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Abstract
Semantic embedding of knowledge graphs has been widely studied and used for prediction 
and statistical analysis tasks across various domains such as Natural Language Processing 
and the Semantic Web. However, less attention has been paid to developing robust methods 
for embedding OWL (Web Ontology Language) ontologies, which contain richer semantic 
information than plain knowledge graphs, and have been widely adopted in domains such 
as bioinformatics. In this paper, we propose a random walk and word embedding based 
ontology embedding method named OWL2Vec*, which encodes the semantics of an OWL 
ontology by taking into account its graph structure, lexical information and logical con-
structors. Our empirical evaluation with three real world datasets suggests that OWL2Vec*  
benefits from these three different aspects of an ontology in class membership prediction 
and class subsumption prediction tasks. Furthermore, OWL2Vec*  often significantly out-
performs the state-of-the-art methods in our experiments.

Keywords  Ontology · Ontology embedding · Word embedding · Web ontology language · 
OWL2Vec*  · Ontology completion

1  Introduction

In recent years, the semantic embedding of knowledge graphs (KGs) has been widely 
investigated (Wang et  al., 2017). The objective of such embeddings is to represent in a 
vector space KG components such as entities and relations in a way that captures the struc-
ture of the graph. Various kinds of KG embedding algorithms have been proposed and 
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successfully applied to KG refinement (e.g., link prediction (Rossi et al., 2020) and entity 
alignment Sun et  al. 2020), recommendation systems (Ristoski et  al., 2019), zero-shot 
learning (Chen et al., 2020c; Wang et al., 2018), interaction prediction in bioinformatics 
(Smaili et al., 2018; Myklebust et al., 2019), and so on. However, most of these algorithms 
focus on creating embeddings for multi-relational graphs composed of RDF (Resource 
Description Framework) triples such as ⟨England,1 isPartOf, UK⟩ and ⟨UK, hasCapital, 
London⟩.2 They do not deal with OWL ontologies (or ontological schemas in OWL) which 
include not only graph structures,3 but also logic constructors such as class disjointness, 
existential and universal quantification (e.g., a country must have at least one city as its 
capital), and meta data such as the synonyms, definitions and comments of a class. OWL 
ontologies have been widely used in many domains such as bioinformatics, the Seman-
tic Web and Linked Data (Myklebust et al., 2019; Horrocks, 2008). They are capable of 
expressing complex domain knowledge and managing large scale domain vocabularies, 
and can often improve the quality and usability of the KG (Paulheim & Gangemi, 2015; 
Chen et al., 2020a).

Inspired by the success of KG embeddings, more recently there has been a growing 
interest in embedding simple ontological schemas consisting, e.g., of hierarchical classes, 
and property domain and range (Hao et al., 2019; Moon et al., 2017; Alshargi et al., 2018; 
Guan et al., 2019); however, these methods rely on having a large number of facts (i.e., an 
ABox), and do not support more expressive OWL ontologies which contain some widely 
used logic constructors such as the class disjointness and the existential quantification 
mentioned above. Embeddings for OWL ontologies have started to receive some atten-
tion recently. Kulmanov et al. (2019) and Garg et al. (2019) proposed to model the seman-
tics of the logic constructor by geometric learning, but their models only support some of 
the logic constructors from the description logics (DLs) EL++ (which is closely related to 
OWL EL – a fragment of OWL) and ALC , respectively. Moreover, both methods consider 
only the logical and graph structure of an ontology, and ignore its lexical information that 
widely exists in the meta data (e.g., rdfs:label and rdfs:comment triples). OPA2Vec (Smaili 
et  al., 2018) considers the ontology’s lexical information by learning a word embedding 
model which encodes statistical correlations between items in a corpus. However, it treats 
each axiom as a sentence and fails to explore and utilize the semantic relationships between 
axioms. OWL2Vec* (Holter et  al., 2019), which is our very preliminary work before 
OWL2Vec*, captures the semantics of OWL ontologies by exploring the neighborhoods of 
classes. This was shown to be quite effective, but it does not fully exploit the graph struc-
ture, the lexical information, or the logical semantics available in OWL ontologies.

In this work we have extended OWL2Vec* in order to provide a more general and 
robust OWL ontology embedding framework which we call OWL2Vec* . OWL2Vec*  
exploits an OWL (or OWL 2) ontology by walking over its graph forms and gener-
ates a corpus of three documents that capture different aspects of the semantics of the 
ontology: (i) the graph structure and the logic constructors, (ii) the lexical information 
(e.g., entity names, comments and definitions), and (iii) a combination of the lexical 
information, graph structure and logical constructors. Finally, OWL2Vec*  uses a word 

1  https://​www.​w3.​org/​RDF/
2  https://​www.​w3.​org/​OWL/
3  In this paper, an ontology’s graph structure includes the relation between instances (e.g., isPartOf) as in 
RDF KGs, the subsumption relation between classes (i.e., the class hierarchy defined by rdfs:subClassOf), 
the membership relation between instances and classes, and the relation between instances and literals.

https://www.w3.org/RDF/
https://www.w3.org/OWL/


1815Machine Learning (2021) 110:1813–1845	

1 3

embedding model to create embeddings of both entities and words from the generated 
corpus. Note that the OWL2Vec*  framework is compatible with different word embed-
ding methods and their different settings, although the current implementation adopts 
Word2Vec (Mikolov et al., 2013b) and its skip-gram architecture.

We have evaluated OWL2Vec*  in two case studies — class membership prediction 
and class subsumption prediction, using three large scale real world ontologies — a 
healthy lifestyle ontology named HeLis (Dragoni et al., 2018), a food ontology named 
FoodOn (Dooley et  al., 2018) and the Gene Ontology (GO) (G.O. 2008). In the case 
studies we empirically analyze the impact of (i) different document and embedding set-
tings which correspond to combinations of the semantics of the graph structure, lexi-
cal information and logic constructors, (ii) different graph structure exploration settings 
(e.g., the transformation methods from an OWL ontology to an RDF graph, and the 
graph walking strategies), (iii) ontology entailment reasoning, and (iv) word embedding 
pre-training. The results suggest that OWL2Vec*  can achieve significantly better per-
formance than the baselines including the state-of-the-art ontology embeddings (Kul-
manov et al., 2019; Garg et al., 2019; Smaili et al., 2018; Holter et al., 2019), some clas-
sic KG embeddings such as RDF2Vec (Ristoski and Paulheim 2016), TransE (Bordes 
et  al., 2013) and DistMult (Yang et  al., 2014), and two supervised Transformer (Vas-
wani et al., 2017) classifiers based on the textual context. We also calculated the Euclid-
ean distance between entities and visualized the embeddings of some example entities 
to analyze different embedding methods.

Briefly this study can be summarized as follows.

•	 This work is among the first that aim at embedding all kinds of semantics of OWL 
ontologies including the graph structure, the literals and the logical constructors. A 
general framework named OWL2Vec*  together with different strategies for address-
ing different OWL semantics has been developed. OWL2Vec*  has the potential to(i) 
enable statistical or machine learning tasks over massive ontologies, thus assisting their 
curation and boosting their application, (ii) facilitate the integration of symbolic and 
sub-symbolic systems into new neural-symbolic solutions.

•	 The work has evaluated OWL2Vec*  in two important ontology completion case stud-
ies (class membership prediction and class subsumption prediction) on three real world 
ontologies, where OWL2Vec*  outperforms both state-of-the art ontology embedding 
and classic KG embedding methods. We have also conducted extensive ablation studies 
to verify the adopted strategies as well as visualization analysis to facilitate interpreta-
tion.

The remainder of the paper is organized as follows. The next section introduces the pre-
liminaries including both background and related work. Section 3 introduces the tech-
nical details of OWL2Vec*  as well as the case studies. Section 4 presents the experi-
ments and the evaluation results. The last section concludes and discusses future work.
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2 � Preliminaries

2.1 � OWL ontologies

Our OWL2Vec*  embedding targets OWL ontologies (Bechhofer et al., 2004), which are 
based on the SROIQ description logic (DL) (Baader et al., 2017). Consider a signature 
Σ = (N

C
,N

R
,N

I
) , where N

C
 , N

R
 and N

I
 are pairwise disjoint sets of, respectively, atomic 

concepts, atomic roles and individuals. Complex concepts and roles can be composed 
using DL constructors such as conjunction (e.g., C ⊓ D) , disjunction (e.g., C ⊔ D ), existen-
tial restriction (e.g., ∃r.C ) and universal restrictions (e.g., ∀r.C ) where C and D are con-
cepts, and r is a role. An OWL ontology comprises a TBox T  and an ABox A . The TBox 
is a set of axioms such as General Concept Inclusion (GCI) axioms (e.g., C ⊑ D ), Role 
Inclusion (RI) axioms (e.g., r ⊑ s ) and Inverse Role axioms (e.g., s ≡ r− ), where C and D 
are concepts, r and s are roles, and r− denotes the inverse of r. The ABox is a set of asser-
tions such as concept assertions (e.g., C(a)), role assertions (e.g., r(a, b)) and individual 
equality and inequality assertions (e.g., a ≡ b and a ≢ b ), where C is a concept, r is a role, 
a and b are individuals. It is worth noting that the terminological part can also be divided 
into a TBox and an RBox, where the RBox models the interdependencies between the roles 
such as the RI.

