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Abstract
Our interest is in scientific problems with the following characteristics: (1) Data are natu-
rally represented as graphs; (2) The amount of data available is typically small; and (3) 
There is significant domain-knowledge, usually expressed in some symbolic form (rules, 
taxonomies, constraints and the like). These kinds of problems have been addressed effec-
tively in the past by symbolic machine learning methods like Inductive Logic Programming 
(ILP), by virtue of 2 important characteristics: (a) The use of a representation language that 
easily captures the relation encoded in graph-structured data, and (b) The inclusion of prior 
information encoded as domain-specific relations, that can alleviate problems of data scar-
city, and construct new relations. Recent advances have seen the emergence of deep neural 
networks specifically developed for graph-structured data (Graph-based Neural Networks, 
or GNNs). While GNNs have been shown to be able to handle graph-structured data, less 
has been done to investigate the inclusion of domain-knowledge. Here we investigate this 
aspect of GNNs empirically by employing an operation we term vertex-enrichment and 
denote the corresponding GNNs as VEGNNs. Using over 70 real-world datasets and sub-
stantial amounts of symbolic domain-knowledge, we examine the result of vertex-enrich-
ment across 5 different variants of GNNs. Our results provide support for the following: (a) 
Inclusion of domain-knowledge by vertex-enrichment can significantly improve the perfor-
mance of a GNN. That is, the performance of VEGNNs is significantly better than GNNs 
across all GNN variants; (b) The inclusion of domain-specific relations constructed using 
ILP improves the performance of VEGNNs, across all GNN variants. Taken together, the 
results provide evidence that it is possible to incorporate symbolic domain knowledge into 
a GNN, and that ILP can play an important role in providing high-level relationships that 
are not easily discovered by a GNN.
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1 Introduction

Industrialising scientific discovery, in the manner demonstrated by the Robot Scientist 
Project (King et al. 2004) uses machine learning programs as scientific assistants. At the 
very least, this would appear to require machine learning methods that are able to (a) cope 
with data that have some inherent structure, in the form of entities and relations; and (b) 
construct good predictive models by effectively drawing on any existing scientific knowl-
edge thought to be relevant. A really useful assistant would have to do more. A wish-list 
would include identifying the best explanation for a prediction based on what is known; 
suggesting hidden variables or mechanisms which could improve the prediction; and pro-
posing experiments to test the hypotheses. The Robot Scientist Project showed ways to 
achieve each of these in some measure with Inductive Logic Programming (ILP). Recent 
rapid gains in neural-network technology suggest that deep networks could form the basis 
of extremely powerful predictive models, which is clearly relevant to the construction of an 
effective scientific assistant. Here we investigate the performance of state-of-the-art deep 
networks specifically designed to analyse graph-structured data. A substantial number of 
applications addressed by ILP belong to this category of data (see, for example, King et al. 
1996; Srinivasan and King 1999; Faruquie et al. 2012). There are at least three good rea-
sons to investigate if graph neural networks, or GNNs, are able to incorporate domain-
knowledge. First, studies with ILP have repeatedly shown that inclusion of domain-knowl-
edge can make substantial difference to predictive performance. Furthermore, a recent 
report on Artificial Intelligence (AI) for Science identifies incorporating domain-knowl-
edge in AI as one of the three Grand Challenges facing the application of (AI Stevens et al. 
2020). Deep learning methods based on neural networks have not focused on this, relying 
instead on their internal computational machinery to construct higher-level concepts auto-
matically from the raw data. The ILP experience suggests otherwise, and we would like 
to know if this applies to GNNs. Second, symbolic encodings of domain knowledge are 
both natural and flexible ways of encoding prior knowledge. ILP systems implemented as 
logic programs have been the pre-eminent form of machine learning for using such knowl-
edge. Despite extremely efficient implementations of logic programming, the significant 
world-wide effort into the development of deep learning tools that have resulted in highly 
efficient implementations that exploit the processing capabilities of graphics processing 
units (GPUs). A GNN capable of including symbolic domain knowledge could provide 
an efficient way of constructing predictive models. Thirdly, to the best of our knowledge, 
GNN applications to date have been restricted to simple node-and-edge features, and have 
not attempted to encode any significant domain-knowledge. The real-world problems we 
examine in this paper have very extensive amounts of domain information, resulting from 
many years of academic and industrial effort into the use of ILP.

In this paper, we restrict the investigation to the problem of prediction, which we see 
as a necessary first step in the development of automated scientific assistants. Facilities 
for explanations and experiment-proposal using GNN models are conceptually harder, 
are deferred to future work. We assess the use of domain-knowledge using a sample of 
over 70 datasets, containing over 200,000 data instances. The datasets refer to problems 
in a broad category known as structure-activity prediction. Each data instance is, there-
fore, a molecule, which is naturally represented as a graph.1 For this class of problems, 

1 In fact, GNNs were originally tested with molecular datasets (Baskin et al. 1997).
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we now have a sufficiently large body of domain-knowledge encoded in human-under-
standable symbolic relations. This allows us to perform a case-study on the inclusion 
of symbolic relations by GNNs. The principal contributions of the paper are as follows:

– To the field of graph neural networks, the paper presents a large-scale empirical study 
using real-world datasets on the inclusion of domain-knowledge. To the best of our 
knowledge, the number of graphs used and the number of relations encoding domain-
knowledge are the most extensive to date.

– To the field of inductive logic programming, the paper demonstrates a continuing case 
for the usefulness of ILP on relational learning tasks, despite the development of very 
efficient deep neural networks specifically designed for a specific form of relational 
data.

– To the field of neuro-symbolic modelling, the technique of vertex-enrichment described 
in the paper provides a simple but effective way of incorporating symbolic relations 
into graph-based neural networks.

The rest of the paper is organised as follows. In Section 2, we describe vertex-enrich-
ment in graphs and a set of practical considerations arising from the developed algo-
rithms. In Section 3, we describe our aims, data and background knowledge, the spe-
cifics of the methodology, and the obtained results. Section 4 lists related works, and 
Section 5 concludes the paper.

2  Graph neural networks (GNNs)

GNNs are primarily developed for learning from data represented as graphs. For com-
pleteness, we include some basic definitions first.

Definition 1 (Graphs) A graph G is a pair (V, E) where V is a set of vertices, E is a set of 
edges and a subset of V × V  . A graph is said to be undirected if for every (vi, vj) ∈ E , (vj, vi) 
in E.

