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Abstract
Weather forecast based on extrapolation methods is gathering a lot of attention due to the 
advance of artificial intelligence. Recent works on deep neural networks (CNN, RNN, 
LSTM, etc.) are enabling the development of spatiotemporal prediction models based on 
the analysis of historical time-series, images, and satellite data. In this paper, we focus 
on the use of deep learning for the forecast of stratospheric Ozone ( O

3
 ), especially in the 

cases of exchanges between the polar vortex and mid-latitudes known as Ozone Second-
ary Events (OSE). Secondary effects of the Antarctic Ozone Hole are regularly observed 
above populated zones on South America, south of Africa, and New Zealand, resulting in 
abrupt reductions in the total ozone column of more than 10% and a consequent increase 
in UV radiation in densely populated areas. We study different OSE events from the litera-
ture, comparing real data with predictions from our model. We obtained interesting results 
and insights that may lead to accurate and fast prediction models to forecast stratospheric 
Ozone and the occurrence of OSE.
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1  Introduction

Weather forecast has become an essential asset in our society, from the simple temperature 
and rain trends seen every day on newspaper and TV to domain-specific forecasts such as 
weather guidance for airports, wind and solar energy generation, emergency alerts for rain-
fall, flash floods, severe weather, hurricanes, etc. The existing methods for weather forecast 
can roughly be categorized into two classes (Sun et al. 2014), (i) methods based on numeri-
cal weather prediction (NWP) models, and (ii) empirical methods based on extrapolations 
from storms growing rates, velocities from radar echoes, infrared satellite images, etc.

Forecasts based on NWP use complex numerical integration schemes to solve the gov-
erning equations of physical phenomena in the atmosphere. These equations demand ini-
tial and boundary conditions coming from large data volumes from ground and satellite 
observations, and must to be processed in large computational systems in order to solve 
and create the weather forecast numerical models outputs in time to prevent natural dis-
asters. Nowadays, sophisticate and computationally intensive data assimilation schemes 
are employed in models as NCEP-CFSv2 (Kistler et al. 2001) and ERA5 (Malardel et al. 
2016).

The second approach, based on extrapolation methods, is gathering a lot of attention 
in recent years. Due to the development of artificial intelligence, especially deep learn-
ing, forecasts based on the analysis of historical time-series, images, and satellite data are 
achieving stunning results.

Two main sub-domains of meteorology ad atmosphere sciences are leading this devel-
opment. The first one is related to the prediction of extreme weather conditions such as 
hurricanes (Prabhat et al. 2015; Moradi Kordmahalleh et al. 2016; Racah et al. 2017; Prad-
han et al. 2018). The second sub-domain is that of precipitation nowcasting, whose resolu-
tion and time accuracy needs are much higher than other traditional forecasting tasks like 
weekly average temperature prediction. These domains rely on computer vision techniques, 
which have proven useful for making accurate extrapolation of radar and satellite maps 
(Sakaino 2013; Shi et al. 2015; Agrawal et al. 2019).

While weather forecasts usually focus on natural events as flash floods, rain, wind gust, 
and snowstorms, all embedded in the troposphere, the upper atmosphere also demands a 
special and expensive modeling treatment since this region may play an important role all 
over weather and climate circulations (Scaife et al. 2012). The stratosphere is a barotropic 
portion of the Atmosphere and its scalar fields advection (heat, gases, and particulate mate-
rials) happens constricted between in isentropic layers, in an almost horizontal displace-
ment, a simpler environment if compared with the troposphere. As the main stratospheric 
information comes from remotely sensed data from satellites, its modeling may benefit 
from deep learning extrapolation methods, allowing, for example, to estimate the wind 
field using the cloudiness displacement and time-difference techniques, i.e., the atmos-
pheric scalar field itself used to estimate the winds that promote its transport.

Among these high atmosphere interest topics, our interest is directed towards the fore-
cast of the Ozone ( O3 ) layer. Ozone is the most important constituent of stratospheric gas 
traces. Due to its ability to absorb ultraviolet radiation (UV) (Salby 1996; Dobson 1968), 
O3 is also the most important component in the stratosphere from the point of view of skin 
protection against harmful UVB solar radiation. Many sources contribute to the monitor-
ing of stratospheric O3 . While ground-level equipment can provide information about the 
Total Ozone Column (TCO3 ) every couple of minutes and ozone sounding balloons can 
provide ozone profiles for different heights, most of the data used to estimate the O3 global 
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coverage is originated from satellite sources, which update only once or twice a day. While 
some NWP models are used to forecast O3 concentration (e.g., NASA’s OzoneWatch and 
ESA’s TEMIS websites), no extrapolation methods seem to have been used until now.

In this paper, we aim at the observation and forecast of Ozone total column and notably 
“Ozone Secondary Events” (OSE), i.e., episodes of exchange between the polar vortex and 
the mid-latitudes and the tropics (Bencherif et al. 2007; Marchand et al. 2005) in which the 
polar vortex is deformed and ozone-poor polar air masses move towards mid-latitudes. We 
aim to provide accurate predictions two to four days before the arrival of OSE above popu-
lated areas. This paper largely expands the preliminary results we presented in a poster at 
EGU General Assembly 2019 (Steffenel et al. 2019). Besides the proposal of a forecasting 
framework based on deep learning, this work contribution includes an extensive analysis of 
the results in both domain-specific parameters (interest of the results from the meteorologi-
cal point of view) and deep learning metrics (image similarity, for example). To our knowl-
edge, this is one of the first attempts to forecast the circulation of the Ozone layer using 
deep learning. In addition, this study aims to present deep learning as a viable, fast, and 
computationally inexpensive technique for forecasting, as the only computing-intensive 
phase is the training phase.

