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Abstract
Data collection within a real-world environment may be compromised by several factors 
such as data-logger malfunctions and communication errors, during which no data is col-
lected. As a consequence, appropriate tools are required to handle the missing values when 
analysing and processing such data. This problem is often tackled via matrix decomposi-
tion. While it has been successfully applied in a wide range of applications, in this work 
we report an issue that has been neglected in literature and “degenerates” the quality of 
the imputations obtained by matrix decomposition in multivariate time-series (with smooth 
evolution). Briefly, the problem consists of the misalignment of the matrix decomposi-
tion result: the missing values imputations fall within an incorrect range of values and the 
transitions between observed and imputed values are not smooth. We address this prob-
lem by proposing a post-processing alignment strategy. According to our experiments, the 
post-processing adjustment substantially improves the accuracy of the imputations (when 
the misalignment occurs). Moreover, the results also suggest that the misalignment occurs 
mostly when dealing with a small number of time-series due to lack of generalization 
ability.
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1  Introduction

With the emergence of the Internet of Things (IoT), new data is being collected every day. 
Mining such data in an efficient and accurate manner is crucial in order to extract value 
from it. The mining process involves not only analysis and processing tools, but also strate-
gies to handle erroneous and missing data. For example, when collecting sensor data, one 
recurrent issue is the existence of time gaps in which no measurements were published 
due to connectivity problems or sensor malfunctions (Karkouch et al., 2016). While there 
have been considerable efforts on imputing the missing values in time-series, traditional 
approaches focus mainly in isolated missing values (Stekhoven & Bühlmann, 2011). None-
theless, in real-world scenarios, data is generally missing in blocks of consecutive times-
tamps over multiple time-series, thus requiring more robust strategies to approximate the 
unobserved values (Cao et al., 2018).

One of the approaches to tackle this problem is via matrix/tensor decomposition, 
also widely considered for image recovery  (Zhao et al., 2015) and recommendation sys-
tems (Bao et al., 2014). Briefly, given the matrix/tensor modeling the time-series, the goal 
is to estimate the missing values by accounting for the similarities between the time-series, 
captured through decomposition techniques. This approach is appropriate when dealing 
with low rank data (Chen et al., 2013). On the contrary to naive approaches, it is able to 
deal with gaps consisting of a large number of consecutive timestamps. On the other hand, 
it does not require a large number of time-series to perform well, contrarily to the emerging 
deep learning techniques. One of its limitations is its inability of providing an estimate to a 
time gap in which no time-series were observed (Banerjee & Roy, 2014).

In this work, we report one additional issue, to the best of our knowledge, not addressed 
in literature, that we refer to as the “misalignment problem in matrix decomposition with 
missing values”. This problem is illustrated in Fig.  1: while the gap estimate obtained 
through non-negative matrix factorization (NMF) accurately captures the evolution of the 
time-series in the missing gap, the estimate range of values is distant from the real one. 
In fact, by analysing the observed time-series values, one notes that the changes between 
consecutive timestamps are smooth and such smoothness is not preserved between the 
observed values and the reconstruction.

To tackle this issue, recent works  (Yu et al., 2016; Chen & Sun, 2020) have incorpo-
rated temporal smoothness constraints into the decomposition algorithms. However, as it is 
demonstrated in this work, such approaches may still lead to inaccurate imputations. Based 
on this, we propose a post-processing procedure to correctly align the reconstruction along 
the observed values. The main novelty of our approach arises from imposing the smooth-
ness at a post-processing stage so that the procedure is algorithm independent. It should be 
noted that the misalignment problem was detected when imputing a real-world time-series 

Fig. 1   Example of the matrix decomposition misalignment with respect to the observed time-series (ts)
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of indoor climate, collected within the scope of project Smart Green Homes (SGH)1 with 
the goal of understanding the tenants’ thermal comfort patterns and take advantage of such 
information to improve energy-efficient use. Briefly, our dataset consisted of three meas-
urements (temperature, humidity and pressure) collected through sensors at 14 distinct 
houses, with around 50% of missing values. The usage of matrix decomposition was moti-
vated not only by the low rank nature of the data  (Chen et al., 2013), but also by the small 
number of time-series. A special focus is provided to this case study. Nonetheless, we also 
investigate the presence of this problem, as well as the suitability of the proposed solution, 
in other datasets.

Based on this, our contributions are as follows: 

1.	 We report the misalignment problem, observed when applying matrix decomposition 
with missing values to some datasets;

2.	 We propose a post-processing adjustment strategy to tackle the misalignment problem 
and carry out a set of experiments not only to validate the proposed solution but also to 
study the conditions under which the misalignment problem manifests.

