
Vol.:(0123456789)

Machine Learning (2021) 110:1609–1636
https://doi.org/10.1007/s10994-021-05966-z

1 3

Incorporating symbolic domain knowledge into graph neural
networks

Tirtharaj Dash1 · Ashwin Srinivasan1 · Lovekesh Vig2

Received: 15 February 2020 / Revised: 11 January 2021 / Accepted: 19 February 2021 /
Published online: 13 June 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Our interest is in scientific problems with the following characteristics: (1) Data are natu-
rally represented as graphs; (2) The amount of data available is typically small; and (3)
There is significant domain-knowledge, usually expressed in some symbolic form (rules,
taxonomies, constraints and the like). These kinds of problems have been addressed effec-
tively in the past by symbolic machine learning methods like Inductive Logic Programming
(ILP), by virtue of 2 important characteristics: (a) The use of a representation language that
easily captures the relation encoded in graph-structured data, and (b) The inclusion of prior
information encoded as domain-specific relations, that can alleviate problems of data scar-
city, and construct new relations. Recent advances have seen the emergence of deep neural
networks specifically developed for graph-structured data (Graph-based Neural Networks,
or GNNs). While GNNs have been shown to be able to handle graph-structured data, less
has been done to investigate the inclusion of domain-knowledge. Here we investigate this
aspect of GNNs empirically by employing an operation we term vertex-enrichment and
denote the corresponding GNNs as VEGNNs. Using over 70 real-world datasets and sub-
stantial amounts of symbolic domain-knowledge, we examine the result of vertex-enrich-
ment across 5 different variants of GNNs. Our results provide support for the following: (a)
Inclusion of domain-knowledge by vertex-enrichment can significantly improve the perfor-
mance of a GNN. That is, the performance of VEGNNs is significantly better than GNNs
across all GNN variants; (b) The inclusion of domain-specific relations constructed using
ILP improves the performance of VEGNNs, across all GNN variants. Taken together, the
results provide evidence that it is possible to incorporate symbolic domain knowledge into
a GNN, and that ILP can play an important role in providing high-level relationships that
are not easily discovered by a GNN.

 Editors: Nikos Katzouris, Alexander Artikis, Luc De Raedt, Artur d’Avila Garcez, Ute Schmid,
Sebastijan Dumančić, Jay Pujara.

* Tirtharaj Dash
 tirtharaj@goa.bits-pilani.ac.in

 Ashwin Srinivasan
 ashwin@goa.bits-pilani.ac.in

1 Department of Computer Science and Information Systems, APP Centre for Artificial Intelligence
Research, BITS Pilani, K.K. Birla Goa Campus, Goa, India

2 TCS Innovation Labs, New Delhi, India

http://orcid.org/0000-0001-5965-8286
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-05966-z&domain=pdf

1610 Machine Learning (2021) 110:1609–1636

1 3

1 Introduction

Industrialising scientific discovery, in the manner demonstrated by the Robot Scientist
Project (King et al. 2004) uses machine learning programs as scientific assistants. At the
very least, this would appear to require machine learning methods that are able to (a) cope
with data that have some inherent structure, in the form of entities and relations; and (b)
construct good predictive models by effectively drawing on any existing scientific knowl-
edge thought to be relevant. A really useful assistant would have to do more. A wish-list
would include identifying the best explanation for a prediction based on what is known;
suggesting hidden variables or mechanisms which could improve the prediction; and pro-
posing experiments to test the hypotheses. The Robot Scientist Project showed ways to
achieve each of these in some measure with Inductive Logic Programming (ILP). Recent
rapid gains in neural-network technology suggest that deep networks could form the basis
of extremely powerful predictive models, which is clearly relevant to the construction of an
effective scientific assistant. Here we investigate the performance of state-of-the-art deep
networks specifically designed to analyse graph-structured data. A substantial number of
applications addressed by ILP belong to this category of data (see, for example, King et al.
1996; Srinivasan and King 1999; Faruquie et al. 2012). There are at least three good rea-
sons to investigate if graph neural networks, or GNNs, are able to incorporate domain-
knowledge. First, studies with ILP have repeatedly shown that inclusion of domain-knowl-
edge can make substantial difference to predictive performance. Furthermore, a recent
report on Artificial Intelligence (AI) for Science identifies incorporating domain-knowl-
edge in AI as one of the three Grand Challenges facing the application of (AI Stevens et al.
2020). Deep learning methods based on neural networks have not focused on this, relying
instead on their internal computational machinery to construct higher-level concepts auto-
matically from the raw data. The ILP experience suggests otherwise, and we would like
to know if this applies to GNNs. Second, symbolic encodings of domain knowledge are
both natural and flexible ways of encoding prior knowledge. ILP systems implemented as
logic programs have been the pre-eminent form of machine learning for using such knowl-
edge. Despite extremely efficient implementations of logic programming, the significant
world-wide effort into the development of deep learning tools that have resulted in highly
efficient implementations that exploit the processing capabilities of graphics processing
units (GPUs). A GNN capable of including symbolic domain knowledge could provide
an efficient way of constructing predictive models. Thirdly, to the best of our knowledge,
GNN applications to date have been restricted to simple node-and-edge features, and have
not attempted to encode any significant domain-knowledge. The real-world problems we
examine in this paper have very extensive amounts of domain information, resulting from
many years of academic and industrial effort into the use of ILP.

In this paper, we restrict the investigation to the problem of prediction, which we see
as a necessary first step in the development of automated scientific assistants. Facilities
for explanations and experiment-proposal using GNN models are conceptually harder,
are deferred to future work. We assess the use of domain-knowledge using a sample of
over 70 datasets, containing over 200,000 data instances. The datasets refer to problems
in a broad category known as structure-activity prediction. Each data instance is, there-
fore, a molecule, which is naturally represented as a graph.1 For this class of problems,

1 In fact, GNNs were originally tested with molecular datasets (Baskin et al. 1997).

1611Machine Learning (2021) 110:1609–1636

1 3

we now have a sufficiently large body of domain-knowledge encoded in human-under-
standable symbolic relations. This allows us to perform a case-study on the inclusion
of symbolic relations by GNNs. The principal contributions of the paper are as follows:

– To the field of graph neural networks, the paper presents a large-scale empirical study
using real-world datasets on the inclusion of domain-knowledge. To the best of our
knowledge, the number of graphs used and the number of relations encoding domain-
knowledge are the most extensive to date.

– To the field of inductive logic programming, the paper demonstrates a continuing case
for the usefulness of ILP on relational learning tasks, despite the development of very
efficient deep neural networks specifically designed for a specific form of relational
data.

– To the field of neuro-symbolic modelling, the technique of vertex-enrichment described
in the paper provides a simple but effective way of incorporating symbolic relations
into graph-based neural networks.

The rest of the paper is organised as follows. In Section 2, we describe vertex-enrich-
ment in graphs and a set of practical considerations arising from the developed algo-
rithms. In Section 3, we describe our aims, data and background knowledge, the spe-
cifics of the methodology, and the obtained results. Section 4 lists related works, and
Section 5 concludes the paper.

2 Graph neural networks (GNNs)

GNNs are primarily developed for learning from data represented as graphs. For com-
pleteness, we include some basic definitions first.

Definition 1 (Graphs) A graph G is a pair (V, E) where V is a set of vertices, E is a set of
edges and a subset of V × V . A graph is said to be undirected if for every (vi, vj) ∈ E , (vj, vi)
in E.

We will be concerned in this paper with undirected graphs. We note that for such
graphs, E can be represented more compactly as a set consisting of 1- or 2-element sub-
sets of V. We will return to this later, as we extend the consideration to hypergraphs. For
molecular graphs, of the kind considered here, self-loops do not occur.

Example 1 Molecules as graphs. A benzene ring (shown below) can be represented as a
graph, in which vertices correspond to atoms and edges correspond to bonds (McNaught
et al. 1997).

1612 Machine Learning (2021) 110:1609–1636

1 3

 The graph-representation of the molecule on the left is:

We will need the concept of the neighbourhood of a vertex in an undirected graph:2

Definition 2 (Neighbourhood) Given a graph G = (V ,E) , � is a neighbourhood function
from V to 2V.

