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Abstract
In a distributed computing environment, there is usually a small fraction of machines that 
are corrupted and send arbitrary erroneous information to the master machine. This phe-
nomenon is modeled as a  Byzantine failure. Byzantine-robust distributed learning has 
recently become an important topic in machine learning research. In this paper, we develop 
a Byzantine-resilient method for the distributed sparse M-estimation problem. When the 
loss function is non-smooth, it is computationally costly to solve the penalized non-smooth 
optimization problem in a direct manner. To alleviate the computational burden, we con-
struct a pseudo-response variable and transform the original problem into an �

1
-penalized 

least-squares problem, which is much more computationally feasible. Based on this idea, 
we develop a communication-efficient distributed algorithm. Theoretically, we show that 
the proposed estimator obtains a fast convergence rate with only a constant number of 
iterations. Furthermore, we establish a support recovery result, which, to the best of our 
knowledge, is the first such result in the literature of Byzantine-robust distributed learning. 
We demonstrate the effectiveness of our approach in simulation.
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1  Introduction

With the development of modern technology, unprecedented data sizes are generated in many 
fields of scientific studies, and that creates the need for statistical analysis. The computational 
power of a single computer is no longer sufficient to store and process modern data sets. To 
address the problem of storage and computation, several distributed computing methods have 
been proposed. In a distributed system, data are partitioned across multiple machines. Among 
them, there is a single master machine in charge of updating and broadcasting the parame-
ters. The rest of the machines, called worker machines, maintain a large part of the data and 
can only communicate with the master machine. Due to the vulnerability of modern machine 
learning systems, robust distributed learning has recently become an important topic in 
machine learning research. In particular, in a large distributed data processing system, there is 
usually a small fraction of worker machines that sends arbitrary erroneous information to the 
master machine due to a system breakdown or hacker attack. This phenomenon is typically 
modeled as Byzantine failure (Lamport et al. 1982). A Byzantine-tolerant distributed statisti-
cal method is referred to as conducting a good estimate for the parameters we care about, even 
with the presence of a moderate fraction of Byzantine machines in the distributed system.

Byzantine-robust distributed learning has an intimate connection with robust estimation 
in the  statistics literature (Huber 2004). In fact, in the field of machine learning, a popular 
approach to hedge against Byzantine failure is to take the median (Xie et al. 2018; Yin et al. 
2018, 2019), instead of the vanilla sample mean, among the data transmitted to the master 
machine. It has been well known that the median estimator and its variants are commonly 
used in robust statistics (see, e.g., Minsker 2015; Lecué and Lerasle 2020; Lugosi and Men-
delson 2019; Minsker 2019).

In this paper, we are interested in a special class of stochastic optimization problems: the 
sparse M-estimation. Let X = (X1,X2,… ,Xp)

T ∈ ℝ
p be a p-dimensional covariate, and Y be 

the response variable. Our target is to estimate the true parameter �∗ defined in the following 
M-estimation problem

where L(⋅) is a pre-determined convex loss function. The vector �∗ is assumed to be sparse, 
i.e. the number of nonzero entries in �∗ is small compared with p. In practice, we cannot 
minimize the population loss function (1) directly. Instead, one may minimize the empiri-
cal loss function with an l1-penalty to approximate the true parameter �∗,

where (Yi,Xi), 1 ≤ i ≤ N are i.i.d. observations and ���1 =
∑p

i=1
��i� with � = (�1,… , �p)

T ; 
see (Tibshirani 1996; Zhao and Yu 2006; Wainwright 2009; Bühlmann and Van De Geer 
2011; Hastie et  al. 2015). In this paper, we consider the distributed estimation of �∗ , in 
which the N samples are evenly stored in m + 1 machines H0,… ,Hm (i.e., each local 
machine has n samples and N = (m + 1)n ). Here we denote H0 as the master machine, 
which is in charge of collecting information from local machines H1,… ,Hm , and updating 
the target parameters. In the distributed computing system, a direct application of the clas-
sical algorithm to implement the optimization in (2) is impossible. Furthermore, in Byz-
antine setting, there exists a subset of indices B ⊆ {1,… ,m} representing the set of Byz-
antine machines. Throughout this paper, we assume that the master machine H0 can never 

(1)�∗ = argmin�∈ℝp𝔼{L(Y − XT�)},

(2)argmin�∈ℝp

1

N

N∑

i=1

L(Yi − XT
i
�) + �|�|1,
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be corrupted. For j ∈ B , the information sent from Hj can be arbitrary or even adversarial. 
Thus, many popular distributed optimization algorithms such as distributed ADMM (Boyd 
et al. 2011) and distributed approximate Newton methods (see, e.g., Wang et al. 2017; Jor-
dan et al. 2019; Fan et al. 2019) do not work anymore.

In non-sparse setting, one common way to estimate �∗ is the distributed gradient descent 
algorithm for the optimization

In the t-th iteration of distributed gradient descent algorithm, every local machine Hj 
computes a gradient based on the parameters obtained in the (t − 1)-th iteration �̂

(t−1)
 and 

its local samples as

Then we transmit them to the master machine H0 . In the master machine H0 , we take coor-
dinate-wise sample mean ḡ(t−1) among the reported gradients {gj(�̂

(t−1)
)}m

j=0
 , and update the 

parameter by the gradient descent ��
(t)

= ��
(t−1)

− 𝜂ḡ(t−1) , where the constant � denotes the 
step size. However, the sample mean of the gradients is quite sensitive to Byzantine fault. 
It is not hard to see that the aggregated gradient ḡ(t−1) can behave arbitrarily bad even if 
there is only one Byzantine machine. Therefore, vanilla distributed gradient descent is no 
longer reliable under the Byzantine setting. To guarantee the robustness of the algorithm, 
Yin et al. (2018) proposed to use the sample median as a gradient aggregator, namely, we 
obtain the parameter

where med(⋅) denotes the coordinate-wise median of a set of vectors. It has been shown 
that the result converges to the true parameters �∗ , even with the presence of a moderate 
fraction of Byzantine machines.

There are quite a few algorithms which have been developed to hedge against Byzantine 
failures (see, e.g., Feng et al. 2014; Chen et al. 2017; Blanchard et al. 2017; Xie et al. 2018; 
Alistarh et al. 2018; Yin et al. 2018, 2019; Su and Xu 2019). The key idea of these works 
is to apply robust mean estimators so that the gradient information reported from all local 
machines is aggregated robustly. However, when the true parameter �∗ has a sparse struc-
ture (i.e., the number of non-zero elements s is much smaller than the dimension p), the 
estimator obtained from the distributed gradient descent algorithm (4) and its variants will 
no longer possess the optimal convergence rate (see Remark 5 for a more detailed discus-
sion). In fact, there are few works concerning distributed sparse learning in the Byzantine 
setup.

In this paper, we propose a Byzantine-robust distributed method which can learn the 
sparse structure for M-estimation. We assume that X, Y  are generated from the linear 
model

(3)argmin�∈ℝp

1

N

N∑

i=1

L(Yi − XT
i
�),

gj(�̂
(t−1)

) = −
1

n

∑

i∈Hj

XiL
�(Yi − XT

i
�̂
(t−1)

).

(4)�̂
(t)

= �̂
(t−1)

− �med{gj(�̂
(t−1)

) ∣ 0 ≤ j ≤ m},
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For the ease of presentation, the noise � is assumed to be independent with the covariate X . 
To propose a fast Byzantine-robust distributed algorithm for the general loss function, we 
first develop a novel square loss transformation method in this paper. Our strategy is that, 
under some mild model assumptions, we can construct some pseudo-response Ỹ  in place of 
the original one, and transform the stochastic optimization problem (1) into the following 
quadratic optimization

In other words, to approximate the sparse parameter �∗ of M-estimation with a  general 
loss function, we solve the problem of least absolute shrinkage and selection operator 
(LASSO), as follows

where Ỹi is the empirical version of the constructed pseudo-response, and �̃N is the regu-
larization parameter. As the LASSO problem can be solved by many effective algorithms, 
this square-loss transformation method greatly facilitates computation. Finally, together 
with (6) and median-based gradient aggregation, we propose a Square Loss Approximated 
Robust Distributed ( SLARD ) method. As we only need to solve a LASSO-type optimi-
zation problem at each iteration, our algorithm is much faster than directly solving the 
original one in (2) even in the non-distributed setting. In our theoretical analysis, we will 
prove that the SLARD method possesses the near-optimal statistical rate, as well as vari-
able selection consistency. It achieves a fast convergence rate with only a constant number 
of iterations and hence is both communication-efficient and computationally feasible. The 
SLARD method applies to a large class of loss functions like square loss and Huber loss in 
a smooth case and absolute deviation loss in a non-smooth case.

1.1 � Paper organization and notations

The remainder of this paper is organized as follows. In Sect. 2, we introduce the idea of 
square loss transformation and provide the distributed algorithm; Sect.  3 presents some 
technical assumptions and theoretical results for our proposed methods. The cases of 
smooth loss and non-smooth loss are discussed separately in Sects. 3.1 and 3.2. Empirical 
analysis on a synthetic dataset and real-world benchmark dataset are provided in Sect. 4.1 
to demonstrate the effectiveness of our method. Concluding remarks are given in Sect. 5. 
All proofs are deferred to the Appendix.

For every vector v = (v1,… , vp)
T , denote �v�2 =

�∑p

l=1
v2
l
 , �v�1 =

∑p

l=1
�vl� , and 

|v|∞ = max1≤l≤p |vl| . Moreover, we use supp(v) = {1 ≤ l ≤ p ∣ vl ≠ 0} as the support of the vector v . 
For every matrix A ∈ ℝ

p1×p2 , define ‖A‖ = sup�v�2=1 �Av�2, ‖A‖L2 = sup�v�2=1 �Av�∞, ‖A‖∞ = sup�v�∞=1 �Av�∞ 

(5)Y = XT�∗ + �.

argmin�∈ℝp𝔼(Ỹ − XT�)2.