We will be concerned in this paper with undirected graphs. We note that for such 
graphs, E can be represented more compactly as a set consisting of 1- or 2-element sub-
sets of V. We will return to this later, as we extend the consideration to hypergraphs. For 
molecular graphs, of the kind considered here, self-loops do not occur.

Example 1 Molecules as graphs. A benzene ring (shown below) can be represented as a 
graph, in which vertices correspond to atoms and edges correspond to bonds (McNaught 
et al. 1997). 
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 The graph-representation of the molecule on the left is:

We will need the concept of the neighbourhood of a vertex in an undirected graph:2

Definition 2 (Neighbourhood) Given a graph G = (V ,E) , � is a neighbourhood function 
from V to 2V.

Example 2 One obvious definition of � for an undirected graph (V,  E) is 
�(v) = {vi ∶ vi ∈ V , (v, vi) ∈ E} . For the graph in Example 1, �(1) = {2, 6}, �(2) = {1, 3}.

For the GNNs in this paper, we will need labelled undirected graphs.

Definition 3 (Graph Labellings) Let V be a set of vertex labels and E be a set of edge 
labels. Then a vertex-labelling of a graph G = (V ,E) is a function � ∶ V → 2V and an 
edge-labelling is a function � ∶ E → 2E.3

Example 3 The vertex labels of the graph given in Example  1 can be the atom-types 
(Carbon, C), and edge labels can be the bond-types (single bond: 1, double bond: 2). 
The label for the vertex 1 is �(1) = ⋯ = �(6) = {C} . The labelling for the edges are 
�((1, 2)) = �((2, 1)) = {2} , �((2, 3)) = �((3, 2)) = {1} and so on.

Although not evident in this example, vertex- and edge-labels can have more than one 
element (hence the mapping to 2V and 2E) . This will be necessary later.

We will use the term graph interchangeably to denote the tuple (V,  E) or the tuple 
(V ,E, �,� , �) . We are interested here in classifying graphs. That is, given a set of class 
labels Y , we want to construct a function that maps a graph of the form (V ,E, �,� , �) to Y . 
A GNN is one such function that employs 2 higher-order functions.

Definition 4 (Relabel) Given a graph (V ,E, �,� , �) . Let Relabel be a function that returns 
a graph (V ,E, �,� �, ��) , where the functions � ′ and �′ may be different to � and �.

A vectorisation function is used to map a graph as a real-valued vector.

({1, 2, 3, 4, 5, 6}, {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 4), (5, 6), (6, 5),

(6, 1), (1, 6)})

2 Henceforth, by “graph” we will mean an undirected graph.
3 We do not commit here to any specific data structure that should be used to implement the label set. This 
could be, for example, a Boolean-valued array of size |V|.
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Definition 5 (Vectorise) Let G denote the set of graph-tuples of the form (V ,E, �,� , �) . A 
vectorisation of the graph-tuple is the result of applying a function Vec ∶ G → ℜd ( d ≥ 1).

A GNN is the composition of these functions, and some prediction function as imple-
mented by a neural network.

Definition 6 (GNN) Let NN ∶ ℜd
→ Y denote a neural network that maps a real-valued 

vector to a set of class labels. Given a G = (V ,E, �,� , �) , GNN(G) = NN(Vec(Relabel(G))).

Variations of GNNs result from changing the definitions of NN, Vec and Relabel. Many 
different definitions of the Relabel function have been proposed recently. We defer the spe-
cific details of the GNN variants used here to Section 2.2.

2.1  Encoding n‑ary relations

GNNs, as we have described them so far, deal with node- and edge-labels in an undirected 
graph, in which edges are sets of vertex-pairs. That is, the edges represent a symmetric 
binary relation. However, for many real-world problems—including the ones considered in 
this paper—we have access to domain-knowledge which relate more than just pairs of ver-
tices. For example, if a molecule is represented as a graph (with atoms as vertices, and an 
edge denoting a bond between a pair of vertices), then a benzene-ring is a relation amongst 
6 distinct vertices, with some specific constraints on the vertices and edges. Here, we will 
consider domain-knowledge to be a set of relations, each of which can be expressed as a 
hypergraph.

Definition 7 (Hypergraphs) A hypergraph H is the pair (V ,E�) , where V is a set of verti-
ces and E′ is a non-empty subset of 2V . Each element of E′ is called a hyperedge.

Example 4 A hypergraph of the molecular graph given in Example  1 can be 
H = ({1, 2, 3, 4, 5, 6}, {{1, 2}, {3, 4, 5, 6}, {2, 4, 5}, {1, 2, 3, 4, 5, 6}}).

We note that since hyperedges are sets, there is no distinction between permutations of 
vertices in a hyperedge. So, as defined here, we will take hyperedges as being undirected. 
Hypergraph labellings can be defined similarly as before, using a pair of functions for ver-
tex- and edge-labels. We will reuse the notation � and � for these functions, with annota-
tions to clarify what is meant. The neighboorhood relation � is left unspecified here (one 
obvious definition is 𝜎(vi) = {vj ∶ h ∈ E�, {vi, vj} ⊆ h} ). In this paper, we are interested in 
n-ary relations that can be expressed as hypergraphs.

Definition 8 (n-ary relation as a labelled hypergraph) A n-ary relation R defined over 
vertices of a graph G = (V ,E) is a hypergraph H = (V ,E�) , and every hyperedge h ∈ E� has 
n elements from V. We will denote this as R(G) = H . Let �G denote a vertex-labelling over 
G and R/n denote the predicate-symbol for R. With some abuse of notation, the vertex-
labelling function for R(G) = H = (V ,E�) is as follows:

�H(v) =

{
�G(v) ∪ {R∕n} if ∃h ∈ E�s.t. v ∈ h

� otherwise
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and the hyperedge-labelling function is:

That is, the vertex-labelling of a vertex v in the hypergraph H is a set containing the 
existing vertex-label of v in G augmented by the predicate-symbol R/n vertex-label.

Example 5 Consider a relation for a Benzene ring:

One possible vertex-labelling is:

(here, C denotes “carbon”). A hyperedge-labelling may contain:

The extension to multiple relations, not all of the same arity, is straightforward.

Definition 9 (Multiple relations as a labelled hypergraph) Let R1,… ,Rk be relations 
defined on vertices of a graph G = (V ,E) , s.t. Ri(G) = (V ,Ei

�) . Then 
⋃

Ri(G) is the hyper-
graph H = (V ,E�) where E� =

⋃
Ei

� . The corresponding labelling functions are:

and

Example 6 In the molecular graph given below, there are two relations: Benzene/6 and 
Pyrrole/5. 

