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Abstract
Statistical relational learning (SRL) and graph neural networks (GNNs) are two power-
ful approaches for learning and inference over graphs. Typically, they are evaluated in 
terms of simple metrics such as accuracy over individual node labels. Complex aggregate 
graph queries (AGQ) involving multiple nodes, edges, and labels are common in the graph 
mining community and are used to estimate important network properties such as social 
cohesion and influence. While graph mining algorithms support AGQs, they typically do 
not take into account uncertainty, or when they do, make simplifying assumptions and 
do not build full probabilistic models. In this paper, we examine the performance of SRL 
and GNNs on AGQs over graphs with partially observed node labels. We show that, not 
surprisingly, inferring the unobserved node labels as a first step and then evaluating the 
queries on the fully observed graph can lead to sub-optimal estimates, and that a better 
approach is to compute these queries as an expectation under the joint distribution. We pro-
pose a sampling framework to tractably compute the expected values of AGQs. Motivated 
by the analysis of subgroup cohesion in social networks, we propose a suite of AGQs that 
estimate the community structure in graphs. In our empirical evaluation, we show that by 
estimating these queries as an expectation, SRL-based approaches yield up to a 50-fold 
reduction in average error when compared to existing GNN-based approaches.
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1 Introduction

Large realworld graphs in domains such as social media (e.g., friendship and follower 
graphs), computational biology (e.g., protein interaction networks), and IoT (e.g., sensor 
networks) often have missing information that needs to be inferred. Making use of the 
graph, or relational structure, can help immensely in accurately inferring missing values 
(Sen et al., 2008; Neville & Jensen, 2002). Statistical relational learning (SRL) (Getoor 
& Taskar, 2007; De Raedt et  al., 2016) and graph neural networks (GNNs) (Gilmer, 
2017; Hamilton et al., 2017; Kipf & Welling, 2017; Veličković et al., 2018; Qu et al., 
2019) are two powerful machine learning approaches for inferring the missing node 
labels. These approaches have been shown to be quite effective; however, current lit-
erature has largely focused on maximizing locally decomposable metrics such as node 
label accuracy over individual nodes.

Unfortunately, good performance on these locally decomposable metrics does not 
necessarily translate to accurate estimation of global graph properties. Properties such 
as node centrality are important in the analysis of graph phenomena such as influence 
maximization and resilience to attacks, and involve all the nodes and edges in the graph. 
Global graph properties can be computed using complex graph queries. While many 
such graph properties have been proposed (Scott, 1988; Wasserman and Faust, 1994; 
Cook & Holder, 2006; Rajaraman & Ullman, 2011), along with efficient algorithms to 
estimate them  (Shi et  al., 2015; Liu et  al., 2018; Wu et  al., 2014; Qiang et  al., 2014; 
Dunne & Shneiderman, 2013), the task of estimating these queries when there is miss-
ing information, such as node labels, has not received much attention. In such graphs, 
we need to combine the tasks of estimating the queries with the inference of missing 
information such as node labels. These complex queries generally involve many nodes 
and edges and require joint reasoning over multiple node labels to compute them.

In this work, we introduce the notion of aggregate graph queries (AGQs), and argue 
that researchers should focus more attention on accurately estimating these richer que-
ries. In order to support this, we introduce a suite of useful AGQs that measure sub-
group cohesion in graphs (Wasserman & Faust, 1994). We study the effectiveness of 
SRL and GNN-based approaches in computing AGQs on graphs with missing node 
labels. For approaches that infer the best possible values for the missing node labels, 
we propose a point estimate approach, where we first infer the missing values, and then 
compute the query. For approaches that infer the joint distribution over all the miss-
ing node labels, we propose an expectation-based approach that estimates the query as 
an expectation over the joint distribution. Further, to compute the expectation tractably 
using Monte Carlo approximation, we propose a novel sampling approach for probabil-
istic soft logic (PSL), one of the SRL approaches that we study.

We include a theoretical analysis that shows that the point estimate approach leads 
to sub-optimal estimates even for simple graphs with just two nodes. We also provide 
an extensive empirical analysis showing the extent to which this happens over richer 
queries over realworld data. Further, we analyze the effect of training data size on the 
performance of these approaches.

The contributions of our paper include:

• We introduce a suite of practical AGQs that measures the key graph property of sub-
group cohesion and study the effectiveness of SRL and GNNs in estimating them.
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• We show that first inferring the missing values and then estimating the AGQs leads to 
poor performance.

• We propose a novel Metropolis-within-Gibbs sampling framework, MIG, for PSL that 
is faster than existing SRL samplers by a factor of up to three.

• Through experiments on three benchmark datasets, we show that computing aggregate 
properties as an expectation outperforms point estimate approaches up to a factor of 50.

• The runtime experiments show that the proposed MIG approach for PSL is up to 3 
times faster than other SRL sampling approaches.

2  Background

In this section, we briefly review several important statistical relational learning and graph 
neural network based approaches.