In OWL, the aforementioned concept, role and individual are modeled as class, object 
property and instance, respectively. To avoid confusion, we will only use the terms of 
class, object property and instance in the remainder of the paper. We will also use the term 
property which can refer to not only object property, but also data property and annota-
tion property. Meanwhile, for convenience, we will also use a general term entity to refer 
to a class, a property or an instance. Note that an object property models the relationship 
between two instances; a data property models the relationship between an instance and a 
literal value (e.g., number or text); and an annotation property is used to represent a (non-
logical) relationship between an entity and an annotation (e.g., comment or label). Each 
entity is uniquely represented by an Internationalized Resource Identifier (IRI).4 These 
IRIs may be lexically ‘meaningful’ (e.g., vc:AlcoholicBeverages in Fig. 1a) or consist of 
internal IDs that do not carry useful lexical information (e.g., obo:FOODON_00002809 
in Fig. 1b); in either case the intended meaning may also be indicated via annotations (see 
below). To enhance the reading, we will typically show together with the ID-based IRI of 
an entity a readable label from its available annotations.

In OWL, a GCI axiom C ⊑ D corresponds to a subsumption relation between the class 
C and the class D, while a concept assertion C(a) corresponds to a membership rela-
tion between the instance a and the class C. Meanwhile, in OWL, complex concepts, 
complex roles, axioms and role assertions can be serialised as (sets of) RDF triples, 
each of which is a tuple composed of a subject, a predicate and an object. For the predi-
cate, these triples use a combination of bespoke object properties (e.g., vc:hasNutrient), 
and built-in properties by RDF, RDFS and OWL (e.g., rdfs:subClassOf,5 rdf:type and 
owl:someValuesFrom). In Fig. 1, for example, the relationship between the two instances 
vc:FOOD-4001 (blonde beer) and vc:VitaminC_100 is represented by a triple using 

4  An entity can also be represented by an Uniform Resource Identifier (URI). IRIs extend URIs by using 
the Universal Character Set, where URIs were limited to ASCII, with far fewer characters.
5  https://​www.​w3.​org/​TR/​rdf-​schema/

https://www.w3.org/TR/rdf-schema/
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the object property vc:hasNutrient, while the existential restriction involving the class 
obo:FOODON_00002809 (edamame) and the object property obo:RO_0001000 (derives 
from) is represented by triples using three OWL built-in properties, i.e., owl:Restriction, 
owl:onProperty and owl:someValuesFrom. The object of an RDF triple of an OWL asser-
tion can be a literal value; for example, the calories amount of vc:FOOD-4001 (blonde 
beer) is represented by a triple using the bespoke data property vc:amountCalories and the 
literal value 34.0 of type xsd:double.

In addition to axioms and assertions with formal logic-based semantics, an ontology 
often contains metadata information in the form of annotation axioms. These annotations 
can also be represented by RDF triples using annotation properties as the predicates; e.g., 
the class obo:FOODON_00002809 (edamame) is annotated using rdfs:label to specify 

(a)

(b)

Fig. 1   Fragments of the ontologies. Note vc is the prefix associated to the IRI namespace of http://​www.​fbk.​
eu/​ontol​ogies/​virtu​alcoa​ch#, while obo, oboInOwl, xsd, rdf, rdfs and owl are prefixes of standard vocabular-
ies

http://www.fbk.eu/ontologies/virtualcoach
http://www.fbk.eu/ontologies/virtualcoach


1818	 Machine Learning (2021) 110:1813–1845

1 3

a name string, using rdfs:comment to specify a description, and using obo:IAO-0000115 
(definition) — a bespoke annotation property to specify a natural language “definition”.

Knowledge graph (KG) refers to structured knowledge resources which are often 
expressed as a set of RDF triples (Hogan et al., 2020). Many KGs only contain instances 
and facts which are equivalent to an OWL ontology ABox. Some other KGs such as DBpe-
dia (Auer et al., 2007) are also enhanced with an schema which is equivalent to the TBox 
of an OWL ontology. Thus, a KG can often be understood as an ontology.

2.2 � Semantic embedding

Semantic embedding refers to a series of representation learning (or feature learning) tech-
niques that encode the semantics of data such as sequences and graphs into vectors, such 
that they can be utilized by downstream machine learning prediction and statistical analysis 
tasks (Bengio et al., 2013). Word embedding or sequence feature learning models such as 
Feed-Forward Neural Networks, Recurrent Neural Networks and Transformers are widely 
used for semantic embedding, and they have shown good performance in embedding the 
context (e.g., item co-occurrence) in sequences (Mikolov et al., 2013a; Peters et al., 2018; 
Devlin et al., 2019). Two classic auto-encoding architectures for learning representations 
of sequential items are continuous skip-gram and continuous Bag-of-Words (CBOW) 
(Mikolov et  al., 2013b, a). The former aims at predicting the surroundings of an item, 
while the latter aims at predicting an item based on its surroundings. Word2Vec is a well 
known group of sequence feature learning techniques for learning word embeddings from 
a large corpus, and was initially developed by a team at Google; it can be configured to use 
either skip-gram or CBOW architectures (Mikolov et al., 2013b, a).

Semantic embedding has also been extended to KGs composed of role assertions (Wang 
et al., 2017). The entities and relations (object properties) are represented in a vector space 
while retaining their relative relationships (semantics), and the resulting vectors are then 
applied to downstream tasks including link prediction (Rossi et al., 2020), entity alignment 
(Sun et al., 2020), and erroneous fact detection and correction (Chen et al., 2020a). One 
paradigm for learning KG representations is computing the embeddings in an end-to-end 
manner, iteratively adjusting the vectors using an optimization algorithm to minimize the 
overall loss across all the triples, where the loss is usually calculated by scoring the truth/
falsity of each triple (positive and negative samples). Algorithms based on this technique 
include translation based models such as TransE (Bordes et  al., 2013) and TransR (Lin 
et al., 2015) and latent factor models such as DistMult (Yang et al., 2014).

Another paradigm is to first explicitly explore the neighborhoods of entities and rela-
tions in the graph, and then learn the embeddings using a word embedding model. Two 
representative algorithms based on this paradigm are node2vec (Grover & Leskovec, 2016) 
and Deep Graph Kernels (Yanardag and Vishwanathan 2015). The former extracts random 
graph walks and creates skip-gram or CBOW models as the corpus for training, while the 
latter uses graph kernels such as Weisfeiler-Lehman (WL) sub-graph kernels as the corpus. 
However, both embedding algorithms were originally developed for undirected graphs, and 
thus may have limited performance when directly applied to KGs. RDF2Vec addresses this 
issue by extending the idea of the above two algorithms to directed labeled RDF graphs, 
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and has been shown to learn effective embeddings for large scale KGs such as DBpedia 
(Ristoski & Paulheim, 2016; Ristoski et al., 2019). Recent studies have explored the usage 
of new word embedding or sequence feature learning models for learning embeddings; one 
example is the KG embedding and link prediction method named RW-LMLM which com-
bines the random walk algorithm with Transformer (Wang et al., 2019).

Our OWL2Vec*  technique belongs to the word embedding paradigm, but we focus on 
OWL ontologies instead of typical KGs, with the goal of preserving the semantics not only 
of the graph structure, but also of the lexical information and the logical constructors. Note 
that the graph of an ontology, which includes hierarchical categorization structure, differs 
from the multi-relation graph composed of role (relation) assertions of a typical KG; fur-
thermore, according to our literal review on ontology embedding (cf. Sect. 2.3) and the lat-
est survey (Kulmanov et al., 2020), there are currently no existing KG embedding methods 
that jointly explore the ontology’s lexical information and logical constructors.

2.3 � Ontology embedding

The use of machine learning prediction and statistical analysis with ontologies is receiving 
wider attention, and some approaches to embedding the semantics of OWL ontologies can 
already be found in the literature. Unlike typical KGs, OWL ontologies include not only 
graph structure but also logical constructors, and entities are often augmented with richer 
lexical information specified using rdfs:label, rdfs:comment and many other bespoke or 
built-in annotation properties. The objective of OWL ontology embedding in this study is 
to represent each OWL named entity (class, instance or property) by a vector, such that the 
inter-entity relationships indicated by the above information are kept in the vector space, 
and the performance of the downstream tasks, where the input vectors can be understood 
as learned features, is maximized.