The remainder of this paper is structured as follows: Sect.  2 introduces the Ozone Sec-
ondary Event problem and reviews existent works that use Deep Learning techniques to 
perform forecasting. Section 3 describes our forecasting framework, including data prepa-
ration and training steps. Section 4 illustrates the forecasting framework through a detailed 
analysis of different OSE recorded in the last 10 years. In this section, we perform both 
domain-specific (meteorology) and domain-agnostic analysis of the results. Section  5 
addresses directions to improve the framework in future works. Finally, Sect.6 presents our 
conclusions.

2 � Problem description and methodology

2.1 � Forecasting ozone secondary events

Since its discovery, the “Antarctic ozone hole” has attracted the interest of the scientific 
community. An ozone hole area is defined as a region with values below 220 DU (Hof-
mann et al. 1997). The concentration of ozone in a particular region of the Earth is mainly 
determined by the meridional transport of this element in the stratosphere (Gettelman et al. 
2011). The explanation for the higher concentration of ozone found in polar rather than 
equatorial regions (where there is greater production) is precisely a special type of pole-
ward transport known as the Brewer-Dobson circulation, in which air masses are trans-
ported quasi-horizontally from the stratospheric tropical reservoir to polar regions (Brewer 
1949; Dobson 1968; Bencherif et al. 2007).

Given the dynamics of the atmosphere, the ozone hole is accompanied by episodes of 
exchange between the polar vortex and the mid-latitudes and the tropics (Bencherif et al. 
2007; Marchand et al. 2005). During these events, the polar vortex is deformed and ozone-
poor polar air masses move towards mid-latitudes. We call these episodes of isentropic 
exchanges “Secondary Effects of the Antarctic Ozone Hole” or “Ozone Secondary Effects” 
(OSE, for short). This temporary drop in ozone content first was observed by Kirchhoff 
et al. (1996) above the south of Brazil. Such episodes may last several days and reach the 
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tropics, causing significant ozone decreases over these areas and potentially increasing the 
UV radiation levels at the surface (Bencherif et al. 2007; Casiccia et al. 2008).

Secondary effects of the Antarctic Ozone Hole in mid-latitude zones are regularly 
observed above populated zones in South America, south of Africa, and New Zealand. 
Indeed, ground observations reported the occurrence of dozens of OSEs in the last decades 
above the south of Brazil (Bittencourt et al. 2019), resulting in temporary reductions in the 
total ozone column of more than 10% over densely populated areas. According to the latest 
World Meteorological Organization (WMO) reports (Research and Project 2014, 2018), 
there is a growth trend between the 1980s and 1990s, stabilizing at high rates since the year 
2000 despite indications of declining trends in Antarctic ozone in recent years (Solomon 
et al. 2016).

An example of OSE the event from October 10–14, 2012 presented below in Fig. 1a, 
which shows the displacement of a polar air mass (in blue) and its extension towards the 
south of Brazil – around 30◦ S, driving a 13.7% reduction in the total ozone column (Vaz 
Peres et  al. 2017). Figure  1b, which shows the potential vorticity (PV) map during this 
event, also illustrates the movement of a polar air mass (in blue) and its extension towards 
mid-latitudes above South America.

It is also important to note that most works on OSE limit to the study of past events 
(Canziani et al. 2002; Bencherif et al. 2011; Peres 2013; Bittencourt et al. 2019), whose 
characterization depends on several indirect factors besides the O3 Total Column. For 
example, Potential Vorticity (PV) has been used to identify air masses originated in the 
pole, confirmed by a retroactive trajectory analysis using the HYSPLIT model (Stein et al. 
2016). Forecasting OSE was never the main issue up to now.

Predicting sudden reductions in the Ozone coverage like OSE is important as the addi-
tional UV radiation may trigger several problems at the public health level. Indeed, reduc-
tions of up to 1% in total ozone content in southern Brazil cause an average 1.2% increase 
in surface ultraviolet radiation (Guarnieri et  al. 2004) and, according to UNEP (United 

(a) (b)

Fig. 1   OSE event as a observed from space on 12 October 2014 and b corresponding PV simulated by the 
MIMOSA-Chim model (Hauchecorne et al. 2002)
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Nations Environment Program1), the reduction of 10% of the stratospheric Ozone would 
cause additional 300,000 cases of carcinoma (malignant skin tumors) and 4500 cases of 
melanoma (skin cancer) each year, worldwide. Even if OSE hardly last more than 5–7 days, 
the increase of UV radiation is often in the order of 10% and may happen overnight, sur-
prising individuals that are more exposed or require additional protection. OSE also may 
have undesirable effects on the flora and fauna, with notable risks for agriculture (Krupa 
and Jäger 1996) and biodiversity with, for example, the decline in amphibian species due to 
genetic malformations caused by increased UV radiation levels (Londero et al. 2019).

Unlike other regions of Brazil, the weather conditions in southern Brazil are strongly 
influenced by transient meteorological systems (Reboita et  al. 2010). Examples of such 
systems are cold and hot fronts, which carry strong westerly winds at high tropospheric 
levels. Moreover, the upper troposphere–lower stratosphere (UT–LS) region in southern 
Brazil seems to be the home of many dynamical processes, such as stratosphere-tropo-
sphere exchanges and isentropic transport between the tropical stratosphere reservoir, polar 
vortex, and middle latitude. Indeed, understanding the patterns of the UT–LS is important 
in understanding transport and exchange processes and the links with tropospheric meteor-
ology (Ohring et al. 2010).