2.1  Statistical relational learning

Statistical relational learning (SRL) or statistical relational learning and artificial intelli-
gence (StarAI) methods combine probabilistic reasoning with knowledge representations 
that capture the structure in the domain (Getoor & Taskar, 2007; De Raedt et al., 2016). 
SRL frameworks typically define a declarative probabilistic model or theory consisting of 
weighted first-order logic rules. The rules can encode probabilistic information about the 
attributes and labels of nodes, and the existence of edges between nodes. Intuitively, the 
weight of a rule indicates how likely it is that the rule is true in the world. The higher the 
weight, the higher is the probability of rule being true.

SRL approaches can be broadly classified into proof-theoretic or model-theoretic 
approaches based on the inference technique used (De Raedt et al., 2020). In proof-theo-
retic approaches, a sequence of logical reasoning steps or a proof is generated and this is 
used to define a probability distribution. Probabilistic logic programs (De Raedt & Kim-
mig, 2015) and Stochastic Logic Programs (Muggleton, 1996) are some popular proof-the-
oretic approaches. In a model-theoretic approach, the model is used to generate a graphical 
model or a ground weighted logical theory through a process called grounding. Inference 
is then performed on the ground model. Probabilistic soft logic (Bach et al., 2017), Markov 
logic networks (Richardson & Domingos, 2006) and Bayesian logic programs (Kersting & 
De Raedt, 2007) are some popular model-theoretic based approaches.

2.1.1  Markov logic networks

Markov logic networks (MLN) (Richardson & Domingos, 2006; Niu et al., 2011; Venugo-
pal et al., 2016) are a notable model-theoretic SRL framework. A MLN induces an undi-
rected graphical model using the set of logical rules by a process known as grounding. In 
grounding, the variables in the rules are replaced with values from the data. The atoms in 
the rules, where the variables are replaced with the values, are called ground atoms and 
are modeled as Boolean random variables (RVs) in the undirected graph. The ground rules 
represent cliques in the graph. Based on the data, some RVs are observed (X) and some are 
unobserved (Y). The probability distribution represented by the graphical model over the 
unobserved random variables Y is given by:
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where fi(X, Y) is the potential defined using Boolean satisfiability, wi is the weight, N is the 
number of ground formulas and Z is the normalization constant. fi(X, Y) takes the value 1 
if the ground formula is satisfied, and 0 otherwise.

2.1.2  Probabilistic soft logic

Probabilistic soft logic (PSL) (Bach et al., 2017) is another recently introduced SRL frame-
work. Similar to MLNs, PSL induces an undirected graphical model using the set of logical 
rules. Unlike MLNs, the ground atoms in PSL are continuous and defined over the range 
[0,  1]. For the potential functions, PSL uses a continuous relaxation of Boolean logic, 
which results in hinge functions instead of Boolean satisfiability. The probability distribu-
tion represented by the graphical model over the unobserved random variables Y is given 
by:

where �i(X, Y) is the potential defined using Lukasiewicz logic, wi is the weight, N is the 
number of ground formulas and Z is the normalization constant. The potential function 
�i(X, Y) takes the form of a hinge and makes the MAP inference in PSL convex.

2.2  Graph neural networks

GNNs build on top of neural networks to learn non-linear representation for each node in 
a graph. These node representations are learned by encoding information about the local 
graph structure (Kipf & Welling, 2017; Veličković et al., 2018), edge labels (Schlichtkrull 
et al., 2018), adjacent node labels (Qu et al., 2019; Pham et al., 2017) and external domain 
knowledge (Zhang et al., 2020; Qu & Tang, 2019; Harsha Vardhan et al., 2020). GNNs can 
be broadly classified into non-probabilistic and probabilistic approaches based on whether 
they explicitly model the joint distribution.

Non-probabilistic approaches learn a non-linear representation for each node in a graph 
using a neural network and use them to classify nodes independently. These approaches 
do not explicitly model the joint probability distribution. Graph convolutional networks 
(GCNs) (Kipf & Welling, 2017) , relational GCN (Schlichtkrull et al., 2018), graph atten-
tion networks (GATs) (Veličković et al., 2018) are some popular GNN approaches belong-
ing to this category.

Recently, several probabilistic approaches have been proposed that learn a joint distribu-
tion over the unobserved node labels in a graph. The distribution is parameterized using a 
graph neural network. GMNN (Qu et al., 2019), ExpressGNN (Zhang et al., 2020), pGAT 
Harsha (Vardhan et al., 2020), pLogicNet (Qu & Tang, 2019) and Column Networks (Pham 
et al., 2017) are some popular probabilistic approaches. To make the inference tractable, 
approaches such as (Qu et al., 2019; Qu & Tang, 2019), and (Zhang et al., 2020) use vari-
ational expectation maximization (Neal & Hinton, 1998). In these approaches the joint dis-
tribution is approximated with a mean-field variational distribution that is more tractable 

(1)P(Y|X;w) = 1

Z
exp

(
N∑

i=1

wifi(X, Y)

)

(2)P(Y|X;w) = 1

Z
exp

(
−

N∑

i=1

wi�i(X, Y)

)
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for inference. (Pham et al., 2017) employ an approximate, multi-step, iterative method sim-
ilar to stacked learning, where the intermediate marginal probabilities for a node are used 
as relational features in the next step.