EL Embedding (Kulmanov et al., 2019) and Quantum Embedding (Garg et al., 2019) 
are two OWL ontology embedding algorithms of the end-to-end paradigm. They construct 
specific score functions and loss functions for logical axioms from EL++ and ALC , respec-
tively, by transforming logical relations into geometric relations. This encodes the seman-
tics of the logical constructors, but ignores the additional semantics provided by the lexical 
information of the ontology. Moreover, although the graph structure is explored by consid-
ering class subsumption and class membership axioms, the exploration is incomplete as it 
uses only rdfs:subClassOf and rdf:type edges, and ignores edges involving other relations.

Onto2Vec (Smaili et  al., 2018) and OPA2Vec (Smaili et  al., 2018) are two ontology 
embedding algorithms of the word embedding paradigm using a model of either the skip-
gram architecture or the CBOW architecture. Onto2Vec uses the axioms of an ontology 
as the corpus for training, while OPA2Vec complements the corpus of Onto2Vec with the 
lexical information provided by, e.g., rdfs:comment. Both adopt the deductive closure of an 
ontology with entailment reasoning. They have been evaluated with the Gene Ontology for 
predicting protein-protein interaction (i.e., a domain-specific relationship between classes), 
which is quite different from the class membership prediction and the class subsumption 
prediction in this study. Both methods treat each axiom as a sentence, which means that 
they cannot explore the correlation between axioms. This makes it hard to fully explore the 
graph structure and the logical relation between axioms, and may also lead to the problem 
of corpus shortage for small to medium scale ontologies. OWL2Vec*  deals with the above 
issues of OPA2Vec and Onto2Vec by complementing their axiom corpus with a corpus 
generated by walking over RDF graphs that are transformed from the OWL ontology with 
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its graph structure and logical constructors considered. In addition, to fully utilize the lexi-
cal information, OWL2Vec*  creates embeddings for not only the ontology entities as the 
current KG/ontology embedding methods but also for the words in the lexical information.

3 � Methodology

Figure 2 presents the overall framework of OWL2Vec*, which mainly consists of two core 
steps: (i) corpus extraction from the ontology, and (ii) word embedding model training with 
the corpus. The corpus includes a structure document, a lexical document, and a combined 
document. The first two documents aim at exploring the ontology’s graph structure, logical 
constructors and lexical information, where ontology entailment reasoning can be enabled, 
while the third document aims at preserving the correlation between entities (IRIs) and 
their lexical labels (words). Note that the latter two documents are constructed using the 
first document as the backbone while taking into account the lexical information available 
from the ontology. See Table  2 for sentence examples of each document. Briefly, given 
an input ontology O and the target entities E of O for embedding, OWL2Vec*  outputs a 
vector for each entity e in E, denoted as e ∈ ℝ

d , where d is the (configurable) embedding 
dimension. Note that E can be all the entities in O or just a part needed for a specific appli-
cation. With the OWL2Vec*  embeddings, we apply them in two downstream case studies 
— class membership prediction and class subsumption prediction. For class membership 
prediction we set E to all the named classes and instances; for class subsumption prediction 
we set E to all the named classes.

Fig. 2   The overall framework of OWL2Vec* 
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3.1 � From OWL ontology to RDF graph

OWL2Vec*  incorporates two strategies to turn the original OWL ontology O into a 
graph G that is composed of RDF triples. The first strategy is the transformation accord-
ing to OWL to RDF Graph Mapping which is originally defined by the W3C6 to store 
and exchange OWL ontologies as RDF triples. Some simple axioms such as membership 
and subsumption axioms for atomic entities, data and annotation properties associated to 
atomic entities, and relational assertions between atomic instances can be directly trans-
formed into RDF triples by introducing some built-in properties or using the bespoke 
properties in the axioms (e.g., ⟨vc:FOOD-4001 (Blonde Beer), rdf:type, vc:Beer⟩ , ⟨
vc:FOOD-4001, rdfs:label, “Blonde Beer”⟩ and ⟨vc:FOOD-4001, vc:hasNutrient, 
vc:VitaminC_1000⟩ ). Axioms involving complex class expressions need to be transformed 
into multiple triples and often rely on blank nodes. For example, the existential restric-
tion of the class obo:FOODON_00002809 (edamame) in Fig. 1b, i.e., ObjectSomeValues
From(obo:RO_0001000 (derives from), obo:FOODON_03411347 (plant)) is transformed 
into four RDF triples, i.e., ⟨obo:FOODON_00002809, rdfs:subClassOf, _:x⟩ , ⟨_:x, owl:s
omeValuesFrom,obo:FOODON_03411347 ⟩ , ⟨_:x, rdf:type, owl:Restriction⟩ and ⟨_:x, 
owl:onProperty,obo:RO_0001000 ⟩ , where _:x denotes a blank node. In this example, 
one additional node _:x and one additional edge rdfs:subClassOf are inserted between 
obo:FOODON_00002809 and obo:FOODON_03411347.

The second strategy is based on projection rules proposed in Soylu et  al., (2018), 
Holter et  al., (2019), as shown in Table  1, where every RDF triple ⟨X, r, Y⟩ in the pro-
jection (the third column) is justified by one or more axioms in the ontology (the first 

Table 1   Projection rules, based on Soylu et al. (2018), Holter et al. (2019), used in the second strategy to 
generate an RDF graph

□ is one of: ≥ , ≤ , = , ∃, ∀ . A, B, B
i
 and C

i
 are atomic concepts (classes), s

i
 , r and r′ are roles (object proper-

ties), r− is the inverse of a relation r, a and b are individuals (instances), ⊤ is the top concept (defined by 
owl:Thing)

Axiom of condition 1 Axiom or triple(s) of condition 2 Projected triple(s)

A ⊑ □r.D D ≡ B | B1 ⊔ ... ⊔ Bn | B1 ⊓ ... ⊓ Bn ⟨A, r,B⟩ or
or
□r.D ⊑ A

∃r.⊤ ⊑ A (domain) ⊤ ⊑ ∀r.B (range) ⟨A, r,Bi⟩ for i ∈ 1, ..., n

A ⊑ ∃r.{b} B(b)
r ⊑ r′ ⟨A, r′,B⟩ has been projected
r� ≡ r− ⟨B, r′,A⟩ has been projected
s1 ◦ ... ◦ sn ⊑ r ⟨A, s1,C1⟩...⟨Cn, sn,B⟩ have been projected
B ⊑ A – ⟨B, rdfs∶subClassOf ,A⟩

⟨A, rdfs∶subClassOf −,B⟩
A(a) – ⟨a, rdf∶type,A⟩

⟨A, rdf∶type−, a⟩
r(a, b) – ⟨a, r, b⟩

6  https://​www.​w3.​org/​TR/​owl2-​mappi​ng-​to-​rdf/

https://www.w3.org/TR/owl2-mapping-to-rdf/
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and second columns). As in the first strategy, a simple relational assertion between two 
atomic entities (the final row in Table  1), or a simple data or annotation property asso-
ciated to an atomic entity, is directly transformed into one single triple. While those 
complex logical constructors (the first six rows in Table 1), unlike the first strategy, are 
approximated. For example, the above mentioned existential restriction of the class 
obo:FOODON_00002809 would be represented with ⟨obo:FOODON_00002809, 
obo:RO_0001000, obo:FOODON_03411347⟩ . This avoids the use of blank nodes in the 
RDF graph, which may act as noise towards the correlation between entities when the 
embeddings are learned; but, the exact logical relationships are not kept in the resulting 
RDF graph. Moreover, the projection of membership and subsumption axioms (the seventh 
and eighth rows in Table 1) has two settings. In the first setting, the two involved atomic 
entities are transformed into one triple with the predicate of rdf:type or rdfs:subClassOf. In 
the second setting, in addition to the above triple, one more triple which uses the inverse of 
rdf:type or rdfs:subClassOf is added. This enables a bidirectional walk between two enti-
ties with a subsumption or membership relationship on the transformed RDF graph, and 
would impact the corpus and the embeddings. In the remainder of this paper, we by default 
refer to the first setting when we mention projection rules, and we refer to the second set-
ting by the term of projection rules with inverse or by using the suffix “(+R)”.

Both ontology to RDF graph transformation strategies can incorporate an OWL entail-
ment reasoner to compute the TBox classification and ABox realization before O is trans-
formed into an RDF graph G . Such reasoning grounds the axioms of logical constructors 
and leads to explicit representation of some hidden knowledge. For example, in Fig. 1a, we 
can infer a hidden triple ⟨vc:FOOD-4001 (blonde beer), rdf:type, vc:AlcoholicBeverages⟩ 
from ⟨vc:FOOD-4001, rdf:type, vc:Beer⟩ and ⟨vc:Beer, rdfs:subClassOf, 
vc:AlcoholicBeverages⟩ . When the reasoning is enabled, such inferred hidden triples will 
be included in the transformed RDF graph G . In our experiments we use the HermiT OWL 
reasoner (Glimm et al., 2014), and we evaluate the impact of enabling or disabling reason-
ing (cf. the second paragraph in Sect. 4.3.3 and Table 6).