One possible vertex-labelling for this graph is:

and a hyperedge-labelling is:

�H(h) = {R∕n} (h ∈ E�)

Benzene(a1, a2, a3, a4, a5, a6) ←

Cycle(a1, a2, a3, a4, a5, a6) ∧

Aromatic(a1, a2, a3, a4, a5, a6).

�H(1) = ⋯ = �H(6) = {C,Benzene∕6}

�H({1, 2, 3, 4, 5, 6}) = {Benzene∕6}

�H(v) =
⋃

�Hi
(v)

�H(v) =
⋃

�Hi
(v)

�H(1) =�H(4) = �H(5) = �H(6) = {C,Benzene∕6}

�H(8) =�H(9) = {C,Pyrrole∕5}

�H(7) ={N,Pyrrole∕5}

�H(2) =�H(3) = {C,Benzene∕6,Pyrrole∕5}
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In principle, provided we are able to define a neighbourhood function � for hyper-
graphs, the definition of GNNs in Defn. 6 does not change. We would however like to 
use one of the standard GNN implementations described in the previous section, which 
restricts graphs with 2-vertex edges, and edge-labels to singleton sets. With some loss 
of information, we extract a suitable graph from a hypergraph.

Definition 10 (Vertex-enriched graphs) Let G = (V ,E) be a graph, with neighbourhood 
function � , vertex-labelling function � , and edge-labelling function � . Here, E is a subset of 
V × V  . Let R = {R1,… ,Rk} be a set of relations defined on G, and 

⋃
Ri(G) be the hyper-

graph H = (V ,E�) with vertex-labelling function � ′ as in Defn. 9. Then G′ = (V ,E, �,� �, �) 
is called a vertex-enriched form of G = (V ,E, �,� , �) . We denote this by VE(G,R) = G�.

Example 7 The molecular graph G for Example 6 is

A vertex-labelling of G is:

The vertex-labelling of the vertex-enriched graph G′ , after the inclusion of the relations in 
Example 6 is:

The edge-labelling and neighborhood functions do not change after relation-enrichment.

The vertex-enriched graph thus extends the vertex-labelling of a graph G, with the 
vertex-labels from the hypergraph H obtained from relations R1,… ,Rk defined on G. 
The resulting graph can be used directly by the implementations of GNNs described 
in the appendix. We note that the process of vertex-enrichment is a simplification of 
the full relational information available. For example, in the example above, if an atom 
(represented by a vertex in the molecular graph) is part of more than 1 benzene ring, 
then its vertex-enrichment will only contain a single entry for Benzene/6, indicating that 
it is part of 1 or more benzene rings.

Definition 11 (Vertex-enriched GNN) Let G = (V ,E, �,� , �) , and Relabel, Vec and NN 
be as before. Then, a Vertex Enriched GNN is VEGNN(G) = NN(Vec(Relabel(VE(G,R)))).

�H({1, 2, 3, 4, 5, 6}) = {Benzene∕6}

�H({2, 7, 8, 9, 3}) = {Pyrrole∕5}

G =({1, 2, 3, 4, 5, 6, 7, 8, 9}, {(1, 2), (2, 1),⋯ , (1, 6), (6, 1), (2, 7), (7, 2),⋯ ,

(9, 3)(3, 9)})

�(1) =⋯ = �(6) = �(8) = �(9) = {C}

�(7) ={N}

� �(1) =� �(4) = � �(5) = � �(6) = {C,Benzene∕6}

� �(8) =� �(9) = {C,Pyrrole∕5}

� �(7) ={N,Pyrrole∕5}

� �(2) =� �(3) = {C,Benzene∕6,Pyrrole∕5}
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2.2  Practical considerations

The GNN variants in this paper differ in the Relabel operation, based on the convolu-
tion procedure employed. In this work, we employ the following different convolution 
procedures: 

1. Localised approximation to spectral graph convolution (Kipf and Welling 2017): This 
is a spectral method for graph convolution that uses convolutional aggregator. This is a 
simple and well-behaved layer-wise propagation rule for neural network models which 
operate directly on graphs.

2. Multi-scale graph convolution (Morris et al. 2019): This convolution method can per-
form convolution operations using multiple-sized neighbourhoods (the authors call this 
“higher order” graph convolution).

3. Graph convolution with attention (Velic̆ković et al. 2018): This is a spatial method of 
graph convolution that uses an “attention” mechanism, that estimates the importance 
of vertices in the neighbourhood of a vertex.

4. Sample-and-aggregate graph convolution (Hamilton et al. 2017): Here the convolution 
procedure samples from a distribution that is constructed from feature-vectors of vertices 
in the neighbourhood of a vertex.

5. Graph convolution based on auto-regressive moving average (Bianchi et al. 2019): This 
is a convolution method that employs a polynomial function of the feature-vectors in 
the neighbourhood of a vertex.

The Relabel operation also includes a pooling step after each convolution operation. 
Additional details are in Appendix A. In all cases, we have used a fixed vectorisation 
function Vec that is based on a readout mechanism, and NN refers to a standard multi-
layer perceptron (MLP).

We now elaborate on three practical issues arising from the use of Vertex-Enriched 
GNNs: 

1. The vertex-enriched graphs we obtain allow us to use standard forms of GNNs (see 
Procedure 1). However, this comes with the limitation that we only change the vertex-
labellings. A GNN defined directly on hypergraphs would have access to more informa-
tion than the vertex-enriched GNN, since the former would retain the edge-labelling on 
hyperedges, and can have a richer definition of the neighbourhood function. Recently, 
there have been some proposals of GNNs for hypergraphs (Feng et al. 2019; Jiang et al. 
2019; Yadati et al. 2019). It is possible that these forms of GNNs may perform better 
than Vertex-Enriched GNNs. We expect that the results in Section 3.4 will act as base-
line for such comparisons.

