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Abstract
Coastal development and urban planning are facing different issues including natural disas-
ters and extreme storm events. The ability to track and forecast the evolution of the physical 
characteristics of coastal areas over time is an important factor in coastal development, risk 
mitigation and overall coastal zone management. Traditional bathymetry measurements are 
obtained using echo-sounding techniques which are considered expensive and not always 
possible due to various complexities. Remote sensing tools such as satellite imagery can 
be used to estimate bathymetry using incident wave signatures and inversion models such 
as physical models of waves. In this work, we present two novel approaches to bathym-
etry estimation using deep learning and we compare the two proposed methods in terms of 
accuracy, computational costs, and applicability to real data. We show that deep learning is 
capable of accurately estimating ocean depth in a variety of simulated cases which offers a 
new approach for bathymetry estimation and a novel application for deep learning.

Keywords  Satellite-derived bathymetry · Earth observation · Machine learning · Deep 
learning · Regression

1  Introduction

Coastal areas are currently facing environmental and resource problems aggravated by 
anthropogenic pressure and over-exploitation. The environmental context of extreme events 
(eg, floods and coastal erosion) combined with anthropogenic pressure is a limiting factor 
for coastal development and flood-risk exposure. The state and evolution of the nearshore 
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bathymetry over time is an important element in determining coastal risk exposure, that must 
be considered for coastal development and planning, but the acquisition of in-situ measured 
data is time-consuming and expensive, and not always possible due to the energetic nature 
of breaking waves in the coastal zone, and hence, performing bathymetric measurements is a 
challenge. Reliable, fast, and inexpensive estimates of ocean depth are increasingly necessary 
for coastal areas.

Recently, remote sensing tools have emerged as sources of inexpensive data that can be 
used to estimate and forecast coastal dynamics and features. These tools range from shore-
based (Almar et al. 2009; Holman et al. 2013) or drone-mounted video (Bergsma et al. 2019a) 
cameras, to space-borne satellite constellations (Almar et  al. 2019; Bergsma et  al. 2019b). 
Shore-based solutions are limited to the spatial concentration and temporal sparsity of data, 
two issues which prohibit the estimation of coastal dynamics on a large scale. On the other 
hand, satellite missions such as the Sentinel-2 Constellation provide us with high-resolution 
images having global coverage and at a high revisit frequency (every 5 days with Sentinel-2) 
(Drusch et al. 2012), covering the coastal zone (Bergsma and Almar 2020). The process of 
estimating water depth from satellite imagery is referred to as Satellite Derived Bathymetry 
(SDB). SDB is an ongoing topic of research due to its massive potential impact on our ability 
to forecast coastal morphodynamics and related marine geological hazards on a large scale.

Deep Learning (DL) is a field of machine learning algorithms which have undergone mas-
sive development over the last decade and have drawn attention by demonstrating powerful 
capabilities in a variety of different fields (Goodfellow et al. 2016). One of the most successful 
applications of DL to date has been computer vision, demonstrated through applications in 
image classification, processing, and generation (Simonyan and Zisserman 2014). A natural 
extension to this application is the use of DL in remote sensing through the automatic process-
ing of satellite images. A growing body of recent work has applied DL to satellite image clas-
sification or segmentation for a variety of applications (Liu et al. 2017; Iglovikov et al. 2017). 
These approaches often use deep learning to identify features in satellite images, such as the 
detection of vehicles.

In this work, we present what we believe to be the first application of deep learning to the 
problem of bathymetry estimation using wave physics. We create a synthetic dataset with a 
wide range of bathymetries and wave conditions, to be used in order to test the feasibility of 
the two proposed deep learning-based SDB methods, showcase their capabilities and under-
stand their limitations, along with the different constraints that should be taken into account 
when dealing with real bathymetric measurements and satellite data.

The layout of this article is as follows. In Sect. 2 we discuss the problem of bathymetry 
estimation, the state-of-the-art for estimation methods, and machine learning approaches to 
bathymetry estimation and similar problems. We present two deep learning approaches for 
SDB in Sects. 4 and 5. The first method, Deep Large-Scale Reconstruction of Bathymetry 
(DLSRB), uses an encoder-decoder architecture to reconstruct the bathymetry over an entire 
2D area. The second method, Deep Single-Point Estimation of Bathymetry (DSPEB), uses a 
convolutional neural network to estimate the average depth of individual local areas, which we 
then iterate to reconstruct the full bathymetry. The accuracy of these methods is analyzed on 
simulated bathymetry cases in Sect. 6. A general discussion and future works are presented in 
Sect. 7.
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2 � Background

In this section, we first describe the problem of bathymetry estimation, and the state of the 
art for physics-based approaches to the problem of satellite derived bathymetry. We then 
present other machine learning and deep learning-based literature related to our work.