3.2 � Structure document

The structure document aims at capturing both the graph structure and the logical con-
structors of the ontology. With the RDF graph G , one option is computing random walks 
for each target entity in E with the RDF graph G . Each walk, which is a sequence of entity 
IRIs, acts as a sentence of the structure document. Ex1 and Ex2 in Table 2 are two walk 
examples both starting from the class vc:FOOD-4001 (blonde beer). To implement the ran-
dom walk algorithm, we first transform the RDF graph G into a directed single relation 
graph G′ ; for each RDF triple ⟨X, r, Y⟩ in G , the subject X, the object Y and the relation r are 
transformed into three vertices, two edges are added from the vertex of X to the vertex of r 
and from the vertex of r to the vertex of Y respectively. Given one starting vertex, we fairly 
and randomly select the next vertex from all its connected vertices, and iterate this “step” 
operation for a specific number of times to perform “walking”.

OWL2Vec*  also allows the usage of the Weisfeiler Lehman (WL) kernel (Shervashidze 
et  al., 2011) which encodes the structure of a sub-graph into a unique identity and thus 
enables the representation and incorporation of the sub-graph in a walk. For one vertex 
in the transformed single relation graph G′ , there is an associated sub-graph (neighbour-
hood) starting from this vertex, and we simply call this sub-graph’s WL kernel (identity) as 
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this vertex’s WL kernel. In our implementation, we first extract the original random walks. 
For each random walk, we then keep the IRIs of the starting vertex and the vertices that 
are obtained from the relations, but replace the IRIs of the none-starting vertices that are 
obtained from the subjects or objects with their WL kernels. Ex3 in Table 2 is an example 
of enabling the WL sub-graph kernel for the walk of Ex2. Note that when calculating a 
vertex’s WL kernel, the size of its sub-graph, i.e., the depth from this vertex to the farthest 
vertex in the sub-graph can be set. We generate and adopt all the walks, with the sub-graph 
size ranging from 0 to a maximum size — a hyper-parameter that is set to 4 by default. 
Specially, the WL kernel enabled random walk with the sub-graph size of 0 is equivalent to 
the original random walk.

To capture the logical constructors, OWL2Vec*  extracts all the axioms of the ontol-
ogy and complements the sentences of the structure document. In our implementation, 
each ontology axiom is transformed into a sequence following the OWL Manchester Syn-
tax7, where the original built-in terms such as “subClassOf” and “some” are kept. Ex4 
in Table 2 is an example of such Manchester Syntax sentence according to the axiom of 
the existential restriction of the class obo:FOODON_00002809 (edamame). In compari-
son with the random walk over the projected RDF graph, which generates the sentence 
of (obo:FOODON_00002809, obo:RO_0001000, obo:FOODON_03411347) for the same 
axiom in Ex4, the Manchester Syntax sentence indicates the logical relationship between 
the terms by the buit-in terms; while in comparison with the random walk over the graph 
transformed by W3C OWL to RDF Graph Mapping, the Manchester syntax sentence is 
shorter and avoids the blank nodes.

3.3 � Lexical document

The lexical document includes two kinds of word sentences. The first kind are generated 
from the entity IRI sentences in the structure document, while the second are extracted 
from the relevant lexical annotation axioms in the ontology. For the first kind, given an 
entity IRI sentence, each of its entities is replaced by its English label defined by rdfs:label. 
Note that the label is parsed and transformed into lowercase tokens, and those tokens with 
no letter characters are filtered out, before it replaces the entity IRI. It is possible that some 
entities have no English annotations by rdfs:label, such as the class vc:MilkAndYogurt and 
the instance vc:VitaminC_1000 in Fig.  1a. In this case, we prefer to use the name part 
of the IRI and parse it into words assuming that the name follows the camel case (e.g., 
vc:MilkAndYogurt is parsed into “milk”, “and” and “yogurt”). One sentence example of 
this kind is Ex5 in Table 2, which is generated by replacing the IRIs of the Ex1 sentence 
by their words. Specially, some IRIs have neither English labels or meaningful IRI names, 
and when the WL sub-graph kernel is enabled, there are also kernel identities in the struc-
ture sentence. We keep these original IRIs and identities in the word sentences (cf. Ex6 in 
Table 2).

The second kind of word sentences are extracted from the textual annotations. They 
include two kinds: annotations by bespoke annotation properties such as obo:IAO_0000115 
(definition), obo:IAO_0010000 (has axiom label) and oboInOwl:hasSynonym6 , and anno-
tations by built-in annotation properties such as rdfs:comment and rdfs:seeAlso. In our cur-
rent OWL2Vec*  implementation, we consider all the annotation properties of an ontology 

7  https://​www.​w3.​org/​TR/​owl2-​manch​ester-​syntax/

https://www.w3.org/TR/owl2-manchester-syntax/
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except for rdfs:label. The annotations by rdfs:label are ignored in generating word sen-
tences of the second kind because they are already considered in the word sentences of the 
first kind (e.g., Ex5). More specifically, for each annotation axiom, OWL2Vec*  replaces 
the subject entity by its English label or IRI name as in transforming the IRI sentence, and 
keeps the lowercase word tokens parsed from the annotation value. One example of such 
word sentence is Ex7 in Table 2 which is based on the annotation by obo:IAO_0000115 
(definition) to the class obo:FOODON_00002809 (edamame). It would enable the model 
to learn the correlation of “edamame” to other words in the relevant background such as 
“soybean” and “pods”.

3.4 � Combined document

OWL2Vec*  further extracts a combined document from the structure document and the 
entity annotations, so as to preserve the correlation between entities (IRIs) and words in 
the lexical information. To this end, we developed two strategies to deal with each IRI 
sentence in the structure document. One strategy is to randomly select an entity in an IRI 
sentence, keep the IRI of this entity, and replace the other entities of this sentence by their 
lowercase word tokens extracted from their labels or IRI names as in the creation of the 
lexical document. One example is Ex8 in Table 2, where the IRI of vc:FOOD-4001 (blonde 
beer) of the IRI sentence of Ex1 is kept while the other IRIs are replaced by their corre-
sponding words. The other strategy is traversing all the entities in a IRI sentence. For each 
entity, it generates a combined sentence by keeping the IRI of this entity, and replacing the 
others by their lowercase word tokens as in the random strategy. Thus for one IRI sentence, 
it generates m combined sentences where m is the number of entities of the IRI sentence. 
Ex9 in Table 2 is an example of the combined sentences based on the second strategy over 
the IRI sentence in Ex1.

The combined document aims at capturing the correlation between IRIs and words, such 
as vc:FOOD-4001 (blonde beer) and “nutrient” in Ex7. On the one hand this would benefit 
the embeddings of the IRIs with the semantics of words. This is especially useful in some 
contexts where only IRI vectors are available. For example, some entities have neither Eng-
lish labels or meaningful IRI name, and only IRI vectors can be used for these entities. On 
the other hand, the association with IRIs would incorporate some semantics of the graph 
structure into the words’ embeddings. Again there are some contexts where only words are 
analyzed. One example is when OWL2Vec*  is used as an ontology (domain) tailored word 
embedding model for the classification of external text of this specific domain. Meanwhile, 
this may also add noise to the correlation between words (e.g., vc:hasNutrient between 
“beer” and “vitamin” in Ex9) and negatively impact the words’ embeddings. The impact of 
the combined document and its two strategies is analyzed in our evaluation (cf. Sect. 4.3.1).

3.5 � Embeddings

OWL2Vec*  first merges the structure document, the lexical document and the combined 
document as one document, and then uses this document to train a Word2Vec model with 
the skip-gram architecture. The training is ended when the loss trends to be stable. The 
hyper-parameter of the minimum count of words is set to 1 such that each word or entity 
(IRI) is encoded as long as it appears in the documents at least once. Specially, we can 
pre-train the Word2Vec model by a large and general corpus such as a dump of Wikipedia 
articles. This brings some prior correlations between words, especially between a word’s 
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synonyms and between a word’s variants, which enables the downstream machine learn-
ing tasks to identify their semantic equality or similarity w.r.t. the corpus. However, such 
prior correlations may also be noisy and play a negative role in a domain specific task (cf. 
the evaluation in Sect. 4.3.4). Note that Word2Vec has been selected because it is one of 
the most widely used word embedding algorithms. It has already been successfully applied 
in KG embedding in a combination with random walk; one typical example is RDF2Vec 
(Ristoski and Paulheim 2016; Ristoski et al., 2019). With the adoption of a mature embed-
ding technique, in this study we can focus on extending semantic embedding from a KG 
to an ontology which expresses a much wider range of semantics, by developing suitable 
corpus extraction methods. OWL2Vec*  is uncoupled to Word2Vec, and is thus compatible 
with other word embedding or sequence feature learning methods such as the contextual 
model BERT which has shown its superiority according to some recent studies (Miaschi 
and Dell’Orletta 2020). We leave the selection, evaluation or even development of more 
suitable language embedding models to our future work.