2.2.1  Graph convolutional networks

Graph convolutional network (GCN) (Kipf & Welling, 2017) is a popular non-probabil-
istic GNN approach. GCNs iteratively update the representation of each node by combin-
ing each node’s representation with its neighbors’ representation. The propagation rule to 
update the hidden representation of a node is given by:

where H(l) denotes the representation at layer l, D̃ represents the degree matrix, Ã repre-
sents the adjacency matrix with self-loop, W represents the weights, and � denotes an acti-
vation function, such as the ReLU. The final representations are fed into a linear softmax 
layer classifier for label prediction.

2.2.2  Graph attention networks

Graph attention networks (GATs) (Veličković et  al., 2018) are similar to GCNs and use 
self-attention while combining the representation of each node with its neighbors. This 
allows the model to assign different weights to each of its neighbors’ representations. The 
propagation rule for GAT is given by:

where h(l)
i

 is the representation of node i at layer l, W is the weight matrix, N  is the set of 
neighbors and � is the attention weights.

2.2.3  Graph Markov neural networks

Graph Markov neural networks (GMNNs) (Qu et al., 2019) is a recently introduced prob-
abilistic approach. GMNNs build on graph neural networks such as GCNs or GATs by 
adding a second neural network to capture the latent dependencies in the inferred data. 
The pair of neural networks are trained using a variational EM algorithm. In the E-step, 
the object representations are learned by the first neural network. In the M-step, the latent 
dependencies are learned by the other neural network.

3  Problem definition

Consider a graph G = (V , E) , where V is the set of nodes and E is the set of edges. Each 
node i ∈ V  is associated with a set of attributes denoted by �i and a label denoted by 
ci ∈ {1,… ,K} . All nodes and edges of the graph are observed and the node labels are par-
tially observed. The set of observed node labels is denoted by Co , unobserved node labels 
by Cu , and Co ∪ Cu = C . As an example, consider a computer science citation graph.

(3)H(l+1) = 𝜎
(
D̃−0.5ÃD̃−0.5H(l)W (l)

)

(4)h
(l+1)

i
= �

(
∑

j∈N

�ijh
(l)

i
W
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Example 1 In a computer science citation graph Gc , the nodes Vc represent computer sci-
ence documents and the edges Ec represent citation links between these documents. The 
documents in the graph can belong to several categories such as AI, Systems, Compilers 
and Databases. The document category is represented as a node labels Cc . The contents 
of the document i such as the tokens in the abstract are represent by the node attributes ai . 
The documents with observed categories correspond to Co . Documents with categories that 
need to be inferred are correspond to Cu.

Definition 1 (Graph queries) A graph query GQ is a Boolean expression over nodes, 
edges and node labels.

The most common form of graph queries are those that define a subgraph pattern. A 
graph query GQ, when evaluated on a graph G with node labels C, returns a set of sub-
graphs that satisfy the Boolean expression and is denoted by GQ(G, C). We refer to graph 
queries that involve a single node or an edge as simple graph queries, and queries that 
involve multiple nodes and/or edges as complex graph queries.

Example 2 For the citation graph in Example 1, we might want to infer how dense the cita-
tion links are within the categories. The GQ that returns the set of all citation links between 
documents that belong to the same category is given by:

 The Boolean expression is true when a pair of documents have a citation link between 
them and also belong to the same category.

Definition 2 (Aggregate graph queries) Aggregate graph queries (AGQs) are a class of 
graph queries that compute an aggregate function on the set of subgraphs that match the 
Boolean expression, i.e., an AGQ Q(G,C) = Agg(GQ(G,C)) where Agg is an aggregate 
function.

For example, Count is an aggregate function that returns the number of subgraphs in the 
set. AGQs can be considered as a mapping from the graph G and the node labels C to a real 
number, i.e., Q ∶ (G,C) → ℝ.

Example 3 For the citation graph in Example 1, one way to summarize the density of cita-
tions within the categories is to count the number of such citations. The aggregate graph 
query representing the number of citation links between documents that belong to the same 
category is given by:

Definition 3 (Aggregate graph query estimation) Given a graph G, the observed and 
unobserved node labels Co , Cu , and an aggregate graph query Q, the task of aggregate 
graph query estimation is to compute the value of Q(G,Co,Cu).

Example 4 For the citation graph in Example 1, the aggregate graph query in Example 3 
cannot be computed directly due the missing document categories in Cu . We need to first 
infer the category labels before computing the AGQ.

GQ1 = {∀(i,j)∈Vc×Vc
(eij ∧ ci = cj)}

Q1 = Count(i,j)({∀(i,j)∈Vc×Vc
(eij ∧ ci = cj)})
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4  Aggregate graph queries

In this section we motivate and introduce several complex AGQs that are useful in ana-
lyzing the community structure (also called cohesive subgroups) in graphs. Analyzing 
the community structure of a graph is necessary to understand the social forces operat-
ing in a network and is widely used in social sciences, particularly in social psychol-
ogy and sociology (Wasserman & Faust, 1994). One of the approaches to quantitatively 
measure this is the nodal degree approach that computes various statistics regarding the 
membership of a node and its adjacent nodes to various communities.