(6)argmin�∈ℝp

1

N

N∑

i=1

(Ỹi − XT
i
�)2 + �̃N|�|1,
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as various matrix norms, and �max(A) and �min(A) as the largest and smallest eigenvalues 
of A respectively. Moreover, given two subsets of indices, I and J, we use AI×J to denote 
the submatrix formed by the rows in I and columns in J. We will use �(⋅) as the indicator 
function. The symbols ⌊x⌋ ( ⌈x⌉ ) denote the greatest integer (the smallest integer) not larger 
than (not less than) x. For two sequences an, bn , we say an ≍ bn when an = O(bn) and 
bn = O(an) hold at the same time. For simplicity, we denote �p−1 and �p as the unit sphere 
and unit ball in ℝp centered at 0 . For a given quantile level 0 < 𝜏 < 1 and a sequence of 
vectors {vi}ni=1 ⊆ ℝ

p , we denote Quan� (vi ∣ 1 ≤ i ≤ n) as the coordinate-wise �-th sample 
quantile of {vi}ni=1 . Specifically, we use med(⋅) as the coordinate-wise median. Lastly, the 
generic constants are assumed to be independent of m, n,  and p.

2 � Proposed methods

In this section, we first introduce a Byzantine-robust algorithm for sparse least square regres-
sion. For general loss functions, we propose a square loss transformation method. By con-
structing a pseudo-response, we transform the general M-estimation problem into an �1-penal-
ized least square regression problem, which becomes much more  computationally feasible. 
Based on this idea, we develop a Byzantine-robust distributed algorithm.

2.1 � Byzantine‑robust LASSO

Let us start our discussion from the standard distributed LASSO problem. Let N = (m + 1)n 
pairs of i.i.d. observations {(Xi, Yi)} be evenly stored in m + 1 machines {H0,… ,Hm} . Then 
we want to solve the following LASSO problem

However, in a distributed setup, it is communication-costly to solve (7) in a direct way. To 
reduce the communication burden, an approximate Newton method (Shamir et  al. 2014; 
Wang et  al. 2017; Jordan et  al. 2019) is always used. In particular, we denote 
gj(�) = n−1

∑
i∈Hj

(XiX
T
i
� − YiXi) as the local gradient function and �̂ j = n−1

∑
i∈Hj

XiX
T
i
 

as the local Hessian on machine Hj (where 0 ≤ j ≤ m ). Given an initial estimator �̂
(0)

 , 
every machine Hj computes the vector gj(�̂

(0)
) and sends it to the master machine H0 . Then 

a one-step Newton iteration can be informally formulated as follows:

For simplicity, here we assume �̂0 to be invertible, as we will multiply �̂0 on the both sides 
of (8) in the following discussion. Note that we only approximate Hessian information by 

(7)argmin�∈ℝp

1

2N

N∑

i=1

(Yi − XT
i
�)2 + �N|�|1.

(8)�̃
(1)

= �̂
(0)

− (�̂0)
−1 1

m + 1

m∑

j=0

gj(�̂
(0)
).
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observations on the master machine H0 , which significantly reduces communication over-
head. Moreover, from (8), �̃ can be equivalently viewed as the solution of the quadratic 
optimization problem

To further encourage sparsity, we can add an �1-penalty to (9). Substituting that 
�̂0 = n−1

∑
i∈H0

XiX
T
i
 , we only need to solve the following regularized optimization prob-

lem on the master machine H0

However, we assume that a subset B of worker machines are Byzantine, which may send 
arbitrarily erroneous gradient information to the master machine. In particular, we denote 
g
(0)

j
 as the gradient information sent from worker machine Hj . Note that we only transmit p−

dimension vectors from worker machines. Then for normal machines (i.e., j ∉ B ), we have 
g
(0)

j
= gj(�̂

(0)
) . While for j ∈ B , the Byzantine machine Hj sends arbitrary values g(0)

j
=∗ to 

the master machine. In this case, taking the average among {g(0)
j
}m
j=0

 as in (10) is no longer 
reliable because sample average is highly sensitive to outliers. To address this challenge, we 
take the coordinate-wise median among the reported vectors {g(0)

j
}m
j=0

 , namely,

Then we can solve the following quadratic optimization problem

Continuing by updating the parameters �̂
(0)

 and repeating the above procedure, we pro-
pose a Byzantine-robust algorithm for sparse least square regression as shown in Algo-
rithm  1. To give a consistent initial estimator, naturally we can obtain �̂

(0)
 by solving a 

LASSO problem on the master machine H0

This estimator is reliable as we assumed that the master machine H0 cannot be a Byzantine 
machine.

(9)�̃
(1)

= argmin�∈ℝp

1

2
�T�̂0� − �T

{
�̂0�̂

(0)
−

1

m + 1

m∑

j=0

gj(�̂
(0)
)
}
.

(10)

argmin�∈ℝp

1

2n

∑

i∈H0

�TXiX
T
i
� − �T

{
1

n

∑

i∈H0

XiX
T
i
�̂
(0)

−
1

m + 1

m∑

j=0

gj(�̂
(0)
)
}
+ �1|�|1.

ĝ
(0)

= med(g
(0)

j
∣ 0 ≤ j ≤ m).

(11)�̂
(1)

= argmin�∈ℝp

1

2n

∑

i∈H0

�TXiX
T
i
� − �T

{
1

n

∑

i∈H0

XiX
T
i
�̂
(0)

− ĝ
(0)
}
+ �1|�|1.

(12)�̂
(0)

= argmin�∈ℝp

1

2n

∑

i∈H0

(Yi − XT
i
�)2 + �0|�|1.
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Algorithm 1 Byzantine Robust Sparse Least Square Regression

Input: Data on local machines {(Xi, Yi) | i ∈ Hj} for j = 0, . . . ,m,
the number of iterations T , the regularization parameters λ0, λt for t =
1, . . . , T .

1: Compute the initial estimator β̂
(0)

on the master machine H0 by solving (12).

2: for t = 1, . . . , T do

3: Master H0 distributes β̂
(t−1)

to each worker machine Hj for j = 1, 2, . . . ,m.

4: for j = 0, . . . ,m do
5: The j-th worker machine computes

g
(t−1)
j =

{
n−1 ∑

i∈Hj
(XiX

T
i β̂

(t−1) −XiYi) if j /∈ B,
fiseulavyrartibra j ∈ B.

Then the j-th worker sends g(t−1)
j back to master machine.

6: end for
7: Master machine takes coordinate-wise median ĝ(t−1) = med(g(t−1)

j | 0 ≤
j ≤ m), and computes the estimator β̂

(t)
by solving

β̂
(t)

= argmin
β∈Rp

1
2n

∑

i∈H0

βTXiX
T
i β−βT

{ 1
n

∑

i∈H0

XiX
T
i β̂

(t−1)−ĝ(t−1)
}
+λt|β|1.

8: end for

Output: The final estimator β̂
(T )

.

Remark 1  Before moving on to the more general class of loss functions, we shall remark 
on our settings. In this paper, we adopt the master-slave computing architecture. That is, 
the master machine H0 is in charge of data updates, and the rest of the worker machines 
can only communicate with the master machine (except that the Byzantine machines may 
collude with each other). Moreover, we assume that the master machine H0 keeps the same 
amount of data and can never be corrupted. In Xie et  al. (2019, 2020), the authors also 
assumed that the master machine samples a considerable amount of trustful data so that the 
proposed algorithm can bear a higher fraction of Byzantine workers. This setting is slightly 
different from classical Byzantine distributed literature (see, e.g., Yin et  al. 2018, 2019; 
Blanchard et al. 2017; Chen et al. 2017; Su and Xu 2019), where the master machine does 
not hold any data, and the worker machines are equally likely to be corrupted. Their master 
machine works as a server where the computations can never be corrupted, and thus, it 
plays a similar role to our master machine.

Remark 2  In the standard master-slave computing architecture, the delay of data transmis-
sion is another important feature in practice. More specifically, since local workers are com-
puting gradients and sending them to the master, by the time a computed gradient arrives, it 
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could already be stale. The asynchronous nature of the distributed system brings new chal-
lenges in designing learning algorithms. There has been a vast literature concerning distrib-
uted asynchronous optimization like Agarwal and Duchi (2012), Mansoori and Wei (2017), 
Zhou et al. (2018), and Ren et al. (2020). However, it is not obvious how to directly extend 
our method to the asynchronous setting. On the one hand, since our method needs to aggre-
gate the gradient information from all workers by taking the coordinate-wise median to filter 
out the small fraction of Byzantine machines, this aggregation rule may no longer be robust 
when the gradients come asynchronously. On the other hand, after each round of gradient 
aggregation, we need to update the parameter by solving the �1-penalized optimization prob-
lem (11), which is time-consuming, makeing it not applicable in practice. Therefore, in this 
paper, we abstract away the asynchrony for simplicity and leave the problem of Byzantine 
distributed asynchronous sparse learning as an important future direction.

In practice, the noise � can be heavy-tailed or contaminated by outliers. In these 
cases, ordinary least square regression is not applicable. Many different loss functions 
L(⋅) , like absolute deviation loss (Koenker and Hallock 2001; Koenker 2005) and Huber 
loss (Huber 1973, 2004), are adopted to overcome these problems. In the following dis-
cussion, we propose a method, called square loss transformation, to transform the gen-
eral loss functions into least square loss, which greatly facilitates computation.

2.2 � Squared loss transformation

In general, our task is to solve the stochastic optimization problem

where L(⋅) is a convex loss function. Denote the sub-gradient of L(x) as L�(x) , which could 
be non-continuous. Next, we consider the function h(x) = �{L�(x + �)} , where the expecta-
tion is taken over the randomness of error term � in (5). We assume h(x) is differentiable 
with respect to x and denote the scalar value H(0) = h�(0) . Then for every � , the Hessian 
matrix of the loss function can be written as

Further denote � = �(XXT) . Given an initial estimator �̂
(0)

 , a one-step Newton iteration 
takes the following form

Here we ignore the randomness of the initial estimator �̂
(0)

 so that the expectation is only 
taken with respect to the covariate X and the noise � . If we define the pseudo-response

then the original problem (13) can be approximated by the following least square problem

(13)�∗ = argmin�∈ℝp𝔼{L(Y − XT�)},

H(�) = ∇|��
{
XL�(Y − XT�)

}
= �

{
XXTh�(XT�∗ − XT�)

}
.