With the trained word embedding model, OWL2Vec*  calculates the embedding of each 
target entity e in E. Its embedding e is the concatenation of V

iri
(e) and V

word
(e) , where V

iri
(e) 

is the vector of the IRI of e, and V
word

(e) is some summarization of the vectors of all the 
lowercase word tokens of e. In our evaluation we simply adopt the averaging operator for 
V
word

(e) , which usually works quite well for different data and tasks. As predictive informa-
tion of different words’ embeddings lie in different dimensions, the averaging operation 
would not lead to a loss of predictive information, especially when a classifier is further 
stacked after the embeddings for downstream applications (cf. Sect. 3.6). Note some more 
complicated weighting strategies such as using TF-IDF (term frequency–inverse document 
frequency) (Rajaraman and Ullman, 2011) to calculate the importance of each token can 
also be considered (cf. Arora et al. (2019) for more methods). As in the case of construct-
ing lexical sentences from IRI sentences, the word tokens of e are extracted from its Eng-
lish label if such a label exists, or from its IRI name otherwise. Due to the concatenation, 
the embedding size of e , i.e., d, is twice the original embedding size. V

iri
(e) and V

word
(e) can 

also be independently used. A comparison of their performance can be found in Sect. 4.3.1.

3.6 � Case studies

We applied OWL2Vec*  in ontology completion which first trains a prediction model from 
known relations (axioms) and then predicts those plausible relations.8 It includes two tasks: 
class membership prediction and class subsumption prediction, where the embedding of 
an entity can be understood as the features automatically learned from its neighbourhood, 
relevant axioms and lexical information without any supervision. In the remainder of this 
sub-section we first introduce the prediction task details with the membership case and 
then present the difference with respect to the subsumption case.

Given a head entity e1 and a tail entity e2 , where e1 is an instance and e2 is a class, the 
membership prediction task aims at training a model to predict the plausibility that e1 is a 
member of e2 (i.e., e2(e1) ). The input is the concatenation of the embeddings of e1 and e2 , 
i.e., x =

[
e
1
, e

2

]
 , while the output is a score y in [0, 1] , where a higher y indicates a more 

8  Our ontology completion task is different from ontology reasoning. Our goal is not to infer relations that 
logically follows from the given input, but to try to discover plausible relations that complement the origi-
nal ontology. (Most) plausible relations may not be inferred, and our evaluation focuses exactly on those 
plausible relations that cannot be inferred.



1827Machine Learning (2021) 110:1813–1845	

1 3

plausible membership relation. For the prediction model, some (non-linear) binary classi-
fiers such as Random Forest (RF) and Multi-Layer Perception (MLP) can be adopted (cf. 
the evaluation of classifiers in Sect. 4.4).

In training, positive training samples are those declared membership axioms. They are 
directly extracted from the ontology. While negative samples are constructed by corrupt-
ing each positive sample. Namely, for each positive sample (e1, e2) , one negative sample 
(e1, e

�
2
) is generated, where e′

2
 is a random class of the ontology and e1 is not a member of 

e
′
2
 even after entailment reasoning. In prediction, given a head entity (i.e., the target), a 

candidate set of classes are selected (e.g., all the classes except for the top class owl:Thing, 
or a subset after filtering via some heuristic rules), each candidate is predicted with a nor-
malized score by the trained classifier, which indicates the degree of the candidate to be 
correct, and the candidates are then ranked according to their scores where the top is the 
most likely class of the instance. Class subsumption prediction is similar to class member-
ship prediction, except that e1 and e2 are both classes, the goal is to predict whether e1 is 
subsumed by e2 (i.e., e1 ⊑ e2 ), and the head entity e1 itself is excluded from the candidate 
classes.

4 � Evaluation

4.1 � Experimental setting

We evaluated OWL2Vec*  on class membership prediction with the HeLis9 ontology 
(Dragoni et al., 2018), and on class subsumption prediction with the FoodOn10 ontology 
(Dooley et  al., 2018) and the Gene ontology (GO)11. HeLis captures general knowledge 
about both food and healthy lifestyles, FoodOn captures more detailed knowledge about 
food, and GO is a major bioinformatics initiative to unify the representation of gene and 
gene product attributes. Their DL expressivities are ALCHIQ⇐D⇒ , SRIQ and SRI  
respectively. Some statistics of the two ontologies are shown in Table 3. Due to different 
knowledge representations, HeLis has a large number of membership axioms but a very 
small number of subsumption axioms, while FoodOn and GO have only subsumptions axi-
oms. This is the reason why we evaluated membership prediction on HeLis, but subsump-
tion prediction on FoodOn and Go. Data and codes are available at https://​github.​com/​
KRR-​Oxford/​OWL2V​ec*-​Star.

The experiment on membership and subsumption prediction follows the following set-
ting: all the explicitly declared class membership axioms (or class subsumption axioms) 
are randomly divided into three sets for training ( 70% ), validation ( 10% ) and testing ( 20% ), 
respectively. For each axiom in the validation/testing set, the head entity (i.e., an instance 
for membership prediction and a class for subsumption prediction) is the target whose 
class is to be predicted from all the candidates and compared against the tail entity (as the 
ground truth class) in evaluation. All the candidates are ranked according to the predicted 
score which indicates the likelihood of being the head entity’s class. We calculate the fol-
lowing widely adopted metrics: Hits@1, Hits@5, Hits@10 and MRR (Mean Reciprocal 

9  HeLis project: https://​horus-​ai.​fbk.​eu/​helis/
10  FoodOn project: https://​foodon.​org/
11  GO was accessed on August 05, 2020 via http://​www.​geneo​ntolo​gy.​org/​ontol​ ogy/

https://github.com/KRR-Oxford/OWL2Vec-Star
https://github.com/KRR-Oxford/OWL2Vec-Star
https://horus-ai.fbk.eu/helis/
https://foodon.org/
http://www.geneontology.org/ontol%20ogy/
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Rank). The first three measure the recall of the ground truths within the top 1, 5 and 10 
ranking positions, respectively, while the fourth averages the reciprocals of the ranking 
positions of the ground truths. The higher the metrics, the better the performance.

The performance of OWL2Vec*  is reported with the following settings. For the embed-
ding model, its dimension is set to 100 if no pre-training is adopted, and otherwise set to 
be consistent with the pre-trained model; the window size is set to 5; the minimum count 
of words is set to 1; the iteration number of training is set to 10, which is based on the 
observation of the loss. The Word2Vec pre-training (with a dimension of 200) uses the lat-
est English Wikipedia article dump12, as in many other Word2Vec relevant studies such as 
(Chen et al., 2019). Other corpus or pre-trained models can also be used, and we can fur-
ther select a corpus that is specific to the domain of the ontology. Such extensive evaluation 
will be considered in the future work. Random Forest (RF) is adopted as the basic binary 
classifier and the WL sub-graph kernel is enabled by default in the random walk unless 
stated otherwise. Other hyper-parameters such as the walking depth and the transformation 
from OWL ontology to RDF graph, as well as the hyper-parameters of the baselines are 
adjusted through the validation set — the setting that leads to the highest MRR is adopted.

The evaluation is organized as follows. We first compare OWL2Vec*  with the base-
lines, then analyze the impact of different settings including the documents, the IRI and word 
embeddings, the settings for generating the structure document (walking type, walking depth 
and the transformation from OWL ontology to RDF graph), the usage of reasoning and pre-
training. We next analyze the effectiveness of OWL2Vec*  towards different classifiers includ-
ing RF, MLP, Logistic Regression (LR) and Support Vector Classifier (SVC), all of which 
are implemented by scikit-learn (Pedregosa et al., 2011), and finally analyze the embeddings 
via visualization and comparing the Euclidean distances. The selected embedding baselines 
include (i)  four well-known knowledge graph embedding methods, i.e., RDF2Vec, TransE, 
TransR and DistMult, (ii) four state-of-the-art ontology embedding methods, i.e., Onto2Vec, 
OPA2Vec, EL Embedding and Quantum Embedding,13 (iii) the original OWL2Vec* which is 
equivalent to OWL2Vec*  using the IRI embedding, structure document and ontology projec-
tion rules, and (iv) the pre-trained Word2Vec model. The embeddings of these baselines are 
applied to the two tasks in the same way as OWL2Vec*, with the Random Forest classifier. 
Note that RDF2Vec, TransE, TransR and DistMult are trained with the RDF graph G trans-
formed from the original ontology using OWL to RDF Graph Mapping without entailment 
reasoning, while the pre-trained Word2Vec calculates the average word vector of an entity 
according to its label (or its IRI name if the label does not exist) as in OWL2Vec*.

