
Vol.:(0123456789)

Machine Learning (2023) 112:3773–3804
https://doi.org/10.1007/s10994-021-06001-x

1 3

Byzantine‑robust distributed sparse learning
for M‑estimation

Jiyuan Tu1 · Weidong Liu2 · Xiaojun Mao3 

Received: 6 June 2020 / Revised: 14 March 2021 / Accepted: 14 May 2021 /
Published online: 26 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
In a distributed computing environment, there is usually a small fraction of machines that
are corrupted and send arbitrary erroneous information to the master machine. This phe-
nomenon is modeled as a Byzantine failure. Byzantine-robust distributed learning has
recently become an important topic in machine learning research. In this paper, we develop
a Byzantine-resilient method for the distributed sparse M-estimation problem. When the
loss function is non-smooth, it is computationally costly to solve the penalized non-smooth
optimization problem in a direct manner. To alleviate the computational burden, we con-
struct a pseudo-response variable and transform the original problem into an �

1
-penalized

least-squares problem, which is much more computationally feasible. Based on this idea,
we develop a communication-efficient distributed algorithm. Theoretically, we show that
the proposed estimator obtains a fast convergence rate with only a constant number of
iterations. Furthermore, we establish a support recovery result, which, to the best of our
knowledge, is the first such result in the literature of Byzantine-robust distributed learning.
We demonstrate the effectiveness of our approach in simulation.

Keywords  Byzantine robustness · M-estimation · Median-of-means · Support recovery

Weidong Liu and Xiaojun Mao are the co-corresponding authors.

Editors: Daniel Fremont, Mykel Kochenderfer, Alessio Lomuscio, Dragos Margineantu, Cheng Soon-
Ong.

 *	 Weidong Liu
	 weidongl@sjtu.edu.cn

 *	 Xiaojun Mao
	 maoxj@fudan.edu.cn

	 Jiyuan Tu
	 tujy.19@gmail.com

1	 School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, China
2	 School of Mathematical Sciences ‑ School of Life Sciences and Biotechnology ‑ MoE Key Lab

of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, China
3	 School of Data Science, Fudan University, Shanghai, China

http://orcid.org/0000-0002-9362-508X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06001-x&domain=pdf

3774	 Machine Learning (2023) 112:3773–3804

1 3

1  Introduction

With the development of modern technology, unprecedented data sizes are generated in many
fields of scientific studies, and that creates the need for statistical analysis. The computational
power of a single computer is no longer sufficient to store and process modern data sets. To
address the problem of storage and computation, several distributed computing methods have
been proposed. In a distributed system, data are partitioned across multiple machines. Among
them, there is a single master machine in charge of updating and broadcasting the parame-
ters. The rest of the machines, called worker machines, maintain a large part of the data and
can only communicate with the master machine. Due to the vulnerability of modern machine
learning systems, robust distributed learning has recently become an important topic in
machine learning research. In particular, in a large distributed data processing system, there is
usually a small fraction of worker machines that sends arbitrary erroneous information to the
master machine due to a system breakdown or hacker attack. This phenomenon is typically
modeled as Byzantine failure (Lamport et al. 1982). A Byzantine-tolerant distributed statisti-
cal method is referred to as conducting a good estimate for the parameters we care about, even
with the presence of a moderate fraction of Byzantine machines in the distributed system.

Byzantine-robust distributed learning has an intimate connection with robust estimation
in the statistics literature (Huber 2004). In fact, in the field of machine learning, a popular
approach to hedge against Byzantine failure is to take the median (Xie et al. 2018; Yin et al.
2018, 2019), instead of the vanilla sample mean, among the data transmitted to the master
machine. It has been well known that the median estimator and its variants are commonly
used in robust statistics (see, e.g., Minsker 2015; Lecué and Lerasle 2020; Lugosi and Men-
delson 2019; Minsker 2019).

In this paper, we are interested in a special class of stochastic optimization problems: the
sparse M-estimation. Let X = (X1,X2,… ,Xp)

T ∈ ℝ
p be a p-dimensional covariate, and Y be

the response variable. Our target is to estimate the true parameter �∗ defined in the following
M-estimation problem

where L(⋅) is a pre-determined convex loss function. The vector �∗ is assumed to be sparse,
i.e. the number of nonzero entries in �∗ is small compared with p. In practice, we cannot
minimize the population loss function (1) directly. Instead, one may minimize the empiri-
cal loss function with an l1-penalty to approximate the true parameter �∗,

where (Yi,Xi), 1 ≤ i ≤ N are i.i.d. observations and ���1 =
∑p

i=1
��i� with � = (�1,… , �p)

T ;
see (Tibshirani 1996; Zhao and Yu 2006; Wainwright 2009; Bühlmann and Van De Geer
2011; Hastie et al. 2015). In this paper, we consider the distributed estimation of �∗ , in
which the N samples are evenly stored in m + 1 machines H0,… ,Hm (i.e., each local
machine has n samples and N = (m + 1)n ). Here we denote H0 as the master machine,
which is in charge of collecting information from local machines H1,… ,Hm , and updating
the target parameters. In the distributed computing system, a direct application of the clas-
sical algorithm to implement the optimization in (2) is impossible. Furthermore, in Byz-
antine setting, there exists a subset of indices B ⊆ {1,… ,m} representing the set of Byz-
antine machines. Throughout this paper, we assume that the master machine H0 can never

(1)�∗ = argmin�∈ℝp𝔼{L(Y − XT�)},

(2)argmin�∈ℝp

1

N

N∑

i=1

L(Yi − XT
i
�) + �|�|1,

3775Machine Learning (2023) 112:3773–3804	

1 3

be corrupted. For j ∈ B , the information sent from Hj can be arbitrary or even adversarial.
Thus, many popular distributed optimization algorithms such as distributed ADMM (Boyd
et al. 2011) and distributed approximate Newton methods (see, e.g., Wang et al. 2017; Jor-
dan et al. 2019; Fan et al. 2019) do not work anymore.

In non-sparse setting, one common way to estimate �∗ is the distributed gradient descent
algorithm for the optimization

In the t-th iteration of distributed gradient descent algorithm, every local machine Hj
computes a gradient based on the parameters obtained in the (t − 1)-th iteration �̂

(t−1)
 and

its local samples as

Then we transmit them to the master machine H0 . In the master machine H0 , we take coor-
dinate-wise sample mean ḡ(t−1) among the reported gradients {gj(�̂

(t−1)
)}m

j=0
 , and update the

parameter by the gradient descent ��
(t)

= ��
(t−1)

− 𝜂ḡ(t−1) , where the constant � denotes the
step size. However, the sample mean of the gradients is quite sensitive to Byzantine fault.
It is not hard to see that the aggregated gradient ḡ(t−1) can behave arbitrarily bad even if
there is only one Byzantine machine. Therefore, vanilla distributed gradient descent is no
longer reliable under the Byzantine setting. To guarantee the robustness of the algorithm,
Yin et al. (2018) proposed to use the sample median as a gradient aggregator, namely, we
obtain the parameter

where med(⋅) denotes the coordinate-wise median of a set of vectors. It has been shown
that the result converges to the true parameters �∗ , even with the presence of a moderate
fraction of Byzantine machines.

There are quite a few algorithms which have been developed to hedge against Byzantine
failures (see, e.g., Feng et al. 2014; Chen et al. 2017; Blanchard et al. 2017; Xie et al. 2018;
Alistarh et al. 2018; Yin et al. 2018, 2019; Su and Xu 2019). The key idea of these works
is to apply robust mean estimators so that the gradient information reported from all local
machines is aggregated robustly. However, when the true parameter �∗ has a sparse struc-
ture (i.e., the number of non-zero elements s is much smaller than the dimension p), the
estimator obtained from the distributed gradient descent algorithm (4) and its variants will
no longer possess the optimal convergence rate (see Remark 5 for a more detailed discus-
sion). In fact, there are few works concerning distributed sparse learning in the Byzantine
setup.

In this paper, we propose a Byzantine-robust distributed method which can learn the
sparse structure for M-estimation. We assume that X, Y are generated from the linear
model

(3)argmin�∈ℝp

1

N

N∑

i=1

L(Yi − XT
i
�),

gj(�̂
(t−1)

) = −
1

n

∑

i∈Hj

XiL
�(Yi − XT

i
�̂
(t−1)

).

(4)�̂
(t)

= �̂
(t−1)

− �med{gj(�̂
(t−1)

) ∣ 0 ≤ j ≤ m},

3776	 Machine Learning (2023) 112:3773–3804

1 3

For the ease of presentation, the noise � is assumed to be independent with the covariate X .
To propose a fast Byzantine-robust distributed algorithm for the general loss function, we
first develop a novel square loss transformation method in this paper. Our strategy is that,
under some mild model assumptions, we can construct some pseudo-response Ỹ in place of
the original one, and transform the stochastic optimization problem (1) into the following
quadratic optimization

In other words, to approximate the sparse parameter �∗ of M-estimation with a general
loss function, we solve the problem of least absolute shrinkage and selection operator
(LASSO), as follows

where Ỹi is the empirical version of the constructed pseudo-response, and �̃N is the regu-
larization parameter. As the LASSO problem can be solved by many effective algorithms,
this square-loss transformation method greatly facilitates computation. Finally, together
with (6) and median-based gradient aggregation, we propose a Square Loss Approximated
Robust Distributed ( SLARD ) method. As we only need to solve a LASSO-type optimi-
zation problem at each iteration, our algorithm is much faster than directly solving the
original one in (2) even in the non-distributed setting. In our theoretical analysis, we will
prove that the SLARD method possesses the near-optimal statistical rate, as well as vari-
able selection consistency. It achieves a fast convergence rate with only a constant number
of iterations and hence is both communication-efficient and computationally feasible. The
SLARD method applies to a large class of loss functions like square loss and Huber loss in
a smooth case and absolute deviation loss in a non-smooth case.

1.1 � Paper organization and notations

The remainder of this paper is organized as follows. In Sect. 2, we introduce the idea of
square loss transformation and provide the distributed algorithm; Sect. 3 presents some
technical assumptions and theoretical results for our proposed methods. The cases of
smooth loss and non-smooth loss are discussed separately in Sects. 3.1 and 3.2. Empirical
analysis on a synthetic dataset and real-world benchmark dataset are provided in Sect. 4.1
to demonstrate the effectiveness of our method. Concluding remarks are given in Sect. 5.
All proofs are deferred to the Appendix.

For every vector v = (v1,… , vp)
T , denote �v�2 =

�∑p

l=1
v2
l
 , �v�1 =

∑p

l=1
�vl� , and

|v|∞ = max1≤l≤p |vl| . Moreover, we use supp(v) = {1 ≤ l ≤ p ∣ vl ≠ 0} as the support of the vector v .
For every matrix A ∈ ℝ

p1×p2 , define ‖A‖ = sup�v�2=1 �Av�2, ‖A‖L2 = sup�v�2=1 �Av�∞, ‖A‖∞ = sup�v�∞=1 �Av�∞

(5)Y = XT�∗ + �.

argmin�∈ℝp𝔼(Ỹ − XT�)2.