We define five different AGQs that can be used to quantitatively measure the commu-
nity structure of a graph. These queries compute statistics of the entire graph using node 
and edge frequencies, between nodes that belong to the same category, across different 
categories and also relative frequency between and across categories. We also include 
an AGQ that measures the accuracy of the predicted node labels to show that AGQs 
can also capture the traditional locally decomposable metrics. The queries are also of 
varying complexity, where the complexity is the number of nodes jointly involved in 
the query. Query Q0 involves a single node and queries Q1 and Q2 involve two nodes. 
Queries Q3 to Q5 are more complex and involve all the neighbors of a node. Q1 and 
Q2 are based on edge frequencies and Q3 to Q5 are based on node label frequency. We 
illustrate these queries using the citation graph introduced in Example 1.

[Q0]: Accuracy: This query measures the number of documents with the correct cat-
egories assigned to them. It is a locally decomposable query and is given by:

where c∗
i
 is the ground truth label.

[Q1]: Edge Cohesion: This query measures the number of citation links between 
documents i, j that belong to the same category. It is given by:

A citation graph with a small number of large, tight-knit categories tends to have a large 
number of citations between documents of the same categories.

[Q2]: Edge Separation: This query measures the number of citation links between 
documents i, j that belong to the different category. It is given by:

A citation graph with large number of small communities tends to have a large number of 
citations between documents across different categories.

[Q3]: Diversity of Influence: This query measures the number of documents i in the 
graph that are connected to at least half of the different document categories. It is given 
by:

The inner Count computes the number of distinct document categories that a document i is 
cited by and the outer Count computes the number of documents that are connected to at 
least half of the document categories. This query is computes the number of k-core nodes 
in the graph where k is set to half of the number of categories.

Q0 = Countci (ci = c∗
i
)

Q1 = Counteij (eij ∈ E ∧ ci = cj)

Q2 = Counteij (eij ∈ E ∧ ci ≠ cj)

Q3 = Counti

(
Countj

(
{cj ∣ ∀

n
j=1

(
eij ∧ ci ≠ cj

)
}

)
≥

K

2

)
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[Q4]: Exterior Documents: This query measures the number of documents i that have 
more than half of its neighbors belonging to categories other than the documents category, 
i.e.,

The inner counts compute the number of adjacent documents with different labels and 
adjacent documents respectively, and the outer count computes the number of such docu-
ments in the graph. This AGQ helps measure the monophily in the graph as given by Chin 
et al. (2019).

[Q5]: Interior Documents: This query measures the number of documents i that have 
more that half of its neighbors belonging to the same category as the document. It is given 
by:

Similar to the previous query, the inner counts compute the number of adjacent documents 
with the same label and adjacent documents respectively and the outer count computes the 
number of such documents in the graphs.

5  Estimating aggregate graph queries

In this section, we first introduce the point-estimate approach to estimate the AGQs. For 
models that explicitly learn the joint distribution, we also propose an expectation-based 
approach.

5.1  Point estimation approach

One approach for aggregate graph query estimation is to impute the locally best possible 
value for the unobserved node labels Cu and then compute the AGQ. Here, we first learn 
a model by minimizing a locally decomposable objective function, such as the likelihood 
of node labels or a loss function defined over the labels, using the graph G, node attributes 
�i and observed node labels Co , and impute values for the unobserved node labels Cu using 
the learned model. We refer to this approach as a point estimate approach. The point esti-
mate approach is formally defined as follows:

Definition 4 (Point estimate approach) Given an aggregate graph query estimation task, 
the point estimate approach estimates Q by first imputing the values for Cu (denoted by Ĉu ) 
and then computes a value for Q, i.e., estimate Q̂ = Q(G,Co, Ĉu).

Non-probabilistic GNN approaches such as GCNs and GATs model the marginal distri-
bution for each unobserved node label and impute labels using the mode of the distribution. 
SRL approaches such as PSL and MLNs, and probabilistic GNN approaches such GMNNs 
model the joint distribution over all unobserved node labels and impute node labels using 
the mode or the mean of the joint distribution.

Q4 = Counti

(
Countj

(
{cj ∣ eij ∈ E ∧ ci ≠ cj}

)
>

Countj({cj|eij ∈ E})

2

)

Q5 = Counti

(
Countj

(
{cj ∣ eij ∈ E ∧ ci = cj}

)
>

Countj({cj|eij ∈ E})

2

)
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5.2  Expectation‑based approach

Another approach for aggregate graph query estimation is to define a joint probability dis-
tribution over the unobserved node labels and take the expectation of the aggregate graph 
query Q over the joint distribution. We refer to this approach as the expectation-based 
approach. Since the range of the aggregate graph query Q is ℝ , the expectation is well-
defined. The expectation-based approach is formally defined as follows:

Definition 5 (Expectation-based approach) Given an aggregate graph query estimation 
task, the expectation-based approach estimates Q as an expectation over the joint distribu-
tion of the unobserved node labels Cu , i.e., estimate Q̂ = Ep(Ĉu|G,Co)

[Q(G,Co, Ĉu)].