2.1 � Satellite derived bathymetry

Coastal bathymetry is paramount in understanding and forecasting coastal vulnerabil-
ity (Benveniste et  al. 2019). However, accurate bathymetries are often sparse in space 
and time due to the difficult and time-intensive nature of in-situ echo-sounding measure-
ments. Remotely sensed bathymetry, through e.g. depth inversion and in particular using 
space-borne sensors, enables frequent and spatially dense bathymetries. Satellite-derived 
bathymetry from optical space-borne sensors are often derived using two approaches: that 
link water depth to (1) the radiative transfer of light in water as a link to water depth, and 
(2) wave kinematics through the dispersive relationships. Each approach has its strengths, 
limitations, and scope of applications (Salameh et al. 2019; Melet et al. 2020). In radia-
tive transfer techniques, bathymetry is calculated based on the attenuation of radiance as a 
function of depth and wavelength in the water column using analytical or empirical models 
(Lee et al. 1999). Analytical imaging models are typically based on radiative transfer and 
the optical properties of water that impact how light is attenuated or deflected. Empirical 
imaging models rely on the statistical relationship between pixel-intensities and depth. For 
radiative transfer approaches, it generally holds that strong correlations between estimated 
and measured water depths are found in clear, calm waters. These models are strongly 
dependent on and largely bounded by the maximum penetration depth of sunlight which 
varies according to different seasons, locations and bottom reflectance. Alternatively, 
depth inversion approaches based on wave kinematics have been applied to a variety of 
data-types, collected from different remote sensing tools, ranging from modelled analy-
sis (Bergsma and Almar 2018), laboratory experiments (Catalán and Haller 2006) to local 
shore-based analysis using time-series data (Stockdon and Holman 2000; Plant et al. 2008; 
Almar et al. 2009; Holman et al. 2013), airborne video data (Bergsma et al. 2019a; Brodie 
et al. 2019) and ultimately space-borne sensors including the IKONOS satellite (Abileah 
2006), SPOT5 (de Michele et al. 2012; Poupardin et al. 2014, 2016), Sentinel-2 (Bergsma 
et  al. 2019b) and Pleiades (Almar et  al. 2019). Wave kinematic approaches exploit tem-
poral information embedded in (satellite) images, in order to extract wave characteristics 
such as wavenumber and wave celerity that are then used to invert water depths. For the 
wave kinematics approach, wave signatures have to be visible in the image; while this can 
be a challenge in very clear waters with short waves, this approach has strong potential to 
estimate water depths in a large range of coastal waters (Bergsma and Almar 2020) such 
as different sandy or rocky bed types, turbid waters, with a theoretically deeper water limit 
compared to the previously mentioned methods based on the radiative transfer of light in 
water. In this study, we therefore focus on the wave kinematics approach.

2.2 � Related works

Building on the existing literature of machine learning applications to wave modelling 
and bathymetry estimation, this paper presents the first application, to our knowledge, of 
deep learning to derive satellite-derived bathymetry based on wave kinematics. Machine 
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learning has been used to replace classical wave models utilising time-series data from 
ocean buoys in Savitha et al. (2017) and Kumar et al. (2018), which use ensembles of feed-
forward neural networks to predict wave height. Vojinovic et al. (2013) uses Support Vector 
Machines to perform water depth estimation based on a transformed ratio between the dif-
ferent bands (blue and green) of NASA EO-1’s multi-spectral satellite images, demonstrat-
ing skill to predict depths to 15 m water depth. In Sagawa et al. (2019), Random Forests are 
used to perform a three-step analysis of several multi-band Landsat 8 Surface Reflectance 
products to create a shallow-water bathymetry map (0–20 m depth) for a specific site. In 
these works, the input data is transformed to render it accessible for the machine learning 
models; the goal of our work, however, is to offer models which can be applied to satellite 
products with minimal preprocessing procedures.

Earth Observation and remote sensing have recently seen a wide adoption of deep learn-
ing methods, largely due to the capacity of Convolutional Neural Networks (CNNs) to per-
form both satellite image processing and feature analysis. A review of deep learning and 
its application to Earth Observation is given in Zhu et al. (2017), and a more recent review 
focused on the different remote sensing applications is found in Ma et al. (2019). There is 
a strong trend towards image segmentation and classification tasks, such as object detec-
tion, which reflects the general trend in deep learning; a review on the application of deep 
learning methods to object detection and image segmentation tasks in Earth Observation 
is given in Hoeser and Kuenzer (2020). On the other hand, regression tasks, which require 
the estimation of continuous values, are less common; examples include Ham et al. (2019), 
where CNNs were used for El Niño/Southern Oscillation (ENSO) forecasting based on 
global ocean temperature distribution observations, and Wang et  al. (2016), which uses 
CNNs to estimate ice concentration from synthetic aperture radar (SAR) scenes.

Early applications of neural networks to the problem of bathymetry estimation made use 
of a multi-layered perceptron to relate the spectral radiance in satellite image products to 
the depths of the seabeds underlying the imaged areas (Sandidge and Holyer 1998). More 
recent work made use of deep neural networks to perform bathymetry inversion based on 
the relation between the radiative transfer of light in water and the underlying water depth 
(Dickens and Armstrong 2019). As previously mentioned, color-based SDB methods are 
limited to clear and calm waters and are dependent on multiple location-specific param-
eters. Our work focuses on the wave-based method and demonstrates that deep learning 
models can learn to perform water depth estimation based on wave kinematics.

A common problem in deep learning is the magnitude of labeled data required to train 
neural networks; while satellite images are readily available, the labels required for train-
ing are often difficult to obtain. For the ocean temperature forecasting model in Ham et al. 
(2019), this problem is mitigated by first training their model on simulated data before 
applying transfer learning techniques to enable the model to handle real observations. 
Using this approach, Ham et al. (2019) report a positive improvement in performance on 
real data as a result of using transfer learning. The problem of model transfer from syn-
thetic to real data in deep learning is well-studied (Zhuang et  al. 2020) and it has been 
demonstrated that synthetic priors lead to better performance when compared to non-
transfer models which learn fully on real data (Bird et al. 2020). In this preliminary work, 
we use a synthetic dataset generated to resemble Sentinel-2 images and allow studying 
extreme bathymetry features, as we discuss in the next sections. We believe that these first 
experiments in applying deep learning to bathymetry estimation will allow for the transfer 
of models trained on synthetic data to real data and will also provide insight on this appli-
cation in terms of problem design, CNN architecture, and training algorithm choice.