2. Procedure 1 requires identification of subgraphs of the original graph. That is: for every 
relation Ri ∈ R , the corresponding hyperedge Hi is a subset of vertices {v1,… , vn} ∈ V , 
such that (v1,… , vn) ∈ Ri . This step requires the identification of all subsets of vertices 
of the graph constituting hyperedge as above. For a graph (V, E), this can, in the worst 

case require an examination of 
(
|V|

n

)

 combinations. Therefore, for arbitrary sized 

graphs and subgraphs, this is computationally hard. In practice, we will be forced to 
impose bounds on the size of Vs and on the size of the subgraph.
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3. We have not described how the relations in R themselves are obtained. There are two 
possibilities here. First, they are provided as prior information (background knowledge 
in ILP terminology). Secondly, the R provided as prior information can be augmented 
by relations constructed automatically (see Procedure 2). In this paper, the construction 
of new relations is done using an ILP engine, by adapting the usual clause-construction 
procedure (see Appendix B.1 for an ILP-based implementation of LearnRels in Proce-
dure 2).4

3  Empirical evaluation

3.1  Aims

Our aims in this paper is to investigate the incorporation of background knowledge by 
GNNs. Specifically, using the term Vertex-Enriched GNNs (VEGNNs) to denote the inclu-
sion of relations into GNNs (See Procedure 1), the experiments attempt to answer to the 
following questions: 

4 Usually, clauses constructed by an ILP engine are either used as part of a hypothesis, or as features to 
construct a Boolean-vector representation of the data (“propositionalisation”). Here, the clauses are not 
used in either of these roles, but as relations that augment the prior knowledge available to the GNN.
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1. How do VEGNNs perform against standard GNNs? This compares GNNs with and 
without the inclusion of domain-knowledge.

2. Can the performance of VEGNNs be improved by using symbolic learner with access 
to the same domain-knowledge? This tests whether the computational machinery of a 
GNN is sufficient to construct (representations of) the high-level relationships needed 
for good prediction.

3.2  Materials

3.2.1  Data

The datasets are classification problems arising in the field of drug-discovery. We have 
evaluated our GNNs on 73 real-world binary classification datasets. Each dataset repre-
sents an extensive drug evaluation effort at the National Cancer Institute (NCI)5. The data-
sets represent experimentally determined effectiveness of anti-cancer activity of a com-
pound against a number of cell lines (Marx et al. 2003). (Table 1 )The datasets correspond 
to the concentration parameter GI50, which is the concentration that results in 50% growth 
inhibition. Some of the datasets have been used in various data mining studies such as in a 
study involving the use of graph kernels in machine learning (Ralaivola et al. 2005).

3.2.2  Background knowledge

The initial version of the background knowledge in this paper here was used in Van Crae-
nenbroeck et  al. (2002), (Ando et  al. 2006). It is a collection of logic programs defin-
ing almost 100 relations for various functional groups and ring structures in a chemical 
compound.6 The background knowledge consists of multiple hierarchies. However, we 
modified some of the predicate definitions to avoid redundant computation and for trac-
tability to trade-off completeness for efficiency. For proprietary reasons, we are only 
able to show the results of using the definitions, which are functional groups represented 
as ����������_�����(����������, ����, �����, 
	��) and rings described as 
����(����������, ������, �����, �����, ����) . For efficiency, we have restricted the 
definition of the ring relation to produce rings of maximum length 8. The first use of this 
new version of the background knowledge is reported in (Dash et al. 2018) where we had 
also defined three higher level relations to infer the presence of composite structures from 
the presence of functional groups and rings in a compound. These are: the presence of 
fused rings, connected rings and substructures. These relations are defined below. 

���_�����(����������, �����, ������, ����)This relation is TRUE if a compound 
identified by ���������� contains a structure ����� of length ������ containing a set of 
atoms in �����

�����(����������, ������, ������, ������, ������)This relation is TRUE if a com-
pound identified by ���������� contains a pair of fused structures ������ and ������ 
with ������ and ������ respectively (that is, there is at least 1 pair of common atoms).

���������(����������, ������, ������, ������, ������)

5 https:// www. cancer. gov/
6 The definitions used were originally developed for tackling industrial-strength problems by the biotech-
nology company PharmaDM.

https://www.cancer.gov/
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This relation is TRUE if a compound identified by ���������� contains a pair struc-
tures ������ and ������ that with ������ and ������ respectively that are not fused but 
connected by a bond between an atom in ������ and an atom in ������.

 The level of abstraction in the background knowledge is shown in Fig. 1. The hierarchy 
available in functional groups and rings is shown in Fig. 2 and Fig. 3.

3.2.3  Algorithms and machines

The data used for this work and the set of symbolic relations ( R ) described in Section 3.2.2 
are written as Prolog facts. For generating the additional set of ILP relations ( R′ ), we use 
Aleph (Srinivasan 2001) that takes the data and the background-knowledge as input. This 
additional set of relations R′ further augments the existing relations in R for our VEGNN′ 
studies. A logic program extracts a set of vertices in a graph for which any symbolic rela-
tion Ri ( ∈ R or ∈ R� ) is TRUE. We use YAP compiler for execution of this logic program.

The GNN variants used here are described in Appendix  A. All the experiments are 
conducted in Python environment. The GNN models have been implemented by using the 
PyTorch Geometric library (Fey and Lenssen 2019), which is a geometric deep learning 
extension for PyTorch (Paszke et al. 2019) and it provides graph pre-processing routines 
and makes the definition of graph convolution easier to implement.

For all the experiments, we use a machine with Ubuntu (16.04 LTS) operating system, 
and hardware configuration such as: 64GB of main memory, 16-core Intel Xeon processor, 
a NVIDIA P4000 graphics processor with 8GB of video memory.

3.3  Method

In all experiments, we refer to GNN variants as GNN1,…,5 . The corresponding vertex-
enriched versions are VEGNN1,…,5 . The GNN variants have 1 hyper-parameter that deter-
mines the structure of the GNN (see Appendix A). We will denote this by m and assume 
that it takes values from a fixed-set of values M.

Experiment 1: GNNs vs. VEGNNs
For constructing the VEGNNs, we assume that we have access to a set of domain rela-

tions R . The method used is as follows.

For each dataset D: 

1. Let Tr, Val, Te denote a train-validation-test split of the data D
2. For each of GNN1,…,5 and VEGNN1,…,5 : 

Table 1  Summary of datasets (Total number of instances is 221306)

# of Datasets Avg. # of Molecules per 
dataset (Graphs)

Avg. # of Atoms per 
molecule (Vertices)

Avg. # of Bonds per 
molecule (Edges)

73 3032 24 51
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(a) Find the best value m∗ ∈ M using the performance on Tr and Val
(b) Record the predictive performance on Te of the model constructed using m∗

3. Compare the performance of GNNi against that of VEGNNi ( i = 1,… , 5).

The following additional details are relevant:

– The relations in R are those described in Section 3.2.2.
– In our implementation, we use three graph convolution blocks and three pooling blocks 

interleaving each other.
– The convolution blocks can be of one of the five convolution variants listed in Sec-

tion 2.2. Due to the large-scale experimentation (number of datasets, number of GNN 
variants), the various hyperparameters in convolution blocks are set to default values in 
PyTorch Geometric library.