(6)argmin�∈ℝp

1

N

N∑

i=1

(Ỹi − XT
i
�)2 + �̃N|�|1,

3777Machine Learning (2023) 112:3773–3804	

1 3

as various matrix norms, and �max(A) and �min(A) as the largest and smallest eigenvalues
of A respectively. Moreover, given two subsets of indices, I and J, we use AI×J to denote
the submatrix formed by the rows in I and columns in J. We will use �(⋅) as the indicator
function. The symbols ⌊x⌋ ( ⌈x⌉ ) denote the greatest integer (the smallest integer) not larger
than (not less than) x. For two sequences an, bn , we say an ≍ bn when an = O(bn) and
bn = O(an) hold at the same time. For simplicity, we denote �p−1 and �p as the unit sphere
and unit ball in ℝp centered at 0 . For a given quantile level 0 < 𝜏 < 1 and a sequence of
vectors {vi}ni=1 ⊆ ℝ

p , we denote Quan� (vi ∣ 1 ≤ i ≤ n) as the coordinate-wise �-th sample
quantile of {vi}ni=1 . Specifically, we use med(⋅) as the coordinate-wise median. Lastly, the
generic constants are assumed to be independent of m, n, and p.

2 � Proposed methods

In this section, we first introduce a Byzantine-robust algorithm for sparse least square regres-
sion. For general loss functions, we propose a square loss transformation method. By con-
structing a pseudo-response, we transform the general M-estimation problem into an �1-penal-
ized least square regression problem, which becomes much more computationally feasible.
Based on this idea, we develop a Byzantine-robust distributed algorithm.

2.1 � Byzantine‑robust LASSO

Let us start our discussion from the standard distributed LASSO problem. Let N = (m + 1)n
pairs of i.i.d. observations {(Xi, Yi)} be evenly stored in m + 1 machines {H0,… ,Hm} . Then
we want to solve the following LASSO problem

However, in a distributed setup, it is communication-costly to solve (7) in a direct way. To
reduce the communication burden, an approximate Newton method (Shamir et al. 2014;
Wang et al. 2017; Jordan et al. 2019) is always used. In particular, we denote
gj(�) = n−1

∑
i∈Hj

(XiX
T
i
� − YiXi) as the local gradient function and �̂ j = n−1

∑
i∈Hj

XiX
T
i

as the local Hessian on machine Hj (where 0 ≤ j ≤ m ). Given an initial estimator �̂
(0)

 ,
every machine Hj computes the vector gj(�̂

(0)
) and sends it to the master machine H0 . Then

a one-step Newton iteration can be informally formulated as follows:

For simplicity, here we assume �̂0 to be invertible, as we will multiply �̂0 on the both sides
of (8) in the following discussion. Note that we only approximate Hessian information by

(7)argmin�∈ℝp

1

2N

N∑

i=1

(Yi − XT
i
�)2 + �N|�|1.

(8)�̃
(1)

= �̂
(0)

− (�̂0)
−1 1

m + 1

m∑

j=0

gj(�̂
(0)
).

3778	 Machine Learning (2023) 112:3773–3804

1 3

observations on the master machine H0 , which significantly reduces communication over-
head. Moreover, from (8), �̃ can be equivalently viewed as the solution of the quadratic
optimization problem

To further encourage sparsity, we can add an �1-penalty to (9). Substituting that
�̂0 = n−1

∑
i∈H0

XiX
T
i
 , we only need to solve the following regularized optimization prob-

lem on the master machine H0

However, we assume that a subset B of worker machines are Byzantine, which may send
arbitrarily erroneous gradient information to the master machine. In particular, we denote
g
(0)

j
 as the gradient information sent from worker machine Hj . Note that we only transmit p−

dimension vectors from worker machines. Then for normal machines (i.e., j ∉ B ), we have
g
(0)

j
= gj(�̂

(0)
) . While for j ∈ B , the Byzantine machine Hj sends arbitrary values g(0)

j
=∗ to

the master machine. In this case, taking the average among {g(0)
j
}m
j=0

 as in (10) is no longer
reliable because sample average is highly sensitive to outliers. To address this challenge, we
take the coordinate-wise median among the reported vectors {g(0)

j
}m
j=0

 , namely,

Then we can solve the following quadratic optimization problem

Continuing by updating the parameters �̂
(0)

 and repeating the above procedure, we pro-
pose a Byzantine-robust algorithm for sparse least square regression as shown in Algo-
rithm 1. To give a consistent initial estimator, naturally we can obtain �̂

(0)
 by solving a

LASSO problem on the master machine H0

This estimator is reliable as we assumed that the master machine H0 cannot be a Byzantine
machine.

(9)�̃
(1)

= argmin�∈ℝp

1

2
�T�̂0� − �T

{
�̂0�̂

(0)
−

1

m + 1

m∑

j=0

gj(�̂
(0)
)
}
.

(10)

argmin�∈ℝp

1

2n

∑

i∈H0

�TXiX
T
i
� − �T

{
1

n

∑

i∈H0

XiX
T
i
�̂
(0)

−
1

m + 1

m∑

j=0

gj(�̂
(0)
)
}
+ �1|�|1.

ĝ
(0)

= med(g
(0)

j
∣ 0 ≤ j ≤ m).

(11)�̂
(1)

= argmin�∈ℝp

1

2n

∑

i∈H0

�TXiX
T
i
� − �T

{
1

n

∑

i∈H0

XiX
T
i
�̂
(0)

− ĝ
(0)
}
+ �1|�|1.

(12)�̂
(0)

= argmin�∈ℝp

1

2n

∑

i∈H0

(Yi − XT
i
�)2 + �0|�|1.

3779Machine Learning (2023) 112:3773–3804	

1 3

Algorithm 1 Byzantine Robust Sparse Least Square Regression

Input: Data on local machines {(Xi, Yi) | i ∈ Hj} for j = 0, . . . ,m,
the number of iterations T , the regularization parameters λ0, λt for t =
1, . . . , T .

1: Compute the initial estimator β̂
(0)

on the master machine H0 by solving (12).

2: for t = 1, . . . , T do

3: Master H0 distributes β̂
(t−1)

to each worker machine Hj for j = 1, 2, . . . ,m.

4: for j = 0, . . . ,m do
5: The j-th worker machine computes

g
(t−1)
j =

{
n−1 ∑

i∈Hj
(XiX

T
i β̂

(t−1) −XiYi) if j /∈ B,
fiseulavyrartibra j ∈ B.

Then the j-th worker sends g(t−1)
j back to master machine.

6: end for
7: Master machine takes coordinate-wise median ĝ(t−1) = med(g(t−1)

j | 0 ≤
j ≤ m), and computes the estimator β̂

(t)
by solving

β̂
(t)

= argmin
β∈Rp

1
2n

∑

i∈H0

βTXiX
T
i β−βT

{ 1
n

∑

i∈H0

XiX
T
i β̂

(t−1)−ĝ(t−1)
}
+λt|β|1.

8: end for

Output: The final estimator β̂
(T)

.

Remark 1  Before moving on to the more general class of loss functions, we shall remark
on our settings. In this paper, we adopt the master-slave computing architecture. That is,
the master machine H0 is in charge of data updates, and the rest of the worker machines
can only communicate with the master machine (except that the Byzantine machines may
collude with each other). Moreover, we assume that the master machine H0 keeps the same
amount of data and can never be corrupted. In Xie et al. (2019, 2020), the authors also
assumed that the master machine samples a considerable amount of trustful data so that the
proposed algorithm can bear a higher fraction of Byzantine workers. This setting is slightly
different from classical Byzantine distributed literature (see, e.g., Yin et al. 2018, 2019;
Blanchard et al. 2017; Chen et al. 2017; Su and Xu 2019), where the master machine does
not hold any data, and the worker machines are equally likely to be corrupted. Their master
machine works as a server where the computations can never be corrupted, and thus, it
plays a similar role to our master machine.

Remark 2  In the standard master-slave computing architecture, the delay of data transmis-
sion is another important feature in practice. More specifically, since local workers are com-
puting gradients and sending them to the master, by the time a computed gradient arrives, it

3780	 Machine Learning (2023) 112:3773–3804

1 3

could already be stale. The asynchronous nature of the distributed system brings new chal-
lenges in designing learning algorithms. There has been a vast literature concerning distrib-
uted asynchronous optimization like Agarwal and Duchi (2012), Mansoori and Wei (2017),
Zhou et al. (2018), and Ren et al. (2020). However, it is not obvious how to directly extend
our method to the asynchronous setting. On the one hand, since our method needs to aggre-
gate the gradient information from all workers by taking the coordinate-wise median to filter
out the small fraction of Byzantine machines, this aggregation rule may no longer be robust
when the gradients come asynchronously. On the other hand, after each round of gradient
aggregation, we need to update the parameter by solving the �1-penalized optimization prob-
lem (11), which is time-consuming, makeing it not applicable in practice. Therefore, in this
paper, we abstract away the asynchrony for simplicity and leave the problem of Byzantine
distributed asynchronous sparse learning as an important future direction.

In practice, the noise � can be heavy-tailed or contaminated by outliers. In these
cases, ordinary least square regression is not applicable. Many different loss functions
L(⋅) , like absolute deviation loss (Koenker and Hallock 2001; Koenker 2005) and Huber
loss (Huber 1973, 2004), are adopted to overcome these problems. In the following dis-
cussion, we propose a method, called square loss transformation, to transform the gen-
eral loss functions into least square loss, which greatly facilitates computation.

2.2 � Squared loss transformation

In general, our task is to solve the stochastic optimization problem

where L(⋅) is a convex loss function. Denote the sub-gradient of L(x) as L�(x) , which could
be non-continuous. Next, we consider the function h(x) = �{L�(x + �)} , where the expecta-
tion is taken over the randomness of error term � in (5). We assume h(x) is differentiable
with respect to x and denote the scalar value H(0) = h�(0) . Then for every � , the Hessian
matrix of the loss function can be written as

Further denote � = �(XXT) . Given an initial estimator �̂
(0)

 , a one-step Newton iteration
takes the following form

Here we ignore the randomness of the initial estimator �̂
(0)

 so that the expectation is only
taken with respect to the covariate X and the noise � . If we define the pseudo-response

then the original problem (13) can be approximated by the following least square problem

(13)�∗ = argmin�∈ℝp𝔼{L(Y − XT�)},

H(�) = ∇|��
{
XL�(Y − XT�)

}
= �

{
XXTh�(XT�∗ − XT�)

}
.

�̃
(1)

= �̂
(0)

+
{
H(�̂

(0)
)
}−1

�
{
XL�(Y − XT�̂

(0)
)
}

≈ �̂
(0)

+
{
H(0)�

}−1
�
{
XL�(Y − XT�̂

(0)
)
}

= �−1
�

[
X

{
XT�̂

(0)
+ {H(0)}−1L�

(
Y − XT�̂

(0))}]
.