The rest of the work is organized as follows. In Sect. 2 we overview the related literature. 
In Sect. 3 we describe the problem reported. The proposed method is described in Sect. 4 
and the experiments are presented in Sect. 5. We conclude in Sect. 6.

2 � Related work

The most straightforward approach for imputing values in time-series is the replacement by 
a fixed value such as the mean. To account for the neighbourhood of the missing gap, lin-
ear interpolation and moving average variants may also be considered (Lepot et al., 2017). 
Nonetheless, such approaches may not be appropriate when the amount of data missing is 
large. Moreover, these techniques are univariate and do not take advantage of the possible 
similarities/correlations between the multiple sources of data.

With respect to approaches specifically designed for multivariate time-series imputa-
tion, multiple research directions have been explored. In Multiple Imputation Chained 
Equations (MICE)  (Azur et  al., 2011), a statistical perspective was considered. In this 
method, multiple estimates are obtained through regression models and combined to fill 
the missing gaps.

Recently, a new trend emerged in this field and is based on machine learning techniques, 
namely deep learning. In this context, multiple Recurrent Neural Networks (RNN) archi-
tectures have been proposed  (Che et al., 2018; Cao et al., 2018; De Brouwer et al., 2019; 
Liu et al., 2019). Additionally, Fortuin et al. (2020) proposed a model based on auto-encod-
ers. Briefly, the idea consists of encoding the time-series with missing values to a low-
dimensional complete space so that the missing values are recovered from the decoding 
phase. Another related approach is the usage of Generative Adversarial Nets (GAN)  (Luo 
et al., 2019), which consist of two components: a generator network, that carries out the 
imputation process, and a discriminator, that distinguishes the observed (known) values 
from the imputed ones. In order to obtain a high-quality imputation, the discriminator is 

1  http://​www.​ua.​pt/​smart​green​homes/.

http://www.ua.pt/smartgreenhomes/
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trained to minimize the real vs. imputed classification error; on the opposite to the genera-
tor, which is trained to maximize the discriminator error.

As previously exposed, another perspective, often considered for this task, is matrix 
and tensor decomposition. In general, typical decomposition methods for handling missing 
data can be applied to time-series, including non-negative variants   (Kim & Choi, 2009) 
and adaptations of Singular Value Decomposition   (Cai et  al., 2010), Principal Compo-
nent Analysis  (Shu et al., 2014; Zhang & Balzano, 2016; Balzano et al., 2018) and tensor 
decomposition methods  (Acar et al., 2011; Williams et al., 2018). However, none of such 
approaches accounts for the temporal relation between observations when modeling time-
series. In this context, Yu et al. (2016)) proposed Temporal Regularized Matrix Factoriza-
tion (TRMF) which incorporates temporal smoothness. In particular, TRMF has the abil-
ity to incorporate smoothness not only between two consecutive timestamps, but also over 
timestamps spaced by a given period (thus, allowing to model the periodic patterns). With 
an identical goal, Chen and Sun (2020)) proposed Low-Rank Autoregressive Tensor Com-
pletion (LATC) in which the multivariate time-series is reshaped into a tensor by adding a 
temporal dimension to explicitly model periodicity and seasonality.

Despite these efforts to model temporal evolution, we observed that there were scenarios 
in which there was a misalignment between the matrix/tensor decomposition reconstruc-
tion and the observed values. This problem, that substantially degenerates the imputation 
power of these approaches, is the target of our work and is described in more detail next.

3 � Problem formulation

In this work, we expose the misalignment problem in matrix decomposition with miss-
ing values, a problem derived from applying matrix decomposition to impute multivariate 
time-series. Therefore, in order to facilitate the understanding of the problem addressed, 
we start by introducing both the problem of multivariate time-series imputation and matrix 
decomposition with missing values.

3.1 � Multivariate time‑series imputation

From a general point of view, the missing value imputation problem in time-series may 
be formulated as follows: given a multivariate time-series consisting of N univariate time-
series, X = {xi}

N
i=1

 , with T timestamps, some of which were not observed; the goal is to 
find an accurate estimate for the missing values.

3.2 � Matrix decomposition with missing values

Let � ∈ ℝ
N×M be a matrix, the goal of matrix decomposition (also referred to as matrix 

factorization) is to find matrices � ∈ ℝ
N×R,� ∈ ℝ

M×R , so that � ∼ ��T and the approxi-
mation/fit error, given by ||� − ��T ||2 , is minimized (with ||.|| denoting the Frobenius 
norm). R is a parameter of the model and is referred to as number of components/factors.