– The graph pooling block uses self-attention pooling (Lee et al. 2019) with pooling ratio 
of 0.5. We use a hierarchical pooling architecture that uses the readout mechanism pro-
posed by Cangea et al. (2018). The readout block aggregates node features to produce a 
fixed size intermediate representation for the graph. The final fixed-size representation 
for the graph is obtained by element-wise addition ( ⊕ ) of the three readout representa-
tions.

– The final representation is then fed as input to a 3-layered MLP. We use a dropout layer 
with fixed dropout rate of 0.5 after first layer of MLP. The loss function is negative log-
likelihood between the targets and the predictions from the model. Further detail on the 
GNN architectures is provided in Appendix A.4.

– We select amongst two possible values of the structure hyperparameter m (8 and 128), 
corresponding to small and large amounts of convolution in the convolutional-layers of 
the GNNs and VEGNNs;

– We use (Adam Kingma and Ba 2014) optimiser for training the GNNs ( GNN1,…,5 ) 
and VEGNNs ( VEGNN1,…,5 ). The learning rate is 0.0005, weight decay parameter is 
0.0001, momentum factors are the default values of �1,2 = (0.9, 0.999).

– Maximum number of training epochs is 1000. The batch size is 128.
– We use an early-stopping mechanism (Prechelt 1998) to obtain the optimal model after 

training that can be used for evaluation on Te. The patience period for early stopping is 
50.

– Comparison of performance is done using the Wilcoxon signed-rank test, using the 
standard implementation within MATLAB (R218b).

Experiment 2: VEGNNs with ILP-constructed relations
Given a set of generic relations R , and some data, a VEGNN should, in principle, be 

able to construct new (domain-specific) relations across its internal layers. That is, it may 

Fig. 1  Levels of abstraction in 
the background knowledge (Dash 
et al. 2018)
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not be necessary to provide a VEGNN with anything more than R . In this experiment, we 
investigate the extent to which this holds in practice, by evaluating the effects of augment-
ing R with higher-level relations learned by ILP. The ILP procedure used to obtain these 
relations has been described elsewhere (see Procedure 2). Our method is as follows.

Fig. 2  Functional group hierarchy

Fig. 3  Ring hierarchy
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For each dataset D: 

1. Let Tr, Val, Te denote the train-validation-test split of the data D
2. Let R′ denote a set of new relations obtained using an ILP engine with access to R 

and Tr ∪ Val

3. Let VEGNN1,…,5 denote the VEGNNs obtained with R and VEGNN�
1,…,5

 denote the 
VEGNNs with R ∪R�.

  For each of VEGNN1,…,5 and VEGNN�
1,…,5

 : 

(a) Find the best value m∗ for the structure hyperparameter m, using Tr and Val
(b) Record the predictive performance on Te of the model constructed using m∗

4. Compare the performance of VEGNNi against that of VEGNN′
i
 ( i = 1,… , 5).

The following additional details are relevant:

– The relations in R are those described in Section 3.2.
– The construction of the VEGNNs is as in Experiment 1.
– The relations in R′ are obtained using the ILP engine Aleph (Srinivasan 2001) with 

hide-and-seek sampling (Dash et al. 2019).
– We repeat the comparisons for |R�| = 100 , |R�| = 500 , and |R�| = 1000.
– ILP-constructed relations can be complex, and involve several vertices. To ensure trac-

tability, we restrict the computation to detecting a single hyperedge (and not all hyper-
edges) corresponding to the ILP-constructed relation. This results in a loss of informa-
tion.

– As in Experiment 1, comparisons will be in the form of a Wilcoxon signed-rank test, 
implemented within MATLAB (R2018b).

3.4  Results

The main results from the experiments are shown qualitatively in Fig.  4. The principal 
findings from the tabulations are these: (a) Inclusion of domain-knowledge into GNNs 
(that is, the use of vertex-enriched GNNs) results in an improvement in predictive accu-
racy for all variants of GNN; and (b) The performance of vertex-enriched GNNs can be 
improved further by augmenting the domain-relations with additional relations constructed 
by an ILP engine.

We now examine the results in more detail: From Fig. 4, it is evident that the perfor-
mance of graph-based networks improves with the inclusion of domain-knowledge. A 
quantitative tabulation of wins, losses and draws is in Table. 2. These results provide suf-
ficient grounds to answer positively the primary research question addressed in this paper, 
namely: do GNNs benefit from the inclusion of domain-knowledge?

Assuming that it is useful to provide a GNN with domain-knowledge, we can then 
ask: are vertex-enriched GNNs sufficiently powerful to compute automatically any addi-
tional information needed for high predictive performance? The results in Fig. 4 suggest 
that the answer to this is “no”, since it appears that the inclusion of ILP-constructed rela-
tions makes a significant difference. To understand this better, we tabulate quantitative 
differences obtained as the number of ILP relations added is increased. This is shown in 
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Table. 3. The plot in Fig. 4 uses 1000 ILP-relations (the corresponding quantitative differ-
ences are the last column in Table. 3).

Since the inclusion of even small numbers of ILP relations (100) seems to improve 
performance of the VEGNN, it would appear that the internal representations within a 
VEGNN are of limited expressivity when compared to those constructed by ILP. In turn, 
the complete tabulation suggests that a hybrid VEGNN-ILP learner is very likely to be bet-
ter than just a VEGNN learner (and in turn, a GNN learner).

We note that vertex-enrichment is only a vertex-related operation. It is relevant to ask 
if there are any edge-related operations associated with the addition of domain-relations. 
Since these relations result in hyperedges, a natural edge-operation is one of clique-expan-
sion (Zhou et al. 2007) of the domain-relations. That is, the original graph is transformed to 
a new graph by the inclusion of all pairwise edges between vertices in hyperedges entailed 
by the relations. We have investigated this, but for reasons of space, do not include the 
results here. A summary of the effect of clique-expansion is: (a) By itself, clique-expan-
sion of domain-relations is not helpful; (b) Clique-expansion, in combination with vertex-
enrichment does not yield any clear advantage over vertex-enrichment alone across the 
GNN variants.