2.2 � Stratospheric O
3
 forecast with numerical models

Traditional models for O3 or other atmospheric constituents are often based on the combi-
nation of satellite/ground observations and numerical weather prediction (NWP) models. 
Indeed, the former is used to set demand initial and boundary conditions, while the lat-
ter relies on equations aiming to represent different physical phenomena. This integration 
(also known as assimilation) involves complex schemes and parameter tuning. Parameters 
are chosen to best reflect a physical (and chemical) understanding of the characteristics of 
the studied phenomenon, often requiring large computational systems to solve the forecast 
models (Godin-Beekmann 2010).

Nowadays, sophisticated data assimilation schemes for weather forecasts are used in 
models such as NCEP-CFSv2 (Kistler et al. 2001) and ERA5 (Malardel et al. 2016). In the 
case of O3 , assimilation is also a way to provide a “complete” view of the globe despite the 
less frequent coverage from the satellites, as illustrated in Fig. 2.

Fig. 2   A collection of 24 h of GOME data on 30 Nov 1999, and the correspondent assimilated ozone field 
at 12 GMT [13]

1  https​://www.unep.org/.

https://www.unep.org/
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Eskes et al. (2002) present one of the firsts results from ECMWF traditional NWP data 
assimilation system, using a three-dimensional ozone advection and near real-time O3 sat-
ellite observations as input. They showed that it was possible to forecast O3 concentrations 
for 6 days in advance in the extratropics and just for 2 days in the tropical region, opening 
the possibility to the use of NWP to forecast the South Pole Ozone hole dynamics in a 4–5 
days time range.

The tropospheric chemistry model in the integrated forecast system of the European 
Center for Medium-Range Weather Forecasts (ECMWF) includes a stratospheric chem-
istry module (Huijnen et  al. 2016) to improve stratospheric composition compared with 
the old chemistry module. The stratospheric O3 partial columns (10–100 hPa) show 
biases smaller than ±20DU when compared to the Aura MSL observations (Errera et al. 
2019) and keeps the performance event the Antarctic hole season. However, Davis et al. 
(2017) evaluates water vapor and O3 data coming from different reanalysis models (ERA-
40 and ERA-Interim from Europe, JRA-25 and JRA-55 from Japan, CFSR, MERRA and 
MERRA-2 from USA), concluding that the handling of ozone varies substantially among 
reanalyses. While the comparison is not simple, they were able to reproduce the Ozone 
Total Column (TCO) ∼10DU (3%) relatively to the observations. In the high stratosphere, 
the bias is ±20% of the O3 total column, while in the upper troposphere and lower strato-
sphere biases increase to ±50% of the O3 total column. Davis et al. (2017) also observes 
that the use of reanalysis ozone for Antarctic ozone hole studies is problematic, producing 
reasonable maps when satellite observations are available, and highly biased maps when 
observations are unavailable.

Despite the high potential biases for O3 estimation, several web sites propose Ozone 
( O3 ) global coverage information, including NASA OzoneWatch2 and the Tropospheric 
Emission Monitoring Internet Service (TEMIS) from ESA3. OzoneWatch relies on the 
MERRA-2 assimilation model (Gelaro et al. 2017) and the GEOS model, but it does not 
provide O3 forecasts on the website. TEMIS relies on the TM3-DAM model (Eskes et al. 
2002; Elbern et al. 2015), and its website also proposes an 8-days forecast generated from 
the assimilation model.

Assimilation is therfore a computing intensive activity, requiring not only the integra-
tion of satellite (and ground/sounding balloons) data but also the execution of numerical 
models for both physical (transport) and chemical parameters. While precise details about 
the operation (execution time, number and type of nodes) of TEMIS or OzoneWatch are 
not available, the assimilation workflow described in Eskes et  al. (2002) let us infer an 
important computational demand:

Every day two forecast runs are performed. Directly after completion of the 10-day 
ECMWF forecast (started at 12:00 UTC) the meteorological fields are extracted from 
the archive. The wind fields are converted into mass fluxes in a preprocessing step, 
and the data is sent to KNMI. Upon arrival an analysis and forecast run is started at 
KNMI, based on the latest near-real time GOME ozone data. Twelve hours later a 
new forecast run is performed, based on the same meteorological fields, but with an 
additional 12h of GOME measurements. (Eskes et al. 2002)

Besides global models, regional models are also an alternative for numerical models fore-
cast. WRF (Skamarock et  al. 2019) is a well-known simulation tool, which includes a 

2  https​://ozone​watch​.gsfc.nasa.gov/.
3  http://temis​.nl/proto​cols/o3hol​e/.

https://ozonewatch.gsfc.nasa.gov/
http://temis.nl/protocols/o3hole/
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chemical model plugin, WRF-Chem. WRF-Chem can be used to represent O3 transport 
(Thomas et al. 2019, 40), but is essentially a tropospheric model that relies on fixed values 
derived from climatology standards to represent the O3 concentration in higher altitudes.

2.3 � Stratospheric O
3
 forecast with deep learning

Contrarily to traditional assimilation models, Artificial Intelligence models do not rely on 
numerical models but try to extract patterns from raw input data, using sophisticate sta-
tistical methods. This approach also has the advantage of being computing-intensive only 
during the “train” phase, where the patterns are extracted. Once consolidated, AI models 
are often fast to deploy, producing forecasts in a small amount of time, even with reduced 
computing resources. The recent breakthroughs in hardware and programming methods for 
artificial intelligence encouraged the development of machine learning strategies to com-
plement (if not to concurrence) existing numerical models.