In case there are values missing in the data matrix � , the decomposition must be driven 
in order to minimize the approximation error in the known values. Consequently, matrices 
�,� are obtained by minimizing:
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(Kim & Choi, 2009), where � is the matrix mapping the observed values ( O[i, j] = 1 if 
entry (i, j) was observed and O[i, j] = 0 , otherwise) and ⊙ is the Haddamard product (con-
sisting of the element-wise product). The regularization terms are meant to reduce overfit-
ting to the observed values.

To facilitate the reading of this manuscript, the notation used throughout this work is 
summarized in Table 1.

3.3 � Misalignment problem in matrix decomposition with missing values

Matrix decomposition is often applied to solve the multivariate time-series imputation 
problem by modelling each time-series as a row of the data matrix (that is, by setting 
�[t, ∶] = �t).

When resorting to matrix factorization for imputing time-series, one is interested not 
only in obtaining a model that fits the observed data but, most of all, in a model that 
has generalization ability. If, on one hand, the higher the number of components the 
higher the fit of the matrix decomposition model; the same trend does not necessarily 
hold regarding the quality of the estimated missing values. In particular, in a prelimi-
nary analysis of the performance of NMF in our case study, we observed that, despite 
the regularization terms in (Eq. 1), NMF started to overfit with an extremely low num-
ber of components as shown in Fig.  2. In such case, in order to maximize the gener-
alization ability we have to neglect the fitting model, potentially resulting in misplaced 
reconstructions (recall Fig.  1). We refer to this problem as the misalignment problem 

(1)|||
|||�⊙

(
� − ��T

)|||
|||
2

+ 𝛼1||�||2 + 𝛼2||�||2

Table 1   Notation summary Symbol Description

x scalar (nonbold lower case)
� vector (bold lower case)
�[i] entry i of vector �
� matrix (bold upper case)
�[i, j] entry (i, j) of matrix �
�[i, ∶] row i of matrix �
�[i, j1 ∶ jn] entries (i, jk) with 

jk ∈ {j1,… , jn} of matrix 
�

Fig. 2   Error curves for the 
observed and unobserved values 
in the temperature measure-
ments of our case study dataset 
when reconstructing gaps of 
48 h (smoothed with polyno-
mial regression for illustration 
purposes)
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in matrix decomposition with missing values. In other words, this problem refers to the 
misalignment between the matrix decomposition result and the observed values that 
leads to a misplacement of the missing gaps estimation and consequent poor accuracy.

Whilst in this work we study the misalignment phenomena across multiple decom-
position algorithms, our aim is not to perform a comparative study of the methods, but, 
instead, to show that the misalignment may occur even when considering time-aware 
decomposition approaches. For a recent comparison study on time-series imputation 
techniques, the reader may refer to  Khayati et al. (2020).

4 � Proposed method

To tackle the misalignment problem in matrix decomposition, we propose a post-pro-
cessing technique to be applied to each of the gaps estimated imputations. Our frame-
work is general and can be applied regardless of the decomposition algorithm consid-
ered. In fact, it is general enough so that it is applicable regardless of the imputation 
strategy considered. However, to study its need/usefulness when applied to other 
imputation strategies does not fall within the scope of this work and is left for future 
investigation.

Our method was designed by assuming that the time-series being imputed change 
smoothly (as in our case study) and consists of two alternative transformations: (i) gap 

Original Data Reconstructed Data via MF

MF

Gap reconstruc�on alignmentGap reconstruc�on alloca�on

Fig. 3   Adjustment process illustration: for the given gap, matrix factorization (MF) reconstruction is trans-
formed with the goal of smoothing the transition between the observed values and the imputed ones
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allocation and (ii) gap alignment. When the missing gap includes the first or last times-
tamps of the time-series (in which case there is less information regarding the expected 
range of values), we apply the gap allocation transformation which consists of a shift to 
the observed gap margin. In the remaining gaps, we apply the alignment transformation, 
in which the estimated sequence is subject to a shift and a slight distortion in order to 
simultaneously guarantee that the imputation falls within the expected range of values 
and both the observed→imputed and imputed→observed transitions are smooth.

The adjustment process is illustrated in Fig. 3 and documented in algorithm 1—for 
ease of understanding we incorporated the decomposition into the process. 

Let � ∈ ℝ
N×T be the incomplete time-series matrix with the missing blocks defined as 

{tsi, [t
i
1
,… , ti

Li
]}i , meaning that block i of consecutive timestamps [ti

1
,… , ti

Li
] , with 

ti
j
= ti

j+1
− 1,∀j < Li , is missing for time-series tsi (no assumption is made on the number of 

gaps per time-series). We start by decomposing the data with R factors by using the desired 
decomposition algorithm, which we refer to as factorize. Then, we apply the post-process-
ing procedure to each gap. It should be noted that if there are no observed values for a 
given time-series, then the decomposition does not provide an useful (non-degenerated) 
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estimation for it and, as consequence, it is of no use to apply the adjustment procedure. 
Therefore, for simplicity, we assume that there were observed instants for each time-series 
in the matrix.