Ỹ ∶= XT�̂
(0)

+ {H(0)}−1L�
(
Y − XT�̂

(0))
,

3781Machine Learning (2023) 112:3773–3804	

1 3

We note that H(0) is unknown. Therefore we need to estimate H(0) with Ĥ(0)(0) from the
observations {(Xi, Yi)}

N
i=1

 and initial estimator �̂
(0)

 . Then the pseudo-response can be con-
structed by

The explicit construction of Ĥ(0)(0) will be given in detail in the next section. To further
adopt (14) into the sparse Byzantine-distributed setting, we only need to repeat the proce-
dure in Sect. 2.1. More specifically, each machine Hj locally computes

Normal machines Hj (where j ∉ B ) report g̃(0)
j

= g̃j(�̂
(0)
) to the master H0 , and Byzan-

tine machines Hj (where j ∈ B ) report arbitrary values g̃(0)
j

=∗ . Then the master machine
aggregates these gradients by taking the coordinate-wise median

and solves the quadratic optimization problem

It is worthwhile to note that, at each iteration, every worker machine only needs to transmit
a local density estimator Ĥ(0)

j
 and a vector g̃(0)

j
 . Therefore the total communication cost is

only O(p). By updating the parameter recursively, it is easy to construct an iterative esti-
mator. In particular, let �̂

(t−1)
 be the (t − 1)-th round estimator, we construct the estimator

Ĥ(t−1)(0) for H(0) (see Sect. 2.3 for more details). Then we can define

Each machine computes a gradient

and reports the vector g̃
(t−1)

j
 . The master aggregates the gradient information by

g̃
(t−1)

= med(g̃
(t−1)

j
∣ 0 ≤ j ≤ m) and solves the following optimization problem

(14)argmin�∈ℝp𝔼
{
(Ỹ − XT�)2

}
.

Ỹi = XT
i
�̂
(0)

+ (Ĥ(0)(0))−1L�
(
Yi − XT

i
�̂
(0))

.

(15)g̃j(�̂
(0)
) =

1

n

∑

i∈Hj

(XiX
T
i
�̂
(0)

− ỸiXi) = −
1

nĤ(0)(0)

∑

i∈Hj

XiL
�(Yi − XT

i
�̂
(0)
).

(16)g̃
(0)

= med(g̃
(0)

j
∣ 0 ≤ j ≤ m),

(17)�̂
(1)

= argmin�∈ℝp

1

2n

∑

i∈H0

�TXiX
T
i
� − �T

{
1

n

∑

i∈H0

XiX
T
i
�̂
(0)

− g̃
(0)
}
+ �1|�|1.

Ỹi = XT
i
�̂
(t−1)

+ (Ĥ(t−1)(0))−1L�
(
Yi − XT

i
�̂
(t−1))

.

g̃j(�̂
(t−1)

) = −
1

nĤ(t−1)(0)

∑

i∈Hj

XiL
�(Yi − XT

i
�̂
(t−1)

),

3782	 Machine Learning (2023) 112:3773–3804

1 3

Algorithm 2 Square Loss Approximated Robust Distributed (SLARD) method

Input: Data on local machines {(Xi, Yi) | i ∈ Hj} for j = 0, . . . ,m, the number
of iterations T , the regularization parameter λ0, λt for t = 1, . . . , T . Moreover, we
need a kernel function K(·) and a sequence of bandwidth ht for t = 1, . . . , T if the
loss function L(·) is non-smooth.

1: Compute the initial estimator β̂
(0)

on the master machine H0 by solving (19).

2: for t = 1, . . . , T do

3: Master H0 distributes β̂
(t−1)

to each local machine Hj for j = 1, 2, . . . ,m.
4: for j = 0, . . . ,m do
5: The j-th worker machine computes the local estimator Ĥ(t−1)

j (0) accord-

ing to equation (23), and sends Ĥ(t−1)
j (0) back to master machine.

6: end for
7: Master machine computes Ĥ(t−1)(0) = med{Ĥ(t−1)

j (0) | 0 ≤ j ≤ m}, and
transmits it to all local machines.

8: for j = 0, . . . ,m do
9: The j-th worker machine computes

g̃
(t−1)
j =

{
−(nĤ(t−1)(0))−1 ∑

i∈Hj
XiL′(Yi −XT

i β̂
(t−1)

) if j /∈ B,
fiseulavyrartibra j ∈ B.

Then the j-th worker sends g̃(t)
j back to master machine.

10: end for
11: Master machine takes coordinate-wise median g̃(t−1) = med(g̃(t−1)

j | 0 ≤
j ≤ m), and computes the estimator β̂

(t)
by solving (18).

12: end for

Output: The final estimator β
(T)

.

Compared with the original optimization problem in (2), the �1-penalized quadratic optimi-
zation problem in (18) is much more computationally feasible. Therefore we call our pro-
posed method the Square Loss Approximated Robust Distributed ( SLARD ) method. The
entire procedure is presented in Algorithm 2. The regularization parameter �0,… , �t will
be specified in Corollary 2 and Theorem 3 in Sect. 3.

For the choice of initial estimator �̂
(0)

 , a natural candidate is to solve the �1-penalized
M-estimation problem on the master machine H0 , i.e.,

(18)

�̂
(t)

= argmin�∈ℝp

1

2n

∑

i∈H0

�TXiX
T
i
� − �T

{
1

n

∑

i∈H0

XiX
T
i
�̂
(t−1)

− g̃
(t−1)

}
+ �t|�|1.

(19)�̂
(0)

= argmin�∈ℝp

1

n

∑

i∈H0

L(Yi − XT
i
�) + �0|�|1.

3783Machine Learning (2023) 112:3773–3804	

1 3

This is always consistent as we assumed in the beginning that H0 can never be corrupted. One
can also adopt a different estimator for �̂

(0)
 so long as it satisfies Assumption C in Section 3.

Remark 3  Suggested by one reviewer, we would like to compare our square loss transforma-
tion with the Distributed Least Squares Approximation (DLSA) method proposed in an
unpublished paper (Zhu et al. 2019). In the DLSA method, the authors proposed to let each
local machine minimize the unpenalized local empirical loss function
�̂
(0)

j
= argmin�n

−1
∑

i∈Hj
L(Yi − XT

i
�) . Then each local machine sends the local estimator

�̂
(0)

j
 as well as the local covariance information to the server, and solves the quadratic

approximated loss function to obtain a refined estimator. There are three major disparities
between DLSA and our approach. Firstly, to eliminate the linear term in the quadratic
approximation, their local estimator has to be the minimizer of the unpenalized loss func-
tion. Therefore it is not applicable for high-dimensional problems. In contrast, our approach
allows the initial estimator �̂

(0)
 to be any consistent estimator of the true parameters �∗ . Sec-

ondly, they require the workers to send the p × p local covariance matrix �̂ j =
∑

i∈Hj
XiX

T
i

to the server, which is more communication-costly than ours, as we only need to send the p
dimensional gradient information. Lastly, their approach directly uses the local estimators
and the covariance information from all local machines to construct the approximated loss
function, which makes it hard to be modified into a Byzantine robust method.

2.3 � Robust estimate for H(0)

Recall that the function h(x) is defined as �{L�(x + �)} . The target of this section is to
estimate the unknown parameter H(0) = h�(0) . For the convex loss function L(x) , again
we denote its sub-gradient as L�(x) . Note that we allow L(x) to be non-smooth, so that
L
�(x) could be discontinuous. Assume L�(x) has finitely many distinct discontinuous points

x1,… , xK , and it is differentiable outside of these points. Then we can denote the second-
order derivative of L(x) as L��(x) , which can be defined almost everywhere on ℝ. For the
sake of completeness, we define L��(xk) = 0 on the discrete set of the discontinuous points
x1,… , xK . Further let the noise � have probability density function f (⋅) . Then we can give
an explicit expression for the function h(x) as follows

To take derivative for h(x), note that L�(x) is differentiable on the interval (xk, xk+1) . There-
fore the derivative of every summand in (20) can be given by

(20)

h(x) = �{L�(x + �)} = ∫
∞

−∞

L
�(x + y)f (y)dy

= ∫
x1−x

−∞

L
�(x + y)f (y)dy +

K−1∑

k=1
∫

xk+1−x

xk−x

L
�(x + y)f (y)dy + ∫

∞

xK−x

L
�(x + y)f (y)dy.

3784	 Machine Learning (2023) 112:3773–3804

1 3

For simplicity we assume x0 = −∞ and xK+1 = ∞ . Since L�(x) is non-continuous at the
points xk ( 1 ≤ k ≤ K ), we know the left limit limx̃→x−

k
L
�(̃x) and right limit limx̃→x+

k
L
�(̃x) are

not equal. Denote the gap at the point xk as

Then we have

From the above expression, to estimate H(0), we have to conduct kernel density estimation
for probability density function f(x) at the K points x1,… , xK . Given a kernel function K(⋅)
and a bandwidth h1 , the probability density f (xk) can be estimated on each local machine
Hj as follows

Therefore, on each local machine Hj , H(0) can be locally estimated by

Then the worker machine Hj sends the local estimator Ĥ(0)

j
(0) to the master machine H0 .

Note that in the Byzantine-distributed setting, the Byzantine machine Hj (where j ∈ B )
may send arbitrary values to the master. To avoid the corruption of outliers, we take a
median

which estimates H(0) robustly. For a multi-round algorithm, H(0) should be estimated
recursively by the newly updated parameter �̂

(t)
 . In particular, let �̂

(t−1)
 be the (t − 1)-th

round estimator. On machine Hj , the local estimator is computed as

and sent to the master machine. Then H0 aggregates the local estimators by

d

dx ∫
xk+1−x

xk−x

L
�(x + y)f (y)dy

= ∫
xk+1−x

xk−x

L
��(x + y)f (y)dy + f (xk − x) lim

x̃→x+
k

L
�(̃x) − f (xk+1 − x) lim

x̃→x−
k+1

L
�(̃x).

�k = lim
x̃→x+

k

L
�(̃x) − lim

x̃→x−
k

L
�(̃x).

(21)

H(0) =

K∑

k=0

{
∫

xk+1

xk

L
��(y)f (y)dy + f (xk) lim

x̃→x+
k

L
�(̃x) − f (xk+1) lim

x̃→x−
k+1

L
�(̃x)

}

= �{L��(Y − XT�∗)} +

K∑

k=1

�kf (xk).

f̂
(0)

j
(xk) =

1

nh1

∑

i∈Hj

K

(Yi − XT
i
�̂
(0)

− xk

h1

)
.

(22)Ĥ
(0)

j
(0) ∶=

1

n

∑

i∈Hj

L
��(Yi − XT

i
�̂
(0)
) +

K∑

k=1

�k

nh1

∑

i∈Hj

K

(Yi − XT
i
�̂
(0)

− xk

h1

)
.

Ĥ(0)(0) = med
{
Ĥ

(0)

j
(0) || 0 ≤ j ≤ m

}
,

(23)Ĥ
(t−1)

j
(0) ∶=

1

n

∑

i∈Hj

L
��(Yi − XT

i
�̂
(t−1)

) +

K∑

k=1

�k

nht

∑

i∈Hj

K

(Yi − XT
i
�̂
(t−1)

− xk

ht

)
,

3785Machine Learning (2023) 112:3773–3804	

1 3

The choice of bandwidth ht at each round will be specified in Theorem 3 of Sect. 3. To get
a better understanding of the construction of Ĥ(0)

j
(0) , we will provide detailed discussion

for the following three commonly adopted loss functions.