�̃
(1)

= �̂
(0)

+
{
H(�̂

(0)
)
}−1

�
{
XL�(Y − XT�̂

(0)
)
}

≈ �̂
(0)

+
{
H(0)�

}−1
�
{
XL�(Y − XT�̂

(0)
)
}

= �−1
�

[
X

{
XT�̂

(0)
+ {H(0)}−1L�

(
Y − XT�̂

(0))}]
.

Ỹ ∶= XT�̂
(0)

+ {H(0)}−1L�
(
Y − XT�̂

(0))
,
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We note that H(0) is unknown. Therefore we need to estimate H(0) with Ĥ(0)(0) from the 
observations {(Xi, Yi)}

N
i=1

 and initial estimator �̂
(0)

 . Then the pseudo-response can be con-
structed by

The explicit construction of Ĥ(0)(0) will be given in detail in the next section. To further 
adopt (14) into the sparse Byzantine-distributed setting, we only need to repeat the proce-
dure in Sect. 2.1. More specifically, each machine Hj locally computes

Normal machines Hj (where j ∉ B ) report g̃(0)
j

= g̃j(�̂
(0)
) to the master H0 , and Byzan-

tine machines Hj (where j ∈ B ) report arbitrary values g̃(0)
j

=∗ . Then the master machine 
aggregates these gradients by taking the coordinate-wise median

and solves the quadratic optimization problem

It is worthwhile to note that, at each iteration, every worker machine only needs to transmit 
a local density estimator Ĥ(0)

j
 and a vector g̃(0)

j
 . Therefore the total communication cost is 

only O(p). By updating the parameter recursively, it is easy to construct an iterative esti-
mator. In particular, let �̂

(t−1)
 be the (t − 1)-th round estimator, we construct the estimator 

Ĥ(t−1)(0) for H(0) (see Sect. 2.3 for more details). Then we can define

Each machine computes a gradient

and reports the vector g̃
(t−1)

j
 . The master aggregates the gradient information by 

g̃
(t−1)

= med(g̃
(t−1)

j
∣ 0 ≤ j ≤ m) and solves the following optimization problem

(14)argmin�∈ℝp𝔼
{
(Ỹ − XT�)2

}
.

Ỹi = XT
i
�̂
(0)

+ (Ĥ(0)(0))−1L�
(
Yi − XT

i
�̂
(0))

.

(15)g̃j(�̂
(0)
) =

1

n

∑

i∈Hj

(XiX
T
i
�̂
(0)

− ỸiXi) = −
1

nĤ(0)(0)

∑

i∈Hj

XiL
�(Yi − XT

i
�̂
(0)
).

(16)g̃
(0)

= med(g̃
(0)

j
∣ 0 ≤ j ≤ m),

(17)�̂
(1)

= argmin�∈ℝp

1

2n

∑

i∈H0

�TXiX
T
i
� − �T

{
1

n

∑

i∈H0

XiX
T
i
�̂
(0)

− g̃
(0)
}
+ �1|�|1.

Ỹi = XT
i
�̂
(t−1)

+ (Ĥ(t−1)(0))−1L�
(
Yi − XT

i
�̂
(t−1))

.

g̃j(�̂
(t−1)

) = −
1

nĤ(t−1)(0)

∑

i∈Hj

XiL
�(Yi − XT

i
�̂
(t−1)

),
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Algorithm 2 Square Loss Approximated Robust Distributed (SLARD) method

Input: Data on local machines {(Xi, Yi) | i ∈ Hj} for j = 0, . . . ,m, the number
of iterations T , the regularization parameter λ0, λt for t = 1, . . . , T . Moreover, we
need a kernel function K(·) and a sequence of bandwidth ht for t = 1, . . . , T if the
loss function L(·) is non-smooth.

1: Compute the initial estimator β̂
(0)

on the master machine H0 by solving (19).

2: for t = 1, . . . , T do

3: Master H0 distributes β̂
(t−1)

to each local machine Hj for j = 1, 2, . . . ,m.
4: for j = 0, . . . ,m do
5: The j-th worker machine computes the local estimator Ĥ(t−1)

j (0) accord-

ing to equation (23), and sends Ĥ(t−1)
j (0) back to master machine.

6: end for
7: Master machine computes Ĥ(t−1)(0) = med{Ĥ(t−1)

j (0) | 0 ≤ j ≤ m}, and
transmits it to all local machines.

8: for j = 0, . . . ,m do
9: The j-th worker machine computes

g̃
(t−1)
j =

{
−(nĤ(t−1)(0))−1 ∑

i∈Hj
XiL′(Yi −XT

i β̂
(t−1)

) if j /∈ B,
fiseulavyrartibra j ∈ B.

Then the j-th worker sends g̃(t)
j back to master machine.

10: end for
11: Master machine takes coordinate-wise median g̃(t−1) = med(g̃(t−1)

j | 0 ≤
j ≤ m), and computes the estimator β̂

(t)
by solving (18).

12: end for

Output: The final estimator β
(T )

.

Compared with the original optimization problem in (2), the �1-penalized quadratic optimi-
zation problem in (18) is much more computationally feasible. Therefore we call our pro-
posed method the Square Loss Approximated Robust Distributed ( SLARD ) method. The 
entire procedure is presented in Algorithm 2. The regularization parameter �0,… , �t will 
be specified in Corollary 2 and Theorem 3 in Sect. 3.

For the choice of initial estimator �̂
(0)

 , a natural candidate is to solve the �1-penalized 
M-estimation problem on the master machine H0 , i.e.,

(18)

�̂
(t)

= argmin�∈ℝp

1

2n

∑

i∈H0

�TXiX
T
i
� − �T

{
1

n

∑

i∈H0

XiX
T
i
�̂
(t−1)

− g̃
(t−1)

}
+ �t|�|1.

(19)�̂
(0)

= argmin�∈ℝp

1

n

∑

i∈H0

L(Yi − XT
i
�) + �0|�|1.
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This is always consistent as we assumed in the beginning that H0 can never be corrupted. One 
can also adopt a different estimator for �̂

(0)
 so long as it satisfies Assumption C in Section 3.

Remark 3  Suggested by one reviewer, we would like to compare our square loss transforma-
tion with the Distributed Least Squares Approximation (DLSA) method proposed in an 
unpublished paper (Zhu et al. 2019). In the DLSA method, the authors proposed to let each 
local machine minimize the unpenalized local empirical loss function 
�̂
(0)

j
= argmin�n

−1
∑

i∈Hj
L(Yi − XT

i
�) . Then each local machine sends the local estimator 

�̂
(0)

j
 as well as the local covariance information to the server, and solves the quadratic 

approximated loss function to obtain a refined estimator. There are three major disparities 
between DLSA and our approach. Firstly, to eliminate the linear term in the quadratic 
approximation, their local estimator has to be the minimizer of the unpenalized loss func-
tion. Therefore it is not applicable for high-dimensional problems. In contrast, our approach 
allows the initial estimator �̂

(0)
 to be any consistent estimator of the true parameters �∗ . Sec-

ondly, they require the workers to send the p × p local covariance matrix �̂ j =
∑

i∈Hj
XiX

T
i
 

to the server, which is more communication-costly than ours, as we only need to send the p 
dimensional gradient information. Lastly, their approach directly uses the local estimators 
and the covariance information from all local machines to construct the approximated loss 
function, which makes it hard to be modified into a Byzantine robust method.

2.3 � Robust estimate for H(0)

Recall that the function h(x) is defined as �{L�(x + �)} . The target of this section is to 
estimate the unknown parameter H(0) = h�(0) . For the convex loss function L(x) , again 
we denote its sub-gradient as L�(x) . Note that we allow L(x) to be non-smooth, so that 
L
�(x) could be discontinuous. Assume L�(x) has finitely many distinct discontinuous points 

x1,… , xK , and it is differentiable outside of these points. Then we can denote the second-
order derivative of L(x) as L��(x) , which can be defined almost everywhere on ℝ. For the 
sake of completeness, we define L��(xk) = 0 on the discrete set of the discontinuous points 
x1,… , xK . Further let the noise � have probability density function f (⋅) . Then we can give 
an explicit expression for the function h(x) as follows

To take derivative for h(x), note that L�(x) is differentiable on the interval (xk, xk+1) . There-
fore the derivative of every summand in (20) can be given by

(20)

h(x) = �{L�(x + �)} = ∫
∞

−∞

L
�(x + y)f (y)dy

= ∫
x1−x

−∞

L
�(x + y)f (y)dy +

K−1∑

k=1
∫

xk+1−x

xk−x

L
�(x + y)f (y)dy + ∫

∞

xK−x

L
�(x + y)f (y)dy.
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For simplicity we assume x0 = −∞ and xK+1 = ∞ . Since L�(x) is non-continuous at the 
points xk ( 1 ≤ k ≤ K ), we know the left limit limx̃→x−

k
L
�(̃x) and right limit limx̃→x+

k
L
�(̃x) are 

not equal. Denote the gap at the point xk as

Then we have

From the above expression, to estimate H(0), we have to conduct kernel density estimation 
for probability density function f(x) at the K points x1,… , xK . Given a kernel function K(⋅) 
and a bandwidth h1 , the probability density f (xk) can be estimated on each local machine 
Hj as follows

Therefore, on each local machine Hj , H(0) can be locally estimated by

Then the worker machine Hj sends the local estimator Ĥ(0)

j
(0) to the master machine H0 . 