1111Machine Learning (2023) 112:1107–1130	

1 3

3 � Data generation

Deep Neural Networks (DNN) require vast amounts of data for their training, on the order 
of tens or hundreds of thousands of labelled examples. The goal of this work is to ena-
ble the use of satellite imagery to estimate bathymetry; we therefore require both satellite 
images and the corresponding bathymetric measurements of the imaged areas. Using real 
satellite imagery and bathymetry surveys requires handling uncertainty in the ground truth 
which might obfuscate fundamental behaviour of the deep learning models. In order to 
rapidly test and have a clear indicator of the feasibility and performance of our different 
approaches, we generate an exhaustive synthetic dataset to train and test our deep learning 
models as a first step (proof-of-concept), with the eventual goal of creating a supervised 
dataset from real data to which we can apply our models. We also use this synthetic dataset 
to perform hyperparameter tuning such as architecture choice which we present in this arti-
cle and which will inform the application to real satellite images.

The process of synthetic data generation is split into two main steps: creating random 
synthetic bathymetries and then applying a wave model to those bathymetries in order 
to observe and extract the resulting wave patterns. In this section, we first describe our 
method of generating synthetic bathymetry profiles, then detail the process of creating syn-
thetic satellite images that replicate those captured by the Sentinel-2 satellite constellation. 
Finally, we describe our process of transforming the simulated data into training, validation 
and test sets.

3.1 � Bathymetry generation

We simulate coastal areas of 4 km2 at a resolution of 10 m. It is presumed that an area of 
4 km2 is large enough to realistically incorporate multiple morphological features within 
a single profile, covering the different possible features that can occur naturally in the real 
world. To provide a more reliable indicator of the networks’ ability to perform bathymetry 
reconstruction, we raise the complexity of the problem by increasing the level of random-
ness in our synthetic bathymetry profiles.

We use a Python script to generate random bathymetries by assigning a random slope 
from a predefined range such that the resulting maximum depth (at 2 km’s offshore) falls 
between 40 and 100 m. We then use the chosen slope to create a flat 2D surface, to which 
random bumps, sandbars and canyons with random physical dimensions are applied 
according to a uniform distribution. The value ranges of these physical features are detailed 
in Table 1. A variety of natural features or man-made artifacts are not simulated in this 
experimental setup, including islands, lagoons, bays, jettys and wave breakers.

Figure 1 shows two examples of bathymetries, P1 and P2, which demonstrate a diver-
sity of physical features and which will be used throughout this article to demonstrate our 
methods. For training, we normalize all depth values to range between 0 and 10, by divid-
ing them by 10. This decision is based on an experiment on using different normalization 
schemes which is discussed in "Appendix B".

3.2 � Wave simulations

The generated bathymetries are used as input to FUNWAVE-TVD (Shi et al. 2016), a fully 
non-linear Boussinesq wave model, which is initialized using random wave conditions for 
each profile. The three main random parameters that are altered are the significant wave 
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height, the peak wave period and the peak direction. Figure 2 shows the range and distribu-
tion of values for each of these simulated parameters.

The simulated wave pattern images are extracted at different points of the simulation 
to create image-bursts (stacks), each resembling a single Sentinel-2 image composed of 4 

Table 1   Synthetic bathymetric 
feature value ranges

These ranges are used to apply random modifications to the raw 
bathymetry slope according to a uniform distribution. *Count corre-
sponds to the number of features to be created **A negative amplitude 
corresponds to a canyon

Feature Min. Max.

Count 2 30
Amplitude − 20 m 20 m
Cross-shore wavelength 50 m 750 m
Alongshore wavelength 100 m 1500 m

Fig. 1   Synthetic bathymetry profiles P1 and P2 generated using our previously-described bathymetry gen-
eration method. A number of Gaussian blobs with random positions, heights, and standard deviations are 
applied to each bathymetry profile representing bumps, sandbars or canyons in the synthetic seafloor. *The 
color-scale indicates depth

Fig. 2   Distribution and value range of each of the three main wave simulation parameters. (Left) Significant 
wave height [m]; (Middle) Peak wave frequency [1/s]; (Right) Peak wave direction [degrees]
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bands with 10 m resolution, taking into account the time lag observed between the different 
Sentinel-2 bands (Drusch et al. 2012).

The output of the wave simulator is a stack of wave elevation matrices, each represent-
ing a single simulation step, or a single band in our synthetic satellite images. The wave 
simulator we use does not account for sun angles, wind speeds, white caps, seafloor reflec-
tion or other factors that can affect our ability to observe wave patterns in real Sentinel-2 
imagery. However, we mitigate this difference by further processing our synthetic images, 
as described in the next subsection.

3.3 � Image and dataset generation

Real satellite imagery are composed of pixel intensity values representing the reflection 
of photons on the surface of the earth. On the ocean, this translates to the gradient of the 
ocean surface, rather than the surface itself. As discussed in Sect. 3.2, the output of the 
wave simulator is a stack of wave elevation matrices representing the ocean surface at each 
time step. Therefore, in order to maximize the similarity between the simulated and real-
world satellite images, the wave elevation values of a single band are transformed to a two 
dimensional gradient map ( �M ) using Eq. 1, where M is the 2D map of wave elevation, �x 
represents a matrix of slopes along the cross-shore axis, and �y represents the alongshore 
slopes.