AGQs can be computed as an expectation using approaches that explicitly model 
and perform inference on the joint distribution over the unobserved node labels. Non-
probabilistic GNNs such as GCN and GAT do not model the joint distribution and can-
not be used to compute the expected value. SRL approaches such as PSL and MLN 
and probabilistic GNNs such as GMNNs and ExpressGNNs model the joint distribution 
explicitly. However, computing the expectation analytically for these approaches is chal-
lenging due the intractability of the integration in the expectation. The expectation can 
be approximated using Monte Carlo methods by sampling from the distribution.

To make the inference tractable, approaches such as GMNN and ExpressGNN 
replace the joint distribution with a mean-field variational distribution. The mean-field 
approximation breaks dependencies between the node labels in the joint distribution. 
As an example, (Pham et al., 2017) use an iterative approach to estimate the joint dis-
tribution. The final layer of the GNN estimates the marginal node label probabilities 
using the labels of its neighbors from the previous iteration. Sampling from each node’s 
marginal distribution independently or from a mean-field distribution results in samples 
with limited dependence between adjacent node labels. This makes computing expecta-
tion of the AGQs using Monte Carlo approximation challenging for these approaches.

6  Analysis of the estimation approaches

In the previous section, we proposed two approaches to estimate the AGQs. In this sec-
tion, we analyze the two approaches by estimating the value of the AGQ introduced in 
Example 3 on a graph consisting of two nodes. We use stochastic block models (SBMs) 
(Holland et al., 1983; Bui et al., 1987; Abbe, 2018) as a generative model for the graph. 
SBMs are a popular class of generative models used extensively in statistics, physics, 
and network analysis. SBMs take as input the number of nodes n, a K dimensional vec-
tor ( � ), where 𝛾k > 0 and 

∑K

k=1
�k = 1 , representing the fraction of nodes that belong to 

category k, and a K × K symmetric matrix ( Π ) whose elements Πk1k2
 represent the prob-

ability of edge between two nodes belonging to categories k1, k2 . We assume that at least 
one of the Πk1k2

 where k1 ≠ k2 is non-zero, i.e., there is a non-zero probability of observ-
ing an edge across nodes belonging to different categories.

The SBM generative process for a graph G = (V , E) with node labels C is:
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Consider a graph G with two nodes i, j connected by an edge eij . The joint distribution for 
the node labels ci, cj , under the SBM, is given by:

We now show that even for the simple aggregate graph query introduced earlier that counts 
the number of adjacent nodes belonging to the same category, the point estimate approach 
leads to large errors.

Theorem 1 For a graph G generated using SBM with two nodes i, j and an edge between 
them, the point estimate approach cannot minimizes the expected mean squared error for 
the AGQ Q = Count(i,j)({∀(i,j)∈V×V (eij ∧ ci = cj)})

Proof The expected MSE for Q is given by E[(Q − Q̂)2] . We know that, expected MSE is 
minimized when Q̂ = E[Q] , i.e.,

Since the query Q takes the value 1 when both nodes i, j have the same label and 0 other-
wise, the expected value for the query Q, E[Q], is equal to the probability of i, j having the 
same node label. Thus E[Q] is given by:

Since 
∑

k1∈C

∑
k2∈C

�k1�k2Πk1k2
= 1 and at least one of the terms �k1�k2Πk1k2

≠ 0 when i ≠ j , ∑
k∈C �

2

k
Πkk lies strictly between 0 and 1. Thus 0 < E[Q] < 1.

The point estimate approach imputes labels for the nodes i, j and estimates Q̂ to be 1 if 
the imputed values i, j belong to the same category and 0 otherwise. Since the point esti-
mate approach estimates Q̂ to be either 0 or 1, no point-estimate approach can minimize the 
expected MSE.   ◻

The above theorem shows that even for simple queries, the point estimate approach 
leads to sub-optimal estimation. We show in the empirical evaluation that this is true also 
for more complex queries on larger graphs. Further, from Eq. 6, we know that an optimal 
estimate can be obtained using an expectation-based approach which directly computes the 
expectation of AGQs under the joint distribution.

7  Expectation‑based approach for PSL

In the previous section, we showed that point estimate approaches do not obtain opti-
mal estimates. Better estimates of AGQs can be obtained by computing the expectation 
of AGQs over the joint distribution. Computing the expectation analytically for SRL 
approaches may not always be possible due the intractability of the integration in the 

ci ∼ Multinomial(�) ∀i ∈ V

eij ∼ Bernoulli(Πcicj
) ∀i, j ∈ V × V

(5)p(ci, cj|eij) =
p(ci)p(cj)p(eij|ci, cj)

p(eij)

(6)argminQ̂E[(Q − Q̂)2] = E[Q]

(7)E[Q] =
∑

k∈C

�2
k
Πkk
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expectation. One way to overcome this problem is to use Monte Carlo methods to approxi-
mate the expectation by sampling from the distribution. The expectation can be approxi-
mated as follows:

where S is the number of samples and Cu(j) are samples drawn from the distribution 
p(Cu|G,Co).

Gibbs sampling (Gilks et al., 1995) is a type of MCMC sampling approach that gener-
ates samples from the joint distribution by iteratively sampling from the conditional dis-
tribution of each RV. For MLNs, where conditional distributions follow a binomial distri-
bution, approaches such as MC-SAT have been proposed (Poon & Domingos, 2006) that 
combine MCMC and satisfiability.