Example 2 One obvious definition of � for an undirected graph (V, E) is
�(v) = {vi ∶ vi ∈ V , (v, vi) ∈ E} . For the graph in Example 1, �(1) = {2, 6}, �(2) = {1, 3}.

For the GNNs in this paper, we will need labelled undirected graphs.

Definition 3 (Graph Labellings) Let V be a set of vertex labels and E be a set of edge
labels. Then a vertex-labelling of a graph G = (V ,E) is a function � ∶ V → 2V and an
edge-labelling is a function � ∶ E → 2E.3

Example 3 The vertex labels of the graph given in Example 1 can be the atom-types
(Carbon, C), and edge labels can be the bond-types (single bond: 1, double bond: 2).
The label for the vertex 1 is �(1) = ⋯ = �(6) = {C} . The labelling for the edges are
�((1, 2)) = �((2, 1)) = {2} , �((2, 3)) = �((3, 2)) = {1} and so on.

Although not evident in this example, vertex- and edge-labels can have more than one
element (hence the mapping to 2V and 2E) . This will be necessary later.

We will use the term graph interchangeably to denote the tuple (V, E) or the tuple
(V ,E, �,� , �) . We are interested here in classifying graphs. That is, given a set of class
labels Y , we want to construct a function that maps a graph of the form (V ,E, �,� , �) to Y .
A GNN is one such function that employs 2 higher-order functions.

Definition 4 (Relabel) Given a graph (V ,E, �,� , �) . Let Relabel be a function that returns
a graph (V ,E, �,� �, ��) , where the functions � ′ and �′ may be different to � and �.

A vectorisation function is used to map a graph as a real-valued vector.

({1, 2, 3, 4, 5, 6}, {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4), (5, 6), (6, 5),

(6, 1), (1, 6)})

2 Henceforth, by “graph” we will mean an undirected graph.
3 We do not commit here to any specific data structure that should be used to implement the label set. This
could be, for example, a Boolean-valued array of size |V|.

1613Machine Learning (2021) 110:1609–1636

1 3

Definition 5 (Vectorise) Let G denote the set of graph-tuples of the form (V ,E, �,� , �) . A
vectorisation of the graph-tuple is the result of applying a function Vec ∶ G → ℜd (d ≥ 1).

A GNN is the composition of these functions, and some prediction function as imple-
mented by a neural network.

Definition 6 (GNN) Let NN ∶ ℜd
→ Y denote a neural network that maps a real-valued

vector to a set of class labels. Given a G = (V ,E, �,� , �) , GNN(G) = NN(Vec(Relabel(G))).

Variations of GNNs result from changing the definitions of NN, Vec and Relabel. Many
different definitions of the Relabel function have been proposed recently. We defer the spe-
cific details of the GNN variants used here to Section 2.2.

2.1 Encoding n‑ary relations

GNNs, as we have described them so far, deal with node- and edge-labels in an undirected
graph, in which edges are sets of vertex-pairs. That is, the edges represent a symmetric
binary relation. However, for many real-world problems—including the ones considered in
this paper—we have access to domain-knowledge which relate more than just pairs of ver-
tices. For example, if a molecule is represented as a graph (with atoms as vertices, and an
edge denoting a bond between a pair of vertices), then a benzene-ring is a relation amongst
6 distinct vertices, with some specific constraints on the vertices and edges. Here, we will
consider domain-knowledge to be a set of relations, each of which can be expressed as a
hypergraph.

Definition 7 (Hypergraphs) A hypergraph H is the pair (V ,E�) , where V is a set of verti-
ces and E′ is a non-empty subset of 2V . Each element of E′ is called a hyperedge.

Example 4 A hypergraph of the molecular graph given in Example 1 can be
H = ({1, 2, 3, 4, 5, 6}, {{1, 2}, {3, 4, 5, 6}, {2, 4, 5}, {1, 2, 3, 4, 5, 6}}).

We note that since hyperedges are sets, there is no distinction between permutations of
vertices in a hyperedge. So, as defined here, we will take hyperedges as being undirected.
Hypergraph labellings can be defined similarly as before, using a pair of functions for ver-
tex- and edge-labels. We will reuse the notation � and � for these functions, with annota-
tions to clarify what is meant. The neighboorhood relation � is left unspecified here (one
obvious definition is 𝜎(vi) = {vj ∶ h ∈ E�, {vi, vj} ⊆ h}). In this paper, we are interested in
n-ary relations that can be expressed as hypergraphs.

Definition 8 (n-ary relation as a labelled hypergraph) A n-ary relation R defined over
vertices of a graph G = (V ,E) is a hypergraph H = (V ,E�) , and every hyperedge h ∈ E� has
n elements from V. We will denote this as R(G) = H . Let �G denote a vertex-labelling over
G and R/n denote the predicate-symbol for R. With some abuse of notation, the vertex-
labelling function for R(G) = H = (V ,E�) is as follows:

�H(v) =

{
�G(v) ∪ {R∕n} if ∃h ∈ E�s.t. v ∈ h

� otherwise

1614 Machine Learning (2021) 110:1609–1636

1 3

and the hyperedge-labelling function is:

That is, the vertex-labelling of a vertex v in the hypergraph H is a set containing the
existing vertex-label of v in G augmented by the predicate-symbol R/n vertex-label.

Example 5 Consider a relation for a Benzene ring:

One possible vertex-labelling is:

(here, C denotes “carbon”). A hyperedge-labelling may contain:

The extension to multiple relations, not all of the same arity, is straightforward.

Definition 9 (Multiple relations as a labelled hypergraph) Let R1,… ,Rk be relations
defined on vertices of a graph G = (V ,E) , s.t. Ri(G) = (V ,Ei

�) . Then
⋃

Ri(G) is the hyper-
graph H = (V ,E�) where E� =

⋃
Ei

� . The corresponding labelling functions are:

and

Example 6 In the molecular graph given below, there are two relations: Benzene/6 and
Pyrrole/5.

One possible vertex-labelling for this graph is:

and a hyperedge-labelling is:

�H(h) = {R∕n} (h ∈ E�)

Benzene(a1, a2, a3, a4, a5, a6) ←

Cycle(a1, a2, a3, a4, a5, a6) ∧

Aromatic(a1, a2, a3, a4, a5, a6).

�H(1) = ⋯ = �H(6) = {C,Benzene∕6}

�H({1, 2, 3, 4, 5, 6}) = {Benzene∕6}

�H(v) =
⋃

�Hi
(v)

�H(v) =
⋃

�Hi
(v)

�H(1) =�H(4) = �H(5) = �H(6) = {C,Benzene∕6}

�H(8) =�H(9) = {C,Pyrrole∕5}

�H(7) ={N,Pyrrole∕5}

�H(2) =�H(3) = {C,Benzene∕6,Pyrrole∕5}

1615Machine Learning (2021) 110:1609–1636

1 3

In principle, provided we are able to define a neighbourhood function � for hyper-
graphs, the definition of GNNs in Defn. 6 does not change. We would however like to
use one of the standard GNN implementations described in the previous section, which
restricts graphs with 2-vertex edges, and edge-labels to singleton sets. With some loss
of information, we extract a suitable graph from a hypergraph.

Definition 10 (Vertex-enriched graphs) Let G = (V ,E) be a graph, with neighbourhood
function � , vertex-labelling function � , and edge-labelling function � . Here, E is a subset of
V × V . Let R = {R1,… ,Rk} be a set of relations defined on G, and

⋃
Ri(G) be the hyper-

graph H = (V ,E�) with vertex-labelling function � ′ as in Defn. 9. Then G′ = (V ,E, �,� �, �)
is called a vertex-enriched form of G = (V ,E, �,� , �) . We denote this by VE(G,R) = G�.

Example 7 The molecular graph G for Example 6 is

A vertex-labelling of G is:

The vertex-labelling of the vertex-enriched graph G′ , after the inclusion of the relations in
Example 6 is:

The edge-labelling and neighborhood functions do not change after relation-enrichment.

The vertex-enriched graph thus extends the vertex-labelling of a graph G, with the
vertex-labels from the hypergraph H obtained from relations R1,… ,Rk defined on G.
The resulting graph can be used directly by the implementations of GNNs described
in the appendix. We note that the process of vertex-enrichment is a simplification of
the full relational information available. For example, in the example above, if an atom
(represented by a vertex in the molecular graph) is part of more than 1 benzene ring,
then its vertex-enrichment will only contain a single entry for Benzene/6, indicating that
it is part of 1 or more benzene rings.