Given that we model a range of possible wave conditions rather than a single specific 
real-world case with a single condition, a direct comparison between the post-processed 
synthetic images and real satellite images is difficult. For the purpose of this study, we pre-
sume that the use of the 2D gradient map allows us to obtain a surface reflectance matrix 
that is similar to the real products offered by Sentinel-2 after applying a pass-band filter in 
the range of ocean-specific wavelengths (periods of 5 s–25 s).

Each synthetic surface reflectance band is then normalized to a range of 0–1 using minmax 
normalization, as shown in Fig. 3.

For this work, we generated 1500 different random bathymetries of size 4 km2 (200*200 
px). For each bathymetry, we created 16 randomly initialized wave simulations, each last-
ing for approximately 15 min of simulation. Presuming that 16 randomly-initialized simu-
lations include enough variation in wave parameters to be representative of the different 
real-world conditions over each synthetic bathymetry profile, our choice of the number of 
simulations and the duration of each, was made purely because it suited our computational 
setup and allowed us to run a large number of simulations in a short period of time. We 
take a snapshot every 20 s, where a single snapshot captures 4 bands. In total, this results 
in roughly 1.2 million 200*200*4 px images. The final processing step differs for our two 
methods, as we describe in detail in the following sections. For our first method, Deep 
Large-Scale Reconstruction of Bathymetry, each complete 200*200*4 px image is treated 
as a single input to our network and its corresponding bathymetry as the output. For our 
second method, Deep Single-Point Estimation of Bathymetry, we reduce the complete area 
and include offshore samples only, falling between the wave breaking point and 2 km’s off-
shore. We use these areas to perform sub-sampling over sliding windows of size 40*40*4 
px to extract the input images, with the average corresponding depth values as outputs. 
This is done due to the fact that FUNWAVE-TVD does not simulate wave breaking in its 
output. Although this enlarges the difference between our synthetic representation and that 

(1)�M =

√

�x2 + �y2
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which can be observed in real satellite imagery, it is sufficient for the purpose of the syn-
thetic dataset.

Our training and validation datasets originate from the same large dataset of 1.2 million 
full-sized snapshots. These samples are randomly shuffled and split into training and vali-
dation sets before being passed to the model in DLSRB. The same is done for DSPEB, sub-
tiles are extracted from the original full-sized snapshots, and are then shuffled and split into 

Fig. 3   Pre-processing steps of a single 4 km2 synthetic satellite band, going from a raw wave elevation 
matrix (a) the alongshore gradient (b), the cross-shore gradient (c), the 2D gradient map (d), and finally the 
normalized 2D gradient map (e) that is used as input to our deep learning models
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training and validation sets. To create our test set, which we use to evaluate our methods 
throughout this paper, we reran the same data generation scripts to generate 501 different 
full-sized bathymetry profiles, with 16 wave simulations each. However, we extract only a 
single snapshot (of 4 bands) from each simulation. This is to further ensure the variety in 
our test set. Our test set consists of 8016 full-sized (200*200*4 px) snapshots as inputs and 
their corresponding bathymetry profiles as outputs. In the next sections, we describe the 
two proposed methods and their performance using these datasets.

4 � Deep large‑scale reconstruction of bathymetry

Our first method, Deep Large-Scale Reconstruction of Bathymetry(DLSRB), consists of 
reconstructing complete 4 km2 bathymetry profiles with a resolution of 10 m, using satel-
lite images of the same size (4 km2 and 10 m resolution) as input. The main benefit of this 
approach is the full reconstruction of a bathymetry in one processing step, minimizing the 
computational cost when applied on a large-scale to reconstruct large coastal bathymetries. 
This approach also permits the neural network to learn correlations between physically dis-
tant wave patterns, which could lead to more accurate bathymetry predictions. In this sec-
tion, we describe the convolutional network architecture we used then detail our training 
method and configuration.

4.1 � Architecture

For this method, we use an encoder-decoder architecture which allows a neural network 
to learn a mapping function between inputs and outputs of the same size. This is done by 
imposing smaller intermediate layers where the information from input and preceding lay-
ers are compressed into a dense representation before being mapped back to their original 
shape. This technique has been used to great success in a wide variety of applications such 
as image reconstruction, pixel-wise regression, and image segmentation (Yao et al. 2018; 
Li et al. 2018; Çiçek et al. 2016). In our case, the encoder-decoder architecture forces the 
neural network to learn the physical relation between the evolution of the wave patterns 
over time, i.e. the different bands of the input image, and the corresponding underlying 
water depth in the output data.

The neural architecture used in DLSRB is U-Net, a popular encoder-decoder architec-
ture (Ronneberger et al. 2015). In this work, we make a slight modification to the U-Net 
architecture, as the original U-Net architecture was designed to work with images of size 
572 ∗ 572 ∗ 3 px images. We created a modified architecture that conforms with our data-
set of 200 ∗ 200 ∗ 4 px images by decreasing the network’s input dimensions and moving 
from crop-and-copy to copy-only connections, as shown in Fig. 4.

4.2 � Training

Due to the nature of our goal and our target values, the way we evaluate an estimated 
bathymetry profile during training can have a substantial effect on the network’s ability 
to learn and achieve our desired goal. We evaluated the effect of different loss functions 
on network training and present those results in "Appendix A". The conclusion of these 
experiments is that training with a Mean Squared Logarithmic Error (MSLE) achieves the 
best overall estimation, but a loss function based on the maximum error in a training batch 
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may be useful for reducing error in estimating local bathymetry features such as canyons, 
bumps and sandbars.