As stated by Shi et al. (2015), recent advances in deep learning such as recurrent neural 
network (RNN) and long short-term memory (LSTM) provide useful tools to address this 
problem. LSTM has been widely used to predict wind regimes (zhi Wang et al. 2017), pol-
lution concentration (Zhang et al. 2020), weather conditions (Miao et al. 2020) or flooding 
risks (Ding et al. 2020) on specific zones. Recently, Mbatha and Bencherif (2020) devel-
oped a hybrid data-driven forecasting model, based on LSTM applied to the total column 
of ozone time-series recorded at Buenos-Aires, Argentina from 1966 to 2017. However, 
pure LSTM is not enough to deal with multidimensional data like the spatial distribution of 
air masses.

Predicting the shape and movement of air masses (and other meteorological phenom-
ena) is a real challenge for predictive learning. Contrarily to time-series forecasting or 
object trajectory tracking problems, the speed of air masses are not regular, their trajecto-
ries are not always periodical, and their shapes may accumulate, dissipate or change rap-
idly due to the complex atmospheric environment. Hence, modeling spatial deformation is 
significant for the prediction of this data.

These technical issues may be addressed by viewing the problem from the machine 
learning perspective. In essence, the meteorological forecast is a spatiotemporal sequence 
problem where a set of past maps (radar, satellite) are used as input, and a sequence of 
maps is produced as output. However, due to the complex structure of atmospheric maps, 
capturing the spatiotemporal structure of the data would be a hard task with traditional 
machine learning techniques, especially those based on supervised learning.

For this reason, Shi et  al. (2015) formulated a spatiotemporal sequence forecasting 
problem and proposed the Convolutional Long Short-Term Memory (ConvLSTM) model, 
which extends the LSTM (Hochreiter and Schmidhuber 1997) to tackle problems such as 
the precipitation nowcast problem by using radar echo sequences for model training. The 
ConvLSTM model was further developed in Shi et al. (2017), where GRU (Gated Recur-
rent Units) are used instead of LSTMs.

In Shi et al. (2015), the radar echo maps are first transformed to grayscale images before 
being fed to the prediction algorithm. Thus, precipitation forecast can be considered as a 
type of video prediction problem with a fixed “camera”, which is the weather radar. For 
this reason, methods proposed for predicting future frames in videos are also applicable 
to weather forecast. Ranzato et al. (2014) proposed the first RNN based model for video 
prediction, which uses a convolutional RNN to encode the observed frames. Srivastava 
et  al. (2015) proposed the use of a LSTM encoder-decoder network to predict multiple 
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frames ahead; this model was generalized in Shi et al. (2015) by replacing the fully con-
nected LSTM with ConvLSTM to better represent spatiotemporal correlations. Also Finn 
et al. (2016) and Jia et al. (2016) extended the ConvLSTM model by making the network 
predict the input frame instead of the raw pixels. More recent works try to increase the 
recurrence depth of the networks, all while improving spatial correlations and short-term 
dynamics. Among such works, we can cite the VPN—Video Pixel Network (Kalchbrenner 
et al. 2017), the PredRNN, PredRNN++, and Eidetic 3D LSTM models from Wang et al. 
(2017), Wang et al. (20185), Wang et al. (2019), as well as the Cubic LSTM model (Fan 
et al. 2019).

Some works try to break free from LSTM, and we can cite (Agrawal et al. 2019), which 
relies on the U-Net CNN model and (Villegas et al. 2017), which proposed to use both an 
RNN that captures the motion and a CNN that captures the content to generate the predic-
tion. Along with RNN based models, 2D and 3D CNN based models are also present in the 
literature (Mathieu et al. 2016; Vondrick et al. 2016). A recent example is the work from 
Zheng et al. (2020), who create a model based on cascading CNN layers to forecast sea 
surface temperatures based on satellite data.

Please note that while precipitation nowcast is one of the major target subjects from the 
literature, other applications may also profit from the same neural networks, as the predic-
tion of air pollution dissemination (Fan et al. 2017), the transportation of volcanic plumes 
(du Preez et al. 2020) or the estimation of sea surface temperature (Jonnakuti et al. 2020). 
These models can also complement existing NWP models (Wiegerinck et al. 2019) or, in 
our case, be applied to forecast the stratospheric ozone circulation.

3 � Implementing an OSE forecast model

3.1 � Model description and configuration

For this work, we chose to rely on the PredRNN++ model (Wang et  al. 20185). Pre-
dRNN++ is a recurrent network model for video predictive learning. Its predecessor, Pre-
dRNN, was already used in a precipitation nowcast scenario (Wang et  al. 2017), so we 
adopted PredRNN++ as its performance and stability fits our needs for meteorological 
forecasting. Also, the source code for the model is freely available at Github (https​://githu​
b.com/Yunbo​426/predr​nn-pp), which allows us to concentrate on data preparation and 
parameter tuning.

PredRNN++ is structured as a network of CausalLSTM and Gradient Highway Unit 
(GHU) modules. The first ones work as a cascaded mechanism, where the spatial mem-
ory is a function of the temporal memory structures, while the GHU organizes the LSTM 
architecture, preventing the gradients of the objective function from vanishing during back-
propagation. Details of the internal organization of PredRNN++ can be seen in Fig. 3.

The PredRNN++ model we used consists of two layers with 128 hidden states each. 
The convolution filters are set to 1 × 1 , in order to avoid losing information. For training, 
the dataset was sliced in consecutive images with a 9-days sliding window. Hence, each 
sequence consists of 36 frames, 20 for the input (5 days), and 16 for forecasting (4 days).