Let us denote the estimated imputation for gap i as 𝐱̂ (corresponding to the matrix 
decomposition output on timestamps [ti

1
,… , ti

Li
] of time-series tsi ). Since the gap first 

and last timestamps might be missing for all the time-series (in which case, the decom-
position does not provide a useful estimate), we apply a linear padding to such times-
tamps (through linearpadding). This step is necessary because the proposed adjustment 
relies on the reconstruction at the gap margins, that is, at instants ti

1
 and ti

Li
 . Therefore, its 

goal is to obtain a reliable estimation of the reconstruction 𝐱̂ at instants ti
1
 and ti

Li
 , when-

ever no observation was obtained at such instants. For illustration purposes let us 
assume no time-series were observed at instant ti

1
 (but there were observed time-series at 

ti
Li

 ), then the matrix decomposition was not able to properly estimate 𝐗̂[tsi, ti1] , and the 
use of such margin for the adjustment process would strongly affect the imputation qual-
ity. To overcome such issue, we search for the first timestamp t� ∈ {ti

1
+ 1,… , ti

Li
− 1} , 

for which at least a time-series was observed. Given 𝐱̂ at the corresponding t′ and ti
Li

 
timestamps, we obtain the parameters of the linear interpolation between such points, 
corresponding to the gap reconstruction non-degenerated margins, and estimate 𝐱̂ at ti

1
 as 

the interpolation value at such point. This procedure may be carried out for all times-
tamps in {ti

1
,… , t� − 1} , thus encompassing a “padding” to the original reconstruction. 

In the case where no time-series were observed at instant ti
L
 , the procedure is identical 

with the main difference that t′ is computed as the last timestamp in the gap for which at 
least a time-series was observed. After this preliminary step, one of the following trans-
formations is carried out.

Gap allocation If the missing gap occurs at the first or last timestamps of the time-
series, 𝐱̂ is shifted by a magnitude corresponding to the difference between the last missing 
and the first observed values (if the first timestamps are missing) or the last observed and 
the first missing values (if the last timestamps are missing). No further processing is car-
ried out because there is not enough information to improve the imputation in these cases.

Gap alignment When the gap is preceded and followed by observed values, we can 
use such (observed) values to improve the imputation quality by imposing smoothness in 
both observed→imputed and imputed →observed transitions. We are interested not only in 
imposing smoothness but also in preserving the evolution of 𝐱̂ , captured via matrix decom-
position. Based on this, the idea consists of aligning 𝐱̂ according to the gap linear inter-
polation, � , by shifting 𝐱̂ by a magnitude which is dependent on the linear interpolation 
between 𝐱̂ first and last values, � (as illustrated by the grey area in Fig. 3).

It is noteworthy that in the gap alignment procedure, our goal was to find a transforma-
tion which would impose smoothness in the observed ↔ imputed transitions while apply-
ing the least amount of distortion. Based on this, intuitively the proposed transformation 
aims at approximating a symmetry. Nonetheless, on contrary to symmetry, this transfor-
mation preserves the time axis, which is an important feature because we are dealing with 
discrete time and it would not be appropriate to model, for example, 0.5 timestamps.

We reinforce that the adjustment strategy was developed under the assumption of 
smoothness in the time-series evolution. Therefore, further investigation must be carried 
out in order to develop a strategy which is robust to local anomalies in the first and last 
timestamps of the missing gap. We leave this research direction as future work.
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5 � Experiments

In order to empirically show the existence of the misalignment problem and to study the 
usefulness of the proposed adjustment procedure, we carried out multiple experiments, 
whose details are provided below. For reproducibility purposes, the source code is availa-
ble at https://​github.​com/​ATNoG/​adjus​ted-​mf. It should be noted that the implementations 
of TRMF and LATC were derived from the corresponding authors public implementations, 
while public libraries including SVT (Duan, 2020) and CP (Williams et  al., 2018) were 
also considered. Only NMF implementation was written from scratch.

5.1 � Datasets

In these experiments, we gave special focus to our case study: the indoor climate dataset. 
However, additional datasets were considered for the validation of our study. All datasets 
are characterized as follows.