The dataset used to train and validate this model consisted of 80k and 20k randomly 
selected full-sized (200*200*4 px) examples, respectively. To test our model, we recon-
structed our complete test set of 8016 full-sized snapshots, as described in Sect.  3. The 
final model was trained using stochastic gradient descent (SGD) with a learning rate of 
0.01 without momentum, and with MSLE as the loss function. It is worth noting that we 
tested training using the Adam optimizer (Kingma and Ba 2015) however it did not seem 
to perform well without further tuning. Figure 5 demonstrates that the model trained using 
SGD reached well-performing results within ≃ 20 epochs. Training was stopped after 30 
epochs since no further major improvements in performance on the validation set were 

Fig. 4   Deep Large-Scale Reconstruction of Bathymetry using a deep convolutional encoder-decoder net-
work. The neural architecture used in the DLSRB part of the work is a modified version of U-Net (Ron-
neberger et al. 2015)

Fig. 5   Training of the DLSRB deep learning model, showing the MSLE training and validation losses over 
30 epochs
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observed. After training, the model reached a test RMSE of 2.96 m over values up-to 70 m 
of depth.

5 � Deep single‑point estimation of bathymetry

In our second method, Deep Single-Point Estimation of Bathymetry (DSPEB), we train a 
neural network to estimate the average local depth beneath a small sub-tile (0.16 km2 ) of 
a satellite image, instead of reconstructing the complete 4 km2 area at once as in DLSRB. 
The advantage of this method is that it can be applied to a wider range of areas and trained 
using real bathymetric measurements where a large area of measurements is not availa-
ble. While we compare the two methods in this work on the same simulated profiles, the 
DSPEB method has a greater range of possible application than the DLSRB method.

5.1 � Architecture

The neural network architecture used in this approach is ResNet56, a popular contempo-
rary deep learning architecture (He et  al. 2015). This network uses shortcut connections 
between network layers, allowing for individual functions to be learned by specific network 
subsections, and resulting in a fewer total trainable parameters when compared with other 
deep neural networks. In our method, the output of the network is a single value corre-
sponding to the estimated average depth of the area depicted in the input image subtile. We 
therefore use a single neuron with a rectified linear unit (ReLU) activation as the final layer 
of the architecture. We evaluated other architectures as detailed in "Appendix C", includ-
ing very small networks which improve on ResNet56 in computational time, but found that 
ResNet56 performed best in terms of error and therefore chose it for this method. In the 
application of this method, we believe that the smaller architectures could be used when 
faster estimation is beneficial.

The input to this method is a 40 ∗ 40 ∗ 4 px image representing an area of 0.16 km2 . 
This is created by sampling over sliding windows of the full-sized satellite images (Fig. 6). 
The average depth of each window is used as the target value for estimation. As mentioned 
in 3.3, we only use off-shore subtiles, before the wave breaking point, due to the difference 
in image representation of wave breaking between the simulation and real data, which is 
the eventual goal for this model. We also randomly rotate our input images during training, 
in order to represent a wide range of possible wave propagation directions.

Fig. 6   Deep Single-Point Estimation of Bathymetry using a deep convolutional neural network. The neural 
architecture used in the DSPEB part of the work is a modified version of ResNet56 (He et al. 2015)
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5.2 � Training

The dataset we use to train and validate this model consists of 75k and 15k randomly 
selected subtiles (40*40*4 px), respectively. To test our model, we use a sliding window 
technique to reconstruct the complete test set of 8016 full-sized snapshots. We train our 
DSPEB model using the Adam optimizer (Kingma and Ba 2015), with mean squared error 
(MSE) loss and a batch size of 128. We performed a grid search to optimize Adam’s hyper-
parameters; the best training values found were � = 1 × 10−8 , �

1
= 0.99 , and �

2
= 0.999 . 

A learning rate of 1 × 10−3 was used and was decreased to 1 × 10−4 at 40 epochs. Training 
was stopped after 50 epochs as there were no substantial improvements on the validation 
set, as seen in Fig. 7. During training, we keep record of the best-performing model on the 
validation set. After training, our early checkpoint model with the minimum validation loss 
(epoch 44) achieved a test RMSE of 3.06 m over values up-to 70 m of depth.

These two methods, DLSRB and DSPEB, present different benefits. We emphasize 
the applicability advantage of DSPEB since it can be used in a variety of cases which the 
DLSRB approach can not, due to the small area over which the DSPEB method operates.

6 � Results

In this section, we present the resulting bathymetry estimations obtained using our pro-
posed deep learning methods DLSRB and DSPEB. We compare the two approaches based 
on overall accuracy and performance in Sect.  6.1, we then compare their computational 
performance in Sect. 6.2.

6.1 � Estimation comparison

To compare our deep learning methods DLSRB and DSPEB, we created a test set of 8016 
example synthetic cases to be used as our base of reference. The quality of an estimation 
is based on its point-wise error over the full reconstructed bathymetry grid (2D RMSE), 
as well as the RMSE of the average cross-shore profile of the estimation compared to the 

Fig. 7   Training of the DSPEB deep learning model, showing the MSE training and losses over 50 epochs
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average cross-shore profile of the target bathymetry (1D RMSE). The cross-shore profile is 
the most common form of bathymetric information, so it is important to consider the cross-
shore profile accuracy even though both methods estimate the full 2D bathymetry. Exam-
ple reconstruction results from the test set are shown in Figs. 9 and 10. We compare the 
two methods over all test profiles in Table 2. The error of each method at different depth 
intervals of 10 m over the full test set is then compared in Fig. 8.