Example 1  (Square loss) In classical least square regression, the loss function is
L(x) = x2∕2 . Clearly we have L��(x) ≡ 1 for all x ∈ ℝ . Therefore we can directly use
H(0) = 1 without aggregating the local estimator Ĥ(0)

j
(0) from each machine. It is not hard

to see that, the loss function in (17) is coincident with (11). Therefore, Algorithm 2 is auto-
matically reduced to Algorithm 1.

Example 2  (Huber loss) The Huber loss function is defined as

where � is some pre-determined robustification parameter. In this case, the first-order
derivative L�(x) is continuous, and we can compute that L��(x) = �(|x| ≤ �) . Therefore
H(0) = ℙ(|�| ≤ �) , and from (22) we know that each local estimator Ĥ(0)

j
(0) can be con-

structed by

Example 3  (Absolute deviation loss) In median regression problem, the absolute deviation
loss function is defined by

Therefore its derivative L�(x) = 1 − 2�(x ≤ 0) is not differentiable at the point x1 = 0 . We
can easily obtain that L��(x) = 0 (for the discontinuous point x1 = 0 , we can just define
L
��(0) = 0 ) and �1 = 2 . Therefore from (21) we have H(0) = 2f (0) . By Eq. (22), we can

estimate H(0) by

on each local machine Hj , which is coincident with the two times the kernel density esti-
mation of f(0).

Remark 4  Besides using the coordinate-wise median as the robust mean aggregator, there
are some other popular robust mean estimators such as trimmed mean (Yin et al. 2018,
2019), Krum (Blanchard et al. 2017), geometric median (Feng et al. 2014; Chen et al. 2017),
and iterative filtering (Su and Xu 2019). It can be seen from Algorithm 2 that we can also
collect the local estimators Ĥ(t−1)

j
(0) and the local gradients g̃(t)

j
 using the aforementioned

robust aggregators. For the ease of presentations, we only exhibit the theoretical results for
the coordinate-wise median aggregators in the following section. In the simulation studies

Ĥ(t−1)(0) = med
{
Ĥ

(t−1)

j
(0) || 0 ≤ j ≤ m

}
.

L(x) =

{
x2∕2 for |x| ≤ �,

�|x| − �2∕2 otherwise.

Ĥ
(0)

j
(0) = n−1

∑

i∈Hj

�
(
|Yi − XT

i
�̂
(0)
| ≤ �

)
.

L(x) = |x|.

Ĥ
(0)

j
(0) =

2

nh1

∑

i∈Hj

K

(Yi − XT
i
�̂
(0)

h1

)
,

3786	 Machine Learning (2023) 112:3773–3804

1 3

of Section 4.1, we will present the results of our SLARD method based on trimmed mean
and Krum. The definitions of these two aggregators are given in Sect. 4.1.

3 � Theoretical properties

In this section, we present some theoretical results for our SLARD method. Denote
S = supp(�∗) as the support of the true parameter �∗ and s = Card(S) as the sparsity level.
For ease of presentation, we use the following notation

where X0 is a random variable and 𝜂 > 0 is some fixed number.

3.1 � Theoretical results for smooth loss

Firstly we investigate the convergence and support recovery results for differentiable loss.
More specifically, we assume the derivative L�(x) is continuous at every point x ∈ ℝ . In
this case, kernel density estimation is not needed and H(0) can be locally estimated by

Then we need the following technical assumptions.

Assumption A  There exist some constants 𝜂,CM > 0 such that

Assumption B  Denote � = �XXT . There exist some constants 0 < 𝛿0 < 1 and 𝜌 > 0 ,
such that

and � ≤ �min(�) ≤ �max(�) ≤ �−1.

Assumption C  The initial estimator �̂
(0)

 satisfies |�̂
(0)

− �∗|2 = O
ℙ
(rn) , where rn → 0 .

Furthermore, we assume that ℙ(supp(��
(0)
) ⊆ S) → 1.

Assumption D  The loss function L(⋅) satisfies �{XL�(Y − XT�∗)} = 0 . Furthermore,
there exist constants 𝜂1, L1 > 0 such that, for every pair of (�1, �2) , there is

�(X0, �) ∶= �
{
X2
0
exp(�|X0|)

}
,

Ĥ
(0)

j
(0) =

1

n

∑

i∈Hj

L
��(Yi − XT

i
�̂
(0)
).

sup
v∈�p−1

�
{
exp(�|XTv|2)

} ≤ CM .

‖‖‖�Sc×S�
−1
S×S

‖‖‖∞ ≤ 1 − �0,

�

{
sup

�∶|�−�1|2≤|�1−�2|2

||L
��(Y − XT�1) − L

��(Y − XT�)||, �1
} ≤ L1|�1 − �2|2,

�||L
��(Y − XT�1) − L

��(Y − XT�2)
|| ≤ L1�

||X
T(�1 − �2)

||.

3787Machine Learning (2023) 112:3773–3804	

1 3

Assumption S  There exist some constants Ls > 0 such that, for any two points x1, x2 ∈ ℝ ,
there is

Moreover, the local sample size n, number of machines m, parameter dimension p, spar-
sity level s, initial rate rn and the fraction of Byzantine machines �n satisfy the following
constraints

for some constants 𝛾0 > 0 and �1 ∈ (0, 1∕2).

In Assumption A we require that the covariate X admits sub-Gaussian distribution,
which is common in the literature. It is worthwhile noting that, this can be weakened to
some polynomial moment condition by applying more delicate techniques. Assumption
B is the standard irrepresentable condition to establish support recovery results (see, e.g.,
Zhao and Yu 2006; Wainwright 2009; Bühlmann and Van De Geer 2011; Hastie et al.
2015). Assumption C requires consistency and support recovery of the initial estimator
�̂
(0)

 . Recall that our �̂
(0)

 is given by solving the �1-penalized optimization problem (19)
on the master machine H0 . It can be shown that these conditions are satisfied. Assump-
tion D assumes the second-order derivative L��(⋅) to be ‘continuous’ in a wider sense.
This is weaker than the classical Lipschitz continuity condition, as we can see in Example
2. Huber loss has a non-continuous second-order derivative but satisfies this condition
(more detailed justification is relegated to the Appendix). In Assumption S, we assume the
first-order derivative of the loss function L�(⋅) is Lipschitz continuous. Moreover, some
rate constraints on the initial estimator and the quantities m, n, p, s, �n are needed for our
theoretical analysis. We note that the constraint on the fraction of Byzantine machines is
almost necessary since the median can be ruined when the number of corruptions exceeds
⌈m∕2⌉.

We begin with the convergence result after the first round of communication.

Theorem 1  Suppose Assumptions A–D and Assumption S hold. Take the regularization
parameter in (17) as

where C0 is a sufficiently large constant. Then we have

|L�(x1) − L
�(x2)| ≤ Ls|x1 − x2|.

max{ms log n, s3 log n} = o(n), p = O(n�0),

rn = O
(
(s log n∕n)1∕2

)
, �n ∈ [0, 1∕2 − �1),

�1 = C0

� �n√
n
+

�
log n

mn
+ rn

�
s log n

n

�
,

��̂
(1)

− �∗�2 = O
ℙ

��n
√
s

√
n

+

�
s log n

mn
+ rn

�
s2 log n

n

�
.

3788	 Machine Learning (2023) 112:3773–3804

1 3

This theorem tells us that, with a proper choice of regularization param-
eter �1 , the first round of refinement improves the initial rate from rn to
max{�n

√
s∕
√
n +

√
s log n∕(mn), rn

√
s2 log n∕n} , as

√
s2 log n∕n = o(1) by Assumption

S. By applying Theorem 1 recursively, we can obtain the following converging rate for
the multi-round algorithm.

Corollary 1  Suppose Assumptions A–D and Assumption S hold. For each round
1 ≤ t0 ≤ t , choose the regularization parameter �t0 in (18) to be

where C0 is sufficiently large. Then we have

We can show that the converging rate of our algorithm will be dominated by the first
two terms in (24) within constant steps. In particular, from (24), we know the iteration
number t satisfies

Together with the constraint max{ms log n, s3 log n} = o(n) in Assumption S, we have

Therefore, if the fraction of Byzantine machines satisfies �n = O(
√
log n∕m) , and

t ≥ 6 + c0 , our algorithm achieves a near optimal rate O
ℙ
(
√
s log n∕(mn)).

Remark 5  We can compare the converging rate obtained in (24) with existing Byzantine
robust gradient descent methods like Yin et al. (2018, 2019), Blanchard et al. (2017), Chen
et al. (2017), and Su and Xu (2019). The existing Byzantine robust gradient descent meth-
ods have not assumed any sparsity structure on the true parameter �∗ . Therefore, from
their theory, the convergence rate of their method would be O

ℙ
(
√
p∕(mn)) , where p is the

dimension, and mn is the full sample size. However, from standard Lasso theory, when the
parameter �∗ has sparsity level s ≪ p , the optimal rate would be O

ℙ
(
√
s∕(mn)) , which is

much smaller. Thus these methods cannot achieve the optimal rate for the sparse learning
problem. To the best of our knowledge, our method is the first Byzantine robust distributed
sparse learning algorithm that has a provable nearly optimal statistical rate.

Next we present results on the support recovery of our estimators �̂
(1)

 and �̂
(t)

 . Recall
that S = supp(�∗) is the support of �∗ . We firstly consider the support recovery for �̂

(1)
.

Theorem 2  Assume the same assumptions as in Theorem 1, then we have supp(��
(1)
) ⊆ S

with probability tending to one. Moreover, there is

�t0 = C0

� �n√
n
+

�
log n

mn
+

rn√
s

� s2 log n
n

�t0∕2
�
,

(24)��̂
(t)
− �∗�2 = O

ℙ

��n
√
s

√
n

+

�
s log n

mn
+ rn

� s2 log n
n

�t∕2�
.

(25)t ≥ log n + logm − log s − log log n

log n − 2 log s − log log n
.

log n + logm − log s − log log n

log n − 2 log s − log log n
≤ 6 + c0, for some constant c0 > 0.

3789Machine Learning (2023) 112:3773–3804	

1 3

We can conclude that once the true parameter �∗ satisfies

for some sufficiently large constant C, the first round estimator �̂
(1)

 has exact support recov-
ery, i.e., supp(�̂

(1)
) = S , with probability tending to 1. Similarly we have the recovery result

for the t-th round estimator �̂
(t)

.

Corollary 2  Assume the same conditions as in Corollary 1, then we have supp(��
(t)
) ⊆ S

with probability tending to one. Moreover, there is

Compared with Theorem 2 above, the �∞ error becomes smaller as t grows larger.
In particular, from (25), when the iteration number t ≥ 6 + c0 and the true parameter �∗
satisfies

for some sufficiently large constant C, the t-th round estimator �̂
(t)

 satisfies supp(�̂
(t)
) = S

with probability tending to 1. Specifically when the fraction of Byzantine machines satis-
fies �n = O(

√
log n∕m) , the condition (26) can be reduced to

minl∈S ��∗l � ≥ C
����

−1
S×S

���∞
√
log n∕(mn) , which is consistent with the “beta-min” condition

of the standard LASSO problem in the single machine setting (see Wainwright 2009).

3.2 � Theoretical results for non‑smooth loss

For the case of non-smooth loss, from the expression of H(0) in equation (21), we need to
estimate the probability density function of the noise � . Therefore, in addition to Assumptions
A–D, more assumptions on the kernel function K(⋅) and the probability density function f (⋅)
are needed.