The surface form of the textual information (i.e., naming conventions followed in the 
ontologies) may also play a role in our prediction tasks. For example, the instance “Blonde 
Beer” includes the word “Beer”, which is the label of its membership class. Thus we fur-
ther compared our OWL2Vec* plus RF solution to the supervised Transformer classifier 
(Vaswani et al., 2017) which embeds the head and tail entities’ contextual text. The Trans-
former classifier has two versions: label which considers the English labels and IRI names 
of the two entities, and all text which considers all of the two entities’ textual labels and 
annotations. The label, IRI name and textual annotation are pre-processed in the same way 
as in OWL2Vec*, and they are orderly concatenated into one sequence as the input of the 
Transformer.

13  For EL (resp. Quantum) Embedding, HeLis and FoodOn are first transformed into DL EL++ (resp. DL 
ALC ) by removing logical axioms outside the supported expressivity.

12  https://​dumps.​wikim​edia.​org/​enwiki/

https://dumps.wikimedia.org/enwiki/
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For RDF2Vec we use the implementation of pyRDF2Vec14; for TransE, TransR and 
DistMult we use the implementation of OpenKE15; for Onto2Vec and OPA2Vec we imple-
ment them as special cases of OWL2Vec*; for EL Embedding and Quantum Embedding 
we use the codes attached in their original papers (Holter et  al., 2019) and (Garg et  al., 
2019), respectively. The Transformer classifier is implemented by Tensorflow16 with one 
token and position embedding layer, and one Transformer block that contains two attention 
heads. All the results are generated locally with repetitions.

4.2 � Comparison with baselines

Table 4 reports the performance of OWL2Vec* and the baselines with their optimum set-
tings. The performance of OWL2Vec* with different settings can be found in Sect.  4.3. 
In Table 4 we can observe that OWL2Vec* outperforms all the baselines. Note all these 
comparisons have statistical significance with the p-value being ≪ 0.05 in the two-tailed 
test. Among all these ontology embedding and KG embedding baselines which directly 
calculate the IRI’s vector without considering the word vector, OPA2Vec achieves the best 
performance on FoodOn and GO for subsumption prediction; while the KG embedding 
method RDF2Vec performs the best on HeLis for class membership prediction. In contrast, 
the two logic embedding methods Quantum Embedding and EL Embedding, and TransE 
perform poorly on all the three ontologies. Our preliminary work OWL2Vec* achieves 
promising results on HeLis (close to RDF2Vec) and FoodOn (close to OPA2Vec), but per-
forms poorly on GO. OWL2Vec* outperforms both KG embedding methods and ontology 
embedding methods; for example, consider the Hits@1 of OWL2Vec*, it is 325.6% higher 
than RDF2Vec on HeLis, 146.6% higher than OPA2Vec on FoodOn, and 126.7% higher 
than OPA2Vec on GO.

Meanwhile, OWL2Vec* outperforms the pre-trained Word2Vec, with 6.0% , 56.6% and 
38.2% higher MRR on HeLis, FoodOn and GO, respectively. It is interesting to see that the 
pre-trained Word2Vec using entity labels or IRI names achieves good performance, out-
performing ontology and KG embedding baselines such as RDF2Vec and OPA2Vec. This 
means that the textual information plays a very important role in embedding real world 
ontologies, especially for membership prediction and subsumption prediction as the names 
of the instances and classes with a membership or subsumption relationship often use some 
common words or words with relevant meanings (e.g., synonyms or word variants). This 
observation on the importance of the textual information is consistent with our following 
ablation study on the usage of word embedding, IRI embedding and both (cf. V

iri
 , V

word
 and 

V
iri,word in Table 5). A key difference between OWL2Vec* and Word2Vec is that the word 

embedding model of OWL2Vec* is trained by an ontology tailored corpus underpinned by 
its graph structure and logical axioms.

In Table  4, we can also observe that both Transformer classifiers (i.e., label and all 
text) perform worse than the RF classifier using the pre-trained Word2Vec or OWL2Vec*  
embeddings. On HeLis, they are effective with some promising results which are better 
than the KG and ontology embedding baselines; while on FoodOn and GO, they are very 
ineffective, with much worse performance than all the other methods. This means that the 

14  https://​github.​com/​IBCNS​ervic​es/​pyRDF​2Vec
15  https://​github.​com/​thunlp/​OpenKE
16  https://​www.​tenso​rflow.​org/

https://github.com/IBCNServices/pyRDF2Vec
https://github.com/thunlp/OpenKE
https://www.tensorflow.org/
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surface form of the entities’ textual contexts (token sequences), with feature learning by 
Transformer, brings very little predictive information on FoodOn and GO and partial pre-
dictive information on HeLis. This result is consistent with our observation on the ontolo-
gies’ naming mechanisms for the instances and subclasses, and in turn confirms that the 
semantics from the large Wikipedia corpus encoded in the Word2Vec embeddings, and 
the semantics of the ontology graph and logical constructors encoded in the OWL2Vec* 
embeddings play a very important role in these prediction tasks.

Note that the performance of membership prediction with HeLis is much higher than 
that of the subsumption prediction with FoodOn and Go. This is because the former has 
much less candidate classes (cf. Table 3) and is thus less challenging. Meanwhile the entity 
name and label’s surface form (i.e., the class member’s naming mechanism) of HeLis 
makes additional contribution to its membership prediction, as analyzed above.

4.3 � Analysis of OWL2Vec* settings

4.3.1 � Lexical information

According to Table  5 we can find that the lexical document D
l
 leads to a significant 

improvement of performance when it is merged with the structure document D
s
 (i.e., 

D
s,l ). Consider MRR: D

s,l outperforms D
s
 by 26.9% on HeLis, by 18.8% on FoodOn and 

by 22.1% on GO when the IRI embedding ( V
iri

 ) is used, and by 169.7% , 31.8% and 44.2% 
respectively when both IRI embedding and word embedding ( V

iri,word ) are used.
Unlike the lexical document, the combined documents ( D

s,l,rc and D
s,l,tc ), which also 

rely on the lexical information of the ontology, lead to a limited positive impact. For class 
membership prediction, the best performance of D

s,l,rc (MRR: 0.951) and the best perfor-
mance of D

s,l,tc (MRR: 0.953) are both very close to the best performance as D
s,l (MRR: 

0.952), while for class subsumption prediction on FoodOn and GO, they are both worse 
than the best performance of D

s,l . We can also find that the combined document has a 
negative impact when the word embedding ( V

word
 ) is used alone on FoodOn and GO. On 

FoodOn, D
rc

 ( D
tc
 resp.) reduces the MRR from 0.213 to 0.196 (0.194 resp.), while on 

GO, D
rc

 ( D
tc
 resp.) reduces the MRR from 0.170 to 0.155 (0.150 resp.). This is because 

the combined sentences build the correlation between words and IRIs, which benefits the 
IRI embeddings, but brings noise to the correlation between words and harms the word 
embeddings.

Besides the lexical document, the word embedding ( V
word

 ) which also benefits from the 
utilization of the lexical information of the ontology shows a very strong positive impact. 
On the one hand, as discussed in Sect. 4.2, the two methods that use the word embedding, 
i.e., OWL2Vec*  and the pre-trained Word2Vec, both dramatically outperform the remain-
ing methods. On the other hand, as shown in Table  5, the best performance on HeLis 
comes from V

iri,word , while the best performance on FoodOn and GO comes from V
word

 . 
The improvement of V

iri,word and V
word

 over V
iri

 is quite significant; for example, when the 
lexical and structure documents ( D

s,l ) are used, the Hits@1 of V
iri,word is 0.934, 0.133 and 

0.068 on HeLis, FoodOn and GO, respectively, while the corresponding Hits@1 of V
iri

 is 
0.295, 0.120 and 0.048, respectively.

Regarding the IRI embedding, on the one hand it can alone outperform the baseline 
embeddings in Table 4 except for the pre-trained Word2Vec. On the other hand, the impact 
of the IRI embedding when it is concatenated with the word embedding varies from task 
to task. It has a positive impact on class membership prediction with HeLis; for example, 
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when trained by the structure document and lexical document ( D
s,l ), the MRR of V

iri,word is 
1.5% higher than V

word
 . However, on class subsumption prediction with FoodOn and GO, 

the IRI embedding shows a negative impact, i.e., V
iri,word is often close to or worse than 

V
word

 . This may be due to the fact that the lexical semantics plays a dominant role in these 

(a)

(b)

(c)

Fig. 3   Comparison of structure documents by different graph structure exploration settings, with the MRR 
results of OWL2Vec*  ( D

s
 + V

iri
 ) reported



1837Machine Learning (2021) 110:1813–1845	

1 3

prediction tasks, and the word sentences from which the word embeddings are learned have 
already used the structure sentences as the backbone. Meanwhile, we simply concatenate 
the two vectors as the input of a basic classifier without any mechanisms to better integrate 
the two embeddings (inputs).