In the DSPEB method, we note a consistent decrease in performance near the shore-
line compared to DLSRB. This is potentially due to the smaller number of samples used 
during training at shallow depths. As mentioned in Sect. 3.3, DLSRB was trained to esti-
mate entire bathymetry profiles, but the DSPEB network was trained only on images past 
the wave breaking point. The under-representation of shallow depths in the training set 
appears to have resulted in slightly decreased estimation performance near-shore in the 
DSPEB method. This behaviour can be observed in the example reconstructed bathym-
etries in Figs.  9 and 10 where DSPEB consistently overestimates the depth in shallow 
waters. Figure 8 also shows that DLSRB is more accurate than DSPEB in shallow depths. 
However, Table 2 and Fig. 8 show that DSPEB is more reliable overall, since it has a lower 
error standard deviation. Furthermore, DSPEB is more consistent down to 70 m, while 
DLSRB’s accuracy starts deteriorating more noticeably after 50 m depth. Finally, as men-
tioned in Sect. 5, a significant advantage of DSPEB over DLSRB is its applicability to a 
wider range of cases where DLSRB could be unstable, such as areas with islands or having 
irregular shorelines.

Both methods demonstrate a high estimation accuracy on synthetic data, which can 
be competitive with state-of-art methods when applied to real data. In physical inversion 
models based on wave celerity using satellite imagery such as (Poupardin et  al. 2016; 
Almar et al. 2019), RMSE on real data falls within the same range of error as our methods’ 

Table 2   Performance of the 
two methods on 8016 full-size 
synthetic test cases

Error is represented in meters

Method � 2D RMSE � 2D RMSE � 1D RMSE � 1D RMSE

DLSRB 2.96 1.05 1.78 0.95
DSPEB 3.06 0.62 2.06 0.46

Fig. 8   RMSE at 10 m depth intervals over the full synthetic test set. Both methods demonstrate highly 
accurate estimation at shallow depths but start to degrade in accuracy in deeper areas
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Fig. 9   Reconstruction of bathymetry profile P1. a the average profiles of the target and estimated bathy-
metries; b the target bathymetry P1 in 2D; c, d the reconstructed bathymetry using DLSRB and DSPEB 
respectively; e, f the reconstructed bathymetry errors of each method. Cross-shore RMSE: DLSRB = 1.6 m, 
DSPEB = 2.3 m. 2D RMSE: DLSRB = 3.0 m, DSPEB = 3.3 m
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average error range for depths down to 70 m. The preliminary results in this work dem-
onstrate the true potential of deep learning-based methods as alternative methods for per-
forming bathymetry estimation from satellite imagery, especially considering the target 

Fig. 10   Reconstruction of bathymetry profile P2. a the average profiles of the target and estimated bathy-
metries; bthe target bathymetry P2 in 2D; c,  d the reconstructed bathymetry using DLSRB and DSPEB 
respectively; e,  f the reconstructed bathymetry errors of each method. Cross-shore RMSE: DLSRB = 
2.0 m, DSPEB = 2.2 m. 2D RMSE: DLSRB = 3.6 m, DSPEB = 3.6 m
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depth range they are able to estimate in these synthetic cases. A complete comparison to 
state-of-the-art methods on satellite data is ongoing, but these first results show the promis-
ing value of two different deep learning approaches.

6.2 � Computational performance

One of the benefits of deep learning models, apart from their ability to learn complex rela-
tions, is that they can be an efficient alternative to perform complicated analytical tasks. 
While the training of a DNN can be computationally very expensive, once the model is 
trained, it can be inexpensive to use, especially compared to physics-based methods. We 
therefore measure the computational time of our proposed methods. Table 3 compares the 
average time it takes each method to reconstruct a full 4 km2 bathymetry profile from a 
satellite image.

DLSRB has a significant advantage over DSPEB in terms of speed, since reconstructing 
a complete bathymetry profile is done in one forward pass in DLSRB, while DSPEB esti-
mates a single point at a time. In other words, DLSRB performs a single forward pass to 
produce a 200*200 result matrix, while DSPEB requires 40,000 forward passes to recon-
struct a matrix of the same size. This can be optimized by computing these predictions 
in parallel using a batch, and for this comparison, we optimize DSPEB by treating each 
cross-shore line as a single batch of input satellite sub-tiles. This test was performed using 
a single Nvidia GTX 1080 TI GPU on a virtual compute node with 4 CPUs.

Both deep learning methods are competitive in computational time to existing methods, 
which require computation time on the order of tens of seconds for an estimation of 4 km2 . 
The DLSRB method, however, is much faster due to the large area it covers, as physical 
methods also require the estimation of single points. Our future work aims to accurately 
compare the computational performance in single point estimation between deep learning 
methods and physics-based methods and to improve the reconstruction time of DSPEB.