4  Related work

GNN-like models were first proposed in Sperduti and Starita (1997), (Baskin et al. 1997). 
In these studies, the features from the graph data was extracted using neural networks. Gori 
et al. (2005) and Scarselli et al. (2008) proposed new graph-based learning methods that 
used recursive aggregation of information. They called these models ‘graph neural net-
works (GNNs)’. The major boost to the field of GNNs followed the introduction of graph 
convolution (Kipf and Welling 2017) and the notion of graph embedding (Cui et al. 2018; 
Zhang et al. 2018). Many such embedding methods are based on iterative processing of the 
neighborhood information of any vertex. One such vertex embedding method was formu-
lated by generalising the convolution operation to graphs. The convolution operation com-
putes “hidden” states (essentially vector-representations) of the vertices in the graph. There 
are a wide variety of convolution-based GNNs most of which are classified into spectral- 
or non-spectral (spatial) approaches. Two methodical and comprehensive surveys over a 
series of variants of graph neural networks can be found in (Zhou et  al. 2018) and (Wu 
et al. 2020). We have already seen that for practical problems the data cannot effectively be 
modelled by pairwise associations. Methods have been proposed to define convolutions for 
higher-order graphs or hypergraphs (Feng et al. 2019; Jiang et al. 2019; Yadati et al. 2019), 
although none of these have considered the problem of inclusion of domain-knowledge. 
To the extent that we consider a vertex-enriched graph to be a result of a hypergraph rep-
resentation of the data, the work proposed in this paper loosely falls under the category of 
Hypergraph-based neural networks.

Notwithstanding the convolution operation used in GNNs, one drawback that has been 
identified is that the representations learned by them could be poor if the amount of training 
data (number of graphs) is small, which would lead to poor generalisation (Xu et al. 2019). 
The usual solution to this problem is to overcome data scarcity by the use of prior knowl-
edge, a feature that is at the heart of Inductive Logic Programming. In almost all applica-
tions of ILP to date, the use of prior or background knowledge is central (see Muggle-
ton et al. 2012). In contrast, the position taken in the neural-network literature, especially 
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those dealing with networks with large numbers of hidden layers, is that provided sufficient 
data are available, representations of relevant domain-concepts can be computed auto-
matically from data. But when data are scarce, this assumption breaks down. The area of 
neuro-symbolic modelling (Besold et al. 2017) has been concerned with ways of combin-
ing symbolic and neural learning. A simple way of doing this has been studied under the 
category of “propositionalisation” in ILP (Lavrač et al. 1991; Kramer et al. 2001; Krogel 
et al. 2003; França et al. 2014, 2015). Although, propositionalisation approaches have been 
successfully applied to various problems but are still considered as ad hoc approaches. 
These approaches are studied in the larger context of macro-operators (Castillo and Wrobel 
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(b) GNN variant: GNN2
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(c) GNN variant: GNN3
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(d) GNN variant: GNN4
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(e) GNN variant: GNN5

Fig. 4  Qualitative comparison of graph-based neural networks. Here GNN refers to the performance of the 
graph-based neural network without domain relations; VEGNN refers to the performance of the network 
vertex-enriched with generic domain relations shown in Section 3.2.2; and VEGNN′ refers to the perfor-
mance of the network vertex-enriched with the generic domain-relations and domain-specific relations con-
structed by an ILP engine. Performance refers to predictive (holdout-set) accuracy, and all performances 
are normalised against that of the GNN. Further, the compounds are arranged in order of increasing GNN 
performance: the apparent trend of high-to-low gains for VEGNN and VEGNN′ from left to right are arti-
facts of this ordering. No significance should also be attached to the line joining the data points: this is only 
for visual clarity
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2002), which are approaches to improve the heuristic search in ILP systems and extract 
higher-level or meta-rules (Alphonse 2004). Pioneering work on the combination of neu-
ral-networks and symbolic features has been done by d’Avila (Garcez and Zaverucha 1999) 
and extended in (França et al. 2014, 2015). There are several studies that report that the 
relational features constructed using propositionalisation-based approach can substantially 
improve predictive performance of statistical machine learning models, see for example: 
(Ramakrishnan et  al. 2007), (Saha et  al. 2012). Recently, ILP-based feature-construction 
for deep multi-layer perceptrons [a special case of Deep Relational Machines, or DRMs 
(Lodhi 2013) was shown to yield surprisingly good results on the datasets used here, albeit 
with very large numbers of features (Dash et al. 2018, 2019). At the other end of the spec-
trum, methods are now being developed that include “neural” predicates (predicates whose 
definitions are implemented by neural networks) as part of the background knowledge 
available to a symbolic learner (De Raedt et al. 2019).

Domain-knowledge is often available as knowledge graphs (or semantic networks) 
rather than as a set of relations defined in logic. Knowledge graph embedding (Ding 
et al. 2018; Ziegler et al. 2017) is a technique that is mostly applied to construct a vector 

Table 2  Quantitative comparison of GNN performance. Here GNN refers to the graph-based neural net-
work without domain-knowledge, and VEGNN refers to the network vertex-enriched with the generic 
domain-knowledge described in Section 3.2.2. The tabulations are the number of datasets on which VEGNN 
has higher, lower or equal predictive accuracy on a holdout-set. Statistical significance is assessed by the 
Wilcoxon signed-rank test

GNN Accuracy (VEGNN vs. GNN)
Variant Higher/Lower/Equal (p-value)

GNN
1

48/14/11 (< 0.001)
GNN

2
48/19/6 (0.005)

GNN
3

53/11/9 (< 0.001)
GNN

4
54/12/7 (< 0.001)

GNN
5

43/19/11 (0.002)

Table 3  Quantitative comparison of performance after augmenting domain-relations with ILP-constructed 
relations. Here VEGNN′ denotes the vertex-enriched GNN obtained after augmenting the generic domain 
relations ( R ) with domain-specific relations constructed by an ILP engine ( R′ ); and VEGNN denotes the 
vertex-enriched GNN with R . The tabulations are the number of datasets on which VEGNN′ has higher, 
lower or equal predictive accuracy on a holdout-set. Statistical significance is assessed by the Wilcoxon 
signed-rank test

Accuracy ( VEGNN′ vs. VEGNN)

GNN Higher/Lower/Equal (p-value)

Variant |R�| = 100 |R�| = 500 |R�| = 1000

GNN
1

45/17/11 (< 0.001) 46/19/8 (< 0.001) 55/10/8 (< 0.001)
GNN

2
46/20/7 (< 0.001) 55/13/5 (< 0.001) 54/17/2 (< 0.001)

GNN
3

47/17/9 (< 0.001) 49/16/8 (< 0.001) 55/12/6 (< 0.001)
GNN

4
40/27/6 (0.055) 46/23/4 (0.013) 53/16/4 (< 0.001)

GNN
5

39/20/14 (0.026) 49/14/10 (< 0.001) 51/13/9 (< 0.001)
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representation for the knowledge graph, which can then be infused into some form into a 
neural network. In recent reports, it is proposed that the latent representation learned by a 
neural network can be coupled with the representation of the knowledge graph that may 
improve the predictive performance of the neural network model (Gaur et al. 2019; Kur-
suncu et al. 2019).