Indoor climate consists of temperature, humidity and pressure values measured in 14 
houses by a period of 13 consecutive months (from March 2019 to April 2020). A meas-
urement (temperature, relativehumidity, pressure) was collected by wireless sensors when-
ever a considerable change in the values was detected (with a minimum time frequency 
of an hour), after the sensor connects to an IoT platform named SCoT  (Santiago et  al., 
2019) to share the measurements. The three measurements were made by the same device. 
Therefore, the main causes for missing data were the sensor malfunction (in which case, no 
measurements were performed for the corresponding tenant during the malfunction period) 
and connection issues with the IoT platform (in which case, no measurements were stored 
for any of the houses). The measurements of each variable were hourly averaged and re-
arranged into a 14 × 9528 matrix, for which around 52% of the entries are missing. Tem-
perature, relative humidity and pressure were, respectively, measured in Celsius degrees 
( Co ), percentage ( % ) and millibars (mbar).

As previously exposed, this dataset was acquired within the scope of Smart Green 
Homes project. The participants were informed about the goals of the study and provided 
their consent on the data collection, processing and analysis. The privacy of the partici-
pants was also ensured.

Iberian Peninsula average temperature  (Menne et al., 2012, 2020) comprehends a set 
of time-series of daily average temperature across 9 weather stations in the south of the 
Iberian Peninsula over a period of a year. It should be noted that since the stations locations 
were close, the time-series assume a similar range of values. In fact, the median correlation 
between two different time-series in this dataset was ≈ 0.97.

This dataset was provided by the National Oceanic and Atmospheric Administration 
(NOAA)2, we refer to it as iberian_temp.

World average temperature (Menne et al., 2012, 2020) is similar to iberian_temp, as it 
also consists of daily average temperatures and it was provided by NOAA. However, in this 
dataset, we considered 12 locations across the different continents. The median pairwise 
correlation of these time-series was ≈ 0.4 , nonetheless, there was a subset of time-series 
with a pairwise median correlation of ≈ 0.8.

For simplicity, we refer to this dataset as world_temp.
Guangzhou traffic (Chen et al., 2018) comprises time-series of traffic speed across mul-

tiple road segments in the city of Guangzhou, China. In particular, the dataset is formed 
by 214 time-series with 8784 timestamps each (corresponding to 61 days of 10 min 2  https://​data.​nodc.​noaa.​gov/​cgi-​bin/​iso?​id=​gov.​noaa.​ncdc:​C00861.

https://github.com/ATNoG/adjusted-mf
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00861
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timestamps). In this work, we restricted the dataset to the first 5 days and discarded 5 road 
segments whose data was missing. The time-series in this dataset were “heterogeneous” 
with the median pairwise correlation between them being less than 0.65. We refer to this 
data subset as Guangzhou.

Seattle traffic3  (Cui et  al., 2018, 2019) is formed by time-series of traffic speed on a 
freeway of Seattle. In more detail, there are 323 time-series collected at different freeway 
mileposts at each 5 min and, for simplicity, we restricted our analysis to the first 500 times-
tamps. The resulting data was also heterogeneous with the median correlation across time-
series being lower than 0.55. The resulting data matrix is dubbed as Seattle.

Gas sensor4 (Fonollosa et al., 2014) is, as the name suggests, a collection of measure-
ments made by 8 gas sensors (acquired for ethylene released at high concentration and 
zero carbon monoxide concentration). In this dataset, the measurements were arranged into 
100 milliseconds timestamps, and we restricted our study to the first 500 timestamps. The 
median correlation across time-series was ≈ 0.53.

5.2 � Baselines

Since our goal is to improve the accuracy of matrix decomposition when imputing missing 
data, the baseline in this study is the matrix decomposition itself. Based on this we consid-
ered NMF for incomplete data (Kim & Choi, 2009), as the main decomposition algorithm 
in all of the experiments.

When targeting our case study on the indoor climate data, we considered four other 
decomposition approaches. This is justified by our interest in finding the most accurate 
imputation for this dataset and by the need of providing evidence that the misalignment 
is not specific to NMF but, instead, also occurs when considering other decomposition 
methods. In this context, we considered TRMF (Yu et al., 2016), SVT (Cai et al., 2010) 
and LATC (Chen & Sun, 2020) as the methods in which each thermal measurement was 
imputed isolatedly. Moreover, we also considered non-negative CP decomposition by Hier-
archical Alternating Least Squares (Cichocki & Phan, 2009; Williams et al., 2018), a tensor 
decomposition approach in which the three measurements were jointly decomposed. For 
the sake of simplicity we refer to this method as CP.