7 � Conclusion

In this work, we demonstrate a first application of deep learning to satellite derived 
bathymetry using synthetic cases. We propose two different approaches to the problem of 
SDB which have different advantages. DLSRB shows a great potential in large-scale recon-
struction due to its ability to reconstruct complete 4 km2 profiles in a very short amount of 
time. However, due to the difficulty to accurately model the physical characteristics of large 
coastal areas, we currently consider DLSRB as limited to large areas that have a nearly 
straight shoreline, and that are clear of man-made or natural artifacts such as ships or 
islands. DSPEB provides a trade-off between usability and computational efficiency. Since 

Table 3   Results comparison 
using 8016 test cases

Method Average 
speed [sec-
onds]

DLSRB 0.03
DSPEB 22.65
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it processes a single small sub-tile at a time, it overcomes the limitations of DLSRB which 
greatly increases its applicability to a large number of coastal areas.

The results presented in this paper showcase deep learning’s ability to perform bathym-
etry inversion using two different techniques that can be adapted to different use cases. Our 
proposed methods are able to accurately estimate depths down to ≃ 70 m while maintaining 
an error rate of ≃ 3 m. We are actively pursuing further improvements to our methods. This 
shows that with further work and research, deep learning can become a viable alternative 
for performing bathymetry inversion from satellite imagery.

For this preliminary application, we used synthetic data meant to replicate images from 
the Sentinel-2 satellite constellation. During the course of this project, we gained access to 
a number of real bathymetric measurements that, coupled with Sentinel-2 data, would ena-
ble us to create a labelled dataset that is sufficient for training. However, this is non-trivial 
due to the various complications that can be faced when dealing with real bathymetry data 
and real satellite imagery and is an ongoing project.

Our next steps in this project include creating a supervised dataset from real data for our 
DSPEB model, which we will use to experiment with training on real data exclusively, as 
well as to test the model’s performance using transfer learning techniques. We would also 
like to extend the synthetic data to include different types of shorelines, estuaries, and wave 
breaking to verify the model’s ability in a variety of settings.

Another possible area for improvement is to apply data augmentation to our input data. 
The technique proposed in Bergsma et al. (2019b) augments the 20 m bands to 10 m, which 
would give our model access to twice the temporal information it currently has. This could 
increase the models’ ability to give more accurate depth estimations.

Finally, the architecture search performed for DSPEB presented in "Appendix C" is a 
strong motivation to explore neural architecture search (NAS), which is a method for opti-
mizing neural network structure that has shown great success in many applications (Elsken 
et al. 2019). In our case, NAS could allow us to find a convolutional architecture able to 
achieve good estimation accuracy with minimal computational cost for complete profile 
reconstruction.

Machine learning, specifically deep learning, has recently demonstrated impressive 
capabilities in image processing and model inversion. In this work, we demonstrate that 
both can be achieved in the same network; with an appropriate choice of network archi-
tecture and loss function, our models were able to perform accurate bathymetry estimation 
from synthetic satellite images. We believe that this is a promising direction for Satellite-
Derived Bathymetry and Earth Observation in general.

Appendices

Appendix A DLSRB loss function

When training a neural network, the loss function determines how estimation error is cal-
culated, which in turn determines how the network parameters are updated. The choice 
of loss function is an important hyperparameter in DNN training especially for regression 
problems such as this one.
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The loss functions we tested include mean-squared-error (MSE) and mean-squared-log-
arithmic-error (MSLE). Both of these loss functions give an overall evaluation of the entire 
bathymetry profile estimated. In addition, we implemented a custom loss function that uses 
a single-point maximum-error over an entire training batch of examples as the loss value 
(MAXERROR), which is intended to emphasize a single large local error at a time during 
training, rather than the complete bathymetry grid at once. This was tested due to the abil-
ity of the network with other loss functions to learn the average slope of a bathymetry eas-
ily while failing to detect local bathymetric features such as bumps, sandbars and canyons, 
which cause local inconsistencies in the wave patterns around those features.

We evaluate our results using the two following metrics:

–	 2D RMSE refers to the RMSE of the point-wise errors of the full 2D reconstructed 
bathymetry grid compared to the original synthetic target.

–	 Average profile RMSE refers to the RMSE of the point-by-point errors between the 
average cross-shore profiles of the estimation and the original bathymetry.

Table  4 showcases the results of our experiments using different loss functions. We 
observed that the model was unable to learn using MSE. However, MSLE and MAX-
ERROR both gave good initial results, while varying in the quality due to the nature of 
each function. MSLE made the model able to accurately predict the general slope of the 
bathymetry, while MAXERROR enabled it to give more accurate estimations in terms of 
the local features of the bathymetry. We believe the MAXERROR function could be useful 
in combination with an MSLE error and will consider this in future work using the DLSRB 
method.

Appendix B Depth normalization

In deep learning-based regression, scaling the target values can aid in model training due 
to the initial distribution of neural network parameters which is near 0. As the target depth 
values are much larger than the range of values possible from a newly initialized neural 
network, we normalize the target depth values using a linear scale. We divide depth values 
by two constants, 10 and 100, where we consider 100 to be near the maximum target value 
possible, and compare on the average cross-shore profile.

In Table 5, we show that using the smaller normalization value of 10 resulted in lower 
average error for both the full 2D bathymetry and the 1D average cross-shore profile. In 
future work, we aim to include this hyperparameter as a part of the search described in 
"Appendix D", as the impact of target value scaling depends on network parameter initiali-
zation and optimizer hyperparameters.