In PSL the unobserved node labels Cu are modeled as unobserved RVs Y0∶m where m is 
the number of nodes with unobserved labels. The conditional distribution for a RV yi ∈ Y  
conditioned on all other variables X, Y−i is given by:

where Ni is the number of groundings in which variable yi participates. The above distri-
bution neither corresponds to a standard named distribution nor has a form amenable to 
techniques such as inversion sampling. Hence, it is non-trivial to generate samples from the 
conditional distributions of PSL.

To address this challenge, unlike a previous hit-and-run based sampling approach 
(Broecheler & Getoor, 2010), we propose a simple but effective approach for samping 
from the joint distribution. We overcome the challenge of sampling from the conditional by 
incorporating a single step of a Metropolis algorithm within the Gibbs sampler [also called 
Metropolis-within-Gibbs (Gilks et  al., 1995)]. The algorithm for our proposed approach 
(MIG sampler) is given in Algorithm 1. For each RV yi , we first sample a new value y′

i
 

from a uniform distribution Unif(0, 1) and compute the acceptance ratio � given by:

We then accept the new value y′
i
 , as a sample from the conditional with a probability pro-

portional to � . We ignore the first b samples as burn-in. Further, for faster convergence we 
start the sampling from the MAP state of PSL.

(8)Q(G,Cu,Co) ≈
1

S

S∑

j=1

Q(G,Co,Cu(j))

(9)p(yi|X, Y−i) ∝ exp

{
−

Ni∑

r=1

wr�r(yi,X, Y−i)

}

(10)� =

exp
�
−
∑Ni

r=1
wr�r(Y0∶i−1, y

�
i
, Yi+1∶m,X)

�

exp
�
−
∑Ni

r=1
wr�r(Y0∶i−1, yi, Yi+1∶m,X)

�



1858 Machine Learning (2021) 110:1847–1866

1 3

8  Empirical evaluation

In this section we analyze the performance of SRL and GNN-based approaches on AGQs. 
We answer the following research questions:

• RQ1: How does the performance of expectation-based approaches compare with point 
estimate approaches?

• RQ2: How does the performance vary with the amount of labeled data?
• RQ3: What is the trade-off in performance between estimating aggregate graph queries 

and locally decomposable evaluation metrics such as accuracy?
• RQ4: What is the runtime performance of these approaches?

8.1  Experimental setup and datasets

We consider three benchmark citation datasets for node classification: Cora, Pubmed and 
Citeseer (Sen et al., 2008). The nodes correspond to documents, the edges correspond to 
citations, the attributes correspond to words in the document, and the categories corre-
spond to areas of research. The statistics for these datasets are given in Table 1. We assume 
all the attributes ai and citations E are observed, while the categories C are only partially 

Table 1  Statistics for the three 
datasets: Cora, Pubmed and 
Citeseer

Dataset #Categories #Nodes #Edges #Attributes

Cora 7 2708 5429 1433
Pubmed 3 19,717 44,338 500
Citeseer 6 3327 4732 3703
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observed. We generate five folds consisting 500 nodes for training, 100 nodes for validation 
(600 observed node labels) and use the remaining as test nodes. All approaches are given 
access to observed node labels during training and metrics are evaluated on the test data1.

SRL approaches: For both MLNs and PSL, we extend the model defined in Bach et al. 
(2017) to incorporate node attributes. We use a bag-of-words representation for the node 
attributes. We train a logistic regression model(LR) to predict the node labels using the 
bag-of-words vectors. For each node, we consider the category with the highest probability 
as the LR prediction. Since LR does not need early stopping, we use all the observed node 
labels to train the model. We set the L2 regularizer weight to 0.001.

The model contains the following rules:

The predicate HASCAT(�, ���) is true if document � belongs to category ��� and predi-
cate LINK(�, �) is true if documents A and B have an citation link between them. The 
model incorporates the logistic regression predictions using the predicate LR(�, ���) , 
which is true if LR predicts category Cat for document A. For MLNs, we include a func-
tional constraint that prevents a document from having multiple categories set to true. For 
PSL, we include a highly weighted rule that states that the truth values across all categories 
must sum to 1 for a node. We learn the rule weights using MC-SAT for MLN and maxi-
mum likelihood estimation for PSL using training and validation data.

The different SRL-based approaches that we consider are:

• LR: We compute the AGQs using the predictions of logistic regression trained on the 
node attributes. This is a point estimate approach.

• MLN-MAP: This is a point estimate approach that computes the mode of the joint 
distribution defined by the MLN model. We use the MaxWalkSAT algorithm imple-
mented in the Tuffy framework (Niu et al., 2011).

• MLN-SAM: This is an expectation-based approach that estimates the AGQ as an expec-
tation over the distribution defined by the MLN model. We generate 1000 samples 
using the MC-SAT algorithm, discard the first 500 samples as burn-in samples and ran-
domly choose 100 samples from the 500 (to ensure minimal correlation) and use Monte 
Carlo approximation to compute AGQs.

• PSL-MAP: This is a point estimate approach that computes the mode of the distribu-
tion defined by the PSL model. We use the ADMM algorithm implemented in the PSL 
framework (Bach et al., 2017).