5.3 � Evaluation metric

Since in imputation tasks it is not possible to account for the accuracy of the imputation of 
the unobserved values (due to the lack of ground truth), a common strategy consists of 
removing a set of observed values from the data and account for the imputation quality on 
such values. Based on this, in order to measure the imputation quality, we resorted to the 
root mean squared error (RMSE). In more detail, for each dataset and experimental setting, 
we removed sequences of consecutive values �i = �[tsi, t

i
1
∶ ti

Li
] , applied matrix decompo-

sition to the “corrupted” datasets and measured the imputation error as:

3  https://​github.​com/​zhiyo​ngc/​Seatt​le-​Loop-​Data.
4  https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​Gas+​sensor+​array+​expos​ed+​to+​turbu​lent+​gas+​mixtu​res.

https://github.com/zhiyongc/Seattle-Loop-Data
https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+exposed+to+turbulent+gas+mixtures
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where 𝐲̂i denotes the corresponding estimation of �i . Also, 
∑n

i=1
Li accounts for the total 

number of missing entries in the data matrix.
It should be noted that the setting considered for obtaining RMSE was dependent on 

the completeness of the dataset under study. When dealing with incomplete data, each 𝐲̂i 
was obtained from the decomposition of the corrupted dataset obtained by discarding �i , 
similarly to  (Tarpey, 2000). In datasets with no missing values, a model was obtained from 
a corrupted version of the dataset, in which the set of all gaps, {𝐲̂i}ni=1 , was missing. In this 
case, only one decomposition was performed, but it involved the imputation of multiple 
gaps. We note that, in datasets with no missing values, if we removed only a single gap at 
the time, the amount of remaining data for the decomposition model to learn would still be 
large ( > 90% ), which would facilitate the problem.

5.4 � Experimental setting

This study involved sets of experiments with some variations between them. Nonetheless, 
the main set up was similar: (i) for each dataset, we generated 10 random samples of gaps 
from the observed values (each sample of gaps encompasses blocks of consecutive times-
tamps across the multiple time-series, as defined in Sect. 4, with an additional constraint of 
fixed length size: Li = L,∀i ; no restriction was considered regarding overlapping gaps, that 
is, some timestamps may be missing for more than one time-series); (ii) for each sample, 
we applied the procedure described in Sect. 5.3 and computed the RMSE using (Eq. 2); 
(iii) finally, we computed the median of the RMSE results over the 10 samples. We note 
that we present the median RMSE for the sake of simplicity. Still, we analysed the results 
of each sample individually and we observed that the median RMSE was representative of 
the behaviour observed in the majority of the samples.

For the indoor climate dataset, a sample consisted of around 208 gaps of observed 
sequences and we considered fixed length gaps. Multiple experiments were carried out by 
varying the gap size between 12 and 96 h. In the remaining datasets, the gap sizes consid-
ered ranged from 5 to 40 timestamps and the number of gaps was selected so that the rate 
of missing timestamps was around 50%.

In all of the experiments, we varied the number of factors in the matrix decomposition 
techniques from 1 to 12. For the sake of simplicity, we only show the results for the model 
associated with the minimal median RMSE. With respect to method specific parameters, 
we carried out a (non-exhaustive) search on the parameter space to find the parameter val-
ues that lead to more accurate imputations. Based on the results, we used a regularization 
factor of 0.1 for NMF. In TRMF we considered all regularization terms ( �f , �x, �w ) to be 
0.75 and a lag set ( L ) of {1, 2, 3} . In LATC, we considered a lag set of {1} and the remain-
ing parameters were set as � = {

1

3
,
1

3
,
1

3
}, � = 10−4, � = 5 × 10−4, � = 15, � = 10−3 . In the 

remaining methods, the parameter values considered coincided with the defaults in the cor-
responding implementations5.

(2)RMSE =

���� 1∑n

i=1
Li

n�

i=1

Li�

k=1

(𝐲i[k] − 𝐲̂i[k])
2

5  The reader should refer to Duan (2020) for details on the SVT implementation and to Williams et  al. 
(2018) for details on the CP implementation.



3168	 Machine Learning (2021) 110:3157–3175

1 3

Moreover, we observed that the scaling of the data affected the imputation quality. 
While it is out of the scope of the work to discuss such issue, we searched for the scaling 
that best suited the method for each dataset. The final scaling used is presented in Table 2.

5.5 � Results

The main goal of this work is to study the misalignment problem, found when imputing our 
indoor climate dataset. Thus, within a first line of research, we are interested in address-
ing our indoor climate data case study. In particular, we aim at addressing the following 
questions:

Q1.A: Does the adjustment procedure improve the imputation accuracy in our 
case study?

Q1.B: Is the imputation accuracy obtained by the adjusted matrix decomposition 
competitive in our case study?