Table 4   Loss functions performance comparison

Loss Function � 2D RMSE � 2D RMSE � 1D RMSE � 1D RMSE

MSE 21.46 5.35 21.15 5.38
MAXERROR 10.44 2.13 9.79 2.26
MSLE 3.48 1.33 2.27 1.34
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Appendix C DSPEB neural network architecture

The DSPEB model is based on convolutional neural network architectures meant for 
classification. These networks extract features from input images using convolutional 
layers, then use the extracted features to perform classification or regression using fully 
connected layers. Regarding the specific architecture used, we tested the ResNet110 v2, 
ResNet56 v2 and ResNet20 v2 architectures (He et al. 2015) and we replaced the activa-
tion function of the output layer with ReLU activation in order to perform regression. 
We also implemented a small number of custom convolutional networks with differ-
ent max pooling and binary normalization layer configurations, which we refer to as 
DSPEB-nets for the purpose of this study, as specified in Table 6.

From our initial set of seven architectures (3 ResNets, 4 DSPEB-nets), we discarded 
ResNet110 and DSPEB-2 as they were unable to converge, which could be an opti-
miser hyper-parameter configuration issue. The progression of the validation loss of the 
remaining 5 architectures over 30 epochs can be seen in Fig.  11, an analysis of their 
reconstruction performance on a set of 8016 test cases can be seen in Table  7, and a 
comparison of their average speed of reconstructing complete 4 km2 bathymetry profiles 
using a sliding-window technique can be seen in Table 8.

A pattern can be observed in Fig.  11, where DSPEB-nets’ validation losses seem 
to be more stable as they are able to converge within ≃ 10 epochs, and maintain stable 
validation loss patterns during fine tuning while the validation losses of ResNet56 and 
ResNet20 show large variation during training.

Contrary to what can be observed from the learning curves, Table  7 shows that 
ResNet56 and ResNet20 have the lowest RMSE scores when comparing the complete 
2D reconstructions to the label data, in addition to having the lowest error standard 
deviation. Comparing the average cross-shore profiles, DSPEB-nets perform better than 
ResNets, however the error standard deviations suggest that ResNets are more stable.

Table 5   Comparison of two 
target normalization schemes, 
division by 10 and 100, on the 
final estimation error of the 
DLSRB network

All other training parameters were fixed

Bathymetry 
normaliza-
tion

� 2D RMSE � 2D RMSE � 1D RMSE � 1D RMSE

10 3.48 1.33 2.27 1.34
100 5.41 1.86 4.4 2.06

Table 6   Architectures DSPEB-1 DSPEB-2 DSPEB-3 DSPEB-4

conv3-4 conv3-4 conv3-4 conv3-4
conv3-16 conv3-16 conv3-16 conv3-16
conv3-32 conv3-32-bn conv3-32 maxpool
– – maxpool conv3-32-bn
FC-256 FC-256 FC-256 FC-256
FC-256 FC-256 FC-256 FC-256
FC-1 FC-1 FC-1 FC-1
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Table  8 shows the average time it takes each model to go through all 0.16 km2 sub-
tiles of a complete satellite image. In other words, it shows the time it takes each model to 
perform ≃ 40,000 single-point estimations to reconstruct a 4 km2 bathymetry profile from 
a complete satellite image. Tables 7 and 8 suggest that using a simple architecture can be 
an advantageous choice when applying DSPEB on a large scale. DSPEB-3 for example is 
able to achieve satisfactory accuracy while having very short reconstruction times relative 
to more complex architectures such as ResNet56. However, we use ResNet56 as our refer-
ence model for DSPEB in this work due to its superior 2D accuracy and low error standard 
deviation.

Fig. 11   Training of the DSPEB models, showing the validation MSE over 30 epochs

Table 7   Network performance on a test set of 8016 synthetic cases

All values shown are in meters

Network avg. 2D RMSE 2D RMSE std. avg. 1D RMSE 1D RMSE std.

ResNet56 3.06 0.62 2.06 0.46
ResNet20 3.1 0.91 1.97 0.72
DSPEB-1 3.83 1.47 1.93 1.05
DSPEB-3 3.5 1.18 1.84 0.83
DSPEB-4 3.56 0.97 1.88 0.89

Table 8   Average reconstruction 
speed comparison over 100 
synthetic examples

Network avg. time 
[seconds]

ResNet56 22.65
ResNet20 13.14
DSPEB-1 8.46
DSPEB-3 8.33
DSPEB-4 7.84
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Appendix D DSPEB hyperparameter grid‑search

Neural network training is controlled by a large number of parameters. This experiment 
was focused on exploring different Adam hyperparameters in order to optimize the learn-
ing process. These parameters were the learning rate (lr), epsilon ( � ), beta1 ( �

1
 ) and beta2 

( �
2
 ). The value ranges we tested are as follows:

–	 lr: { 1 × 10−3 , 1 × 10−5}
–	 � : { 1 × 10−4 , 1 × 10−8}
–	 �

1
 : {0.5, 0.99}

–	 �
2
 : {0.9, 0.999}

For this experiment, a total of 16 models were trained for 50 epochs each, using 20k and 
5k examples as the training and validation sets respectively. Figure 12 showcases the vali-
dation loss for each of the combinations tested. As mentioned in Sect. 5.2, our final values 
we used to train our final model were � = 1 × 10−8 , �

1
= 0.99 , and �

2
= 0.999 , with a learn-

ing rate of 1 × 10−3 that was decreased to 1 × 10−4 at 40 epochs.

Fig. 12   Hyperparameter grid-search results showing the validation loss using different combinations 
of Adam’s hyperparameters. a �1 = 0.5, �2 = 0.9 ;  b�1 = 0.5, �2 = 0.999 ;  c �1 = 0.99, �2 = 0.9 ;  d 
�1 = 0.99, �2 = 0.999
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