• PSL-SAM: This is an expectation-based approach that estimates the AGQs as an expec-
tation over the distribution defined by the PSL model. Similar to MLN-SAM, we gener-
ate 1000 samples are generated using the proposed MIG-sampler introduced in Algo-
rithm  1, discard the first 500 samples as burn-in samples and randomly choose 100 
samples from the 500 (to ensure minimal correlation) and use Monte Carlo approxima-
tion to compute AGQs.

GNN based approaches: These are point estimate approaches that use the node representa-
tions to infer node labels. These models are trained using the training and validation data 

w1 ∶ HASCAT(�, ���) ∧ LINK(�, �) → HASCAT(�, ���)

w2 ∶ LR(�, ���) → HASCAT(�, ���)

1 The code for our approach can be found at https:// github. com/ linqs/ embar- mlj21.

https://github.com/linqs/embar-mlj21
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where the validation data is used to perform early-stopping. We used the code provided by 
the authors of the respective papers. For all three approaches we performed hyperparam-
eter tuning and found that hyperparameters provided by authors performed best. The differ-
ent GNN-based approaches we consider are:

• GCN: This approach uses the representation computed using a graph convolutional net-
work (Kipf & Welling, 2017).

• GAT: This approach uses the representation computed using a graph attention network 
(Veličković et al., 2018).

• GMNN: This approach uses the representation computed using a Markov neural net-
work introduced recently (Qu et al., 2019).

Metric: In Sects. 8.2 and  8.3, we evaluate the performance on the AGQs (Q0 to Q5) using 
the relative query error (QE) and in Subsection 8.4 we evaluate the categorical accuracy 
(Acc) and homophily error. QE is computed using: QE =

|Q̂−Q|
Q

 where Q is the true value of 
the query and Q̂ is the predicted value. We evaluate the overall performance of each method 
by computing the average QE over all queries denoted by AQE. For homophily error we 
use the homophily measure H defined in Dandekar et al. (2012) and compute error similar 
to QE by computing the absolute difference w.r.t. true H computed using the true labels. 
Homophily measure H is given by H =

|e∈S|
|e∈NS| =

Q1

Q2
 where S and NS as sets of edges such 

that the nodes have the same category and not the same category, respectively. All reported 
metrics are averaged across five folds.

8.2  Performance on AGQs

In this section we answer RQ1 by computing the QE for the AGQs proposed in Sect. 4. 
The QE and AQE for all datasets are shown in Table 2. We observe that PSL-SAM has the 
lowest or the second lowest error across most of the non-decomposable queries (Q1 − Q5) . 
GNNs perfrom better on accuracy (Q0) which is a locally decomposable query. In Citeseer, 
although LR performs worse on locally decomposable AGQs such a Q0, it performs bet-
ter on other AGQs. This is due to the sparse nature of the graph, where non-collective 
approaches perform better. Among collective approaches, PSL-SAM outperforms all other 
approaches. GNNs have a high query errors for non-decomposable AGQs. This is consist-
ent with our theoretical analysis.

Among the queries, we observe that Q1 and Q5 have lower error compared to the other 
queries for all the methods. Both Q1 and Q5 estimate node pairs that are adjacent and have 
the same category. These are easier to estimate as these nodes typically lie at the center of 
the category clusters. Since all the approaches propagate the similarity between the node 
neighbors, the models have a lower error on these queries. Queries Q2, Q3, and Q4 esti-
mate nodes that have neighbors with different categories. These are nodes that lie in the 
boundary of the category clusters and are harder to infer. GNN-based approaches have very 
large errors for these queries, resulting in overall poor performance.

8.3  Effect of training data

To address RQ2, we create five variants of the datasets by varying the amount of train-
ing data available for each method from 200 to 600 with increments of 100. Figure  1 
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shows the performance of different methods on AGQs as we increase the number of 
training examples. We report the mean and the standard deviation of AQE across the five 
folds. We observe that on all three datasets expectation-based approaches have the low-
est error. The average query error for logistic regression decreases sharply in the Citeseer 
data as we increase the size of the training data. We also observe that expectation-based 
approaches are more robust to the amount of training data when compared to point-esti-
mate approaches.

8.4  Trade‑off between estimating AGQs and locally decomposable metrics

To answer RQ3, we compute the accuracy of the predicted node labels which is locally 
decomposable. Accuracy involves correctly estimating the node labels of each node indi-
vidually. Estimating AGQs, on the other hand, requires correctly estimating the node labels 
for several adjacent nodes.