Note that in the Byzantine-distributed setting, the Byzantine machine Hj (where j ∈ B ) 
may send arbitrary values to the master. To avoid the corruption of outliers, we take a 
median

which estimates H(0) robustly. For a multi-round algorithm, H(0) should be estimated 
recursively by the newly updated parameter �̂

(t)
 . In particular, let �̂

(t−1)
 be the (t − 1)-th 

round estimator. On machine Hj , the local estimator is computed as

and sent to the master machine. Then H0 aggregates the local estimators by

d

dx ∫
xk+1−x

xk−x

L
�(x + y)f (y)dy

= ∫
xk+1−x

xk−x

L
��(x + y)f (y)dy + f (xk − x) lim

x̃→x+
k

L
�(̃x) − f (xk+1 − x) lim

x̃→x−
k+1

L
�(̃x).

�k = lim
x̃→x+

k

L
�(̃x) − lim

x̃→x−
k

L
�(̃x).

(21)

H(0) =

K∑

k=0

{
∫

xk+1

xk

L
��(y)f (y)dy + f (xk) lim

x̃→x+
k

L
�(̃x) − f (xk+1) lim

x̃→x−
k+1

L
�(̃x)

}

= �{L��(Y − XT�∗)} +

K∑

k=1

�kf (xk).

f̂
(0)

j
(xk) =

1

nh1

∑

i∈Hj

K

(Yi − XT
i
�̂
(0)

− xk

h1

)
.

(22)Ĥ
(0)

j
(0) ∶=

1

n

∑

i∈Hj

L
��(Yi − XT

i
�̂
(0)
) +

K∑

k=1

�k

nh1

∑

i∈Hj

K

(Yi − XT
i
�̂
(0)

− xk

h1

)
.

Ĥ(0)(0) = med
{
Ĥ

(0)

j
(0) || 0 ≤ j ≤ m

}
,

(23)Ĥ
(t−1)

j
(0) ∶=

1

n

∑

i∈Hj

L
��(Yi − XT

i
�̂
(t−1)

) +

K∑

k=1

�k

nht

∑

i∈Hj

K

(Yi − XT
i
�̂
(t−1)

− xk

ht

)
,
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The choice of bandwidth ht at each round will be specified in Theorem 3 of Sect. 3. To get 
a better understanding of the construction of Ĥ(0)

j
(0) , we will provide detailed discussion 

for the following three commonly adopted loss functions.

Example 1  (Square loss) In classical least square regression, the loss function is 
L(x) = x2∕2 . Clearly we have L��(x) ≡ 1 for all x ∈ ℝ . Therefore we can directly use 
H(0) = 1 without aggregating the local estimator Ĥ(0)

j
(0) from each machine. It is not hard 

to see that, the loss function in (17) is coincident with (11). Therefore, Algorithm 2 is auto-
matically reduced to Algorithm 1.

Example 2  (Huber loss) The Huber loss function is defined as

where � is some pre-determined robustification parameter. In this case, the first-order 
derivative L�(x) is continuous, and we can compute that L��(x) = �(|x| ≤ �) . Therefore 
H(0) = ℙ(|�| ≤ �) , and from (22) we know that each local estimator Ĥ(0)

j
(0) can be con-

structed by

Example 3  (Absolute deviation loss) In median regression problem, the absolute deviation 
loss function is defined by

Therefore its derivative L�(x) = 1 − 2�(x ≤ 0) is not differentiable at the point x1 = 0 . We 
can easily obtain that L��(x) = 0 (for the discontinuous point x1 = 0 , we can just define 
L
��(0) = 0 ) and �1 = 2 . Therefore from (21) we have H(0) = 2f (0) . By Eq. (22), we can 

estimate H(0) by

on each local machine Hj , which is coincident with the two times the kernel density esti-
mation of f(0).

Remark 4  Besides using the coordinate-wise median as the robust mean aggregator, there 
are some other popular robust mean estimators such as trimmed mean (Yin et  al. 2018, 
2019), Krum (Blanchard et al. 2017), geometric median (Feng et al. 2014; Chen et al. 2017), 
and iterative filtering (Su and Xu 2019). It can be seen from Algorithm 2 that we can also 
collect the local estimators Ĥ(t−1)

j
(0) and the local gradients g̃(t)

j
 using the aforementioned 

robust aggregators. For the ease of presentations, we only exhibit the theoretical results for 
the coordinate-wise median aggregators in the following section. In the simulation studies 

Ĥ(t−1)(0) = med
{
Ĥ

(t−1)

j
(0) || 0 ≤ j ≤ m

}
.

L(x) =

{
x2∕2 for |x| ≤ �,

�|x| − �2∕2 otherwise.

Ĥ
(0)

j
(0) = n−1

∑

i∈Hj

�
(
|Yi − XT

i
�̂
(0)
| ≤ �

)
.

L(x) = |x|.

Ĥ
(0)

j
(0) =

2

nh1

∑

i∈Hj

K

(Yi − XT
i
�̂
(0)

h1

)
,
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of Section 4.1, we will present the results of our SLARD method based on trimmed mean 
and Krum. The definitions of these two aggregators are given in Sect. 4.1.

3 � Theoretical properties

In this section, we present some theoretical results for our SLARD method. Denote 
S = supp(�∗) as the support of the true parameter �∗ and s = Card(S) as the sparsity level. 
For ease of presentation, we use the following notation

where X0 is a random variable and 𝜂 > 0 is some fixed number.

3.1 � Theoretical results for smooth loss

Firstly we investigate the convergence and support recovery results for differentiable loss. 
More specifically, we assume the derivative L�(x) is continuous at every point x ∈ ℝ . In 
this case, kernel density estimation is not needed and H(0) can be locally estimated by

Then we need the following technical assumptions.

Assumption A  There exist some constants 𝜂,CM > 0 such that

Assumption B  Denote � = �XXT . There exist some constants 0 < 𝛿0 < 1 and 𝜌 > 0 , 
such that

and � ≤ �min(�) ≤ �max(�) ≤ �−1.

Assumption C  The initial estimator �̂
(0)

 satisfies |�̂
(0)

− �∗|2 = O
ℙ
(rn) , where rn → 0 . 

Furthermore, we assume that ℙ(supp(��
(0)
) ⊆ S) → 1.

Assumption D  The loss function L(⋅) satisfies �{XL�(Y − XT�∗)} = 0 . Furthermore, 
there exist constants 𝜂1, L1 > 0 such that, for every pair of (�1, �2) , there is

�(X0, �) ∶= �
{
X2
0
exp(�|X0|)

}
,

Ĥ
(0)

j
(0) =

1

n

∑

i∈Hj

L
��(Yi − XT

i
�̂
(0)
).

sup
v∈�p−1

�
{
exp(�|XTv|2)

} ≤ CM .

‖‖‖�Sc×S�
−1
S×S

‖‖‖∞ ≤ 1 − �0,

�

{
sup

�∶|�−�1|2≤|�1−�2|2

||L
��(Y − XT�1) − L

��(Y − XT�)||, �1
} ≤ L1|�1 − �2|2,

�||L
��(Y − XT�1) − L

��(Y − XT�2)
|| ≤ L1�

||X
T(�1 − �2)

||.
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Assumption S  There exist some constants Ls > 0 such that, for any two points x1, x2 ∈ ℝ , 
there is

Moreover, the local sample size n, number of machines m, parameter dimension p, spar-
sity level s, initial rate rn and the fraction of Byzantine machines �n satisfy the following 
constraints

for some constants 𝛾0 > 0 and �1 ∈ (0, 1∕2).

In Assumption A we require that  the covariate X admits sub-Gaussian distribution, 
which is common in the literature. It is worthwhile noting that, this can be weakened to 
some polynomial moment condition by applying more delicate techniques. Assumption 
B is the standard irrepresentable condition to establish support recovery results (see, e.g., 
Zhao and Yu 2006; Wainwright 2009; Bühlmann and Van De  Geer 2011; Hastie et  al. 
2015). Assumption C requires consistency and support recovery of the initial estimator 
�̂
(0)

 . Recall that our �̂
(0)

 is given by solving the �1-penalized optimization problem (19) 
on the master machine H0 . It can be shown that these conditions are satisfied. Assump-
tion D assumes the second-order derivative L��(⋅) to be ‘continuous’ in a wider sense. 
This is weaker than the classical Lipschitz continuity condition, as we can see in Example 
2. Huber loss has a non-continuous second-order derivative but satisfies this condition 
(more detailed justification is relegated to the Appendix). In Assumption S, we assume the 
first-order derivative of the  loss function L�(⋅) is Lipschitz continuous. Moreover, some 
rate constraints on the initial estimator and the quantities m, n, p, s, �n are needed for our 
theoretical analysis. We note that the constraint on the fraction of Byzantine machines is 
almost necessary since the median can be ruined when the number of corruptions exceeds 
⌈m∕2⌉.

We begin with the convergence result after the first round of communication.

Theorem 1  Suppose Assumptions A–D and Assumption S hold. Take the regularization 
parameter in (17) as

where C0 is a sufficiently large constant. Then we have

|L�(x1) − L
�(x2)| ≤ Ls|x1 − x2|.

max{ms log n, s3 log n} = o(n), p = O(n�0 ),

rn = O
(
(s log n∕n)1∕2

)
, �n ∈ [0, 1∕2 − �1),

�1 = C0

� �n√
n
+

�
log n

mn
+ rn

�
s log n

n

�
,

��̂
(1)

− �∗�2 = O
ℙ

��n
√
s

√
n

+

�
s log n

mn
+ rn

�
s2 log n

n

�
.
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This theorem tells us that, with a proper choice of regularization param-
eter �1 , the first round of refinement improves the initial rate from rn to 
max{�n

√
s∕
√
n +

√
s log n∕(mn), rn

√
s2 log n∕n} , as 

√
s2 log n∕n = o(1) by Assumption 

S. By applying Theorem  1 recursively, we can obtain the following converging rate for 
the multi-round algorithm.

Corollary 1  Suppose Assumptions A–D and Assumption S hold. For each round 
1 ≤ t0 ≤ t , choose the regularization parameter �t0 in (18) to be

where C0 is sufficiently large. Then we have

We can show that the converging rate of our algorithm will be dominated by the first 
two terms in (24) within constant steps. In particular, from (24), we know the iteration 
number t satisfies

Together with the constraint max{ms log n, s3 log n} = o(n) in Assumption S, we have

Therefore, if the fraction of Byzantine machines satisfies �n = O(
√
log n∕m) , and 

t ≥ 6 + c0 , our algorithm achieves a near optimal rate O
ℙ
(
√
s log n∕(mn)).

