2 Background
	2.1 Distance metric learning
	2.2 Ordinal regression and similarity approaches

	3 Chain maximizing ordinal metric learning
	3.1 Preliminary definitions
	3.2 Optimization
	3.3 Non-linear CMOML
	3.4 Complexity analysis of CMOML and comparison with LODML

	4 Experiments
	4.1 Experimental framework
	4.2 Black-box optimizer in CMOML and KCMOML
	4.3 Results for the linear case
	4.4 Results for the non-linear case
	4.5 Comparison with state-of-the-art methods for ordinal regression

	5 Nearest neighbors and metric learning for an explainable learning process
	5.1 Knowledge representation with CMOML
	5.1.1 Balance dataset analysis
	5.1.2 Newthyroid dataset analysis

	5.2 Dimensionality reduction and visualization

	6 Conclusions
	References