Definition 11 (Vertex-enriched GNN) Let G = (V ,E, �,� , �) , and Relabel, Vec and NN
be as before. Then, a Vertex Enriched GNN is VEGNN(G) = NN(Vec(Relabel(VE(G,R)))).

�H({1, 2, 3, 4, 5, 6}) = {Benzene∕6}

�H({2, 7, 8, 9, 3}) = {Pyrrole∕5}

G =({1, 2, 3, 4, 5, 6, 7, 8, 9}, {(1, 2), (2, 1),⋯ , (1, 6), (6, 1), (2, 7), (7, 2),⋯ ,

(9, 3)(3, 9)})

�(1) =⋯ = �(6) = �(8) = �(9) = {C}

�(7) ={N}

� �(1) =� �(4) = � �(5) = � �(6) = {C,Benzene∕6}

� �(8) =� �(9) = {C,Pyrrole∕5}

� �(7) ={N,Pyrrole∕5}

� �(2) =� �(3) = {C,Benzene∕6,Pyrrole∕5}

1616 Machine Learning (2021) 110:1609–1636

1 3

2.2 Practical considerations

The GNN variants in this paper differ in the Relabel operation, based on the convolu-
tion procedure employed. In this work, we employ the following different convolution
procedures:

1. Localised approximation to spectral graph convolution (Kipf and Welling 2017): This
is a spectral method for graph convolution that uses convolutional aggregator. This is a
simple and well-behaved layer-wise propagation rule for neural network models which
operate directly on graphs.

2. Multi-scale graph convolution (Morris et al. 2019): This convolution method can per-
form convolution operations using multiple-sized neighbourhoods (the authors call this
“higher order” graph convolution).

3. Graph convolution with attention (Velic̆ković et al. 2018): This is a spatial method of
graph convolution that uses an “attention” mechanism, that estimates the importance
of vertices in the neighbourhood of a vertex.

4. Sample-and-aggregate graph convolution (Hamilton et al. 2017): Here the convolution
procedure samples from a distribution that is constructed from feature-vectors of vertices
in the neighbourhood of a vertex.

5. Graph convolution based on auto-regressive moving average (Bianchi et al. 2019): This
is a convolution method that employs a polynomial function of the feature-vectors in
the neighbourhood of a vertex.

The Relabel operation also includes a pooling step after each convolution operation.
Additional details are in Appendix A. In all cases, we have used a fixed vectorisation
function Vec that is based on a readout mechanism, and NN refers to a standard multi-
layer perceptron (MLP).

We now elaborate on three practical issues arising from the use of Vertex-Enriched
GNNs:

1. The vertex-enriched graphs we obtain allow us to use standard forms of GNNs (see
Procedure 1). However, this comes with the limitation that we only change the vertex-
labellings. A GNN defined directly on hypergraphs would have access to more informa-
tion than the vertex-enriched GNN, since the former would retain the edge-labelling on
hyperedges, and can have a richer definition of the neighbourhood function. Recently,
there have been some proposals of GNNs for hypergraphs (Feng et al. 2019; Jiang et al.
2019; Yadati et al. 2019). It is possible that these forms of GNNs may perform better
than Vertex-Enriched GNNs. We expect that the results in Section 3.4 will act as base-
line for such comparisons.

2. Procedure 1 requires identification of subgraphs of the original graph. That is: for every
relation Ri ∈ R , the corresponding hyperedge Hi is a subset of vertices {v1,… , vn} ∈ V ,
such that (v1,… , vn) ∈ Ri . This step requires the identification of all subsets of vertices
of the graph constituting hyperedge as above. For a graph (V, E), this can, in the worst

case require an examination of
(
|V|

n

)

 combinations. Therefore, for arbitrary sized

graphs and subgraphs, this is computationally hard. In practice, we will be forced to
impose bounds on the size of Vs and on the size of the subgraph.

1617Machine Learning (2021) 110:1609–1636

1 3

3. We have not described how the relations in R themselves are obtained. There are two
possibilities here. First, they are provided as prior information (background knowledge
in ILP terminology). Secondly, the R provided as prior information can be augmented
by relations constructed automatically (see Procedure 2). In this paper, the construction
of new relations is done using an ILP engine, by adapting the usual clause-construction
procedure (see Appendix B.1 for an ILP-based implementation of LearnRels in Proce-
dure 2).4

3 Empirical evaluation

3.1 Aims

Our aims in this paper is to investigate the incorporation of background knowledge by
GNNs. Specifically, using the term Vertex-Enriched GNNs (VEGNNs) to denote the inclu-
sion of relations into GNNs (See Procedure 1), the experiments attempt to answer to the
following questions:

4 Usually, clauses constructed by an ILP engine are either used as part of a hypothesis, or as features to
construct a Boolean-vector representation of the data (“propositionalisation”). Here, the clauses are not
used in either of these roles, but as relations that augment the prior knowledge available to the GNN.

1618 Machine Learning (2021) 110:1609–1636

1 3

1. How do VEGNNs perform against standard GNNs? This compares GNNs with and
without the inclusion of domain-knowledge.

2. Can the performance of VEGNNs be improved by using symbolic learner with access
to the same domain-knowledge? This tests whether the computational machinery of a
GNN is sufficient to construct (representations of) the high-level relationships needed
for good prediction.

3.2 Materials

3.2.1 Data

The datasets are classification problems arising in the field of drug-discovery. We have
evaluated our GNNs on 73 real-world binary classification datasets. Each dataset repre-
sents an extensive drug evaluation effort at the National Cancer Institute (NCI)5. The data-
sets represent experimentally determined effectiveness of anti-cancer activity of a com-
pound against a number of cell lines (Marx et al. 2003). (Table 1)The datasets correspond
to the concentration parameter GI50, which is the concentration that results in 50% growth
inhibition. Some of the datasets have been used in various data mining studies such as in a
study involving the use of graph kernels in machine learning (Ralaivola et al. 2005).

3.2.2 Background knowledge

The initial version of the background knowledge in this paper here was used in Van Crae-
nenbroeck et al. (2002), (Ando et al. 2006). It is a collection of logic programs defin-
ing almost 100 relations for various functional groups and ring structures in a chemical
compound.6 The background knowledge consists of multiple hierarchies. However, we
modified some of the predicate definitions to avoid redundant computation and for trac-
tability to trade-off completeness for efficiency. For proprietary reasons, we are only
able to show the results of using the definitions, which are functional groups represented
as ����������_�����(����������, ����, �����,
	��) and rings described as
����(����������, ������, �����, �����, ����) . For efficiency, we have restricted the
definition of the ring relation to produce rings of maximum length 8. The first use of this
new version of the background knowledge is reported in (Dash et al. 2018) where we had
also defined three higher level relations to infer the presence of composite structures from
the presence of functional groups and rings in a compound. These are: the presence of
fused rings, connected rings and substructures. These relations are defined below.

���_�����(����������, �����, ������, ����)This relation is TRUE if a compound
identified by ���������� contains a structure ����� of length ������ containing a set of
atoms in �����

�����(����������, ������, ������, ������, ������)This relation is TRUE if a com-
pound identified by ���������� contains a pair of fused structures ������ and ������
with ������ and ������ respectively (that is, there is at least 1 pair of common atoms).

���������(����������, ������, ������, ������, ������)

5 https:// www. cancer. gov/
6 The definitions used were originally developed for tackling industrial-strength problems by the biotech-
nology company PharmaDM.

https://www.cancer.gov/

1619Machine Learning (2021) 110:1609–1636

1 3

This relation is TRUE if a compound identified by ���������� contains a pair struc-
tures ������ and ������ that with ������ and ������ respectively that are not fused but
connected by a bond between an atom in ������ and an atom in ������.

 The level of abstraction in the background knowledge is shown in Fig. 1. The hierarchy
available in functional groups and rings is shown in Fig. 2 and Fig. 3.

3.2.3 Algorithms and machines

The data used for this work and the set of symbolic relations (R) described in Section 3.2.2
are written as Prolog facts. For generating the additional set of ILP relations (R′), we use
Aleph (Srinivasan 2001) that takes the data and the background-knowledge as input. This
additional set of relations R′ further augments the existing relations in R for our VEGNN′
studies. A logic program extracts a set of vertices in a graph for which any symbolic rela-
tion Ri (∈ R or ∈ R�) is TRUE. We use YAP compiler for execution of this logic program.