Table 2  Query error obtained for 
all queries on the three datasets 
and the average query error 
(AQE) across queries

The lowest error is indicated in bold and the second lowest error is 
italic

Methods Q0 Q1 Q2 Q3 Q4 Q5 AQE

(a) Query error for Cora
GCN 0.143 0.0756 0.323 0.281 0.768 0.363 0.325
GAT 0.159 0.076 0.326 0.281 0.729 0.361 0.322
GMNN 0.142 0.081 0.348 0.254 0.754 0.367 0.324
LR 0.324 0.320 1.371 1.854 0.993 0.401 0.709
MLN-MAP 0.188 0.011 0.110 0.136 0.529 0.268 0.207
PSL-MAP 0.162 0.027 0.116 0.063 0.060 0.034 0.077
MLN-SAM 0.170 0.021 0.092 0.068 0.074 0.035 0.076
PSL-SAM 0.170 0.015 0.066 0.005 0.040 0.022 0.053
(b) Query error for Pubmed
GCN 0.152 0.129 0.524 2.732 0.737 0.126 0.733
GAT 0.168 0.144 0.583 2.364 0.764 0.132 0.692
GMNN 0.157 0.134 0.545 2.581 0.743 0.127 0.714
LR 0.219 0.126 0.513 6.342 0.712 0.120 1.33
MLN-MAP 0.205 0.075 0.362 3.613 0.435 0.080 0.795
PSL-MAP 0.170 0.016 0.064 4.259 0.007 0.001 0.752
MLN-SAM 0.223 0.037 0.070 0.057 0.051 0.007 0.073
PSL-SAM 0.171 0.009 0.038 0.011 0.022 0.003 0.042
(c) Query error for Citeseer
GCN 0.263 0.241 0.736 0.876 0.907 0.429 0.575
GAT 0.272 0.254 0.775 0.888 0.939 0.439 0.594
GMNN 0.268 0.251 0.766 0.867 0.905 0.412 0.578
LR 0.327 0.134 0.408 0.378 0.382 0.176 0.300
MLN-MAP 0.292 0.192 0.595 0.625 0.789 0.369 0.477
PSL-MAP 0.283 0.151 0.460 0.600 0.516 0.237 0.374
MLN-SAM 0.297 0.161 0.506 0.641 0.485 0.217 0.384
PSL-SAM 0.286 0.143 0.435 0.586 0.509 0.231 0.365
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In Fig. 2, we plot the accuracy of the predicted node labels for all three datasets with 
different amount of training data. We observe that GNNs have a higher accuracy com-
pared to SRL approaches. This is due to the sparsity of node attributes in these datasets 
which leads to inferior predictions by the logistic regression classifier. GNNs overcome 
this sparsity by aggregate features of the neighboring nodes. However, this implicitly 
assumes that a node’s neighbors have the same label. While this is true for most nodes, 
it is not always true. As a result, GNNs tend to perform poorly on AGQs which involve 
correctly estimating multiple node labels that may belong to different categories.

The error in the homophily between the estimated node labels and the true labels in 
shown in Fig. 2. We observe that GNN-based approaches have a large error when com-
pared to SRL approaches. Further, we observed that by artificially modifying weight 
of first rule in PSL that propogates the node labels across the citation edges, the accu-
racy could be improved at the cost of poor AGQ estimates. This shows that there is 
a trade-off between locally decomposable metrics such as accuracy and AGQs. While 
GNN-based approaches are good at estimating locally decomposable metrics they per-
form poorly when estimating AGQs. SRL-based approaches due to their flexibility in 
modeling can be altered to perform well on either of the two metrics.

Fig. 1  Effect of training data on average query error (AQE) on all methods and datasets
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8.5  Runtime comparisons

To answer RQ4, we recorded the runtimes of the different approaches and is given in 
Table 3. As expected, we observed that point estimate approaches are significantly faster 

Fig. 2  Figures shows the accuracy and homophily error of different approaches on all three datasets as the 
number of training data increases
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compared to expectation-based approaches. This is not surprising as point estimates are 
computed using efficient optimization approaches. Among the GCN, GAT, GMNN, PSL-
MAP and MLN-MAP, we observe that GMNN takes the least amount of time in Pubmed 
and Citeseer dataset and PSL-MAP takes the least amount of time in Cora dataset. Among 
PSL-SAM and MLN-SAM, we observe that our proposed MIG sampler for PSL is faster 
than MLN-SAM by a factor of two for Cora and three for Pubmed.

9  Conclusion and future work

In this paper, we motivate the practical need for aggregate graph queries (AGQs), and 
show that existing approaches which optimize for locally decomposable metrics such as 
accuracy neither perform well theoretically nor empirically. In order to compute the expec-
tation under the joint distribution, we introduce a novel sampling approach, MIG, for PSL 
that is both effective and efficient. We perform an extensive evaluation of SRL and GNN 
approaches for answering AGQs. Through our experiments we show that SRL methods can 
get up to 50 times less error compared to GNNs and that our proposed MIG sampler is up 
to three times faster than other SRL sampling approaches. An interesting future direction 
is to combine GNN approaches with SRL models that can learn node representations and 
also infer a joint distribution over the unobserved data. Extending this analysis for net-
works with missing edges and nodes is another interesting line of future work.
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Table 3  Table showing runtimes for each of the approaches on the three datasets

Methods Cora time (s) Pubmed time (s) Citeseer time (s)

GCN 24 59 29
GAT 142 138 122
GMNN 30 17 8
LR 2 5 2
PSL-MAP 14 124 37
PSL-MEAN 105 638 124
MLN-MEAN 270 1947 166
MLN-MAP 65 368 36
PSL-SAMPLES 105 638 124
MLN-SAMPLES 270 1947 166

http://creativecommons.org/licenses/by/4.0/
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