The choice of the hyperparameters (number of layers and hidden states, filter grids) was 
deduced empirically from several parameter combinations during a prototyping phase (for 
example, we considered 64–64, 64–64–64, 128–128, 128–128–128, and 128–64 layers, 
as well as 1, 2, 4, 16, 64 filters). For instance, adding more layers tended to smooth the 

https://github.com/Yunbo426/predrnn-pp
https://github.com/Yunbo426/predrnn-pp
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resulting images, losing resolution on long-term forecasts. Similarly, using 64 hidden states 
accelerates the training phase but result in less sharp structures, and more than 1 × 1 filter 
grids result in “pixelated” images that don’t fit our requirements.

3.2 � Data preparation and training

We first collect the Total Column Ozone (TCO3 ) dataset from ERA5 reanalysis4, which 
covers the Earth on a 30 km grid. This parameter is the total amount of ozone in a column 
of air extending from the surface of the Earth to the top of the atmosphere. The ERA5 units 
for total ozone are kilograms per square meter ( kg∕m2 ). Another common unit for Ozone 
total column is the Dobson Unit (DU), where 1DU = 2.1415 × 10−5kg∕m2.

For this work, we delimited the study on the area between 70◦S, 100◦W and 20◦S,30◦

W, which includes to the southernmost part of South America and parts of Antarctica. This 
area allows a good coverage for the air masses coming from the polar vortex, who eventu-
ally reach the Southern Spatial Observatory (SSO), located at 29.443752° S, 53.823084° 
W (Fig. 4).

Fig. 3   PredRNN++ model scheme, associating CausalLSTM and gradient highway units (GHU) (Wang 
et al. 20185)

4  https​://cds.clima​te.coper​nicus​.eu/cdsap​p#!/datas​et/reana​lysis​-era5-singl​e-level​s.

https://cds.climate.copernicus.eu/cdsapp#%21/dataset/reanalysis-era5-single-levels
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The dataset used in this experiment consists of about 58500 observations for each 
coordinate, covering the period from 1980 to 2019 and recorded every 6 h. It was split 
into two sets: the train dataset, which corresponds to the period between 1980 and 2009, 
and a test dataset for the period 2010–2019.

As the PredRNN++ model was conceived to accept images as input, we decided to 
automatize the generation of TCO3 maps using the GrADS application. GrADS is used 
to generate maps of the O 3 concentration from ERA5 NetCDF files, converting them to 
pixel values which are stored as 128 × 128 gray-scale images 5a. As GrADS maps are 
presented as layered zones (i.e., discretized data), we defined 8 levels covering the usual 
O 3 concentration range in the atmosphere ( 5 × 10−3 to 8 × 10−3 kg/m2).

During the training phase, the mini-batch size is set to 16, and the training process is 
stopped after 300,000 iterations. The training phase required about 22 h on a node from 

Fig. 4   Delimited area for O 
3
 

forecasting

(a) (b) (c)

Fig. 5   Example of input (a) and output (b, c) images
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the ROMEO Computing Center (each node has 2× Intel® XeonTM Gold “Skylake” 6132 
- 2 × 14 cores 2.60 GHz, 96GB DDR4 RAM, and 4x NVidia Tesla P100/16GB SXM2).

While the training phase is computing intensive even in a high-end machine such as the 
ROMEO supercomputer, the trained model can be easily deployed and executed, even in 
machines without GPUs. For instance, making a forecast takes about 1 min in a CPU-only 
machine, with most of the time dedicated to the load of the model.

The resulting forecast is presented as a set of images with gradient values (Fig. 5b). To 
improve the readability and the analysis of the structure of the air masses, we also provide 
the output images as contour layered maps (using Matplotlib), as presented in Fig. 5c.

4 � Results

At first, we notice how complex is the atmospheric motion: contrarily to most examples 
in the literature [moving MNIST Srivastava et al. 2015, KTH action Schuldt et al. 2004], 
atmospheric motion is variating due to interactions in the atmosphere. As a result, fore-
casting more than a few days is still very difficult. The length of the input dataset is also a 
problem, as too many frames favor large-scale events (and require a lot of memory), while 
too few frames don’t provide enough information for the learning model. In this work, we 
decided to provide 20 input frames (equivalent to 5 days of measures) and generate frames 
for the next 4 days (16 frames).

In this section, we concentrate our analysis on a list of 24 OSE compiled by Bittencourt 
et al. (2019). These events occur during the Austral Spring and are tightly related to the 
“opening” of the South Pole Ozone hole and the breaking of the polar vortex. As a con-
sequence, such an event may present unusual atmosphere interactions that make forecasts 
more complex. Although the model can be applied to any period in the year, we concen-
trate in these cases as the prediction and quantification of OSE events is the main goal of 
our project MESO5. For this reason, the following examples concern predictions with data 
up to 3 days before the events. In our understanding, this gives a reasonable margin to raise 
alerts to the population. Furthermore, many satellite datasets are not provided in real-time, 
so predictions must also take into account this delay.

In order to evaluate the accuracy of the machine learning model, we present 3 different 
modes of evaluations that will be developed in the next sections: 

1.	 Graphical similarity analysis of graphical metrics between ground truth images and 
predicted ones;

2.	 Frame structures analysis of the frame structures from the meteorological point of view;
3.	 Scalar predictions capability of the framework to estimate TCO3 values at a given 

coordinate.

4.1 � Graphical similarity

Before conducting a domain-wise analysis, i.e., the evaluation of the quality of the fore-
casts from the meteorological point of view, we present a generic analysis of the results 
based on image similarity metrics. These metrics are often used to quantify the noise or 

5  https​://meso.univ-reims​.fr.

https://meso.univ-reims.fr
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the divergence between images and can be applied to our results in order to verify how 
close are the predictions concerning validation data.