The GNN variants used here are described in Appendix A. All the experiments are
conducted in Python environment. The GNN models have been implemented by using the
PyTorch Geometric library (Fey and Lenssen 2019), which is a geometric deep learning
extension for PyTorch (Paszke et al. 2019) and it provides graph pre-processing routines
and makes the definition of graph convolution easier to implement.

For all the experiments, we use a machine with Ubuntu (16.04 LTS) operating system,
and hardware configuration such as: 64GB of main memory, 16-core Intel Xeon processor,
a NVIDIA P4000 graphics processor with 8GB of video memory.

3.3 Method

In all experiments, we refer to GNN variants as GNN1,…,5 . The corresponding vertex-
enriched versions are VEGNN1,…,5 . The GNN variants have 1 hyper-parameter that deter-
mines the structure of the GNN (see Appendix A). We will denote this by m and assume
that it takes values from a fixed-set of values M.

Experiment 1: GNNs vs. VEGNNs
For constructing the VEGNNs, we assume that we have access to a set of domain rela-

tions R . The method used is as follows.

For each dataset D:

1. Let Tr, Val, Te denote a train-validation-test split of the data D
2. For each of GNN1,…,5 and VEGNN1,…,5 :

Table 1 Summary of datasets (Total number of instances is 221306)

of Datasets Avg. # of Molecules per
dataset (Graphs)

Avg. # of Atoms per
molecule (Vertices)

Avg. # of Bonds per
molecule (Edges)

73 3032 24 51

1620 Machine Learning (2021) 110:1609–1636

1 3

(a) Find the best value m∗ ∈ M using the performance on Tr and Val
(b) Record the predictive performance on Te of the model constructed using m∗

3. Compare the performance of GNNi against that of VEGNNi (i = 1,… , 5).

The following additional details are relevant:

– The relations in R are those described in Section 3.2.2.
– In our implementation, we use three graph convolution blocks and three pooling blocks

interleaving each other.
– The convolution blocks can be of one of the five convolution variants listed in Sec-

tion 2.2. Due to the large-scale experimentation (number of datasets, number of GNN
variants), the various hyperparameters in convolution blocks are set to default values in
PyTorch Geometric library.

– The graph pooling block uses self-attention pooling (Lee et al. 2019) with pooling ratio
of 0.5. We use a hierarchical pooling architecture that uses the readout mechanism pro-
posed by Cangea et al. (2018). The readout block aggregates node features to produce a
fixed size intermediate representation for the graph. The final fixed-size representation
for the graph is obtained by element-wise addition (⊕) of the three readout representa-
tions.

– The final representation is then fed as input to a 3-layered MLP. We use a dropout layer
with fixed dropout rate of 0.5 after first layer of MLP. The loss function is negative log-
likelihood between the targets and the predictions from the model. Further detail on the
GNN architectures is provided in Appendix A.4.

– We select amongst two possible values of the structure hyperparameter m (8 and 128),
corresponding to small and large amounts of convolution in the convolutional-layers of
the GNNs and VEGNNs;

– We use (Adam Kingma and Ba 2014) optimiser for training the GNNs (GNN1,…,5)
and VEGNNs (VEGNN1,…,5). The learning rate is 0.0005, weight decay parameter is
0.0001, momentum factors are the default values of �1,2 = (0.9, 0.999).

– Maximum number of training epochs is 1000. The batch size is 128.
– We use an early-stopping mechanism (Prechelt 1998) to obtain the optimal model after

training that can be used for evaluation on Te. The patience period for early stopping is
50.

– Comparison of performance is done using the Wilcoxon signed-rank test, using the
standard implementation within MATLAB (R218b).

Experiment 2: VEGNNs with ILP-constructed relations
Given a set of generic relations R , and some data, a VEGNN should, in principle, be

able to construct new (domain-specific) relations across its internal layers. That is, it may

Fig. 1 Levels of abstraction in
the background knowledge (Dash
et al. 2018)

1621Machine Learning (2021) 110:1609–1636

1 3

not be necessary to provide a VEGNN with anything more than R . In this experiment, we
investigate the extent to which this holds in practice, by evaluating the effects of augment-
ing R with higher-level relations learned by ILP. The ILP procedure used to obtain these
relations has been described elsewhere (see Procedure 2). Our method is as follows.

Fig. 2 Functional group hierarchy

Fig. 3 Ring hierarchy

1622 Machine Learning (2021) 110:1609–1636

1 3

For each dataset D:

1. Let Tr, Val, Te denote the train-validation-test split of the data D
2. Let R′ denote a set of new relations obtained using an ILP engine with access to R

and Tr ∪ Val

3. Let VEGNN1,…,5 denote the VEGNNs obtained with R and VEGNN�
1,…,5

 denote the
VEGNNs with R ∪R�.

 For each of VEGNN1,…,5 and VEGNN�
1,…,5

 :

(a) Find the best value m∗ for the structure hyperparameter m, using Tr and Val
(b) Record the predictive performance on Te of the model constructed using m∗

4. Compare the performance of VEGNNi against that of VEGNN′
i
 (i = 1,… , 5).

The following additional details are relevant:

– The relations in R are those described in Section 3.2.
– The construction of the VEGNNs is as in Experiment 1.
– The relations in R′ are obtained using the ILP engine Aleph (Srinivasan 2001) with

hide-and-seek sampling (Dash et al. 2019).
– We repeat the comparisons for |R�| = 100 , |R�| = 500 , and |R�| = 1000.
– ILP-constructed relations can be complex, and involve several vertices. To ensure trac-

tability, we restrict the computation to detecting a single hyperedge (and not all hyper-
edges) corresponding to the ILP-constructed relation. This results in a loss of informa-
tion.

– As in Experiment 1, comparisons will be in the form of a Wilcoxon signed-rank test,
implemented within MATLAB (R2018b).

3.4 Results

The main results from the experiments are shown qualitatively in Fig. 4. The principal
findings from the tabulations are these: (a) Inclusion of domain-knowledge into GNNs
(that is, the use of vertex-enriched GNNs) results in an improvement in predictive accu-
racy for all variants of GNN; and (b) The performance of vertex-enriched GNNs can be
improved further by augmenting the domain-relations with additional relations constructed
by an ILP engine.

We now examine the results in more detail: From Fig. 4, it is evident that the perfor-
mance of graph-based networks improves with the inclusion of domain-knowledge. A
quantitative tabulation of wins, losses and draws is in Table. 2. These results provide suf-
ficient grounds to answer positively the primary research question addressed in this paper,
namely: do GNNs benefit from the inclusion of domain-knowledge?

Assuming that it is useful to provide a GNN with domain-knowledge, we can then
ask: are vertex-enriched GNNs sufficiently powerful to compute automatically any addi-
tional information needed for high predictive performance? The results in Fig. 4 suggest
that the answer to this is “no”, since it appears that the inclusion of ILP-constructed rela-
tions makes a significant difference. To understand this better, we tabulate quantitative
differences obtained as the number of ILP relations added is increased. This is shown in

1623Machine Learning (2021) 110:1609–1636

1 3

Table. 3. The plot in Fig. 4 uses 1000 ILP-relations (the corresponding quantitative differ-
ences are the last column in Table. 3).

Since the inclusion of even small numbers of ILP relations (100) seems to improve
performance of the VEGNN, it would appear that the internal representations within a
VEGNN are of limited expressivity when compared to those constructed by ILP. In turn,
the complete tabulation suggests that a hybrid VEGNN-ILP learner is very likely to be bet-
ter than just a VEGNN learner (and in turn, a GNN learner).

We note that vertex-enrichment is only a vertex-related operation. It is relevant to ask
if there are any edge-related operations associated with the addition of domain-relations.
Since these relations result in hyperedges, a natural edge-operation is one of clique-expan-
sion (Zhou et al. 2007) of the domain-relations. That is, the original graph is transformed to
a new graph by the inclusion of all pairwise edges between vertices in hyperedges entailed
by the relations. We have investigated this, but for reasons of space, do not include the
results here. A summary of the effect of clique-expansion is: (a) By itself, clique-expan-
sion of domain-relations is not helpful; (b) Clique-expansion, in combination with vertex-
enrichment does not yield any clear advantage over vertex-enrichment alone across the
GNN variants.