Additionally, we are also interested in understanding if the misalignment problem 
occurs in other types of datasets, and what factors may be causing it. Based on this, we also 
target the following question:

Q2: Does the adjustment procedure improve the imputation accuracy in other 
datasets?

To address Q1.A, we applied multiple decomposition methods (as exposed in Sect. 5.2), 
and for each imputation we applied our adjustment strategy. We note that the datasets were 
processed by season as it helps capture local dynamics (Xie et al., 2016). The results are 
depicted in Fig. 4, according to which:

–	 in TEMP the adjustment consistently led to more accurate imputations, with the excep-
tion of LATC, in which the adjustment effect was very reduced;

–	 in HUM the adjustment led to more accurate imputations in all settings but 72h in 
TRMF. Moreover, the level of improvement after the adjustment was higher for the 
gaps with the smaller sizes;

–	 in PRE, when considering NMF, TRMF and CP, the adjustment was only beneficial for 
gap sizes of at most 36 h. In the remaining methods, the adjustment always led to an 
improvement.

It should be noted that SVT accuracy was (comparably) poor in the three measurements, a 
result which is in accordance with comparison studies in literature (Khayati et al., 2020).

From a general perspective, we observed that the imputations refined through the adjust-
ment process were more accurate in the generality of the scenarios, with the main excep-
tions occurring for gap sizes greater or equal than 48 timestamps in PRE measurements. 
It is noteworthy, that among the three measurements, pressure was the one in which the 
measurements were more similar across the multiple houses. As a consequence, the overfit-
ting to the observed values may have less impact and the misalignment may be less severe.

These results show that the matrix decomposition imputation misalignment occurs in 
the indoor climate datasets, even when time-aware methods such as TRMF and LATC are 
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considered. Moreover, the results also provide evidence that the adjustment approach is 
suitable.

Additionally, we were also interested in understanding how the level of improve-
ment varies from the original imputation to the adjustment and how competitive are the 
adjusted imputations obtained by the different models. Although Fig. 4 already provides 
some insights, in order to facilitate the comparison across the methods, we re-organized the 
results in Figs. 5, 6 and 7, in which two baselines were also considered: linear interpolation 
and exponential weighted moving average (EWMA)  (Moritz et  al., 2019). It is notewor-
thy that we also tried machine learning based approaches, namely, GP-VAE (Fortuin et al., 
2020). Nonetheless, the time required to carry out the experiments exceeded the time limit 
imposed (8 h). Still, we analysed the results acquired so far and observed that the imputa-
tion quality was poor. For example, for a gap size of 12 h, the RMSE obtained for temp was 
around 2.5, for hum was around 10.0 and for pre was around 9.0. Since these methods rely 
on large training sets, we believe that the small number of time-series available may had 
compromised the accuracy of these type of models. Finally, it should also be noted that the 
scales for original and adjusted plots are different to facilitate the visualization. Moreover, 
in this analysis we focus only on the cases for which the adjustment led to improvements.

By analysing the imputation error of the multiple decomposition models (without the 
adjustment), we observed that, generally, the most accurate methods were the ones model-
ling temporal dependencies (that is, TRMF and LATC). Nonetheless, when we applied the 
adjustment procedure to such imputations, we verified that the best accuracy was attained 
by NMF and CP. In other words, this means that the adjustment procedure introduced a 
higher improvement on non-time-aware approaches and that the resulting adjustments, 
when improving the original imputation, were generally more accurate than the ones 
obtained by time-aware methods and corresponding adjustments.

These results also allows us to answer Q1.B: we observed that, for most of the scenar-
ios, the methods were more competitive regarding the baselines when the adjustment was 
applied (recall Figs. 5, 6 and 7).

Finally, we studied the misalignment problem in other datasets. In particular, if a 
strong misalignment occurs, our adjustment strategy is expected to improve the accu-
racy of the imputation, due to its gap re-allocation. Therefore, to tackle Q2, we applied 
our adjustment strategy to matrix decomposition in five other datasets. For the sake of 
simplicity, we considered only NMF. Moreover, similarly to the indoor climate datasets, 
Iberian_temp and World_temp were also processed by season. In Fig. 8, we show the 
results for three of such datasets and we can observe that the results were very differ-
ent across them. In particular, the adjustment procedure led to poor quality imputation 
in the Iberian_temp. We believe that, similarly to what occurred in pre, the misalign-
ment did not occur because the different time-series not only have an identical evolution 
(being highly correlated) but also assume an identical range of values. To deal with 

Table 2   Scaling used for each of 
the methods and datasets under 
study (./s scaling consists of 
dividing the data matrix by s)