In Table  1 we list the per-frame mean square error (MSE) and the mean absolute 
error (MAE), the peak noise-signal ratio (PSNR), and the structural similarity index 
measure (SSIM) (Wang et  al., 2004). In the case of MSE, MAE, low values indicate 
less difference or “noise” with respect to the reference image. In the case of PSNR and 
SSIM, higher values are better.

For each metric, Table 1 emphasizes the maximum and minimum values. From this 
list, we selected some OSE for further analysis (shaded cells in Table 1). The selected 
events include most of the maximum and minimum values cited above (or are suffi-
ciently close to these extremes), as well as an average case.

To better evaluate these events, Fig.  6 shows the frame-wise evolution of each met-
ric. For instance, the OSE cases from September 2016 and August 2017 shows a rapid 
degradation. The other examples are much more stable, keeping high structural similar-
ity (SSIM) and low levels of MSE and MAE.

When generalizing the analysis to the whole validation period (2010–2019), we 
obtain the summary statistics from Table 2. Please note that the case from November 
2014 cited above stands very close to the average.

Table 1   Average metric values 
for different OSE forecasts (3 
days before). These metrics are 
averaged over the 16 predicted 
frames

Event MSE MAE PSNR SSIM

12/08/2010 9121.559 2328.866 15.002 0.479
12/09/2010 8084.251 2012.055 15.904 0.493
17/10/2010 8993.567 2101.920 15.152 0.486
26/10/2010 4997.680 1485.948 17.699 0.549
09/09/2011 8979.653 2021.981 15.601 0.525
25/10/2011 6479.053 1679.782 16.990 0.509
18/09/2012 7386.710 1789.323 16.288 0.514
26/09/2012 3098.222 1216.431 19.485 0.606
18/10/2012 15166.162 2339.554 13.939 0.483
27/10/2013 6004.239 1771.038 16.600 0.483
14/08/2014 10787.351 2310.118 14.548 0.475
26/08/2014 8854.087 2011.818 14.944 0.457
16/10/2014 5646.543 1599.670 17.060 0.552
07/11/2014 4912.641 1547.895 17.705 0.556
15/09/2015 9144.110 2167.729 15.242 0.465
26/09/2015 3776.599 1348.961 18.756 0.574
29/08/2016 7516.148 1960.775 15.698 0.483
09/09/2016 12524.553 2292.583 14.022 0.484
16/09/2016 13736.578 2740.289 13.179 0.421
24/10/2016 15928.443 2653.982 14.436 0.421
30/08/2017 17962.563 2809.668 12.918 0.478
22/09/2017 18180.069 2613.564 13.795 0.485
21/09/2018 7220.709 1838.054 16.707 0.563
15/11/2018 7559.428 1948.871 16.135 0.494
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In addition, Fig.  7 shows this distribution by year. The boxplots indicate that MSE and 
MAE have too many outliers, which may compromise the search for reference parameters 
for an eventual automatic quality evaluator. On the opposite side, PSNR and SSIM are 
more stable metrics, with more balanced quartiles that may help the setup of an automatic 
quality assessor.

4.2 � Frame structural analysis

In the previous section, we compared forecasts using standard image similarity metrics. 
While such comparison provides useful insights into the raw efficiency of the deep learning 
algorithms, it doesn’t include domain-specific knowledge about the observed events. For 
this reason, this section provides a “qualitative analysis” based on visual insights from the 
resulting forecasts.

Indeed, we try here to evaluate the ability of the model to provide convincing (and pre-
cise) forecasts based on a set of historical spatiotemporal data. Therefore, Figs.  8 to 11 
present a visual summary from the predictions for the OSE studied in the previous section.

Fig. 6   Frame-wise comparison of different predictions with metrics MSE and MAE (lower values are bet-
ter), PSNR and SSIM (higher values are better)

Table 2   Image metrics 
distribution from 2010–2019

MSE MAE PSNR SSIM

Mean 6933.573966 1789.254265 17.101077 0.544447
Std 4111.933260 523.887336 2.419963 0.072979
Min 895.956512 641.903100 10.250528 0.339540
25% 3707.098116 1360.617900 15.301739 0.488440
50% 6176.086090 1757.214500 16.847370 0.536342
75% 8984.420170 2138.030600 18.985342 0.595424
Max 32167.737152 3831.909200 24.816187 0.741482
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(a) MSE (b) MAE

(c) PSNR (d) SSIM

Fig. 7   Example of input (a) and output (b, c) images

(a)

(b)

(c)

Fig. 8   TCO
3
 prediction 3 days prior the September 26th, 2012 OSE. a Ground truth; b prediction output; c 

layered output



779Machine Learning (2023) 112:765–788	

1 3

The average atmospheric flow on the Southern Hemisphere mid-latitudes goes from 
West to East, or also called westerly winds. In Fig. 8, t = 1 , it is possible to observe that an 
area of high TCO3 values is present at windward of the Andes is embedded downstream of 
a trough that will soon cross the mountain chain. This high TCO3 concentration air mass is 
related to the convergence produced by the trough and do not cross at once, but fractionally 
due to the resistance offered by the mountain range. In the following frames, it is possible 
to observe that this mass crosses towards the leeward side of the mountain and presents 
itself as a high concentration TCO3 , probably due to convergence produced by a cyclonic 
vortex circulation at the trough axis over Argentina and South Brazil.

As in the training phase, 20 frames from the past are used to predict 16 frames in the 
future. In the case from Fig.   8, which represents the OSE from September 26th, 2012, 
the forecast renders the air masses with enough similarities in both shape and intensity to 
the real data (ground truth), even when considering several frames in the future. Please 
remember that the deep learning model only has access to the “Inputs” part of the ground 
truth frames, the “Targets and Predictions” frames on the right are presented only for com-
parison purposes.