4 Related work

GNN-like models were first proposed in Sperduti and Starita (1997), (Baskin et al. 1997).
In these studies, the features from the graph data was extracted using neural networks. Gori
et al. (2005) and Scarselli et al. (2008) proposed new graph-based learning methods that
used recursive aggregation of information. They called these models ‘graph neural net-
works (GNNs)’. The major boost to the field of GNNs followed the introduction of graph
convolution (Kipf and Welling 2017) and the notion of graph embedding (Cui et al. 2018;
Zhang et al. 2018). Many such embedding methods are based on iterative processing of the
neighborhood information of any vertex. One such vertex embedding method was formu-
lated by generalising the convolution operation to graphs. The convolution operation com-
putes “hidden” states (essentially vector-representations) of the vertices in the graph. There
are a wide variety of convolution-based GNNs most of which are classified into spectral-
or non-spectral (spatial) approaches. Two methodical and comprehensive surveys over a
series of variants of graph neural networks can be found in (Zhou et al. 2018) and (Wu
et al. 2020). We have already seen that for practical problems the data cannot effectively be
modelled by pairwise associations. Methods have been proposed to define convolutions for
higher-order graphs or hypergraphs (Feng et al. 2019; Jiang et al. 2019; Yadati et al. 2019),
although none of these have considered the problem of inclusion of domain-knowledge.
To the extent that we consider a vertex-enriched graph to be a result of a hypergraph rep-
resentation of the data, the work proposed in this paper loosely falls under the category of
Hypergraph-based neural networks.

Notwithstanding the convolution operation used in GNNs, one drawback that has been
identified is that the representations learned by them could be poor if the amount of training
data (number of graphs) is small, which would lead to poor generalisation (Xu et al. 2019).
The usual solution to this problem is to overcome data scarcity by the use of prior knowl-
edge, a feature that is at the heart of Inductive Logic Programming. In almost all applica-
tions of ILP to date, the use of prior or background knowledge is central (see Muggle-
ton et al. 2012). In contrast, the position taken in the neural-network literature, especially

1624 Machine Learning (2021) 110:1609–1636

1 3

those dealing with networks with large numbers of hidden layers, is that provided sufficient
data are available, representations of relevant domain-concepts can be computed auto-
matically from data. But when data are scarce, this assumption breaks down. The area of
neuro-symbolic modelling (Besold et al. 2017) has been concerned with ways of combin-
ing symbolic and neural learning. A simple way of doing this has been studied under the
category of “propositionalisation” in ILP (Lavrač et al. 1991; Kramer et al. 2001; Krogel
et al. 2003; França et al. 2014, 2015). Although, propositionalisation approaches have been
successfully applied to various problems but are still considered as ad hoc approaches.
These approaches are studied in the larger context of macro-operators (Castillo and Wrobel

Datasets

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
GNN
VEGNN
VEGNN'

(a) GNN variant: GNN1

Datasets

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
GNN
VEGNN
VEGNN'

(b) GNN variant: GNN2

Datasets

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
GNN
VEGNN
VEGNN'

(c) GNN variant: GNN3

Datasets

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
GNN
VEGNN
VEGNN'

(d) GNN variant: GNN4

Datasets

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
GNN
VEGNN
VEGNN'

(e) GNN variant: GNN5

Fig. 4 Qualitative comparison of graph-based neural networks. Here GNN refers to the performance of the
graph-based neural network without domain relations; VEGNN refers to the performance of the network
vertex-enriched with generic domain relations shown in Section 3.2.2; and VEGNN′ refers to the perfor-
mance of the network vertex-enriched with the generic domain-relations and domain-specific relations con-
structed by an ILP engine. Performance refers to predictive (holdout-set) accuracy, and all performances
are normalised against that of the GNN. Further, the compounds are arranged in order of increasing GNN
performance: the apparent trend of high-to-low gains for VEGNN and VEGNN′ from left to right are arti-
facts of this ordering. No significance should also be attached to the line joining the data points: this is only
for visual clarity

1625Machine Learning (2021) 110:1609–1636

1 3

2002), which are approaches to improve the heuristic search in ILP systems and extract
higher-level or meta-rules (Alphonse 2004). Pioneering work on the combination of neu-
ral-networks and symbolic features has been done by d’Avila (Garcez and Zaverucha 1999)
and extended in (França et al. 2014, 2015). There are several studies that report that the
relational features constructed using propositionalisation-based approach can substantially
improve predictive performance of statistical machine learning models, see for example:
(Ramakrishnan et al. 2007), (Saha et al. 2012). Recently, ILP-based feature-construction
for deep multi-layer perceptrons [a special case of Deep Relational Machines, or DRMs
(Lodhi 2013) was shown to yield surprisingly good results on the datasets used here, albeit
with very large numbers of features (Dash et al. 2018, 2019). At the other end of the spec-
trum, methods are now being developed that include “neural” predicates (predicates whose
definitions are implemented by neural networks) as part of the background knowledge
available to a symbolic learner (De Raedt et al. 2019).

Domain-knowledge is often available as knowledge graphs (or semantic networks)
rather than as a set of relations defined in logic. Knowledge graph embedding (Ding
et al. 2018; Ziegler et al. 2017) is a technique that is mostly applied to construct a vector

Table 2 Quantitative comparison of GNN performance. Here GNN refers to the graph-based neural net-
work without domain-knowledge, and VEGNN refers to the network vertex-enriched with the generic
domain-knowledge described in Section 3.2.2. The tabulations are the number of datasets on which VEGNN
has higher, lower or equal predictive accuracy on a holdout-set. Statistical significance is assessed by the
Wilcoxon signed-rank test

GNN Accuracy (VEGNN vs. GNN)
Variant Higher/Lower/Equal (p-value)

GNN
1

48/14/11 (< 0.001)
GNN

2
48/19/6 (0.005)

GNN
3

53/11/9 (< 0.001)
GNN

4
54/12/7 (< 0.001)

GNN
5

43/19/11 (0.002)

Table 3 Quantitative comparison of performance after augmenting domain-relations with ILP-constructed
relations. Here VEGNN′ denotes the vertex-enriched GNN obtained after augmenting the generic domain
relations (R) with domain-specific relations constructed by an ILP engine (R′); and VEGNN denotes the
vertex-enriched GNN with R . The tabulations are the number of datasets on which VEGNN′ has higher,
lower or equal predictive accuracy on a holdout-set. Statistical significance is assessed by the Wilcoxon
signed-rank test

Accuracy (VEGNN′ vs. VEGNN)

GNN Higher/Lower/Equal (p-value)

Variant |R�| = 100 |R�| = 500 |R�| = 1000

GNN
1

45/17/11 (< 0.001) 46/19/8 (< 0.001) 55/10/8 (< 0.001)
GNN

2
46/20/7 (< 0.001) 55/13/5 (< 0.001) 54/17/2 (< 0.001)

GNN
3

47/17/9 (< 0.001) 49/16/8 (< 0.001) 55/12/6 (< 0.001)
GNN

4
40/27/6 (0.055) 46/23/4 (0.013) 53/16/4 (< 0.001)

GNN
5

39/20/14 (0.026) 49/14/10 (< 0.001) 51/13/9 (< 0.001)

1626 Machine Learning (2021) 110:1609–1636

1 3

representation for the knowledge graph, which can then be infused into some form into a
neural network. In recent reports, it is proposed that the latent representation learned by a
neural network can be coupled with the representation of the knowledge graph that may
improve the predictive performance of the neural network model (Gaur et al. 2019; Kur-
suncu et al. 2019).