4.3.2 � Graph structure

Figure 3 shows the performance of the IRI embedding of OWL2Vec* when it is trained 
using structure documents extracted under different ontology graph structure exploration 
settings. We first compare the two solutions that generate the RDF graph G : (i) the OWL 
to RDF Graph Mapping defined by W3C, which may lead to redundant blank nodes and 
longer paths for some complex axioms, but keeps the complete semantics; (ii) the ontol-
ogy projection rules which lead to a more compact graph but approximate most complex 
axioms, i.e., some logical relationships like the type of class restrictions are missing in 
the projected RDF graph; and (iii) the ontology projection rules with inverse triples for 
the membership and subsumption axioms. Please see Sect. 3.1 for more details. Note that 
some results of the solution (iii) with the depth of 5 are missing as the walking strategy 
did not stop after several hours. On HeLis, the solution (i) has higher MRR when the WL 
sub-graph kernel is enabled and the depth is set to ≥ 3 , or when the original random walk 
is adopted and the depth is set to ≥ 4 . Its best MRR value (i.e., 0.353) is higher than the 
other solutions (i.e., 0.335 and 0.346). On FoodOn, the solution (iii) has much higher MRR 
when the walking depth is ≥ 4 (as high as 0.152 with the WL sub-graph kernel enabled) 
than the best of the solution (i) and (ii) (0.083 and 0.081 respectively). On GO, the solu-
tion (ii) performs well when the walking depth is set to 3 or 4, and the WL sub-graph 
kernel is enabled, or when the walking depth is ≥ 4 with pure random walk. It also leads 
to the best MRR, i.e., 0.095. Therefore, the performance of these three ontology to RDF 
graph transformation methods varies from ontology to ontology; in OWL2Vec*, the OWL 
to RDF Graph Mapping is adopted on HeLis, the projection rules with inverse are adopted 
on FoodOn and the projection rules are adopted on GO.

With Figure 3 we can also compare different walking strategies and walking depths used 
in extracting IRI sentences from the RDF graph G . We have two main observations. First, 
the walking depth is important for random walk with or without the WL sub-graph kernel. 
In general, to achieve the best performance, random walk with WL sub-graph kernel needs 
a smaller walking depth. Consider the OWL to RDF Mapping: the optimal walking depth 
is 3 on HeLis and 2 on FoodOn for random walk with the WL sub-graph kernel, but is 4 
for raw random walk. Consider the ontology GO with the projection rules: the best perfor-
mance for random walk with the WL sub-graph kernel often lies in the depth of 3, while 
the best performance for raw random walk lies in the depth of 5. Second, the top MRR 
with the WL sub-graph kernel enabled is higher than the top MRR with raw random walk 
on HeLis and FoodOn, and is the same on GO. Both observations are as expected because 
enabling the WL sub-graph kernel incorporates the structure information of the sub-graphs 
of partial entities of a random walk.

4.3.3 � Logical constructors

On the one hand, the performance of the baselines in Table 4 which adopt the logical struc-
ture alone, including EL Embedding, Quantum Embedding and Onto2Vec, is relatively 
poor in comparison with the other methods. On the other hand, the logical structure has a 
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positive impact when it works together with the graph structure in OWL2Vec*. On HeLis, 
in comparison with RDF2Vec, the difference of OWL2Vec*  with the setting of the struc-
ture document and the IRI embedding (i.e., D

s
 + V

iri
 ) is that it additionally uses sentences 

from Manchester Syntax axioms; while on FoodOn and GO, the difference also includes 
that OWL2Vec*  ( D

s
 + V

iri
 ) uses the projection rules (with inverse) while RDF2Vec uses 

OWL to RDF Graph Mapping. By comparing the results of RDF2Vec in Table 4 and the 
results of OWL2Vec*  ( D

s
 + V

iri
 ) in Table 5, we can find the impact of adding these axiom 

sentences is positive on HeLis; the latter (i.e., using axiom sentences) has 2.3% higher 
MRR and 3.2% higher Hits@1. On FoodOn and GO, the improvement of OWL2Vec*  
( D

s
 + V

iri
 ) over RDF2Vec is very significant, with 97.4% higher MRR and 92.5% higher 

Hits@1 on FoodOn, and 120.9% higher MRR and 164.7% higher Hits@1 on GO. This 
improvement is partially due to the usage of the Manchester Syntax axioms, and is partially 
due to the projection rules (with inverse).

We also analyzed the impact of using reasoning (provided by the OWL 2 reasoner Her-
miT) before the ontology is transformed into an RDF graph. The results on Onto2Vec, 
OPA2Vec, OWL2Vec*  ( D

s
 + V

iri
 ) and OWL2Vec*  ( D

s,l + V
word

 ) are shown in Table 6. 
We can see that reasoning has a limited impact in the conducted experiments; the MRR 
results with and without reasoning are quite close for OPA2Vec and OWL2Vec*  with 
both settings of D

s
 + V

iri
 and D

s,l + V
word

 . Note that OWL2Vec* in Table  6 uses W3C 
OWL to RDF Graph Mapping on HeLis, projection rules with inverse on FoodOn and 
projection rules on GO. The impact of reasoning is limited with all the three transforma-
tion approaches. The impact of reasoning for Onto2Vec is more significant especially on 

Table 6   Performance (MRR) 
with and without entailment 
reasoning

Regarding OWL2Vec*, the ontology is transformed into an RDF 
graph with the approach that achieves the best performance, i.e., W3C 
OWL to RDF Graph Mapping on HeLis, projection rules (+R) for 
FoodOn, and projection rules for GO

Setting Onto2Vec OPA2Vec OWL2Vec*  
( D

s
 + V

iri
)

OWL2Vec*  
( D

s,l + V
word

)

HeLis with 0.211 0.237 0.340 0.938
without 0.221 0.226 0.353 0.935

FoodOn with 0.034 0.087 0.152 0.188
without 0.019 0.088 0.154 0.205

GO with 0.024 0.075 0.092 0.167
without 0.034 0.087 0.095 0.170

Table 7   Performance of the classifiers of Random Forest (RF), Multi-Layer Perception (MLP), Support 
Vector Classifier (SVC) and Logistic Regression (LR), using OWL2Vec* ( D

s,l + V
word

)

RF MLP SVC LR

MRR Hits@1 MRR Hits@1 MRR Hits@1 MRR Hits@1

HeLis 0.938 0.920 0.935 0.916 0.816 0.752 0.135 0.052
FoodOn 0.213 0.143 0.219 0.120 0.063 0.033 0.012 0.009
GO 0.170 0.076 0.152 0.064 0.138 0.071 0.011 0.008
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FoodOn and GO. That may be because it uses the axiom sentences that are more likely to 
be impacted by entailment reasoning. OPA2Vec uses the sentences of literal annotations 
which are much less impacted by entailment reasoning. OWL2Vec*  uses multiple kinds of 
sentences and are thus more robust. Meanwhile, the impact of reasoning on Onto2Vec var-
ies from ontology to ontology; for example, it is positive for FoodOn but negative for GO.

4.3.4 � Pre‑training

With the setting of D
s,l + V

word
 , the MRR of OWL2Vec* decreases to 0.933, 0.136 and 

0.147 on HeLis, FoodOn and GO respectively, while its Hits@1 decreases to 0.913, 0.091 
and 0.069 respectively. On the one hand, using a pre-trained Word2Vec does not increase 
but decreases the performance of OWL2Vec* (cf. Table 5 for the corresponding results 
without pre-training). That may be because the pre-trained Word2Vec is short of prior cor-
relations involving entity IRIs, and its usage also leads to less compact embeddings with 
their dimension increases from 100 to 200. On the other hand, OWL2Vec* with pre-train-
ing still outperforms the original Word2Vec whose results are shown in Table 4. This in 
turn verifies that the embeddings learned from the generated documents underpinned by 
the graph structure and the logical structure are tailored to the specific characteristics of the 
given ontology and these embeddings are more effective for the prediction tasks of these 
ontologies.

4.4 � Classifiers

Table  7 presents the results of four different binary classifiers that use the OWL2Vec* 
embeddings as input. Note that we used the setting of D

s,l + V
word

 because it achieves the 
best performance on subsumption prediction for FoodOn and GO, and very competitive 
performance on membership prediction for HeLis in our above evaluation. We can find that 
MLP (with single hidden layer) has a quite competitive performance as RF, especially on 
HeLis and FoodOn. The performance of OWL2Vec* with MLP is also better than all the 
baselines in Table 4 on each ontology. SVC can work for HeLis and GO, but it has lower 

Fig. 4   The average Euclidean distance between the class and its instance (resp. subclass) for the positive 
and negative memberships (resp. subsumptions) used in classifier training. The number above every pair of 
positive and negative bars is their ratio
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MRR and Hits@1 than RF and MLP. On the other hand, we find LR, the only linear classi-
fier, has very poor performance on all the three ontologies. This indicates that the embed-
dings learned by OWL2Vec* need a non-linear classifiers to achieve good performance in 
membership prediction and subsumption prediction.