Assumption E  There exists a constant Cd > 0 such that the noise � has probability den-
sity function f (⋅) which satisfies

Moreover, there exists a constant Cl such that min{f (x1),… , f (xK)} > Cl > 0.

����̂
(1)

− �∗���∞ = O
ℙ

�����
−1
S×S

���∞
� �n√

n
+

�
log n

mn
+ rn

�
s log n

n

��
.

min
l∈S

��∗
l
� ≥ C

����
−1
S×S

���∞
� �n√

n
+

�
log n

mn
+ rn

�
s log n

n

�
,

����̂
(t)
− �∗���∞ = O

ℙ

�����
−1
S×S

���∞
� �n√

n
+

�
log n

mn
+

rn√
s

� s2 log n
n

�t∕2��
.

(26)min
l∈S

��∗
l
� ≥ C

����
−1
S×S

���∞
� �n√

n
+

�
log n

mn

�
,

||f (x)|| ≤ Cd,
||f (x) − f (y)|| ≤ Cd|x − y|, for any x, y ∈ ℝ.

3790	 Machine Learning (2023) 112:3773–3804

1 3

Assumption F  The kernel function K(⋅) satisfies ∫ ∞

−∞
K(u)du = 1 and K(u) = 0 for |u| ≥ 1 .

Moreover, K(⋅) is Lipschitz continuous with parameter Ck , i.e., |K(x) −K(y)| ≤ Ck|x − y|
holds for an arbitrary x, y ∈ ℝ.

Assumption NS  There exist constants 𝜂2, L2 > 0 such that, for every pair of (�1, �2) ,
there is

Moreover, the local sample size n, number of machines m, parameter dimension p, spar-
sity level s, initial rate rn and fraction of Byzantine machines �n satisfy the following
constraints

for some constants 𝛾0 > 0, 𝛾1 ∈ (0, 1) and �1 ∈ (0, 1∕2).

Assumption E assumes the smoothness of the probability density function of
the noise � . It is worth noting that this condition is so mild that it allows the noises
to admit very heavy-tailed distributions like the Cauchy distribution. Assumption F
imposes integrability, compact support and smoothness conditions on the kernel func-
tion K(⋅) . In Assumption NS, we assume a weaker ‘continuous’ condition on the gra-
dient XL�(Y − XT�) . As we can see in Example 3, the non-smooth absolute deviation
loss satisfies this condition (the justification is relegated to the Appendix). Moreover,
compared with Assumption S in the smooth case, we need more stringent constraints
on m, s, n. More specifically, we need a smaller sparsity and number of machines, and a
larger local sample size.

To save space, we directly present the multi-round convergence rate as follows. The
one-round results will be given in the Appendix.

Theorem 3  Suppose Assumptions A–F and Assumption NS hold. For each round
1 ≤ t0 ≤ t , choose the bandwidth ht0 in (23) and the regularization parameter �t0 in (18) to
be

where C0 is sufficiently large. Then we have

It is not hard to see that, the rate for non-smooth loss is relatively slower than the
multi-round converging rate for smooth loss in Corollary 1. To be more specific, we can

sup
1≤l≤p

�

{
sup

�∶|�−�1|2≤|�1−�2|2

||XlL
�(Y − XT�1) − XlL

�(Y − XT�)||, �2
} ≤ L2|�1 − �2|2,

sup
1≤l≤p

�||XlL
�(Y − XT�1) − XlL

�(Y − XT�2)
|| ≤ L2|�1 − �2|2.

s3m log n = o(n�1), p = O(n�0), rn = O
(
(s log n∕n)1∕3

)
, �n ∈ [0, 1∕2 − �1),

ht0 = C1

��n
√
s

√
n

+

�
s log n

mn
+ r2

1−t0

n

� s2 log n
n

�1−21−t0�
,

�t0 = C0

� �n√
n
+

�
log n

mn
+

r2
−t0

n√
s

� s2 log n
n

�1−2−t0�
,

(27)��̂
(t)
− �∗�2 = O

ℙ

�
�n
√
s

√
n

+

�
s log n

mn
+ r2

−t

n

� s2 log n
n

�1−2−t
�
.

3791Machine Learning (2023) 112:3773–3804	

1 3

compare the change of the third term in (24) and (27) after each round of refinement. In
the case of smooth loss, the third term is multiplied with a factor

√
s2 log n∕n , while for

non-smooth loss, the refined third term is the geometric mean between s2 log n∕n and
the original term. From the rate constraints s3m log n = o(n�1) in Assumption NS, we can
verify that s2 log n∕n = o(

√
s log n∕(mn)) . It can be shown that the converging rate of our

algorithm will be dominated by the first two terms in (27) within constant steps. Similar
to the derivation of (25), we can obtain that when the iteration number t satisfies

or equivalently t ≥ log2(2∕(1 − �1) + c0) for some constant c0 > 0 , the converging rate
would be O

ℙ
(�n

√
s∕
√
n +

√
s log n∕(mn)) . Furthermore, if the fraction of Byzantine

machines satisfies �n = O(
√
log n∕m) , our algorithm achieves a near optimal rate up to a

logarithm factor.
We can compare the converging rate of our SLARD method obtained in Theorem 3

with the results in Chen et al. (2020), which applies similar square loss transformation to
non-smooth quantile loss in a non-Byzantine setup. Their converging rate (Theorem 2)
is of the same order as (24) of the smooth loss but not the rate in (27) of the non-smooth
loss. We believe the inconsistency comes from the nonlinearity of the median aggregator
(see Lemma 8 in the Appendix for more details). It would be interesting to investigate
other Byzantine-robust methods that achieve a better rate for the non-smooth loss.

Next we present results on support recovery of our t-th round estimator �̂
(t)

 for
the non-smooth loss case.

Theorem 4  Assume the same assumptions as in Theorem 3, then we have supp(��
(t)
) ⊆ S

with probability tending to one. Moreover, there is

When the true parameter �∗ satisfies

for some sufficiently large constant C, the t-th round estimator �̂
(t)

 has exact support recov-
ery with probability tending to 1. Furthermore, if the fraction of Byzantine machines �n
satisfies �n = O(

√
log n∕m) and t satisfies (28), i.e., t ≥ log2(2∕(1 − �1) + c0) , the condition

(29) can be reduced to minl∈S ��∗l � ≥ C
����

−1
S×S

���∞
√
log n∕(mn) , which is coincident with the

“beta-min” condition of standard LASSO problem in single machine setting.

(28)2t ≥ 2 log n − 4 log s − 2 log log n

log n − 3 log s − log log n − logm
,

����̂
(t)
− �∗���∞ = O

ℙ

�����
−1
S×S

���∞
� �n√

n
+

�
log n

mn
+

r−2
−t

n√
s

� s2 log n
n

�1−2−t��
.

(29)min
l∈S

��∗
l
� ≥ C

����
−1
S×S

���∞
� �n√

n
+

�
log n

mn
+

r−2
−t

n√
s

� s2 log n
n

�1−2−t�
,

3792	 Machine Learning (2023) 112:3773–3804

1 3

4 � Empirical analysis

In the empirical analysis, we have carried out two classes of experiments. The first part
examines our proposed SLARD method on synthetic data and takes an in-depth look
at how each factor (e.g., the attack modes, Byzantine fractions, iteration rounds, etc.)
influences the algorithm behavior. The latter is an application of the proposed algorithm
to the corresponding sparse linear regression task, intended to assess the practical utility
in a Byzantine distributed setting.

4.1 � Simulation studies on synthetic data set

In this section, we provide simulation studies to demonstrate the performance of
our method on least square regression, Huber regression, and median regression
respectively.

We consider the following linear model

Inspired by the simulation studies in Fan et al. (2014), we assume the i.i.d. covariate vec-
tors XT

i
= (Xi,1,… ,Xi,p) ( i = 1,… ,N ) are drawn from a multivariate normal distribu-

tion N(0,�) . The covariance matrix � is a p × p Toeplitz matrix with its (i, j)-th entry
�ij = 0.5|i−j| , where 1 ≤ i, j ≤ p . We fix the dimension p = 500 . Moreover, we set the
p-dimensional true coefficient �∗ as

which means the sparsity level s is fixed as 7. The data is divided into one master machine
H0 and 100 worker machines H1,… ,H100 , each local sample size is n = 200 . Therefore,
the entire sample size is N = 200 × (100 + 1) . Note that the data in master machine cannot
be corrupted. The initial estimator �̂

(0)
 is given by solving the �1-penalized optimization

problem on the master machine H0 . For the choice of regularization parameter �0,… , �T ,
motivated by Zou et al. (2007), Wang et al. (2007), we use the following BIC-type selec-
tion criterion

where �̂� denotes the solution of (18) with �t replaced by � , and df� is the number of
nonzero elements in �̂�.

Methods for comparison. To illustrate the performance of our SLARD method, we
first introduce another two robust mean estimators.

•	 Coordinate-wise trimmed mean: Given a set of vectors {vj ∣ 1 ≤ j ≤ m} (where
vj = (vj,1,… , vj,p)

T ∈ ℝ
p ) and a threshold level � ∈ [0, 1∕2) , we define the coordinate-

wise �-trimmed mean ṽ = (̃v1,… , ṽp)
T as follows. For each coordinate l ∈ {1,… , p} ,

Yi = XT
i
�∗ + �i, i = 1,… ,N.

�∗ = (2, 0, 1.5, 0, 0.8, 0, 0, 1, 0, 1.75, 0, 0, 0.75, 0, 0, 0.3, 0T
p−16

)T,

(30)BIC� =
1

n

∑

i∈H0

L(Yi − XT
i
�̂�) + df� ×

log n

n
,

3793Machine Learning (2023) 112:3773–3804	

1 3

denote Sl as the subset of {vj,l ∣ 1 ≤ j ≤ m} with the largest and smallest � fraction of
its elements removed. Then we let ṽl be �Sl�−1

∑
l∈Sl

vj,l.
•	 Krum: Given a set of vectors {vj ∣ 1 ≤ j ≤ m} (where vj ∈ ℝ

p ) and a threshold level
� ∈ [0, 1∕2) . For each j ∈ {1,… ,m} , we denote Sj as a subset of {vi ∣ 1 ≤ i ≤ m, i ≠ j}
which precludes � fraction of elements having the largest Euclidean distance from
the vector vj . We further denote dj =

∑
i∈Sj

�vi − vj�22 , then the �-Krum is defined as
ṽ = vj∗ where j∗ = argmin1≤j≤mdj.

Then we compare our SLARD method with the following three alternatives:

1.	 T-SLARD: We run Algorithm 2, where the gradients g̃(t−1)
j

 and estimators Ĥj(0) are
aggregated using the coordinate-wise trimmed mean. For simplicity we assume the true
fraction of Byzantine machines � is known to us, so that we can choose the threshold
level � equal to �.

2.	 K-SLARD: We run Algorithm 2, where the gradients g̃(t−1)
j

 and estimators Ĥj(0) are
aggregated using Krum. Similarly we assume the threshold level � equals to the true
fraction of Byzantine machines �.