5 Conclusions

Our focus in this paper has been on the use of graph-based neural networks (GNNs) on
scientific data. Scientific understanding is largely an incremental process that builds on
knowledge that is already known. It is natural therefore to expect that automatic techniques
intended for scientific data analysis will similarly be able to utilise such knowledge. The
results here clearly show the benefit of having mechanisms to incorporate domain-knowl-
edge into GNNs. They also show the benefits of ILP as a mechanism for identifying rela-
tionships that appear not to be within the practical reach of the GNN variants we have
considered. An ILP-purist could well ask: why then should we use GNNs at all? There are
several reasons to persist, chief amongst which are reasons of implementation efficiency
and widespread availability of packaged libraries. Assuming GNNs are useful, our goal
has been to show that they can be more useful if they use domain-specific relations, and yet
more so if they include results from an ILP engine.7

To the best of our knowledge, the experiments in this paper constitute some of the most
extensive applications of GNNs to large-scale real-world scientific data. It has not been the
focus of this paper to construct a GNN-based benchmark for the data, but to investigate the
use of domain-knowledge. There is undoubtedly room in the future for comparative stud-
ies against other techniques that may or may not utilise the domain-knowledge available.
More immediately, the process of vertex-enrichment can create very large vectors at each
vertex (the result of a many-hot encoding of the relations in the vertex’s label). We conjec-
ture that this situation can be improved by performing some dimensionality-reduction at
each vertex. A straightforward option is to include some form of auto-encoder at each ver-
tex, before re-labelling. Vertex-enriched GNNs can probably be significantly improved by
directly working with Hypergraph GNNs (HGNNs). In principle, HGNNs will have more
information (like hyperedge labels). Will HGNNs also benefit from the use of ILP? We do
not know the answer to this as yet.

Despite the recent empirical successes in various fields, recent studies highlight some of
the theoretical limitations of GNNs. For instance, GNNs cannot distinguish between some
pairs of graphs that are indistinguishable by the 1-WL test (Xu et al. 2019), (Morris et al.
2019), that is, a GNN with any parameter setting cannot distinguish two graphs unless the
labels of the graphs are same. A recent study on GNNs (Barceló et al. 2020) has shown that
the class of aggregate-combine GNNs cannot be logically more expressible than a frag-
ment of two-variable first-order logic with counting quantifiers (Logic FOC2), which is a
form of description logic. In a different report, various theoretical limitations of GNNs are
studied, specifically, in terms of approximation ratios of combinatorial algorithms (Sato
2020). We have already indicated that the vertex-enrichment procedure described in this

7 The use of ILP would seem to undermine the motivation just given for using GNNs. However, this is not
so. First, once the ILP relations are constructed, the main modelling effort is still done using GNNs. Sec-
ondly, the construction of relations is task that can be implemented by a specialised library.

1627Machine Learning (2021) 110:1609–1636

1 3

paper may not capture fully the relational information present in the data. We believe this
limitation can be overcome by adopting a different form of graph representation, that is
nevertheless still amenable to the use of GNNs. We intend to explore this as future work.

At the outset of this paper, we motivated the use of machine learning in developing an
automated scientific assistant. While high predictive power is expected from an ML-based
scientific assistant, it is not sufficient. It is evident that this paper’s focus is on how predic-
tion can improve by the inclusion of domain-knowledge. An Understandable explanation of
the models constructed by GNNs remains a challenge.

A Graph neural networks

A.1 Implementation

In a graph G = (V ,E) , let Xv denote a vector that represents the labelling of a vertex v ∈ V .
This is called the feature vector of the vertex v. In a GNN, the Relabel function is imple-
mented by a neighbourhood aggregation mechanism (Xu et al. 2019). It updates the repre-
sentation of a vertex, hv iteratively. That is, in kth iteration (or kth layer), the representation
of a vertex v, h(k)

v
 can be computed using two procedures: ��������� and �������.

where, N(v) denotes the set of vertices adjacent to v. Initially (at k = 0), h(0)
v

= Xv.
The Vectorise function constructs a vector representation of the entire graph. This step

is carried out after the representations of all the vertices are relabelled by some iterations.
The vectorised representation of the entire graph can be obtained using a ������� func-
tion that aggregates vertex features from the final iteration (k = K):

There are different variants of ���������-������� procedures available in the litera-
ture on GNNs. These are mostly implemented using the methods known as graph convolu-
tion and graph pooling (refer Zhou et al. 2018; Wu et al. 2020). The ������� procedure
is usually implemented using a global or hierarchical pooling operation. The convolution
operations of various GNNs used in our work are briefly described in Appendix A.2. Fur-
ther, we use an additional pooling layer called structural-attention pooling after each of the
convolution layer. This is briefly described in Appendix A.3.

A.2 Graph convolutions

A.2.1 Variant 1

The first variant of GNN used in our work is based on spectral-based graph convolutional net-
work proposed by Kipf and Welling (2017). It uses a layer-wise (or iteration-wise) propaga-
tion rule for a graph with N vertices as:

(1)a(k)
v

= ���������
(k)
({

h(k−1)
u

∶ u ∈ N(v)
})

,

(2)h(k)
v

= �������
(k)
(
h(k−1)
v

, a(k)
v

)

(3)hG = �������
({

h(K)
v

∣ v ∈ G
})

1628 Machine Learning (2021) 110:1609–1636

1 3

where, H(k) ∈ ℝ
N×D denotes the matrix of vertex representations of length D, Ã = A + I

is the adjacency matrix representing an undirected graph G with added self-connections,
A ∈ ℝ

N×N is the graph adjacency matrix, IN is the identity matrix, D̃ii =
∑

j Ãij , and �(k−1)
is the iteration-specific trainable parameter matrix, �(⋅) denotes the activation function e.g.
ReLU(⋅) = max(0, ⋅) , �(0) = � , � is the matrix of vertex feature vectors Xis.

A.2.2 Variant 2

The second variant is based on the graph neural network proposed by Morris et al. (2019) that
passes messages directly between subgraph structures inside the graph. At iteration k, the fea-
ture representation of a vertex is computed by using

where, � is a non-linear transfer function applied component wise to the function argu-
ment, � s are the layer-specific learnable parameters of the network.

A.2.3 Variant 3

The third variant is an attention-based model, which is popularly known as Graph Atten-
tion Network (GAT) (Velic̆ković et al. 2018). This network assumes that the contributions
of neighboring vertices to the central vertex are not pre-determined which is the case in the
Graph Convolutional Network (Kipf and Welling 2017). This adopts attention mechanisms to
learn the relative weights between two connected vertices. The graph convolutional operation
at iteration k is thereby defined as:

where, h(0)
u

= Xu . The connective strength between the vertex u and its neighbor vertex v is
called attention weight, which is defined as

where, a is the set of learnable parameters of a single layer feed-forward neural network.

A.2.4 Variant 4

The fourth variant is called GraphSAGE and it is a framework for inductive representation
learning on large graphs (Hamilton et al. 2017). It is done in two steps: local neighborhood
sampling and then aggregation of generating the embeddings of the sampled nodes. Graph-
SAGE is used to generate low-dimensional vector representations for nodes, and is especially
useful for graphs that have rich node attribute information. The following is an iterative update
of the node embedding:

(4)�
(k) = 𝜎

(

D̃
−

1

2 ÃD̃
−

1

2�
(k−1)𝛩(k−1)

)

(5)h(k)
u

= �

(

h(k−1)
u

⋅ �
(k)

1
+

∑

v∈N(u)

h(k−1)
v

⋅ �
(k)

2

)

(6)h(k)
u

= �

(
∑

v∈N(u)∪u

�(k)
uv
�(k)h(k−1)

u

)

(7)�(k)
uv

= softmax
�
LeakyReLU

�
a�
�
�(k)h(k−1)

u
‖ �(k)h(k−1)

v

���

1629Machine Learning (2021) 110:1609–1636

1 3

where, � is a non-linear transfer function applied component wise to the function argu-
ment, � s are the layer-specific learnable parameters of the network.

A.2.5 Variant 5

This variant of GNN is inspred by the auto-regressive moving avarage (ARMA) filters that are
considered to be more robust than polynomial filters (Bianchi et al. 2019). The ARMA graph
convolutional operator is defined as follows:

where, M is the number of parallel stacks, K is the number of layers; and �(K)
m

 is recursively
defined as

where, L̂ = I − L is the modified Laplacian. The � parameters are learnable parameters.

A.3 Graph pooling

Graph pooling methods apply downsampling mechanisms to graphs. In this work, we use
a recently proposed graph pooling method based on self-attention (Lee et al. 2019). It uses
graph convolution defined in Eq. (4) to obtain a self-attention score as given in Eq. 11 with
the trainable parameter replaced by �att ∈ ℝ

N×1 , which is a set of trainable parameters in the
pooling layer.

Here, �(⋅) is the activation function e.g. tanh.