Remark 5  We can compare the converging rate obtained in (24) with existing Byzantine 
robust gradient descent methods like Yin et al. (2018, 2019), Blanchard et al. (2017), Chen 
et al. (2017), and Su and Xu (2019). The existing Byzantine robust gradient descent meth-
ods have not assumed any sparsity structure on the true parameter �∗ . Therefore, from 
their theory, the convergence rate of their method would be O

ℙ
(
√
p∕(mn)) , where p is the 

dimension, and mn is the full sample size. However, from standard Lasso theory, when the 
parameter �∗ has sparsity level s ≪ p , the optimal rate would be O

ℙ
(
√
s∕(mn)) , which is 

much smaller. Thus these methods cannot achieve the optimal rate for the sparse learning 
problem. To the best of our knowledge, our method is the first Byzantine robust distributed 
sparse learning algorithm that has a provable nearly optimal statistical rate.

Next we present results on the support recovery of our estimators �̂
(1)

 and �̂
(t)

 . Recall 
that S = supp(�∗) is the support of �∗ . We firstly consider the support recovery for �̂

(1)
.

Theorem 2  Assume the same assumptions as in Theorem 1, then we have supp(��
(1)
) ⊆ S 

with probability tending to one. Moreover, there is

�t0 = C0

� �n√
n
+

�
log n

mn
+

rn√
s

� s2 log n
n

�t0∕2
�
,

(24)��̂
(t)
− �∗�2 = O

ℙ

��n
√
s

√
n

+

�
s log n

mn
+ rn

� s2 log n
n

�t∕2�
.

(25)t ≥ log n + logm − log s − log log n

log n − 2 log s − log log n
.

log n + logm − log s − log log n

log n − 2 log s − log log n
≤ 6 + c0, for some constant c0 > 0.
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We can conclude that once the true parameter �∗ satisfies

for some sufficiently large constant C, the first round estimator �̂
(1)

 has exact support recov-
ery, i.e., supp(�̂

(1)
) = S , with probability tending to 1. Similarly we have the recovery result 

for the t-th round estimator �̂
(t)

.

Corollary 2  Assume the same conditions as in Corollary 1, then we have supp(��
(t)
) ⊆ S 

with probability tending to one. Moreover, there is

Compared with Theorem  2 above, the �∞ error becomes smaller as t grows larger. 
In particular, from (25), when the iteration number t ≥ 6 + c0 and the true parameter �∗ 
satisfies

for some sufficiently large constant C, the t-th round estimator �̂
(t)

 satisfies supp(�̂
(t)
) = S 

with probability tending to 1. Specifically when the fraction of Byzantine machines satis-
fies �n = O(

√
log n∕m) , the condition (26) can be reduced to 

minl∈S ��∗l � ≥ C
����

−1
S×S

���∞
√
log n∕(mn) , which is consistent with the “beta-min” condition 

of the standard LASSO problem in the single machine setting (see Wainwright 2009).

3.2 � Theoretical results for non‑smooth loss

For the case of non-smooth loss, from the expression of H(0) in equation (21), we need to 
estimate the probability density function of the noise � . Therefore, in addition to Assumptions 
A–D, more assumptions on the kernel function K(⋅) and the probability density function f (⋅) 
are needed.

Assumption E  There exists a constant Cd > 0 such that the noise � has probability den-
sity function f (⋅) which satisfies

Moreover, there exists a constant Cl such that min{f (x1),… , f (xK)} > Cl > 0.

����̂
(1)

− �∗���∞ = O
ℙ

�����
−1
S×S

���∞
� �n√

n
+

�
log n

mn
+ rn

�
s log n

n

��
.

min
l∈S

��∗
l
� ≥ C

����
−1
S×S

���∞
� �n√

n
+

�
log n

mn
+ rn

�
s log n

n

�
,

����̂
(t)
− �∗���∞ = O

ℙ

�����
−1
S×S

���∞
� �n√

n
+

�
log n

mn
+

rn√
s

� s2 log n
n

�t∕2��
.

(26)min
l∈S

��∗
l
� ≥ C

����
−1
S×S

���∞
� �n√

n
+

�
log n

mn

�
,

||f (x)|| ≤ Cd,
||f (x) − f (y)|| ≤ Cd|x − y|, for any x, y ∈ ℝ.
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Assumption F  The kernel function K(⋅) satisfies ∫ ∞

−∞
K(u)du = 1 and K(u) = 0 for |u| ≥ 1 . 

Moreover, K(⋅) is Lipschitz continuous with parameter Ck , i.e., |K(x) −K(y)| ≤ Ck|x − y| 
holds for an arbitrary x, y ∈ ℝ.

Assumption NS  There exist constants 𝜂2, L2 > 0 such that, for every pair of (�1, �2) , 
there is

Moreover, the local sample size n, number of machines m, parameter dimension p, spar-
sity level s, initial rate rn and fraction of Byzantine machines �n satisfy the following 
constraints

for some constants 𝛾0 > 0, 𝛾1 ∈ (0, 1) and �1 ∈ (0, 1∕2).

Assumption E assumes the smoothness of the probability density function of 
the noise � . It is worth noting that this condition is so mild that it allows the noises 
to admit very heavy-tailed distributions like  the Cauchy distribution. Assumption F 
imposes integrability, compact support and smoothness conditions on the kernel func-
tion K(⋅) . In Assumption NS, we assume a weaker ‘continuous’ condition on the gra-
dient XL�(Y − XT�) . As we can see in Example 3, the non-smooth absolute deviation 
loss satisfies this condition (the justification is relegated to the  Appendix). Moreover, 
compared with Assumption S in the  smooth case, we need more stringent constraints 
on m, s, n. More specifically, we need a smaller sparsity and number of machines, and a 
larger local sample size.

To save space, we directly present the multi-round convergence rate as follows. The 
one-round results will be given in the Appendix.

Theorem  3  Suppose Assumptions A–F and Assumption NS hold. For each round 
1 ≤ t0 ≤ t , choose the bandwidth ht0 in (23) and the regularization parameter �t0 in (18) to 
be

where C0 is sufficiently large. Then we have

It is not hard to see that, the rate for non-smooth loss is relatively slower than the 
multi-round converging rate for smooth loss in Corollary 1. To be more specific, we can 

sup
1≤l≤p

�

{
sup

�∶|�−�1|2≤|�1−�2|2

||XlL
�(Y − XT�1) − XlL

�(Y − XT�)||, �2
} ≤ L2|�1 − �2|2,

sup
1≤l≤p

�||XlL
�(Y − XT�1) − XlL

�(Y − XT�2)
|| ≤ L2|�1 − �2|2.

s3m log n = o(n�1 ), p = O(n�0 ), rn = O
(
(s log n∕n)1∕3

)
, �n ∈ [0, 1∕2 − �1),

ht0 = C1

��n
√
s

√
n

+

�
s log n

mn
+ r2

1−t0

n

� s2 log n
n

�1−21−t0�
,

�t0 = C0

� �n√
n
+

�
log n

mn
+

r2
−t0

n√
s

� s2 log n
n

�1−2−t0�
,

(27)��̂
(t)
− �∗�2 = O

ℙ

�
�n
√
s

√
n

+

�
s log n

mn
+ r2

−t

n

� s2 log n
n

�1−2−t
�
.
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compare the change of the third term in (24) and (27) after each round of refinement. In 
the case of smooth loss, the third term is multiplied with a factor 

√
s2 log n∕n , while for 

non-smooth loss, the refined third term is the geometric mean between s2 log n∕n and 
the original term. From the rate constraints s3m log n = o(n�1 ) in Assumption NS, we can 
verify that s2 log n∕n = o(

√
s log n∕(mn)) . It can be shown that the converging rate of our 

algorithm will be dominated by the first two terms in (27) within constant steps. Similar 
to the derivation of (25), we can obtain that when the iteration number t satisfies

or equivalently t ≥ log2(2∕(1 − �1) + c0) for some constant c0 > 0 , the converging rate 
would be O

ℙ
(�n

√
s∕
√
n +

√
s log n∕(mn)) . Furthermore, if the fraction of Byzantine 

machines satisfies �n = O(
√
log n∕m) , our algorithm achieves a near optimal rate up to a 

logarithm factor.
We can compare the converging rate of our SLARD method obtained in Theorem 3 

with the results in Chen et al. (2020), which applies similar square loss transformation to 
non-smooth quantile loss in a non-Byzantine setup. Their converging rate (Theorem 2) 
is of the same order as (24) of the smooth loss but not the rate in (27) of the non-smooth 
loss. We believe the inconsistency comes from the nonlinearity of the median aggregator 
(see Lemma 8 in the Appendix for more details). It would be interesting to investigate 
other Byzantine-robust methods that achieve a better rate for the non-smooth loss.

Next we present results on support recovery of our t-th round estimator �̂
(t)

 for 
the non-smooth loss case.

Theorem 4  Assume the same assumptions as in Theorem 3, then we have supp(��
(t)
) ⊆ S 

with probability tending to one. Moreover, there is

When the true parameter �∗ satisfies

for some sufficiently large constant C, the t-th round estimator �̂
(t)

 has exact support recov-
ery with probability tending to 1. Furthermore, if the fraction of Byzantine machines �n 
satisfies �n = O(

√
log n∕m) and t satisfies (28), i.e., t ≥ log2(2∕(1 − �1) + c0) , the condition 

(29) can be reduced to minl∈S ��∗l � ≥ C
����

−1
S×S

���∞
√
log n∕(mn) , which is coincident with the 

“beta-min” condition of standard LASSO problem in single machine setting.