A similar result is presented in Fig. 9. Not only the model is able to render the TCO3 
concentration and the trough pattern visible at t = 25 and t = 29 but is also predicts a new 
ozone-rich mass arriving at t = 36 from the west.

Although the prediction represents valuable information to short term weather analysis, 
not all long-term forecasts perform that well. In some cases, the model degrades too fast 
or diverges after a few frames, which is mostly due to the non-linear nature of the atmos-
pheric physical phenomena. In other cases, complex atmospheric structures such as ridges 
and troughs, wave trains, and vortexes are clearly present, tending to be smoothed, losing 
sharpness, although still presenting valuable information for weather forecasters.

We can observe this in Fig. 10, which represents TCO3 predictions for November 2014. 
While the model provides frames with similar forms up to t = 25 and t = 29 , the remainder 
frames keep a close TCO3 concentration shape but present a faster displacement eastward 
relative to the ground truth, as a new front with reduced Ozone concentration comes from 

(a)

(b)

(c)

Fig. 9   TCO
3
 prediction 3 days prior the November 7th, 2014 OSE. a Ground truth; b prediction output; c 

layered output
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the west. Also, the input frames present filaments and complex structures that are too spe-
cific to be followed by the model, at least in the current level of training.

The case of Fig. 11 is even more evident, with the model being unable to represent the 
evolution of the air masses. The succession of a low TCO3 air mass in the south followed 
by a high TCO3 from the west confused the model, which finally tends towards “average” 
values that minimize the overall distance.

From this analysis, we can affirm that the framework provides accurate frames for 
many OSE, but there are still some situations that require a model improvement. Nev-
ertheless, the qualitative information provided may be a reliable resource to weather 

(a)

(b)

(c)

Fig. 10   TCO
3
 prediction 3 days prior the September 16th, 2016 OSE. a Ground truth; b prediction output; 

c layered output

(a)

(b)

(c)

Fig. 11   TCO
3
 prediction 3 days prior the August 30st, 2017. a Ground truth; b prediction output; c layered 

output
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analysis operational services. Among the strategies to improve the model (also dis-
cussed later, in the Sect.  5), we can cite additional training rounds, larger coverage 
zones, data enrichment with other parameters besides TCO3 and perhaps the use of 
GANs (Generative adversarial networks) (Goodfellow et al. 2014).

Besides the comparison with ground truth (i.e., the observed satellite images), we 
also tried to compare our predictions against forecasts from a numerical model in order 
to establish a comparison baseline with existing forecast methods.

This task proved to be hard for several reasons. First, only TEMIS publishes forecasts 
on its web site, but these forecasts are not archived for further analysis. Hence, we could 
not access archived data for the same events presented above. Nonetheless, we started a 
collecting campaign, storing daily forecast since the beginning of September 2020.

We selected a scenario observed from September 16th, 2020 and, using Pre-
dRNN++, we produced forecasts for the same period. As a result, Fig. 12 presents the 
resulting forecasts side by side, together with the satellite ground truth. The main ele-
ments from the satellite images are present in all forecasts. First, the OSE ribbon is 
seen crossing Argentina on September 16, dissipating the next day (this is better seen 
on TEMIS in grayscale). The arrival of an O3 air mass is better predicted by the global 
model (TEMIS) than by our model based only on regional images, but the subsequent 
concentration of O3 at the Atlantic coast on September 19th is found in both TEMIS and 
PredRNN++ outputs.

While this single example does not constitute a comparison baseline, it empha-
sizes the potential of our approach. In truth, OSE forecasting (and stratospheric O3 , 

Fig. 12   TCO
3
 predictions from September 16,2020. Ground truth, our forecasts and TEMIS forecasts (in 

color and grayscale)
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in general) is an evolving target as both O3 production, destruction, and transport are 
influenced by external factors from both human and natural sources. Historical aver-
ages can’t show the trends of O3 over the years, neither explains the increasing number 
of OSE in recent years. However, identifying recurrent atmospheric transport patterns, 
something that Artificial Intelligence models excel at, may help to predict future events.

4.3 � Scalar prediction analysis

This last part is dedicated to the evaluation of the scalar precision of the forecast model. 
While the previous sections demonstrate that a good compromise can be achieved when 
regarding the structural similarity between the forecast frames and the observed data, it is 
also important to evaluate the accuracy of the predicted 03 column values.

To perform this evaluation, we compare the TCO3 raw values from ERA5 over one 
interest location—the Southern Space Observatory in Brazil—and compared with data 
extracted from the forecast frames. This last step is achieved by reversing the input process, 
which translates the input matrix from ERA5. For recall, TCO3 data is normalized and 
transformed into layered grayscale images by the GrADS software, then feed to the deep 
learning algorithm. The output is presented as gradient values, that once denormalized give 
values in similar ranges from ERA5.

Taking again the same four OSE examples from the previous sections, we obtain the 
results presented in Fig. 13. Here, the blue line represents the daily measures from ERA5, 
the vertical line indicates the beginning of the forecast and the orange line represents the 
predicted values. As before, we start predicting 3 days before the registered OSE (the small 
arrow in the lower right). In the case of the September 20th, 2012 event (Fig. 13a), predic-
tions fit really well the observed data. The remainder cases (Fig. 13b–d) show a relative 

Fig. 13   Comparison between predicted TCO
3
 values and raw data from ERA5 for the location of the South-

ern Space Observatory—SSO ( 29.443752◦S,53.823084◦W)
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error in the TCO3 estimation but in most cases (except Fig. 13b), the forecasts tend towards 
the same values levels as the observed data.