A.4 Structure of the GNNs

The structure of the GNNs closely follows the structure used in (Lee et al. 2019). A
schematic diagram of our implemented architecture is shown in Fig. 5. As shown in the
diagram, the output of the hierarchical pooling is fed as input to a multilayer percep-
tron (MLP). So, the input layer of the MLP contains 2m units, followed by two hidden
layers with m units and ⌊m∕2⌋ units respectively. The activation function used in the
hidden layers is ���� . The output layer size is |Y| (in this work, 2) with ����������
activation.

(8)h(k)
u

= �

(

h(k−1)
u

⋅ �
(k)

1
+

1

|N(u)|

∑

v∈N(u)

h(k−1)
v

⋅ �
(k)

2

)

(9)�
(k) =

1

M

M∑

m=1

�
(K)
m

(10)�
(k+1)
m

= 𝜎

(

L̂�(k)
m
𝛩

(k)

2
+�

(0)𝛩
(k)

2

)

(11)Z = 𝜎

(

D̃
−

1

2 ÃD̃
−

1

2�𝛩att

)

1630 Machine Learning (2021) 110:1609–1636

1 3

B ILP Specifics

B.1 Extending domain‑knowledge

We assume that a set of relations R are provided as part of the background knowledge B
available to an ILP engine.8 Given B and data E consisting of a set of positive and negative
instances (here representing molecules with or without the property of interest), and ILP
engine can construct new clauses defined in terms of the relations in R . These clauses can
be additionally be ordered in terms of some utility function (for example, a clause encod-
ing a relation that holds for large number of positive instances may have a high utility).
The so-called technique of ILP-based “propositionalisation”, for example, identifies high-
utility clauses (for example, see Ramakrishnan et al. 2007; Joshi et al. 2008; Dash et al.
2018). The procedure used to draw “new” relations using ILP-derived techniques is in
Procedure 3.

B.2 Input

We use the ILP engine Aleph to construct the most-specific rule above. Aleph requires the
specification of a mode language, specifying the predicates in R . The mode-language used
for the experiments in the paper is given below:

8 Besides R , B will usually contain additional ILP-specific content like mode declarations (see Muggleton
1995, along with search constraints and ancillary predicates).

1631Machine Learning (2021) 110:1609–1636

1 3

Fig. 5 Graph classification
architecture used in this work.
We perform our experiments
with five different types of graph
convolution methods, each result-
ing in a different kind of GNN
architecture

1632 Machine Learning (2021) 110:1609–1636

1 3

 The ‘#’-ed arguments in the mode declaration refers to type, that is, #�������� refers to
the type of atom, #�������� refers to the type of bond, and #��������� refers to the type
of the structure (functional group or ring) associated with the molecule.

Each data instance (a molecule) is represented by a set of ground facts of the follow-
ing kind:

 Here bond(m1,27,24,o2,car,1) denotes that in instance m1 there is an oxygen
atom (id 27), and a carbon atom (id 24) connected by a single bond (car denotes a carbon
atom in an aromatic ring).

Given the molecular structure additional facts like functional_group/4 and
ring/4 are pre-computed for efficiency using the generic relations in R (which con-
tain the symbolic definitions of benzene rings, oxide groups, etc.). This results in facts
like the following:

1633Machine Learning (2021) 110:1609–1636

1 3

We note that these predicates result in a reification of the predicates in R (that is, the
predicate symbols are converted to terms). The predicates ���_�����∕4 , ���������∕5 and
�����∕5 are defined over these predicates. For example (in Prolog format):

 We reiterate that these predicates are defined directly on the relations in R : the use of
functional_group/4 and ring/4 is for compactness and efficiency.

B.3 Output

Given the mode language, and data consisting of the molecular structure, the ILP engine finds
clauses like these (shown as Prolog clauses):

Each such clause is converted to an n-ary relation using the steps in Procedure 2.

Acknowledgements This work is supported by DST-SERB Grant EMR/2016/002766, Government of
India. The second author is a Visiting Professorial Fellow at School of CSE, UNSW Sydney. We sincerely
thank Ing. Gustav Šourek, Czech Technical University, Prague for providing the dataset information; and
researchers at the DTAI, University of Leuven, for suggestions on how to use the background knowledge
within DMAX. We also thank Dr. Oghenejokpeme I. Orhobor and Professsor Ross D. King for providing us
with initial set of background-knowledge definitions.

Data Availability Statement Data, background-knowledge and codes used in our experiments are available
at: https:// github. com/ tirth arajd ash/ VEGNN.

References

Alphonse, É. (2004). Macro-operators revisited in inductive logic programming. In International Confer-
ence on Inductive Logic Programming. pp. 8–25. Springer

https://github.com/tirtharajdash/VEGNN

1634 Machine Learning (2021) 110:1609–1636

1 3

Ando, H. Y., Dehaspe, L., Luyten, W., Van Craenenbroeck, E., Vandecasteele, H., & Van Meervelt, L.
(2006). Discovering h-bonding rules in crystals with inductive logic programming. Molecular pharma-
ceutics, 3(6), 665–674.

Barceló, P., Kostylev, E. V., Monet, M., Pérez, J., Reutter, J., & Silva, J. P. (2020). The logical expressive-
ness of graph neural networks. In International Conference on Learning Representations, https:// openr
eview. net/ forum? id= r1lZ7 AEKvB

Baskin, I. I., Palyulin, V. A., & Zefirov, N. S. (1997). A neural device for searching direct correlations
between structures and properties of chemical compounds. Journal of Chemical Information and Com-
puter Sciences, 37(4), 715–721.

Besold, T. R., Garcez, A. d., Bader, S., Bowman, H., Domingos, P., Hitzler, P., Kühnberger, K. U., Lamb,
L. C., Lowd, D., & Lima, P.M.V., et al. (2017). Neural-symbolic learning and reasoning: A survey and
interpretation. arXiv preprint arXiv:1711.03902

Bianchi, F. M., Grattarola, D., Alippi, C., & Livi, L. (2019). Graph neural networks with convolutional arma
filters. arXiv preprint arXiv:1901.01343

Cangea, C., Veličković, P., Jovanović, N., Kipf, T., & Liò, P. (2018). Towards sparse hierarchical graph clas-
sifiers. arXiv preprint arXiv:1811.01287

Castillo, L.P., & Wrobel, S. (2002). Macro-operators in multirelational learning: a search-space reduction
technique. In European Conference on Machine Learning. pp. 357–368. Springer

Cui, P., Wang, X., Pei, J., & Zhu, W. (2018). A survey on network embedding. IEEE Transactions on
Knowledge and Data Engineering, 31(5), 833–852.

d’Avila Garcez, A. S., & Zaverucha, G. (1999). The connectionist inductive learning and logic programming
system. Appl. Intell., 11(1), 59–77.

Dash, T., Srinivasan, A., Vig, L., Orhobor, O. I., & King, R. D. (2018). Large-scale assessment of deep rela-
tional machines. In International Conference on Inductive Logic Programming. pp. 22–37. Springer

Dash, T., Srinivasan, A., Joshi, R.S., & Baskar, A. (2019). Discrete stochastic search and its application to
feature-selection for deep relational machines. In International Conference on Artificial Neural Net-
works. pp. 29–45. Springer

De Raedt, L., Manhaeve, R., Dumancic, S., Demeester, T., & Kimmig, A. (2019). Neuro-symbolic= neu-
ral+ logical+ probabilistic. In NeSy’19@ IJCAI, the 14th International Workshop on Neural-Symbolic
Learning and Reasoning. pp. 1–4

Ding, B., Wang, Q., Wang, B., & Guo, L. (2018). Improving knowledge graph embedding using simple con-
straints. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers). pp. 110–121. Association for Computational Linguistics, Melbourne, Aus-
tralia, https:// www. aclweb. org/ antho logy/ P18- 1011

Faruquie, T. A., Srinivasan, A., & King, R. D. (2012). Topic models with relational features for drug design.
In International conference on inductive logic programming. pp. 45–57. Springer.

Feng, Y., You, H., Zhang, Z., Ji, R., & Gao, Y. (2019). Hypergraph neural networks. Proceedings of the
AAAI Conference on Artificial Intelligence., 33, 3558–3565.

Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds

França, M. .V., Zaverucha, G., & Garcez, A. S. d. (2014). Fast relational learning using bottom clause prop-
ositionalization with artificial neural networks. Machine learning, 94(1), 81–104.