3.	 SLAD: We perform Algorithm 2, except that the local gradients g̃(t−1)
j

 are aggregated via
sample mean. As for the aggregation of local estimators Ĥj(0) , simulation studies show
that vanilla sample mean leads to extremely unstable output in Byzantine setup. For
convenience of comparisons, we assume that the value of H(0) is known in the SLAD
method, albeit it is not realistic in practice.

To solve the �1-penalized optimization problem (18) with these methods, we uniformly
adopt the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) proposed in Beck and
Teboulle (2009).

Attacking Modes. The corruption mechanism is given by the following three
approaches,

1.	 Gaussian attack: For Byzantine machine Hj (where j ∈ B ), assume the true gradient is
g̃
(t−1)

j
 . The reported value from Hj would be independently generated from the multivari-

ate normal distribution N(0, Ip) . Similarly, the local estimator Ĥ(t−1)

j
(0) will be reported

as a random value generated from N(0, 1).
2.	 Bit-flip attack: For Byzantine machine Hj (where j ∈ B ), assume the true gradient is

g̃
(t−1)

j
 . Machine Hj takes its first five coordinates multiplied with −5 and reports to the

master machine H0 . As for the local estimator Ĥ(t−1)

j
(0) , the Byzantine machine Hj just

reports −5Ĥ(t−1)

j
(0).

3.	 Omniscient attack: For Byzantine machine Hj (where j ∈ B ), assume the true gradi-
ent is g̃(t−1)

j
 . Machine Hj reports −100g̃(t−1)

j
 to the master machine H0 . As for the local

estimator Ĥ(t−1)

j
(0) , the Byzantine machine Hj reports −100Ĥ(t−1)

j
(0).

3794	 Machine Learning (2023) 112:3773–3804

1 3

4.1.1 � Effect of Byzantine fraction

We first compare the performance of our SLARD method with T-SLARD , K-SLARD ,
and SLAD by varying the fraction of Byzantine machines. Throughout this section,
we only present the simulation results of five-step SLARD (the same for T-SLARD ,
K-SLARD , SLAD ). As we will see in Sect. 4.1.2, a five-step iteration is usually enough
for these methods to converge to the near-optimal rate. For each experiment, we repeat
500 independent simulations and report the average number of false positives (FP) and
false negatives (FN). Moreover, we plot the estimation error in �2-norm versus the frac-
tion of Byzantine machines.

Results for least square regression. In the least square regression problem, we assume
the noise � admits a standard normal distribution, that is, � ∼ N(0, 1) . The results are
shown in Fig. 1 and Table 1.

As we can see from Fig. 1, under both a Gaussian attack and a bit-flip attack, the �2

-error of the mean based SLAD method accumulates quickly as the Byzantine fraction
�n increases. Moreover, SLAD diverges under omniscient attack, hence its correspond-
ing performance curve is omitted. In contrast, the performances of the three SLARD
methods are relatively stable as �n varies, which corroborates the robustness of these
approaches. Among them, the K-SLARD method behaves significantly worse than the
other two. This is reasonable because the Krum aggregator only picks one local gradient
vector among all reported gradients, which results in a coarser gradient estimator and
further deteriorates the overall performance. Both median-of-mean and trimmed-mean
use more gradient information and therefore lead more accurate estimators. From this
picture, we can find that the median-of-mean based SLARD method behaves slightly
worse than the trimmed-mean based one. This is probably because of the non-linear-
ity of median aggregation (see also the paragraph before Theorem 4). We note that the
T-SLARD method requires the choice of the threshold level � . To ensure the effective-
ness of T-SLARD , we utilize the knowledge of the Byzantine fraction �n and simply set
� = �n . However, in the real world, the Byzantine fraction is not available. In Appendix
D of the supplementary material, we study more simulation results on T-SLARD under
different threshold levels � . The results show that T-SLARD behaves comparatively to
SLARD only when the threshold level � is not less than the Byzantine fraction � . How-
ever, T-SLARD fails to maintain its performance when � is smaller than �n , since it
includes some outliers. In practice, the MOM-based SLARD is more favorable as it does
not require the knowledge of the Byzantine fraction �n.

Table 1 shows the results of support recovery of these methods. We can find that
SLARD and T-SLARD are comparable, which meets the observation in Fig. 1. Both of
them can recover the true support correctly under different attack modes and Byzantine
fractions. K-SLARD is also robust against Byzantine failures, albeit with a significantly
worse performance regarding false positive and false negative. The mean based SLAD
approach is susceptible to the attack modes and Byzantine fractions.

Results for Huber regression. In the Huber regression model, we generate the noise �
from the mixture of normal distributions 0.9N(0, 1) + 0.1N(0, 100) . More precisely, with

3795Machine Learning (2023) 112:3773–3804	

1 3

probability 0.9, the value of � is distributed according to N(0, 1) , and is otherwise drawn
from a N(0, 100) distribution. For the choice of robustification parameter � , we follow the
classical literature (Huber 2004) and take � = 1.345 . The detailed comparison among these
approaches is given in Fig. 2 and Table 2.

From the results, we can observe similar phenomena as in the case of least square
regression. The SLARD and T-SLARD perform comparatively in terms of estimation error
and support recovery. The Krum based SLARD method behaves worse than them while
preserving robustness under different attack modes and Byzantine fractions. The SLAD
method has the worst performance because it is not robust to Byzantine failures.

Results for median regression. In the problem of median regression, we generate the
noises � from standard Cauchy distribution Cauchy(0, 1) . To apply our square loss trans-
formation to the non-smooth loss function L(x) = |x| , we need kernel density estimation
(see Example 3). For the choice of kernel function K(⋅) , we use a biweight kernel function
defined as

As for the bandwidth ht , we assume it has form specified in Theorem 3, for the ease of
computation, we simply set all the C1 = 0.5 as other choices lead to similar results. The
results are shown in Fig. 3 and Table 3. Similar phenomena as the former models can be
observed from the simulation results.

4.1.2 � Effect of iteration round

In this section, we run experiments with various attack modes and Byzantine frac-
tions and plot how �2-error changes with rounds of communications under these
robust SLARD algorithms. From the previous simulation results, we find that these
approaches perform similarly under different models. Due to the page limitation, we
only present the result of the Huber regression. Figure 4 summarizes the results, where

K(x) =

{
−

315

64
x6 +

735

64
x4 −

525

64
x2 +

105

64
, if |x| ≤ 1,

0 if |x| > 1.

Fig. 1   The �
2
-error over Byzantine fraction, under least square regression, varying attack modes. The total

sample size N is 200 × (100 + 1) , the number of machines (m + 1) is 101, and the dimension p is 500

3796	 Machine Learning (2023) 112:3773–3804

1 3

Table 1   The false positives (FP) and false negatives (FN) and their standard errors (in parentheses) of the
SLARD, T-SLARD , K-SLARD , and SLAD methods under sample size N = 200 × (100 + 1) , local sample
size n = 200

The corruption mechanism is given by Gaussian attack, Bit-flip attack, and Omniscient attack. Noises are
generated from standard normal distribution N(0, 1) and the loss function is chosen as square loss

Attack None

�
n

SLARD T-SLARD K-SLARD SLAD

FP FN FP FN FP FN FP FN

0 1.72
(2.52)

0.00
(0.00)

2.19
(5.09)

0.00
(0.00)

4.43
(2.15)

0.12
(0.32)

2.19
(5.09)

0.00 (0.00)

Gaussian
0.05 2.64

(1.71)
0.00

(0.00)
1.30

(1.15)
0.00

(0.00)
4.43

(2.13)
0.12

(0.33)
8.15

(3.50)
0.00 (0.00)

0.10 1.04
(0.98)

0.00
(0.00)

2.86
(6.23)

0.00
(0.00)

4.45
(2.13)

0.12
(0.32)

3.83
(2.05)

0.00 (0.00)

0.15 1.59
(1.33)

0.00
(0.00)

2.25
(1.85)

0.00
(0.00)

4.50
(2.13)

0.12
(0.32)

6.05
(2.45)

0.00 (0.04)

0.20 6.50
(2.84)

0.00
(0.00)

3.73
(2.34)

0.00
(0.00)

4.54
(2.14)

0.12
(0.32)

5.46
(2.39)

0.02 (0.13)

0.25 2.79
(1.88)

0.00
(0.00)

3.29
(1.84)

0.00
(0.00)

4.58
(2.12)

0.12
(0.33)

7.71
(2.94)

0.04 (0.21)

Bit-Flip
0.05 1.62

(1.33)
0.00

(0.00)
1.12

(1.20)
0.00

(0.00)
4.44

(2.13)
0.12

(0.33)
0.63

(0.71)
0.00 (0.00)

0.10 1.33
(1.12)

0.00
(0.00)

1.63
(1.80)

0.00
(0.00)

4.46
(2.13)

0.12
(0.32)

1.96
(0.94)

0.00 (0.00)

0.15 1.51
(1.15)

0.00
(0.00)

1.65
(1.21)

0.00
(0.00)

4.49
(2.13)

0.12
(0.32)

2.18
(0.94)

0.00 (0.00)

0.20 2.30
(1.41)

0.00
(0.00)

2.23
(1.36)

0.00
(0.00)

4.55
(2.15)

0.12
(0.32)

5.05
(4.44)

0.21 (0.41)

0.25 2.17
(1.37)

0.00
(0.00)

3.01
(1.57)

0.00
(0.00)

4.57
(2.12)

0.12
(0.33)

– –

Omniscient
0.05 4.66

(2.63)
0.00

(0.00)
3.54

(1.89)
0.00

(0.00)
4.43

(2.13)
0.12

(0.33)
– –

0.10 3.31
(1.80)

0.00
(0.00)

0.84
(0.89)

0.00
(0.00)

4.45
(2.13)

0.12
(0.32)

– –

0.15 1.37
(1.13)

0.00
(0.00)

1.88
(1.36)

0.00
(0.00)

4.50
(2.13)

0.12
(0.32)

– –

0.20 3.21
(1.71)

0.00
(0.00)

1.41
(1.18)

0.00
(0.00)

4.54
(2.14)

0.12
(0.32)

– –

0.25 3.17
(1.69)

0.00
(0.00)

6.48
(2.46)

0.00
(0.00)

4.58
(2.12)

0.12
(0.33)

– –

3797Machine Learning (2023) 112:3773–3804	

1 3

the plots are averaged across 100 independent trails. In each plot, we also draw two
horizontal lines, representing the �2-error of solving the �1-penalized problem using
the local data on H0 (dashed line) and the full data set (solid line), respectively. The
corresponding regularization parameters � are also selected by the BIC-type selection
criterion as in (30).

We summarize our observations as follows:

•	 Both the median-of-mean based and the trimmed-mean based SLARD methods
converge very fast. As we can see, under different attack modes and Byzantine frac-
tions, the �2-errors of these two methods decrease to the global rate within 5-6
rounds of communications, which coincides with our theoretical result (see Corol-
lary 1).

•	 The �2-error of SLARD and T-SLARD under omniscient attack is relatively larger
than the other two attack modes, which indicates the omniscient attack has a greater
impact on the performance of the algorithms.

•	 The Krum based SLARD method behaves the worst in all settings. More precisely,
the �2-error of K-SLARD only improves a little upon the local rate as the itera-
tion number increases. This is consistent with the phenomenon we have seen in
Sect. 4.1.1.