We believe that the differences are mostly caused by the use of layered images from 
GrADS. Indeed, values are discretized in a limited number of layers, which introduce bias 
from the real values and fool the prediction algorithm. Using plain normalized data from 
ERA5 may help improve the precision of the forecasts.

5 � Discussion and future works

The analyses from the previous section allow us to identify several strategies to improve 
the quality of the forecasts. Indeed, predictions are not only expected to keep a high simi-
larity level of the structures (air masses) over time but also to allow the estimation of TCO 
3 over a locality with a reduced error.

Finding a good combination of input data and hyperparameters is the first step to do. 
The experiments presented here consider 20 frames (5 days) input dataset, which is a mini-
mum threshold to capture the atmospheric circulation patterns. Adding extra input frames 
can help the model to understand additional interactions, at the expense of more mem-
ory. Also, as discussed earlier, this may reinforce the weight of large scale events, at the 
expense of rare or episodic patterns. Extra training epochs may help improve this resolu-
tion, but we must be extremely attentive to overfitting during the training phase.

Since we perform predictions on independent geographical tiles (i.e., a regional cover-
age), border effects are also a problem. When air masses originate outside the boundaries 
of a tile, the model can only guess their arrival based on recurrent historical patterns. Fig-
ure  11 shows an instance of this where the model is unable to predict a mass rich in Ozone 
coming from the west. By enlarging the tile towards the west would include more informa-
tion about air masses coming to a given interest point. Another possible approach is to 
provide images containing a South Pole stereo-polar view, where an circular continuous 
flow can be observed, giving therefore a synoptic observational field to the PredRNN++ 
training system.

The analysis of graphical similarity metrics also shows that Structural Similarity (SSIM) 
gives much more valuable information about the quality of the forecasts. Adapting SSIM 
as a loss function on PredRNN++ may improve the accuracy of the model, especially for 
long-term forecasts.

Improvements may also be made concerning the input data quality. As explained before, 
the current framework uses data transformed by the GrADS application, which creates lay-
ered maps with flatten values categories. While this seems to accelerate the learning pro-
cess, it induces a bias on the output values for a given location.

Data quality can also be enriched through the addition of other parameters of inter-
est. While the current experiment uses only TCO3 , at least two other atmospheric com-
ponents are known for their correlation with the Ozone circulation: the temperature and 
the potential vorticity (PV). Instead of a simple channel in a grayscale image, these other 
values could be added as additional image channels, in a similar way as RGB images can 
be handled.

Another direction that may be explored to refine the topological structure and hyper-
parameters of the neural network is the use of Generative Adversarial Networks (GANs) 
(Goodfellow et  al. 2014), which have shown excellent results in problems in which the 
output have quality requirements to match.
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Despite such improvements, we strongly believe that AI-based methods are not intended 
to replace existing models but to complement them. Forecasts generated by deep-learning 
methods may represent an asset for traditional assimilation methods, highlighting patterns 
that are hard to identify and model otherwise. Besides, deep-learning models offer a fast 
and non-expensive way to forecast scalar advection, providing first-hand elements for deci-
sion making while numerical-based models forecasts are not yet available.

Our team also plans to expand the usage of PredRNN++ and future algorithms towards 
other usage cases. Indeed, scalar advection can be applied to other subjects, if properly 
trained. Wildfire smoke and volcanic plums forecasting are among the subjects currently 
studied by our laboratories, and we believe that the algorithms used in this paper may be 
easily transposed to solve these problems.

6 � Conclusion

In this paper, we explore the usage of deep learning to handle stratospheric Ozone ( O3 ) 
spatiotemporal forecast. The motivation is that the Ozone layer lies in a zone in the mid-
dle atmosphere (stratosphere) with peculiar characteristics that are prone to deep learning 
extrapolation methods, instead of traditional numerical simulation methods. Indeed, the 
stratosphere is a barotropic portion of the atmosphere whose scalar fields advection (heat, 
gases, and particulate materials) are constricted between in isentropic layers, in an almost 
horizontal displacement. Data comes essentially satellite observations, which can easily be 
handled as matrix or images.

We focused our study on the forecast of Ozone Secondary Events (OSE), episodes of 
exchange between the polar vortex and the mid-latitudes and the tropics in which the polar 
vortex is deformed and ozone-poor polar air masses move towards mid-latitudes, resulting 
in drastic increases in the UV radiation. We aim to provide prediction tools to early identify 
such events.

In this paper, we leveraged a spatiotemporal algorithm initially developed for video 
frame predictions, adapting it to accept satellite data. We evaluate the performance of 
the algorithm output under both deep learning metrics (image similarity, for example) 
and domain-specific requirements (interest of the results from the meteorological point 
of view), showing interesting results and directions for improvement. To our knowledge, 
this is one of the first attempts to forecast the circulation of the Ozone layer using deep 
learning.

Another interest of deep learning-based forecasts is the amount of computing resources 
they require. If the training phase of a model may be long and computing-intensive, per-
forming a prediction is very fast and requires almost no computing resources. By com-
parison, forecasts based in traditional numerical models often require dedicated infrastruc-
tures and several computing hours to process the data assimilation and the forecast models. 
Therefore, deep learning models allow almost immediate updates of the forecast with good 
short-term prediction quality, which is especially interesting for new satellite sources such 
as GOES-16 that produce hourly updates. If the total transition from traditional forecast 
methods in favor of deep learning remains an open question, the combined usage of both 
methods in an ensemble forecast approach is a promising choice to consider.
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