França, M.V.M., Zaverucha, G., & Garcez, A. S. d. (2015). Neural relational learning through semi-proposi-
tionalization of bottom clauses. In 2015 AAAI Spring Symposium Series

França, M.V.M., d’Avila Garcez, A. S., & Zaverucha, G. (2015). Relational knowledge extraction from neu-
ral networks. In Proceedings of the NIPS Workshop on Cognitive Computation: Integrating Neural and
Symbolic Approaches co-located with the 29th Annual Conference on Neural Information Processing
Systems (NIPS 2015), Montreal, Canada, December 11-12, 2015.

Gaur, M., Kursuncu, U., & Wickramarachchi, R. (2019). Shades of knowledge-infused learning for enhanc-
ing deep learning. IEEE Internet Computing, 23(6), 54–63.

Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for learning in graph domains. In Proceed-
ings. 2005 IEEE International Joint Conference on Neural Networks, 2005. vol. 2, pp. 729–734 vol. 2

Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In
Advances in neural information processing systems. pp. 1024–1034

Jiang, J., Wei, Y., Feng, Y., Cao, J., & Gao, Y. (2019). Dynamic hypergraph neural networks. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI). pp. 2635–2641

Joshi, S., Ramakrishnan, G., & Srinivasan, A. (2008). Feature construction using theory-guided sam-
pling and randomised search. In International Conference on Inductive Logic Programming. pp.
140–157. Springer

https://openreview.net/forum?id=r1lZ7AEKvB
https://openreview.net/forum?id=r1lZ7AEKvB
https://www.aclweb.org/anthology/P18-1011

1635Machine Learning (2021) 110:1609–1636

1 3

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980

King, R. D., Muggleton, S. H., Srinivasan, A., & Sternberg, M. (1996). Structure-activity relationships
derived by machine learning: The use of atoms and their bond connectivities to predict mutagen-
icity by inductive logic programming. Proceedings of the National Academy of Sciences, 93(1),
438–442.

King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G., Bryant, C. H., Muggleton, S. H., et al. (2004).
Functional genomic hypothesis generation and experimentation by a robot scientist. Nature,
427(6971), 247–252.

Kipf, T.N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings

Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. In
Relational data mining, pp. 262–291. Springer

Krogel, M.,A., Rawles, S., Železnỳ, F., Flach, P. A., Lavrač, N., & Wrobel, S. (2003). Comparative eval-
uation of approaches to propositionalization. In International Conference on Inductive Logic Pro-
gramming. pp. 197–214. Springer

Kursuncu, U., Gaur, M., & Sheth, A. (2019). Knowledge infused learning (k-il): Towards deep incorpo-
ration of knowledge in deep learning. arXiv preprint arXiv:1912.00512

Lavrač, N., Džeroski, S., & Grobelnik, M. (1991). Learning nonrecursive definitions of relations with
linus. In European Working Session on Learning. pp. 265–281. Springer

Lee, J., Lee, I., & Kang, J. (2019). Self-attention graph pooling. In International Conference on Machine
Learning. pp. 3734–3743

Lodhi, H. (2013). Deep relational machines. In International Conference on Neural Information Process-
ing. pp. 212–219. Springer

Marx, K. A., O’Neil, P., Hoffman, P., & Ujwal, M. (2003). Data mining the nci cancer cell line com-
pound gi50 values: identifying quinone subtypes effective against melanoma and leukemia cell
classes. Journal of chemical information and computer sciences, 43(5), 1652–1667.

McNaught, A. D., Wilkinson, A., et al. (1997). Compendium of chemical terminology (Vol. 1669).
Oxford: Blackwell Science Oxford.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., & Grohe, M. (2019). Weis-
feiler and leman go neural: Higher-order graph neural networks. Proceedings of the AAAI Confer-
ence on Artificial Intelligence., 33, 4602–4609.

Muggleton, S. (1995). Inverse entailment and progol. New generation computing, 13(3–4), 245–286.
Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., & Srinivasan, A. (2012). Ilp

turns 20. Machine learning, 86(1), 3–23.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,

& Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems. pp. 8024–8035

Plotkin, G. (1971). Automatic Methods of Inductive Inference. Ph.D. thesis, Edinburgh University
Prechelt, L. (1998). Early stopping-but when? In Neural Networks: Tricks of the trade, pp. 55–69.

Springer
Ralaivola, L., Swamidass, S. J., Saigo, H., & Baldi, P. (2005). Graph kernels for chemical informatics.

Neural networks, 18(8), 1093–1110.
Ramakrishnan, G., Joshi, S., Balakrishnan, S., & Srinivasan, A. (2007) Using ilp to construct features

for information extraction from semi-structured text. In International Conference on Inductive
Logic Programming. pp. 211–224. Springer

Saha, A., Srinivasan, A., & Ramakrishnan, G. (2012). What kinds of relational features are useful for statis-
tical learning? In International Conference on Inductive Logic Programming. pp. 209–224. Springer

Sato, R. (2020). A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural net-
work model. IEEE Transactions on Neural Networks, 20(1), 61–80.

Sperduti, A., & Starita, A. (1997). Supervised neural networks for the classification of structures. IEEE
Transactions on Neural Networks, 8(3), 714–735.

Srinivasan, A. (2001). The aleph manual. https:// www. cs. ox. ac. uk/ activ ities/ progr amind uction/ Aleph/
aleph. html

Srinivasan, A., & King, R. D. (1999). Feature construction with inductive logic programming: A study of
quantitative predictions of biological activity aided by structural attributes. Data Mining and Knowl-
edge Discovery, 3(1), 37–57.

https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html
https://www.cs.ox.ac.uk/activities/programinduction/Aleph/aleph.html

1636 Machine Learning (2021) 110:1609–1636

1 3

Stevens, R., Taylor, V., Nichols, J., Maccabe, A. B., Yelick, K., & Brown, D. (2020). Ai for science. Tech.
rep., Argonne National Lab.(ANL), Argonne, IL (United States).

Van Craenenbroeck, E., Vandecasteele, H., & Dehaspe, L. (2002). Dmax’s functional group and ring library.
https:// dtai. cs. kuleu ven. be/ softw are/ dmax/

Velic̆ković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018). Graph attention net-
works. In International Conference on Learning Representations, https:// openr eview. net/ forum? id=
rJXMp ikCZ

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph
neural networks. IEEE Transactions on Neural Networks and Learning Systems

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural networks? In Interna-
tional Conference on Learning Representations, https:// openr eview. net/ forum? id= ryGs6 iA5Km

Yadati, N., Nimishakavi, M., Yadav, P., Nitin, V., Louis, A., & Talukdar, P. (2019). Hypergcn: A new
method for training graph convolutional networks on hypergraphs. In Advances in Neural Information
Processing Systems. pp. 1509–1520

Zhang, D., Yin, J., Zhu, X., & Zhang, C. (2018). Network representation learning: A survey. IEEE transac-
tions on Big Data

Zhou, D., Huang, J., & Schölkopf, B. (2007). Learning with hypergraphs: Clustering, classification, and
embedding. In Advances in neural information processing systems. pp. 1601–1608

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C. & Sun, M. (2018). Graph neural networks:
A review of methods and applications. arXiv preprint arXiv:1812.08434

Ziegler, K., Caelen, O., Garchery, M., Granitzer, M., He-Guelton, L., Jurgovsky, J., Portier, P.E., & Zwick-
lbauer, S. (2017). Injecting semantic background knowledge into neural networks using graph embed-
dings. In 2017 IEEE 26th International Conference on Enabling Technologies: Infrastructure for Col-
laborative Enterprises (WETICE). pp. 200–205. IEEE

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://dtai.cs.kuleuven.be/software/dmax/
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=ryGs6iA5Km

	Incorporating symbolic domain knowledge into graph neural networks
	Abstract
	1 Introduction
	2 Graph neural networks (GNNs)
	2.1 Encoding n-ary relations
	2.2 Practical considerations

	3 Empirical evaluation
	3.1 Aims
	3.2 Materials
	3.2.1 Data
	3.2.2 Background knowledge
	3.2.3 Algorithms and machines

	3.3 Method
	3.4 Results

	4 Related work
	5 Conclusions
	Acknowledgements
	References