4.1.3 � Effect of local sample size

In Corollary 1 of Sect. 3, we have shown that the convergence rate of the SLARD method
is of order O

ℙ
(�n

√
s∕
√
n +

√
s log n∕(mn)) , provided the iteration number t is sufficiently

large. In this section, we try to corroborate this result through simulation studies. We fix
the dimension p = 500 , the number of machines m + 1 = 51 , and vary the local sample
size n from {100, 200, 400, 600, 800} . We run experiments for the Huber regression model
with various attack modes and Byzantine fractions. Under these constraints, the expected
convergence rate should be of order O

ℙ
(n−1∕2) . For a better illustration of the relationship,

we rescale two axes by logarithm. Figure 5 summarizes the results of five-step SLARD ,
where the plots are averaged across 100 independent trails. In each plot, we also draw two
additional curves, representing the �2-error of solving the �1-regularized problem using the

Fig. 2   The �
2
-error over Byzantine fraction, under Huber regression, varying attack modes. The total sam-

ple size N is 200 × (100 + 1) , the number of machines (m + 1) is 101, and the dimension p is 500

3798	 Machine Learning (2023) 112:3773–3804

1 3

Table 2   The false positives (FP) and false negatives (FN) and their standard errors (in parentheses) of the
SLARD, T-SLARD , K-SLARD , and SLAD methods under sample size N = 200 × (100 + 1) , local sample
size n = 200

The corruption mechanism is given by Gaussian attack, Bit-flip attack, and Omniscient attack. Noises are
generated from mixture of normal distribution 0.9N(0, 1) + 0.1N(0, 100) and the loss function is chosen as
Huber loss with robustification parameter � = 1.345

Attack None

�
n

SLARD T-SLARD K-SLARD SLAD

FP FN FP FN FP FN FP FN

0 1.45
(1.11)

0.00
(0.00)

1.23
(3.94)

0.00
(0.00)

5.33
(2.75)

0.31
(0.46)

0.74
(0.82)

0.00 (0.00)

Gaussian
0.05 1.00

(0.97)
0.00

(0.00)
1.03

(0.96)
0.00

(0.00)
4.68

(2.72)
0.32

(0.47)
4.83

(2.34)
0.00 (0.00)

0.10 0.74
(0.85)

0.00
(0.00)

1.46
(3.76)

0.00
(0.00)

5.25
(2.83)

0.32
(0.47)

7.26
(2.74)

0.00 (0.00)

0.15 1.48
(1.17)

0.00
(0.00)

3.16
(2.45)

0.00
(0.00)

5.38
(2.82)

0.32
(0.47)

4.41
(2.15)

0.00 (0.00)

0.20 0.75
(0.84)

0.00
(0.00)

1.75
(1.28)

0.00
(0.00)

5.77
(3.11)

0.31
(0.46)

3.49
(1.94)

0.02 (0.14)

0.25 1.04
(1.04)

0.00
(0.00)

2.61
(1.62)

0.00
(0.00)

5.85
(3.25)

0.32
(0.47)

8.83
(3.05)

0.06 (0.24)

Bit-Flip
0.05 0.86

(0.90)
0.00

(0.00)
0.61

(0.71)
0.00

(0.00)
4.97

(2.75)
0.31

(0.46)
0.84

(0.79)
0.00 (0.00)

0.10 0.89
(0.91)

0.00
(0.00)

0.47
(0.62)

0.00
(0.00)

5.35
(2.83)

0.32
(0.47)

1.59
(0.69)

0.00 (0.00)

0.15 0.78
(0.85)

0.00
(0.00)

0.40
(0.59)

0.00
(0.00)

5.38
(2.83)

0.32
(0.47)

2.24
(0.98)

0.00 (0.00)

0.20 1.07
(1.07)

0.00
(0.00)

1.79
(4.79)

0.00
(0.00)

5.77
(3.19)

0.31
(0.46)

6.14
(4.24)

0.26 (0.45)

0.25 1.25
(1.05)

0.00
(0.00)

1.69
(1.52)

0.00
(0.00)

5.57
(3.10)

0.32
(0.47)

34.91
(10.34)

0.42 (0.63)

Omniscient
0.05 0.67

(0.79)
0.00

(0.00)
1.58

(1.11)
0.00

(0.00)
4.98

(2.75)
0.31

(0.46)
– –

0.10 0.90
(0.89)

0.00
(0.00)

0.76
(0.81)

0.00
(0.00)

5.35
(2.83)

0.32
(0.47)

– –

0.15 0.86
(0.91)

0.00
(0.00)

1.61
(1.27)

0.00
(0.00)

5.39
(2.82)

0.32
(0.47)

– –

0.20 1.29
(1.16)

0.00
(0.00)

3.91
(1.92)

0.00
(0.00)

5.78
(3.19)

0.31
(0.46)

– –

0.25 4.32
(2.07)

0.00
(0.00)

4.49
(2.06)

0.00
(0.00)

5.61
(3.11)

0.32
(0.47)

– –

3799Machine Learning (2023) 112:3773–3804	

1 3

local data on H0 (dashed line) and the full data set (solid line), respectively. The corre-
sponding regularization parameters � are also selected by the BIC-type selection criterion
as in (30).

From Fig. 5, we can find that the rescaled error curves of the local solution, the global
solution, and the SLARD method are nearly parallel to each other, under different attack
modes and Byzantine fractions. This indicates that these methods have the nearly same
convergence rate to the local sample size n when other quantities are fixed. More precisely,
since the slope of these lines is nearly −1∕2 , the rate is close to O

ℙ
(n−1∕2) , which is consist-

ent with our theoretical results.

4.2 � Application to real‑world benchmarks

In this section, to gain some additional insight into algorithm performance, we focus on an
application to real-world benchmark data sets.

In the study, we analyze the Ames Housing data set1, which was compiled by Dean De
Cock for use in data science education. This data set contains all sales that had occurred
within Ames from 2006 to 2010. The response variable is the house sale price; the covar-
iates include various house features like the lot size, masonry veneer area, and height of
the basement. We aim to learn a sparse least square regression model to predict the house
price by applying our proposed methods and to compare the performance of different

Fig. 3   The �
2
-error over Byzantine fraction, under median regression, varying attack modes. The total sam-

ple size N is 200 × (100 + 1) , the number of machines (m + 1) is 101, and the dimension p is 500

1  http://​jse.​amstat.​org/​v19n3/​decock.​pdf.

http://jse.amstat.org/v19n3/decock.pdf

3800	 Machine Learning (2023) 112:3773–3804

1 3

Table 3   The false positives (FP) and false negatives (FN) and their standard errors (in parentheses) of the
SLARD, T-SLARD , K-SLARD , and SLAD methods under sample size N = 200 × (100 + 1) , local sample
size n = 200

The corruption mechanism is given by Gaussian attack, Bit-flip attack, and Omniscient attack. Noises are
generated from standard Cauchy distribution Cauchy(0, 1) and the loss function is chosen as absolute devia-
tion loss

Attack None

�
n

SLARD T-SLARD K-SLARD SLAD

FP FN FP FN FP FN FP FN

0 4.90
(2.07)

0.00
(0.00)

3.93
(1.69)

0.00
(0.00)

10.46
(3.08)

0.52
(0.50)

5.36
(1.85)

0.00 (0.00)

Gaussian
0.05 1.48

(1.20)
0.00

(0.00)
0.05

(0.22)
0.00

(0.00)
6.26

(2.37)
0.60

(0.49)
2.15

(1.44)
0.00 (0.00)

0.10 0.66
(0.80)

0.00
(0.00)

0.08
(0.31)

0.00
(0.00)

3.60
(1.75)

0.62
(0.49)

2.06
(1.38)

0.00 (0.00)

0.15 4.47
(1.85)

0.00
(0.00)

7.09
(2.22)

0.00
(0.00)

10.57
(3.25)

0.55
(0.50)

63.92
(12.93)

0.00 (0.00)

0.20 0.70
(0.89)

0.00
(0.00)

1.83
(1.35)

0.00
(0.00)

6.41
(2.43)

0.51
(0.50)

5.28
(2.23)

0.03 (0.18)

0.25 2.91
(1.59)

0.00
(0.00)

1.16
(1.10)

0.00
(0.00)

5.50
(2.23)

0.66
(0.48)

95.75
(16.18)

3.87 (2.04)

Bit-Flip
0.05 5.33

(2.04)
0.00

(0.00)
5.54

(2.02)
0.00

(0.00)
6.29

(2.34)
0.60

(0.50)
3.21

(1.24)
0.00 (0.00)

0.10 0.18
(0.73)

0.00
(0.04)

4.68
(1.82)

0.00
(0.00)

3.63
(1.77)

0.62
(0.49)

1.73
(0.71)

0.00 (0.00)

0.15 1.71
(1.22)

0.00
(0.00)

3.54
(1.59)

0.00
(0.00)

10.61
(3.23)

0.54
(0.50)

2.04
(0.85)

0.80 (0.40)

0.20 1.30
(1.09)

0.00
(0.00)

6.10
(1.70)

0.00
(0.00)

6.43
(2.47)

0.51
(0.50)

2.57
(0.56)

1.57 (0.61)

0.25 0.20
(0.45)

0.00
(0.00)

5.42
(3.46)

0.00
(0.00)

5.49
(2.20)

0.67
(0.48)

2.76
(0.60)

2.75 (0.46)

Omniscient
0.05 5.20

(4.01)
0.00

(0.00)
4.87

(2.05)
0.00

(0.00)
6.32

(2.35)
0.60

(0.50)
– –

0.10 2.10
(1.37)

0.00
(0.00)

1.73
(1.12)

0.00
(0.00)

3.62
(1.75)

0.62
(0.49)

– –

0.15 4.73
(1.85)

0.00
(0.00)

5.61
(1.81)

0.00
(0.00)

10.62
(3.27)

0.54
(0.50)

– –

0.20 3.22
(1.56)

0.00
(0.00)

1.77
(1.21)

0.00
(0.00)

6.42
(2.42)

0.51
(0.50)

– –

0.25 2.36
(1.44)

0.00
(0.00)

4.50
(1.69)

0.00
(0.00)

5.50
(2.22)

0.67
(0.48)

– –

3801Machine Learning (2023) 112:3773–3804	

1 3

SLARD methods in terms of prediction error. After weeding out the useless features
and outliers, we obtained 2902 observations and 70 features. We randomly partitioned
the data set into 2100 training data and 802 testing data. To simulate a distributed envi-
ronment, we further divided the training data into 21 blocks evenly, each holding 100
data points. We chose one block as the master machine H0 , and the rest blocks serve
as the worker machines. Among them, the � fraction of machines are assigned as the

Fig. 4   The �
2
-error over iterations, under Huber regression, varying attack modes and Byzantine fractions.

The total sample size N is 200 × (100 + 1) , the number of machines (m + 1) is 101, and the dimension p is
500

Fig. 5   The �
2
-error over local sample sizes, under Huber regression, varying attack modes and Byzantine

fractions. The number of machines (m + 1) is 51, and the dimension p is 500

3802	 Machine Learning (2023) 112:3773–3804

1 3

Byzantine machines. We vary the fraction � from {0.05, 0.15} . During the training, each
Byzantine machine reports falsified information according to the aforementioned three
different attacking modes. For each method, we utilize the BIC-type selection criterion
presented in Section 4.1 to choose the regularization parameters. We test 100 random
partitions of the training and testing set and report the average prediction error at each
iteration on the testing data set. Moreover, we draw two horizontal lines, representing the
average prediction error of solving the Lasso problem using the local data on H0 (dashed
line) and the full data set (solid line), respectively. The result is summarized in Fig. 6.