5  Conclusions

Our focus in this paper has been on the use of graph-based neural networks (GNNs) on 
scientific data. Scientific understanding is largely an incremental process that builds on 
knowledge that is already known. It is natural therefore to expect that automatic techniques 
intended for scientific data analysis will similarly be able to utilise such knowledge. The 
results here clearly show the benefit of having mechanisms to incorporate domain-knowl-
edge into GNNs. They also show the benefits of ILP as a mechanism for identifying rela-
tionships that appear not to be within the practical reach of the GNN variants we have 
considered. An ILP-purist could well ask: why then should we use GNNs at all? There are 
several reasons to persist, chief amongst which are reasons of implementation efficiency 
and widespread availability of packaged libraries. Assuming GNNs are useful, our goal 
has been to show that they can be more useful if they use domain-specific relations, and yet 
more so if they include results from an ILP engine.7

To the best of our knowledge, the experiments in this paper constitute some of the most 
extensive applications of GNNs to large-scale real-world scientific data. It has not been the 
focus of this paper to construct a GNN-based benchmark for the data, but to investigate the 
use of domain-knowledge. There is undoubtedly room in the future for comparative stud-
ies against other techniques that may or may not utilise the domain-knowledge available. 
More immediately, the process of vertex-enrichment can create very large vectors at each 
vertex (the result of a many-hot encoding of the relations in the vertex’s label). We conjec-
ture that this situation can be improved by performing some dimensionality-reduction at 
each vertex. A straightforward option is to include some form of auto-encoder at each ver-
tex, before re-labelling. Vertex-enriched GNNs can probably be significantly improved by 
directly working with Hypergraph GNNs (HGNNs). In principle, HGNNs will have more 
information (like hyperedge labels). Will HGNNs also benefit from the use of ILP? We do 
not know the answer to this as yet.

Despite the recent empirical successes in various fields, recent studies highlight some of 
the theoretical limitations of GNNs. For instance, GNNs cannot distinguish between some 
pairs of graphs that are indistinguishable by the 1-WL test (Xu et al. 2019), (Morris et al. 
2019), that is, a GNN with any parameter setting cannot distinguish two graphs unless the 
labels of the graphs are same. A recent study on GNNs (Barceló et al. 2020) has shown that 
the class of aggregate-combine GNNs cannot be logically more expressible than a frag-
ment of two-variable first-order logic with counting quantifiers (Logic FOC2), which is a 
form of description logic. In a different report, various theoretical limitations of GNNs are 
studied, specifically, in terms of approximation ratios of combinatorial algorithms (Sato 
2020). We have already indicated that the vertex-enrichment procedure described in this 

7 The use of ILP would seem to undermine the motivation just given for using GNNs. However, this is not 
so. First, once the ILP relations are constructed, the main modelling effort is still done using GNNs. Sec-
ondly, the construction of relations is task that can be implemented by a specialised library.
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paper may not capture fully the relational information present in the data. We believe this 
limitation can be overcome by adopting a different form of graph representation, that is 
nevertheless still amenable to the use of GNNs. We intend to explore this as future work.

At the outset of this paper, we motivated the use of machine learning in developing an 
automated scientific assistant. While high predictive power is expected from an ML-based 
scientific assistant, it is not sufficient. It is evident that this paper’s focus is on how predic-
tion can improve by the inclusion of domain-knowledge. An Understandable explanation of 
the models constructed by GNNs remains a challenge.

A Graph neural networks

A.1 Implementation

In a graph G = (V ,E) , let Xv denote a vector that represents the labelling of a vertex v ∈ V  . 
This is called the feature vector of the vertex v. In a GNN, the Relabel function is imple-
mented by a neighbourhood aggregation mechanism (Xu et al. 2019). It updates the repre-
sentation of a vertex, hv iteratively. That is, in kth iteration (or kth layer), the representation 
of a vertex v, h(k)

v
 can be computed using two procedures: ��������� and �������.

where, N(v) denotes the set of vertices adjacent to v. Initially (at k = 0 ), h(0)
v

= Xv.
The Vectorise function constructs a vector representation of the entire graph. This step 

is carried out after the representations of all the vertices are relabelled by some iterations. 
The vectorised representation of the entire graph can be obtained using a ������� func-
tion that aggregates vertex features from the final iteration ( k = K):

There are different variants of ���������-������� procedures available in the litera-
ture on GNNs. These are mostly implemented using the methods known as graph convolu-
tion and graph pooling (refer Zhou et al. 2018; Wu et al. 2020). The ������� procedure 
is usually implemented using a global or hierarchical pooling operation. The convolution 
operations of various GNNs used in our work are briefly described in Appendix A.2. Fur-
ther, we use an additional pooling layer called structural-attention pooling after each of the 
convolution layer. This is briefly described in Appendix A.3.

A.2 Graph convolutions

A.2.1 Variant 1

The first variant of GNN used in our work is based on spectral-based graph convolutional net-
work proposed by Kipf and Welling (2017). It uses a layer-wise (or iteration-wise) propaga-
tion rule for a graph with N vertices as:

(1)a(k)
v

= ���������
(k)
({

h(k−1)
u

∶ u ∈ N(v)
})

,

(2)h(k)
v

= �������
(k)
(
h(k−1)
v

, a(k)
v

)

(3)hG = �������
({

h(K)
v

∣ v ∈ G
})
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where, H(k) ∈ ℝ
N×D denotes the matrix of vertex representations of length D, Ã = A + I 

is the adjacency matrix representing an undirected graph G with added self-connections, 
A ∈ ℝ

N×N is the graph adjacency matrix, IN is the identity matrix, D̃ii =
∑

j Ãij , and �(k−1) 
is the iteration-specific trainable parameter matrix, �(⋅) denotes the activation function e.g. 
ReLU(⋅) = max(0, ⋅) , �(0) = � , � is the matrix of vertex feature vectors Xis.