(28)2t ≥ 2 log n − 4 log s − 2 log log n

log n − 3 log s − log log n − logm
,

����̂
(t)
− �∗���∞ = O

ℙ

�����
−1
S×S

���∞
� �n√

n
+

�
log n

mn
+

r−2
−t

n√
s

� s2 log n
n

�1−2−t��
.

(29)min
l∈S

��∗
l
� ≥ C

����
−1
S×S

���∞
� �n√

n
+

�
log n

mn
+

r−2
−t

n√
s

� s2 log n
n

�1−2−t�
,
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4 � Empirical analysis

In the empirical analysis, we have carried out two classes of experiments. The first part 
examines our proposed SLARD method on synthetic data and takes an in-depth look 
at how each factor (e.g., the attack modes, Byzantine fractions, iteration rounds, etc.) 
influences the algorithm behavior. The latter is an application of the proposed algorithm 
to the corresponding sparse linear regression task, intended to assess the practical utility 
in a Byzantine distributed setting.

4.1 � Simulation studies on synthetic data set

In this section, we provide simulation studies to demonstrate the performance of 
our method on least square regression, Huber regression, and median regression 
respectively.

We consider the following linear model

Inspired by the simulation studies in Fan et al. (2014), we assume the i.i.d. covariate vec-
tors XT

i
= (Xi,1,… ,Xi,p) ( i = 1,… ,N ) are drawn from a multivariate normal distribu-

tion N(0,�) . The covariance matrix � is a p × p Toeplitz matrix with its (i,  j)-th entry 
�ij = 0.5|i−j| , where 1 ≤ i, j ≤ p . We fix the dimension p = 500 . Moreover, we set the 
p-dimensional true coefficient �∗ as

which means the sparsity level s is fixed as 7. The data is divided into one master machine 
H0 and 100 worker machines H1,… ,H100 , each local sample size is n = 200 . Therefore, 
the entire sample size is N = 200 × (100 + 1) . Note that the data in master machine cannot 
be corrupted. The initial estimator �̂

(0)
 is given by solving the �1-penalized optimization 

problem on the master machine H0 . For the choice of regularization parameter �0,… , �T , 
motivated by Zou et al. (2007), Wang et al. (2007), we use the following BIC-type selec-
tion criterion

where �̂� denotes the solution of (18) with �t replaced by � , and df� is the number of 
nonzero elements in �̂�.

Methods for comparison. To illustrate the performance of our SLARD method, we 
first introduce another two robust mean estimators.

•	 Coordinate-wise trimmed mean: Given a set of vectors {vj ∣ 1 ≤ j ≤ m} (where 
vj = (vj,1,… , vj,p)

T ∈ ℝ
p ) and a threshold level � ∈ [0, 1∕2) , we define the coordinate-

wise �-trimmed mean ṽ = (̃v1,… , ṽp)
T as follows. For each coordinate l ∈ {1,… , p} , 

Yi = XT
i
�∗ + �i, i = 1,… ,N.

�∗ = ( 2, 0, 1.5, 0, 0.8, 0, 0, 1, 0, 1.75, 0, 0, 0.75, 0, 0, 0.3, 0T
p−16

)T,

(30)BIC� =
1

n

∑

i∈H0

L(Yi − XT
i
�̂�) + df� ×

log n

n
,
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denote Sl as the subset of {vj,l ∣ 1 ≤ j ≤ m} with the largest and smallest � fraction of 
its elements removed. Then we let ṽl be �Sl�−1

∑
l∈Sl

vj,l.
•	 Krum: Given a set of vectors {vj ∣ 1 ≤ j ≤ m} (where vj ∈ ℝ

p ) and a threshold level 
� ∈ [0, 1∕2) . For each j ∈ {1,… ,m} , we denote Sj as a subset of {vi ∣ 1 ≤ i ≤ m, i ≠ j} 
which precludes � fraction of elements having the largest Euclidean distance from 
the vector vj . We further denote dj =

∑
i∈Sj

�vi − vj�22 , then the �-Krum is defined as 
ṽ = vj∗ where j∗ = argmin1≤j≤mdj.

Then we compare our SLARD method with the following three alternatives: 

1.	 T-SLARD: We run Algorithm 2, where the gradients g̃(t−1)
j

 and estimators Ĥj(0) are 
aggregated using the coordinate-wise trimmed mean. For simplicity we assume the true 
fraction of Byzantine machines � is known to us, so that we can choose the threshold 
level � equal to �.

2.	 K-SLARD: We run Algorithm 2, where the gradients g̃(t−1)
j

 and estimators Ĥj(0) are 
aggregated using Krum. Similarly we assume the threshold level � equals to the true 
fraction of Byzantine machines �.

3.	 SLAD: We perform Algorithm 2, except that the local gradients g̃(t−1)
j

 are aggregated via 
sample mean. As for the aggregation of local estimators Ĥj(0) , simulation studies show 
that vanilla sample mean leads to extremely unstable output in Byzantine setup. For 
convenience of comparisons, we assume that the value of H(0) is known in the SLAD 
method, albeit it is not realistic in practice.

To solve the �1-penalized optimization problem (18)  with these methods, we uniformly 
adopt the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) proposed in Beck and 
Teboulle (2009).

Attacking Modes. The corruption mechanism is given by the following three 
approaches, 

1.	 Gaussian attack: For Byzantine machine Hj (where j ∈ B ), assume the true gradient is 
g̃
(t−1)

j
 . The reported value from Hj would be independently generated from the multivari-

ate normal distribution N(0, Ip) . Similarly, the local estimator Ĥ(t−1)

j
(0) will be reported 

as a random value generated from N(0, 1).
2.	 Bit-flip attack: For Byzantine machine Hj (where j ∈ B ), assume the true gradient is 

g̃
(t−1)

j
 . Machine Hj takes its first five coordinates multiplied with −5 and reports to the 

master machine H0 . As for the local estimator Ĥ(t−1)

j
(0) , the Byzantine machine Hj just 

reports −5Ĥ(t−1)

j
(0).

3.	 Omniscient attack: For Byzantine machine Hj (where j ∈ B ), assume the true gradi-
ent is g̃(t−1)

j
 . Machine Hj reports −100g̃(t−1)

j
 to the master machine H0 . As for the local 

estimator Ĥ(t−1)

j
(0) , the Byzantine machine Hj reports −100Ĥ(t−1)

j
(0).
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4.1.1 � Effect of Byzantine fraction

We first compare the performance of our SLARD method with T-SLARD , K-SLARD , 
and SLAD by varying the fraction of Byzantine machines. Throughout this section, 
we only present the simulation results of five-step SLARD (the same for T-SLARD , 
K-SLARD , SLAD ). As we will see in Sect. 4.1.2, a five-step iteration is usually enough 
for these methods to converge to the near-optimal rate. For each experiment, we repeat 
500 independent simulations and report the average number of false positives (FP) and 
false negatives (FN). Moreover, we plot the estimation error in �2-norm versus the frac-
tion of Byzantine machines.

Results for least square regression. In the least square regression problem, we assume 
the noise � admits a  standard normal distribution, that is, � ∼ N(0, 1) . The results are 
shown in Fig. 1 and Table 1.

As we can see from Fig. 1, under both a Gaussian attack and a bit-flip attack, the �2

-error of the mean based SLAD method accumulates quickly as the Byzantine fraction 
�n increases. Moreover, SLAD diverges under omniscient attack, hence its correspond-
ing performance curve is omitted. In contrast, the performances of the three SLARD 
methods are relatively stable as �n varies, which corroborates the robustness of these 
approaches. Among them, the K-SLARD method behaves significantly worse than the 
other two. This is reasonable because the Krum aggregator only picks one local gradient 
vector among all reported gradients, which results in a coarser gradient estimator and 
further deteriorates the overall performance. Both median-of-mean and trimmed-mean 
use more gradient information and  therefore lead more accurate estimators. From this 
picture, we can find that the median-of-mean based SLARD method behaves slightly 
worse than the trimmed-mean based one. This is probably because of the non-linear-
ity of median aggregation (see also the paragraph before Theorem 4). We note that the 
T-SLARD method requires the choice of the threshold level � . To ensure the effective-
ness of T-SLARD , we utilize the knowledge of the Byzantine fraction �n and simply set 
� = �n . However, in the real world, the Byzantine fraction is not available. In Appendix 
D of the supplementary material, we study more simulation results on T-SLARD under 
different threshold levels � . The results show that T-SLARD behaves comparatively to 
SLARD only when the threshold level � is not less than the Byzantine fraction � . How-
ever, T-SLARD fails to maintain its performance when � is smaller than �n , since it 
includes some outliers. In practice, the MOM-based SLARD is more favorable as it does 
not require the knowledge of the Byzantine fraction �n.

Table  1 shows the results of support recovery of these methods. We can find that 
SLARD and T-SLARD are comparable, which meets the observation in Fig.  1. Both of 
them can recover the true support correctly under different attack modes and Byzantine 
fractions. K-SLARD is also robust against Byzantine failures, albeit with a significantly 
worse performance regarding false positive and false negative. The mean based SLAD 
approach is susceptible to the attack modes and Byzantine fractions.

Results for Huber regression. In the Huber regression model, we generate the noise � 
from the mixture of normal distributions 0.9N(0, 1) + 0.1N(0, 100) . More precisely, with 
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probability 0.9, the value of � is distributed according to N(0, 1) , and is otherwise drawn 
from a N(0, 100) distribution. For the choice of robustification parameter � , we follow the 
classical literature (Huber 2004) and take � = 1.345 . The detailed comparison among these 
approaches is given in Fig. 2 and Table 2. 

From the results, we can observe similar phenomena as in the case of least square 
regression. The SLARD and T-SLARD perform comparatively in terms of estimation error 
and support recovery. The Krum based SLARD method behaves worse than them while 
preserving robustness under different attack modes and Byzantine fractions. The SLAD 
method has the worst performance because it is not robust to Byzantine failures.