4.5 � Interpretation and visualization

To show that the learned embeddings (i.e., input features of the classifier for membership 
and subsumption prediction) are discriminative and effective, we analyze the Euclidean dis-
tance between the embeddings of the two entities in a membership or subsumption axiom. 
We calculate the average distance for the true axioms that are extracted from the ontology, 
and the false axioms that are constructed by corrupting each true axiom (i.e., the same way 
as negative sampling in the case studies), using the embeddings learned by OPA2Vec, the 
pre-trained Word2Vec, and OWL2Vec* with two settings. The results are shown in Fig. 4. 
Note that the difference of the Euclidean distance between the entities in the positive axi-
oms and the entities in the negative axioms is sufficient to indicate the discrimination of 

(b)

(a)

Fig. 5   Embedding visualization via t-SNE
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the features, but it is not necessary. We can find that Word2Vec and OWL2Vec* with D
s,l 

+ V
word

 (i.e., using the structure document, the lexical document and the word embed-
ding) have quite discriminative average distances for all the three ontologies. Namely, the 
positive axioms lead to much shorter average distance than the negative axioms. This is 
consistent with their final good performance shown above. Specially, for OPA2Vec and 
OWL2Vec* with D

s
 + V

iri
 (i.e., using the structure document and the IRI embedding) on 

HeLis, we can find the distance is also discriminative. However, in contrast, the positive 
axioms has longer average distance than the negative axioms. This is because the instance 
usually lies in one end of a sequence where it co-occurs with its class (i.e., a walk of WL 
sub-tree kernel of depth 3 for OWL2Vec*, or a membership axiom for OPA2Vec), and thus 
its distance of co-occurrence to its class becomes larger than to a random class.

We also visualize the embeddings of some example classes/instances via t-SNE (Maaten 
and Hinton 2008) in order to obtain further insights about the quality of the computed 
embeddings. In Fig.  5a (for HeLis) we can find two characteristics for the embeddings 
learned by OWL2Vec* with D

s,l and V
word

 : (1) the instances of each class are clustered 
into a compact cluster, and (2) these instances are very close to their corresponding class. 
Both characteristics are promising: they confirm that the embeddings are discriminative 
and explain why the embeddings enable a very good performance in membership pre-
diction (e.g., Hits@5 is as high as 0.978). For the embeddings learned by OPA2Vec and 
OWL2Vec* with D

s
 and V

iri
 , they have the first characteristic as well, but the distance of an 

instance to its class is often longer than its distance to some other class, which is consist-
ent with the average Euclidean distance analyzed above. Such embeddings can still benefit 
membership prediction under the standard supervised learning setting adopted in our eval-
uation, where some instances of one class are used for training while the other instances of 
this class, which are close to the training instances in the embedding space, are for testing. 
However, the generalization will be dramatically impacted, especially under a zero-shot 
learning setting where the instances of a new class, which have never appeared in the train-
ing samples, are used for testing.

In Fig.  5b (for FoodOn) we can observe similar characteristics for the embeddings 
learned by OWL2Vec* with Ds,l and V

word
 . Namely, for each class, its subclasses are mostly 

quite close to each other (i.e., being clustered into one cluster), and their distances to this 
class are mostly shorter than their distance to any other class. However, the two character-
istics are not as significant as in HeLis, especially for the class “Barley Malt Beverage” and 
its subclasses, indicating that embedding FoodOn, which has more axioms and entities (cf. 
Table 3), is more challenging. On the other hand, the two characteristics of OWL2Vec* 
with D

s,l and V
word

 are more significant than those of the other three methods — Word2Vec, 
OPA2Vec and OWL2Vec* with D

s
 and V

iri
 , which demonstrates its better performance on 

subsumption prediction. For example, in comparison with Word2Vec which has the second 
best performance, OWL2Vec* with D

s,l and V
word

 shortens the distance between “Fish” and 
its subclasses, and makes the subclasses of “Yogurt Food Product” closer to each other.

5 � Discussion and outlook

In this paper we have presented OWL2Vec*, a robust semantic embedding framework for 
OWL ontologies. OWL2Vec* extracts documents from the ontology that capture its graph 
structure, axioms of logical constructors, as well as its lexical information, and then learns 
a word embedding model for both entity embeddings and word embeddings. We applied 
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OWL2Vec* to class membership prediction and class subsumption prediction with three 
real world ontologies, namely HeLis, FoodOn and GO, and we empirically analysed dif-
ferent semantics and techniques such as entailment reasoning and ontology to RDF graph 
transformation. The evaluation demonstrates that on these tasks OWL2Vec* can signifi-
cantly outperform state-of-the-art methods.

Ontology Text Understanding.  Our experiments suggest that lexical information plays 
a very important role in both class membership prediction and class subsumption predic-
tion. In real world ontologies such as HeLis, FoodOn and GO, entity names often reflect, 
in natural language, their relationships to surrounding entities; in HeLis, for example, the 
instance vc:FOOD-700637 (Soy Milk) is an instance of the class vc:SoyProducts. In addi-
tion, ontologies often contain a large number of entity annotations ranging from short 
phrases to long textual descriptions. In FoodOn, for example, 169,  630 out of 241,  581 
axioms are annotations. However, patterns within the textual information in the ontolo-
gies, which is underpinned by the graph and logical structure, are quite different from 
normal natural language text (cf. Sect. 4.3.4). To further improve ontology embedding in 
the future, we need to develop new word embedding architectures and training methods 
that are tailored to the kinds of textual information typically present in state-of-the-art 
ontologies.

Ontology Completion via Prediction.  In this study OWL2Vec* has been used to 
complete an ontology by discovering plausible axioms. We adopted a typical supervised 
learning setting to model a common scenario in ontology completion, where satisfactory 
results have been achieved; in class membership prediction, the classes of 93.2% of the test 
instances can be recalled. In some real world cases, however, there is often a bias between 
the axioms for training and the axioms for prediction. For example, consider the case of 
membership prediction for a new class defined on the fly without any known instances (i.e., 
zero-shot learning scenario discussed Sect. 4.5). This leads to sample shortage in training 
and becomes much more challenging—the above metric drops to 65.6% for OWL2Vec* 
and less than 10% for other KG embedding and ontology embedding methods in Table 4. In 
future work we plan to develop more robust ontology embeddings with higher generaliza-
tion for dealing with such cases. Meanwhile, we will consider using OWL2Vec* embed-
dings and machine learning to address other ontology completion challenges. One study 
we are working on is predicting the cross-ontology class mapping for ontology integra-
tion and curation (Chen et  al., 2020b; Horrocks et  al., 2020); another potentially mean-
ingful study is approximating the output of the standard reasoning tasks over expressive 
ontologies, which have exponential or even higher time complexity by traditional logical 
reasoners.

Applications.  In addition to the evaluated membership and subsumption prediction 
tasks, OWL2Vec* can be applied to assist a wide range of ontology design and quality 
assurance (QA) problems (Horrocks et al., 2020). A typical QA task is ontology alignment 
as presented in our ongoing work (Chen et al., 2020b), where we use OWL2Vec* to embed 
the classes of two to-be-aligned ontologies as their features for mapping prediction. Note 
through the ontology mappings, we can further use the cross-ontology information to aug-
ment subsumption and membership prediction; for example, the missing subsumption rela-
tionship between obo:FOODON_03305289 (Soybean Milk) and obo:FOODON_00002266 
(Soybean Food Product) in FoodOn (where obo:FOODON_03305289 is only catego-
rized as obo:FOODON_00003202 (Beverage)) can be discovered by mapping them to 
their HeLiS counterparts vc:SoyMilk and vc:SoyProducts whose subsumption relation-
ship is defined. Both OWL2Vec* and (Chen et al., 2020b) are in cooperation with Sam-
sung Research UK, aiming at building and curating a high quality food ontology which is 
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beneficial to artificial intelligence and information systems in domains such as personal 
health and agriculture. The entity clustering by OWL2Vec* can also contribute to ontology 
design by e.g., discovering potential classes that have not been defined, as well as ontology 
QA by e.g., entity resolution. OWL2Vec*, in collaboration with ZB MED - Information 
Centre for Life Sciences, also aims at being applied to identify clusters in an ontology and 
assign these clusters as topics (i.e., a set of ontology classes) to a corpus of documents 
to enhance the results of an information retrieval task (Ritchie et al., 2021). In addition, 
OWL2Vec*, as an ontology tailored word embedding model, could replace the original 
word embedding models to increase performance in some domain specific tasks such 
as biomedical text analysis (Hao et  al., 2020). This is also a promising direction worth 
studying.
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