A.2.2 Variant 2

The second variant is based on the graph neural network proposed by Morris et al. (2019) that 
passes messages directly between subgraph structures inside the graph. At iteration k, the fea-
ture representation of a vertex is computed by using

where, � is a non-linear transfer function applied component wise to the function argu-
ment, � s are the layer-specific learnable parameters of the network.

A.2.3 Variant 3

The third variant is an attention-based model, which is popularly known as Graph Atten-
tion Network (GAT) (Velic̆ković et  al. 2018). This network assumes that the contributions 
of neighboring vertices to the central vertex are not pre-determined which is the case in the 
Graph Convolutional Network (Kipf and Welling 2017). This adopts attention mechanisms to 
learn the relative weights between two connected vertices. The graph convolutional operation 
at iteration k is thereby defined as:

where, h(0)
u

= Xu . The connective strength between the vertex u and its neighbor vertex v is 
called attention weight, which is defined as

where, a is the set of learnable parameters of a single layer feed-forward neural network.

A.2.4 Variant 4

The fourth variant is called GraphSAGE and it is a framework for inductive representation 
learning on large graphs (Hamilton et al. 2017). It is done in two steps: local neighborhood 
sampling and then aggregation of generating the embeddings of the sampled nodes. Graph-
SAGE is used to generate low-dimensional vector representations for nodes, and is especially 
useful for graphs that have rich node attribute information. The following is an iterative update 
of the node embedding:

(4)�
(k) = 𝜎

(

D̃
−

1

2 ÃD̃
−

1

2�
(k−1)𝛩(k−1)

)

(5)h(k)
u

= �

(

h(k−1)
u

⋅ �
(k)

1
+

∑

v∈N(u)

h(k−1)
v

⋅ �
(k)

2

)

(6)h(k)
u

= �

(
∑

v∈N(u)∪u

�(k)
uv
�(k)h(k−1)

u

)

(7)�(k)
uv

= softmax
�
LeakyReLU

�
a�
�
�(k)h(k−1)

u
‖ �(k)h(k−1)

v

���
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where, � is a non-linear transfer function applied component wise to the function argu-
ment, � s are the layer-specific learnable parameters of the network.

A.2.5 Variant 5

This variant of GNN is inspred by the auto-regressive moving avarage (ARMA) filters that are 
considered to be more robust than polynomial filters (Bianchi et al. 2019). The ARMA graph 
convolutional operator is defined as follows:

where, M is the number of parallel stacks, K is the number of layers; and �(K)
m

 is recursively 
defined as

where, L̂ = I − L is the modified Laplacian. The � parameters are learnable parameters.

A.3 Graph pooling

Graph pooling methods apply downsampling mechanisms to graphs. In this work, we use 
a recently proposed graph pooling method based on self-attention (Lee et al. 2019). It uses 
graph convolution defined in Eq. (4) to obtain a self-attention score as given in Eq. 11 with 
the trainable parameter replaced by �att ∈ ℝ

N×1 , which is a set of trainable parameters in the 
pooling layer.

Here, �(⋅) is the activation function e.g. tanh.

A.4 Structure of the GNNs

The structure of the GNNs closely follows the structure used in (Lee et  al. 2019). A 
schematic diagram of our implemented architecture is shown in Fig. 5. As shown in the 
diagram, the output of the hierarchical pooling is fed as input to a multilayer percep-
tron (MLP). So, the input layer of the MLP contains 2m units, followed by two hidden 
layers with m units and ⌊m∕2⌋ units respectively. The activation function used in the 
hidden layers is ���� . The output layer size is |Y| (in this work, 2) with ���������� 
activation.

(8)h(k)
u

= �

(

h(k−1)
u

⋅ �
(k)

1
+

1

|N(u)|

∑

v∈N(u)

h(k−1)
v

⋅ �
(k)

2

)

(9)�
(k) =

1

M

M∑

m=1

�
(K)
m

(10)�
(k+1)
m

= 𝜎

(
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m
𝛩

(k)

2
+�

(0)𝛩
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)
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B ILP Specifics

B.1  Extending domain‑knowledge

We assume that a set of relations R are provided as part of the background knowledge B 
available to an ILP engine.8 Given B and data E consisting of a set of positive and negative 
instances (here representing molecules with or without the property of interest), and ILP 
engine can construct new clauses defined in terms of the relations in R . These clauses can 
be additionally be ordered in terms of some utility function (for example, a clause encod-
ing a relation that holds for large number of positive instances may have a high utility). 
The so-called technique of ILP-based “propositionalisation”, for example, identifies high-
utility clauses (for example, see Ramakrishnan et al. 2007; Joshi et al. 2008; Dash et al. 
2018). The procedure used to draw “new” relations using ILP-derived techniques is in 
Procedure 3.

B.2 Input

We use the ILP engine Aleph to construct the most-specific rule above. Aleph requires the 
specification of a mode language, specifying the predicates in R . The mode-language used 
for the experiments in the paper is given below: 

8 Besides R , B will usually contain additional ILP-specific content like mode declarations (see Muggleton 
1995, along with search constraints and ancillary predicates).
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Fig. 5  Graph classification 
architecture used in this work. 
We perform our experiments 
with five different types of graph 
convolution methods, each result-
ing in a different kind of GNN 
architecture
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 The ‘#’-ed arguments in the mode declaration refers to type, that is, #�������� refers to 
the type of atom, #�������� refers to the type of bond, and #��������� refers to the type 
of the structure (functional group or ring) associated with the molecule.

Each data instance (a molecule) is represented by a set of ground facts of the follow-
ing kind: 

 Here bond(m1,27,24,o2,car,1) denotes that in instance m1 there is an oxygen 
atom (id 27), and a carbon atom (id 24) connected by a single bond (car denotes a carbon 
atom in an aromatic ring).

Given the molecular structure additional facts like functional_group/4 and 
ring/4 are pre-computed for efficiency using the generic relations in R (which con-
tain the symbolic definitions of benzene rings, oxide groups, etc.). This results in facts 
like the following: 
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We note that these predicates result in a reification of the predicates in R (that is, the 
predicate symbols are converted to terms). The predicates ���_�����∕4 , ���������∕5 and 
�����∕5 are defined over these predicates. For example (in Prolog format): 

 We reiterate that these predicates are defined directly on the relations in R : the use of 
functional_group/4 and ring/4 is for compactness and efficiency.

B.3 Output

Given the mode language, and data consisting of the molecular structure, the ILP engine finds 
clauses like these (shown as Prolog clauses): 

Each such clause is converted to an n-ary relation using the steps in Procedure 2.
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