TEMP HUM PRE Others

NMF min–max min–max min–max min-max
TRMF none ./10 ./50 –
SVT min–max min–max min–max –
LATC​ none none ./50 –
CP min–max min–max min–max –
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Fig. 4   RMSE on the original and the (post-processed) adjusted imputations for five distinct decomposition 
approaches (NMF, TRMF, SVT, LATC and CP) on the three indoor climate measurements (temp, hum, and pre)
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these cases, in which the misalignment does not occur, it would be important to incor-
porate in our method a strategy to infer whether the adjustment is needed or not based 
on the smoothness of the transitions between observed and imputed values. Nonethe-
less, such issue does not fall within the scope of this work and is left as future work. 
In world_temp, we observed that the adjustment was useful when imputing small gaps 
and in gas_sensor, the adjustment led to a general imputation accuracy improvement 
regardless of the gap size.

With the goal of having a deeper understanding of the scenarios in which the adjust-
ment is beneficial, we carried out an additional study on the datasets of guangzhou and 
seattle, which have a larger number of time-series. In particular, we studied the adjust-
ment need according to the number of time-series. In order to carry out this study, we 
considered a subset of the original datasets by randomly selecting N̂ time-series, with 
N̂ ∈ {15, 60, 100, 200} . We considered 10 samples of subsets for each N̂ so that we were 
able to perceive the dominant pattern. For the sake of simplicity, we exhibit the results of 
one of such samples per number of time-series considered (see Fig.  9). Nonetheless, we 
ensured that the sample presented reflected the behaviour original vs. adjusted observed 
across the majority of the samples. Interestingly, we observed the same pattern in both data-
sets: when considering only 15 timestamps, the adjustment always improved the original 

Fig. 5   RMSE per gap size on the linear, EWMA and original/adjusted (left/right) NMF, TRMF, SVT, 
LATC and CP imputations on the temp indoor climate measurement

Fig. 6   RMSE per gap size on the linear, EWMA and original/adjusted (left/right) NMF, TRMF, SVT, 
LATC and CP imputations on the hum indoor climate measurement
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imputation, but , as we increased the number of time-series in the datasets, the adjustment 
became less beneficial (especially in the larger gaps). These results reinforce the evidence 
that the misalignment problem arises from overfitting on datasets with few time-series.

General observations Since, when a strong misalignment occurs (such as in Fig.  1), 
shifting the imputation to the right range of values would substantially improve the imputa-
tion, then we can claim that poor adjustment quality is implicitly associated with few mis-
alignment. Therefore, according to our experiments, we verified that:

–	 The misalignment problem was not algorithm specific, occurring in multiple decompo-
sition techniques, even when those techniques incorporated temporal constraints.

–	 When there was high similarity (namely regarding the correlation and range of values) 
between the time-series, the misalignment was residual/not observed (as it occurred in 
the iberian_temp case, in which the time-series had a pairwise correlation of around 
0.97).

–	 The misalignment was more likely to occur in datasets with few time-series as it was 
empirically suggested by analysing the results on the traffic datasets: while the adjust-
ment was always beneficial when considering 15 time-series, the same did not occur 
when considering a data matrix of 200 time-series (specially in seattle).

Fig. 7   RMSE per gap size on the linear, EWMA and original/adjusted (left/right) NMF, TRMF, SVT, 
LATC and CP imputations on the pre indoor climate measurement

Fig. 8   RMSE per gap size on the original and the (post-processed) adjusted imputations for NMF in ibe-
rian_temp, world_temp and gas_sensor datasets
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6 � Conclusions

As previously stated, with the emergence of the IoT there is an increase in the number 
of data sources available. Extracting relevant knowledge from these data sources requires 
not only analysis and processing tools, but also strategies to handle erroneous and missing 
data. In this work, we reported the misalignment problem of matrix decomposition with 
missing values, according to which matrix decomposition may misplace the imputations, 
thus compromising their quality. Moreover, we proposed an adjustment strategy to tackle 
this problem.

We carried out several experiments that demonstrated not only the existence of the 
misalignment problem in different scenarios but also the suitability of our adjustment 
approach. In this context, the experimental results provided some insights on the causes 
of misalignment. In particular, there was empirical evidence that this problem may derive 
from considering a small number of time-series. While one may argue that nowadays we 
deal mostly with Big Data and consequently, this problem does not hold, we believe that 
this work may be useful for small-scale studies and cases in which the access to data is 
limited.

Finally, with respect to future work, one of the main goals is to build a strategy that 
automatically decides the need for adjustment or not. We believe that such decision may be 
made based on the level of change between the observed values and between the observed 
and imputed values on the gap margins.
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