Results for median regression. In the problem of median regression, we generate the 
noises � from standard Cauchy distribution Cauchy(0, 1) . To apply our square loss trans-
formation to the non-smooth loss function L(x) = |x| , we need kernel density estimation 
(see Example 3). For the choice of kernel function K(⋅) , we use a biweight kernel function 
defined as

As for the bandwidth ht , we assume it has form specified in Theorem 3, for the ease of 
computation, we simply set all the C1 = 0.5 as other choices lead to similar results. The 
results are shown in Fig. 3 and Table 3. Similar phenomena as the former models can be 
observed from the simulation results. 

4.1.2 � Effect of iteration round

In this section, we run experiments with various attack modes and Byzantine frac-
tions and plot how �2-error changes with rounds of communications under these 
robust SLARD algorithms. From the previous simulation results, we find that these 
approaches perform similarly under different models. Due to the page limitation, we 
only present the result of the Huber regression. Figure 4 summarizes the results, where 

K(x) =

{
−

315

64
x6 +

735

64
x4 −

525

64
x2 +

105

64
, if |x| ≤ 1,

0 if |x| > 1.

Fig. 1   The �
2
-error over Byzantine fraction, under least square regression, varying attack modes. The total 

sample size N is 200 × (100 + 1) , the number of machines (m + 1) is 101, and the dimension p is 500
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Table 1   The false positives (FP) and false negatives (FN) and their standard errors (in parentheses) of the 
SLARD, T-SLARD , K-SLARD , and SLAD methods under sample size N = 200 × (100 + 1) , local sample 
size n = 200

The corruption mechanism is given by Gaussian attack, Bit-flip attack, and Omniscient attack. Noises are 
generated from standard normal distribution N(0, 1) and the loss function is chosen as square loss

Attack None

�
n

SLARD T-SLARD K-SLARD SLAD

FP FN FP FN FP FN FP FN

0 1.72 
(2.52)

0.00 
(0.00)

2.19 
(5.09)

0.00 
(0.00)

4.43 
(2.15)

0.12 
(0.32)

2.19 
(5.09)

0.00 (0.00)

Gaussian
0.05 2.64 

(1.71)
0.00 

(0.00)
1.30 

(1.15)
0.00 

(0.00)
4.43 

(2.13)
0.12 

(0.33)
8.15 

(3.50)
0.00 (0.00)

0.10 1.04 
(0.98)

0.00 
(0.00)

2.86 
(6.23)

0.00 
(0.00)

4.45 
(2.13)

0.12 
(0.32)

3.83 
(2.05)

0.00 (0.00)

0.15 1.59 
(1.33)

0.00 
(0.00)

2.25 
(1.85)

0.00 
(0.00)

4.50 
(2.13)

0.12 
(0.32)

6.05 
(2.45)

0.00 (0.04)

0.20 6.50 
(2.84)

0.00 
(0.00)

3.73 
(2.34)

0.00 
(0.00)

4.54 
(2.14)

0.12 
(0.32)

5.46 
(2.39)

0.02 (0.13)

0.25 2.79 
(1.88)

0.00 
(0.00)

3.29 
(1.84)

0.00 
(0.00)

4.58 
(2.12)

0.12 
(0.33)

7.71 
(2.94)

0.04 (0.21)

Bit-Flip
0.05 1.62 

(1.33)
0.00 

(0.00)
1.12 

(1.20)
0.00 

(0.00)
4.44 

(2.13)
0.12 

(0.33)
0.63 

(0.71)
0.00 (0.00)

0.10 1.33 
(1.12)

0.00 
(0.00)

1.63 
(1.80)

0.00 
(0.00)

4.46 
(2.13)

0.12 
(0.32)

1.96 
(0.94)

0.00 (0.00)

0.15 1.51 
(1.15)

0.00 
(0.00)

1.65 
(1.21)

0.00 
(0.00)

4.49 
(2.13)

0.12 
(0.32)

2.18 
(0.94)

0.00 (0.00)

0.20 2.30 
(1.41)

0.00 
(0.00)

2.23 
(1.36)

0.00 
(0.00)

4.55 
(2.15)

0.12 
(0.32)

5.05 
(4.44)

0.21 (0.41)

0.25 2.17 
(1.37)

0.00 
(0.00)

3.01 
(1.57)

0.00 
(0.00)

4.57 
(2.12)

0.12 
(0.33)

– –

Omniscient
0.05 4.66 

(2.63)
0.00 

(0.00)
3.54 

(1.89)
0.00 

(0.00)
4.43 

(2.13)
0.12 

(0.33)
– –

0.10 3.31 
(1.80)

0.00 
(0.00)

0.84 
(0.89)

0.00 
(0.00)

4.45 
(2.13)

0.12 
(0.32)

– –

0.15 1.37 
(1.13)

0.00 
(0.00)

1.88 
(1.36)

0.00 
(0.00)

4.50 
(2.13)

0.12 
(0.32)

– –

0.20 3.21 
(1.71)

0.00 
(0.00)

1.41 
(1.18)

0.00 
(0.00)

4.54 
(2.14)

0.12 
(0.32)

– –

0.25 3.17 
(1.69)

0.00 
(0.00)

6.48 
(2.46)

0.00 
(0.00)

4.58 
(2.12)

0.12 
(0.33)

– –
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the plots are averaged across 100 independent trails. In each plot, we also draw two 
horizontal lines, representing the �2-error of solving the �1-penalized problem using 
the local data on H0 (dashed line) and the full data set (solid line), respectively. The 
corresponding regularization parameters � are also selected by the BIC-type selection 
criterion as in (30).

We summarize our observations as follows:

•	 Both the median-of-mean based and the trimmed-mean based SLARD methods 
converge very fast. As we can see, under different attack modes and Byzantine frac-
tions, the �2-errors of these two methods decrease to the global rate within 5-6 
rounds of communications, which coincides with our theoretical result (see Corol-
lary 1).

•	 The �2-error of SLARD and T-SLARD under omniscient attack is relatively larger 
than the other two attack modes, which indicates the omniscient attack has a greater 
impact on the performance of the algorithms.

•	 The Krum based SLARD method behaves the worst in all settings. More precisely, 
the �2-error of K-SLARD only improves a little upon the local rate as the itera-
tion number increases. This is consistent with the phenomenon we have seen in 
Sect. 4.1.1.

4.1.3 � Effect of local sample size

In Corollary 1 of Sect. 3, we have shown that the convergence rate of the SLARD method 
is of order O

ℙ
(�n

√
s∕
√
n +

√
s log n∕(mn)) , provided the iteration number t is sufficiently 

large. In this section, we try to corroborate this result through simulation studies. We fix 
the  dimension p = 500 , the number of machines m + 1 = 51 , and vary the local sample 
size n from {100, 200, 400, 600, 800} . We run experiments for the Huber regression model 
with various attack modes and Byzantine fractions. Under these constraints, the expected 
convergence rate should be of order O

ℙ
(n−1∕2) . For a better illustration of the relationship, 

we rescale two axes by logarithm. Figure 5 summarizes the results of five-step SLARD , 
where the plots are averaged across 100 independent trails. In each plot, we also draw two 
additional curves, representing the �2-error of solving the �1-regularized problem using the 

Fig. 2   The �
2
-error over Byzantine fraction, under Huber regression, varying attack modes. The total sam-

ple size N is 200 × (100 + 1) , the number of machines (m + 1) is 101, and the dimension p is 500
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Table 2   The false positives (FP) and false negatives (FN) and their standard errors (in parentheses) of the 
SLARD, T-SLARD , K-SLARD , and SLAD methods under sample size N = 200 × (100 + 1) , local sample 
size n = 200

The corruption mechanism is given by Gaussian attack, Bit-flip attack, and Omniscient attack. Noises are 
generated from mixture of normal distribution 0.9N(0, 1) + 0.1N(0, 100) and the loss function is chosen as 
Huber loss with robustification parameter � = 1.345

Attack None

�
n

SLARD T-SLARD K-SLARD SLAD

FP FN FP FN FP FN FP FN

0 1.45 
(1.11)

0.00 
(0.00)

1.23 
(3.94)

0.00 
(0.00)

5.33 
(2.75)

0.31 
(0.46)

0.74 
(0.82)

0.00 (0.00)

Gaussian
0.05 1.00 

(0.97)
0.00 

(0.00)
1.03 

(0.96)
0.00 

(0.00)
4.68 

(2.72)
0.32 

(0.47)
4.83 

(2.34)
0.00 (0.00)

0.10 0.74 
(0.85)

0.00 
(0.00)

1.46 
(3.76)

0.00 
(0.00)

5.25 
(2.83)

0.32 
(0.47)

7.26 
(2.74)

0.00 (0.00)

0.15 1.48 
(1.17)

0.00 
(0.00)

3.16 
(2.45)

0.00 
(0.00)

5.38 
(2.82)

0.32 
(0.47)

4.41 
(2.15)

0.00 (0.00)

0.20 0.75 
(0.84)

0.00 
(0.00)

1.75 
(1.28)

0.00 
(0.00)

5.77 
(3.11)

0.31 
(0.46)

3.49 
(1.94)

0.02 (0.14)

0.25 1.04 
(1.04)

0.00 
(0.00)

2.61 
(1.62)

0.00 
(0.00)

5.85 
(3.25)

0.32 
(0.47)

8.83 
(3.05)

0.06 (0.24)

Bit-Flip
0.05 0.86 

(0.90)
0.00 

(0.00)
0.61 

(0.71)
0.00 

(0.00)
4.97 

(2.75)
0.31 

(0.46)
0.84 

(0.79)
0.00 (0.00)

0.10 0.89 
(0.91)

0.00 
(0.00)

0.47 
(0.62)

0.00 
(0.00)

5.35 
(2.83)

0.32 
(0.47)

1.59 
(0.69)

0.00 (0.00)

0.15 0.78 
(0.85)

0.00 
(0.00)

0.40 
(0.59)

0.00 
(0.00)

5.38 
(2.83)

0.32 
(0.47)

2.24 
(0.98)

0.00 (0.00)

0.20 1.07 
(1.07)