As we can see, the curves of prediction error in Fig. 6 look similar in shape to the
curves of �2-error in Fig. 4. Both SLARD and T-SLARD converge within 5-6 iterations.
The trimmed-mean based method seems to be slightly better than the median-of-mean
based method. The K-SLARD method behaves the worst among the three. Additionally, it
is interesting to find that under gaussian attack and bit-flip attack, the iterative prediction
error of SLARD and T-SLARD become smaller than the global prediction error after suf-
ficiently large iteration rounds, which may be due to model misspecification.

5 � Concluding remarks

This paper studies the general distributed sparse M-estimation problem with the presence
of Byzantine failure. We start from the distributed �1-penalized least square regression
problem and propose to use the coordinate-wise median as a gradient aggregator to hedge
against Byzantine corruptions. For general and possibly non-smooth loss functions, we
develop a square loss transformation method to convert the target function into the square
loss, which greatly alleviates the computational burden. From a theoretical perspective, our
method enjoys a fast converging rate and support recovery guarantee. In a future study, as
already discussed in Remark 2, we will take into account the delay of data transmission
and investigate the Byzantine distributed asynchronous sparse learning problem. Another

Fig. 6   The prediction error over iterations, under varying attack modes and Byzantine fractions. The total
training sample size N is 2100, the test sample size is 802, the number of machines (m + 1) is 21, and the
dimension p is 71

3803Machine Learning (2023) 112:3773–3804	

1 3

important future direction is to develop Byzantine-robust algorithms for non-convex loss
functions and regularizers. Many kinds of literature (see, e.g., Loh and Wainwright 2015,
2017; Mei et al. 2018; Ma et al. 2019) have shown that non-convexity usually brings about
nice practical performance and theoretical properties. It would be interesting to study Byz-
antine-robust versions of these methods.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10994-​021-​06001-x.

Acknowledgements  Weidong Liu’s research is supported by National Program on Key Basic Research
Project (2018AAA0100704), NSFC Grant No. 11825104 and 11690013, Youth Talent Support Program,
Shanghai Municipal Science and Technology Major Project (2021SHZDZX0102). Xiaojun Mao’s research
is supported by NSFC Grant No. 12001109 and 92046021, Shanghai Sailing Program 19YF1402800, the
Science and Technology Commission of Shanghai Municipality grant 20dz1200600. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s) and do not neces-
sarily reflect the views of any funding agency.

References

Agarwal, A., & Duchi, J.C. (2012). Distributed delayed stochastic optimization. In 2012 IEEE 51st IEEE Con-
ference on Decision and Control (CDC), pp. 5451–5452.

Alistarh, D., Allen-Zhu, Z., & Li, J. (2018). Byzantine stochastic gradient descent. In Advances in Neural Infor-
mation Processing Systems, Curran Associates, Inc., vol 31.

Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM Journal on Imaging Sciences, 2(1), 183–202.

Blanchard, P., El Mhamdi, E. M., Guerraoui, R. & Stainer, J. (2017). Machine learning with adversaries: Byzan-
tine tolerant gradient descent. In Advances in Neural Information Processing Systems, Curran Associates,
Inc., Vol. 30.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning
via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1),
1–122.

Bühlmann, P., & Van De Geer, S. (2011). Statistics for high-dimensional data: Methods, theory and applica-
tions. Berlin: Springer.

Chen, X., Liu, W., Mao, X., & Yang, Z. (2020). Distributed high-dimensional regression under a quantile loss
function. The Journal of Machine Learning Research, 21(182), 1–43.

Chen, Y., Su, L., & Xu, J. (2017). Distributed statistical machine learning in adversarial settings. Proceedings of
the ACM on Measurement and Analysis of Computing Systems, 1(2), 1–25.

Fan, J., Fan, Y., & Barut, E. (2014). Adaptive robust variable selection. The Annals of Statistics, 42(1), 324–351.
Fan, J., Guo, Y., & Wang, K. (2019). Communication-efficient accurate statistical estimation. arXiv e-prints

arXiv:​1906.​04870.
Feng, J., Xu, H. & Mannor, S. (2014). Distributed robust learning. arXiv e-prints arXiv:​1409.​5937.
Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical learning with sparsity: The Lasso and Generali-

zations. Cambridge: CRC Press.
Huber, P. J. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo. The Annals of Statistics,

1(5), 799–821.
Huber, P. J. (2004). Robust statistics (Vol. 523). New York: Wiley.
Jordan, M. I., Lee, J. D., & Yang, Y. (2019). Communication-efficient distributed statistical inference. The Jour-

nal of the American Statistical Association, 114(526), 668–681.
Koenker, R. (2005). Quantile Regression (Econometric Society Monographs; No. 38). Cambridge university

press
Koenker, R., & Hallock, K. F. (2001). Quantile regression. Journal of Economic Perspectives, 15(4), 143–156.
Lamport, L., Shostak, R., & Pease, M. (1982). The byzantine generals problem. ACM Transactions on Pro-

gramming Languages and Systems, 4(3), 382–401.
Lecué, G., & Lerasle, M. (2020). Robust machine learning by median-of-means: Theory and practice. The

Annals of Statistics, 48(2), 906–931.
Loh, P.-L., & Wainwright, M. J. (2015). Regularized m-estimators with nonconvexity: Statistical and algorith-

mic theory for local optima. The Journal of Machine Learning Research, 16(1), 559–616.

https://doi.org/10.1007/s10994-021-06001-x
https://doi.org/10.1007/s10994-021-06001-x
http://arxiv.org/abs/1906.04870
http://arxiv.org/abs/1409.5937

3804	 Machine Learning (2023) 112:3773–3804

1 3

Loh, P.-L., & Wainwright, M. J. (2017). Support recovery without incoherence: A case for nonconvex regulari-
zation. The Annals of Statistics, 45(6), 2455–2482.

Lugosi, G., & Mendelson, S. (2019). Regularization, sparse recovery, and median-of-means tournaments. Ber-
noulli, 25(3), 2075–2106.

Ma, C., Wang, K., Chi, Y. & Chen, Y. (2019). Implicit regularization in nonconvex statistical estimation: Gradi-
ent descent converges linearly for phase retrieval, matrix completion, and blind deconvolution. Founda-
tions of Computational Mathematics, 1–182.

Mansoori, F. & Wei, E. (2017). Superlinearly convergent asynchronous distributed network newton method. In
2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 2874–2879.

Mei, S., Bai, Yu., & Montanari, A. (2018). The landscape of empirical risk for nonconvex losses. The Annals of
Statistics, 46(6A), 2747–2774.

Minsker, S. (2015). Geometric median and robust estimation in banach spaces. Bernoulli, 21(4), 2308–2335.
Minsker, S. (2019). Distributed statistical estimation and rates of convergence in normal approximation. The

Electronic Journal of Statistics, 13(2), 5213–5252.
Ren, Z., Zhou, Z., Qiu, L., Deshpande, A., & Kalagnanam, J. (2020). Delay-adaptive distributed stochastic opti-

mization. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 5503–5510.
Shamir, O., Srebro, N. & Zhang, T. (2014). Communication efficient distributed optimization using an approxi-

mate newton-type method. In Proceedings of the 31st International Conference on Machine Learning,
Vol. 32, pp. 1000–1008.

Su, L., & Xu, J. (2019). Securing distributed gradient descent in high dimensional statistical learning. Proceed-
ings of the ACM on Measurement and Analysis of Computing Systems3(1).

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. The Journal of the Royal Statistical
Society, Series B (Statistical Methodology), 58(1), 267–288.

Wainwright, M. J. (2009). Sharp thresholds for high-dimensional and noisy sparsity recovery using �
1
-con-

strained quadratic programming (lasso). IEEE Transactions on Information Theory, 55(5), 2183–2202.
Wang, H., Li, R., & Tsai, C.-L. (2007). Tuning parameter selectors for the smoothly clipped absolute deviation

method. Biometrika, 94(3), 553–568.
Wang, J., Kolar, M., Srebro, N. & Zhang, T. (2017). Efficient distributed learning with sparsity. In Proceedings

of the 34th International Conference on Machine Learning, Vol. 70, pp. 3636–3645.
Xie, C., Koyejo, O. & Gupta, I. (2018). Generalized Byzantine-tolerant SGD. arXiv e-prints arXiv:​1802.​10116.
Xie, C., Koyejo, S. & Gupta, I.. (2019). Zeno: Distributed stochastic gradient descent with suspicion-based

fault-tolerance. In Proceedings of the 36th International Conference on Machine Learning, Vol. 97, pp.
6893–6901.

Xie, C., Koyejo, S. & Gupta, I. (2020). Zeno++: Robust fully asynchronous SGD. In Proceedings of the 37th
International Conference on Machine Learning, Vol. 119, pp. 10495–10503.

Yin, D., Chen, Y., Kannan, R. & Bartlett, P. (2018). Byzantine-robust distributed learning: Towards optimal
statistical rates. In Proceedings of the 35th International Conference on Machine Learning, Vol. 80, pp.
5650–5659.

Yin, D., Chen, Y., Kannan, R. & Bartlett, P. (2019). Defending against saddle point attack in Byzantine-robust
distributed learning. In Proceedings of the 36th International Conference on Machine Learning, Vol. 97,
pp. 7074–7084.

Zhao, P., & Yu, B. (2006). On model selection consistency of lasso. The Journal of Machine Learning Research,
7(90), 2541–2563.

Zhou, Z., Mertikopoulos, P., Bambos, N., Glynn, P., Ye, Y., Li, L.-J. & Li, F.-F. (2018). Distributed asynchro-
nous optimization with unbounded delays: How slow can you go?. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, Vol. 80, pp. 5970–5979.

Zhu, X., Li, F. & Wang, H. (2019). Least squares approximation for a distributed system. arXiv e-prints arXiv:​
1908.​04904.

Zou, H., Hastie, T., & Tibshirani, R. (2007). On the “degrees of freedom’’ of the lasso. The Annals of Statistics,
35(5), 2173–2192.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1802.10116
http://arxiv.org/abs/1908.04904
http://arxiv.org/abs/1908.04904

	Byzantine-robust distributed sparse learning for M-estimation
	Abstract
	1 Introduction
	1.1 Paper organization and notations

	2 Proposed methods
	2.1 Byzantine-robust LASSO
	2.2 Squared loss transformation
	2.3 Robust estimate for H(0)

	3 Theoretical properties
	3.1 Theoretical results for smooth loss
	3.2 Theoretical results for non-smooth loss

	4 Empirical analysis
	4.1 Simulation studies on synthetic data set
	4.1.1 Effect of Byzantine fraction
	4.1.2 Effect of iteration round
	4.1.3 Effect of local sample size

	4.2 Application to real-world benchmarks

	5 Concluding remarks
	Anchor 19
	Acknowledgements
	References