0.00 
(0.00)

1.79 
(4.79)

0.00 
(0.00)

5.77 
(3.19)

0.31 
(0.46)

6.14 
(4.24)

0.26 (0.45)

0.25 1.25 
(1.05)

0.00 
(0.00)

1.69 
(1.52)

0.00 
(0.00)

5.57 
(3.10)

0.32 
(0.47)

34.91 
(10.34)

0.42 (0.63)

Omniscient
0.05 0.67 

(0.79)
0.00 

(0.00)
1.58 

(1.11)
0.00 

(0.00)
4.98 

(2.75)
0.31 

(0.46)
– –

0.10 0.90 
(0.89)

0.00 
(0.00)

0.76 
(0.81)

0.00 
(0.00)

5.35 
(2.83)

0.32 
(0.47)

– –

0.15 0.86 
(0.91)

0.00 
(0.00)

1.61 
(1.27)

0.00 
(0.00)

5.39 
(2.82)

0.32 
(0.47)

– –

0.20 1.29 
(1.16)

0.00 
(0.00)

3.91 
(1.92)

0.00 
(0.00)

5.78 
(3.19)

0.31 
(0.46)

– –

0.25 4.32 
(2.07)

0.00 
(0.00)

4.49 
(2.06)

0.00 
(0.00)

5.61 
(3.11)

0.32 
(0.47)

– –
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local data on H0 (dashed line) and the full data set (solid line), respectively. The corre-
sponding regularization parameters � are also selected by the BIC-type selection criterion 
as in (30).

From Fig. 5, we can find that the rescaled error curves of the local solution, the global 
solution, and the SLARD method are nearly parallel to each other, under different attack 
modes and Byzantine fractions. This indicates that these methods have the nearly same 
convergence rate to the local sample size n when other quantities are fixed. More precisely, 
since the slope of these lines is nearly −1∕2 , the rate is close to O

ℙ
(n−1∕2) , which is consist-

ent with our theoretical results.

4.2 � Application to real‑world benchmarks

In this section, to gain some additional insight into algorithm performance, we focus on an 
application to real-world benchmark data sets.

In the study, we analyze the Ames Housing data set1, which was compiled by Dean De 
Cock for use in data science education. This data set contains all sales that had occurred 
within Ames from 2006 to 2010. The response variable is the house sale price; the covar-
iates include various house features like the lot size, masonry veneer area, and height of 
the basement. We aim to learn a sparse least square regression model to predict the house 
price by applying our proposed methods and to compare the performance of different 

Fig. 3   The �
2
-error over Byzantine fraction, under median regression, varying attack modes. The total sam-

ple size N is 200 × (100 + 1) , the number of machines (m + 1) is 101, and the dimension p is 500

1  http://​jse.​amstat.​org/​v19n3/​decock.​pdf.

http://jse.amstat.org/v19n3/decock.pdf
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Table 3   The false positives (FP) and false negatives (FN) and their standard errors (in parentheses) of the 
SLARD, T-SLARD , K-SLARD , and SLAD methods under sample size N = 200 × (100 + 1) , local sample 
size n = 200

The corruption mechanism is given by Gaussian attack, Bit-flip attack, and Omniscient attack. Noises are 
generated from standard Cauchy distribution Cauchy(0, 1) and the loss function is chosen as absolute devia-
tion loss

Attack None

�
n

SLARD T-SLARD K-SLARD SLAD

FP FN FP FN FP FN FP FN

0 4.90 
(2.07)

0.00 
(0.00)

3.93 
(1.69)

0.00 
(0.00)

10.46 
(3.08)

0.52 
(0.50)

5.36 
(1.85)

0.00 (0.00)

Gaussian
0.05 1.48 

(1.20)
0.00 

(0.00)
0.05 

(0.22)
0.00 

(0.00)
6.26 

(2.37)
0.60 

(0.49)
2.15 

(1.44)
0.00 (0.00)

0.10 0.66 
(0.80)

0.00 
(0.00)

0.08 
(0.31)

0.00 
(0.00)

3.60 
(1.75)

0.62 
(0.49)

2.06 
(1.38)

0.00 (0.00)

0.15 4.47 
(1.85)

0.00 
(0.00)

7.09 
(2.22)

0.00 
(0.00)

10.57 
(3.25)

0.55 
(0.50)

63.92 
(12.93)

0.00 (0.00)

0.20 0.70 
(0.89)

0.00 
(0.00)

1.83 
(1.35)

0.00 
(0.00)

6.41 
(2.43)

0.51 
(0.50)

5.28 
(2.23)

0.03 (0.18)

0.25 2.91 
(1.59)

0.00 
(0.00)

1.16 
(1.10)

0.00 
(0.00)

5.50 
(2.23)

0.66 
(0.48)

95.75 
(16.18)

3.87 (2.04)

Bit-Flip
0.05 5.33 

(2.04)
0.00 

(0.00)
5.54 

(2.02)
0.00 

(0.00)
6.29 

(2.34)
0.60 

(0.50)
3.21 

(1.24)
0.00 (0.00)

0.10 0.18 
(0.73)

0.00 
(0.04)

4.68 
(1.82)

0.00 
(0.00)

3.63 
(1.77)

0.62 
(0.49)

1.73 
(0.71)

0.00 (0.00)

0.15 1.71 
(1.22)

0.00 
(0.00)

3.54 
(1.59)

0.00 
(0.00)

10.61 
(3.23)

0.54 
(0.50)

2.04 
(0.85)

0.80 (0.40)

0.20 1.30 
(1.09)

0.00 
(0.00)

6.10 
(1.70)

0.00 
(0.00)

6.43 
(2.47)

0.51 
(0.50)

2.57 
(0.56)

1.57 (0.61)

0.25 0.20 
(0.45)

0.00 
(0.00)

5.42 
(3.46)

0.00 
(0.00)

5.49 
(2.20)

0.67 
(0.48)

2.76 
(0.60)

2.75 (0.46)

Omniscient
0.05 5.20 

(4.01)
0.00 

(0.00)
4.87 

(2.05)
0.00 

(0.00)
6.32 

(2.35)
0.60 

(0.50)
– –

0.10 2.10 
(1.37)

0.00 
(0.00)

1.73 
(1.12)

0.00 
(0.00)

3.62 
(1.75)

0.62 
(0.49)

– –

0.15 4.73 
(1.85)

0.00 
(0.00)

5.61 
(1.81)

0.00 
(0.00)

10.62 
(3.27)

0.54 
(0.50)

– –

0.20 3.22 
(1.56)

0.00 
(0.00)

1.77 
(1.21)

0.00 
(0.00)

6.42 
(2.42)

0.51 
(0.50)

– –

0.25 2.36 
(1.44)

0.00 
(0.00)

4.50 
(1.69)

0.00 
(0.00)

5.50 
(2.22)

0.67 
(0.48)

– –
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SLARD methods in terms of prediction error. After weeding out the useless features 
and outliers, we obtained 2902 observations and 70 features. We randomly partitioned 
the data set into 2100 training data and 802 testing data. To simulate a distributed envi-
ronment, we further divided the training data into 21 blocks evenly, each holding 100 
data  points. We chose one block as the master machine H0 , and the rest blocks serve 
as the worker machines. Among them, the � fraction of machines are assigned as the 

Fig. 4   The �
2
-error over iterations, under Huber regression, varying attack modes and Byzantine fractions. 

The total sample size N is 200 × (100 + 1) , the number of machines (m + 1) is 101, and the dimension p is 
500

Fig. 5   The �
2
-error over local sample sizes, under Huber regression, varying attack modes and Byzantine 

fractions. The number of machines (m + 1) is 51, and the dimension p is 500
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Byzantine machines. We vary the fraction � from {0.05, 0.15} . During the training, each 
Byzantine machine reports falsified information according to the aforementioned three 
different attacking modes. For each method, we utilize the BIC-type selection criterion 
presented in Section  4.1 to choose the regularization parameters. We test 100 random 
partitions of the training and testing set and report the average prediction error at each 
iteration on the testing data set. Moreover, we draw two horizontal lines, representing the 
average prediction error of solving the Lasso problem using the local data on H0 (dashed 
line) and the full data set (solid line), respectively. The result is summarized in Fig. 6.

As we can see, the curves of prediction error in Fig.  6 look similar in shape to the 
curves of �2-error in Fig. 4. Both SLARD and T-SLARD converge within 5-6 iterations. 
The trimmed-mean based method seems to be slightly better than the median-of-mean 
based method. The K-SLARD method behaves the worst among the three. Additionally, it 
is interesting to find that under gaussian attack and bit-flip attack, the iterative prediction 
error of SLARD and T-SLARD become smaller than the global prediction error after suf-
ficiently large iteration rounds, which may be due to model misspecification.

5 � Concluding remarks

This paper studies the general distributed sparse M-estimation problem with the presence 
of Byzantine failure. We start from the  distributed �1-penalized least square regression 
problem and propose to use the coordinate-wise median as a gradient aggregator to hedge 
against Byzantine corruptions. For general and possibly non-smooth loss functions, we 
develop a square loss transformation method to convert the target function into the square 
loss, which greatly alleviates the computational burden. From a theoretical perspective, our 
method enjoys a fast converging rate and support recovery guarantee. In a future study, as 
already discussed in Remark 2, we will take into account the delay of data transmission 
and investigate the Byzantine distributed asynchronous sparse learning problem. Another 

Fig. 6   The prediction error over iterations, under varying attack modes and Byzantine fractions. The total 
training sample size N is 2100, the test sample size is 802, the number of machines (m + 1) is 21, and the 
dimension p is 71
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important future direction is to develop Byzantine-robust algorithms for non-convex loss 
functions and regularizers. Many kinds of literature (see, e.g., Loh and Wainwright 2015, 
2017; Mei et al. 2018; Ma et al. 2019) have shown that non-convexity usually brings about 
nice practical performance and theoretical properties. It would be interesting to study Byz-
antine-robust versions of these methods.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10994-​021-​06001-x.
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