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Abstract
In many real-world applications, it may be desirable to benefit from a classifier trained on
a given source task from some largely annotated dataset in order to address a different but
related target task for which only weakly labeled data are available. Domain adaptation (DA)
is the framework which aims at leveraging the statistical similarities between the source and
target distributions to learn well. Current theoretical results show that the efficiency of DA
algorithms depends on (i) their capacity of minimizing the divergence between the source
and target domains and (ii) the existence of a good hypothesis that commits few errors in both
domains.While most of the work in DA has focused on new divergence measures, the second
aspect, often modeled as the capability term, remains surprisingly under-investigated. In this
paper, we show that the problem of the best joint hypothesis estimation can be reformulated
using a Wasserstein distance-based error function in the context of multi-source DA. Based
on this idea, we provide a theoretical analysis of the capability term and derive inequalities
allowing us to estimate it from finite samples. We empirically illustrate the proposed idea on
different data sets.

Keywords Transfer learning · Domain adaptation · Learning theory

1 Introduction

Current advances in statistical learning theory offer a variety of results that study the problem
of estimating the probability that a hypothesis h picked from a given hypothesis classH can
achieve a small true risk. These results take often the form of generalization bounds on the
true risk, and are derived using concentration inequalities w.r.t. H. Classic generalization
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bounds assume that training and test data follow the same distribution. This assumption,
however, does not reflect the peculiarities of many real-world applications like in computer
vision, language processing or speech recognition where training and test data actually often
follow a related but different probability distribution. The need for algorithms addressing this
problem has led to the emergence of a new machine learning area called domain adaptation
(DA), a subfield of transfer learning (Pan and Yang 2010), where the source (training) and
target (test) distributions are assumed to be related but different. Existing generalization
guarantees for DA are expressed in the form of bounds over the target true risk of h involving
(i) the source true risk, (ii) a divergence between the domain distributions and (iii) a term λ

evaluating the capability of the considered class H to solve the problem, often expressed as
a joint error of the ideal hypothesis between the two domains. The majority of theoretical
investigations during the past few years aimed at introducing new divergence measures, like
the H divergence (Ben-David et al. 2010a), the discrepancy distance (Mansour et al. 2009a;
Cortes and Mohri 2014), integral probability metrics (Zhang et al. 2012), to cite the most
widely used ones. Surprisingly, very few theoretical results studied the capability term λ

which was often assumed to be negligibly small to allow adaptation or said differently, the
two source/target labeling functions were supposed to be similar. Nevertheless, it was shown
by Ben-David et al. (2010b) that in general minimizing only the divergence between the two
domain distributions is not sufficient for efficient adaptation. Considering the following set of
assumptions: (1) the source and target distributions are close to each other; (2) there exists a
hypothesis h ∈ Hwith low error λ on both domains; (3) the labeling function does not change
between the source and target domains, the authors concluded that neither the combination
(1) + (3) nor (2) + (3) suffices for successful adaptation. Consequently, the existence of a
good joint hypothesis plays a crucial role in DA in the same way as the divergence measure.

In this paper, we provide a first theoretical analysis of the λ term using ideas from the
optimal transportation theory. We choose this particular mathematical framework because it
provides a large variety of theoretical results that are particularly suited for DA. Similar to
Crammer et al. (2008); Mansour et al. (2009b), we place our work in a more general and
complex setting of multi-source DA where we possess N ≥ 2 source domains. We motivate
this particular choice by the fact that amulti-source scenario allows amore accurate estimation
of the adaptability of a given DA problem. We redefine λ by expressing the error function
of a hypothesis over each domain in terms of the Wasserstein distance. This choice offers
us a powerful geometric tool that we use to compare probability distributions and that, as
mentioned in Le Gouic and Loubes (2017), can represent more accurately the inner geometry
of a large possibly high-dimensional data sample. Furthermore, using Wasserstein distance
as a loss function offers several algorithmic advantages as its gradient is not vanishing on
distributions with a different support compared to Kullback–Leibler and L p distances: a
property that has allowed to overcome the mode collapse problem in Generative Adversarial
Networks (Goodfellow et al. 2014; Arjovsky et al. 2017). The theoretical contributions of this
paper are the following: (1) we characterize the uniqueness and existence of the capability
term; (2) we present inequalities that allow us to bound the true λ term by its finite-sample
approximation.

The rest of this paper is organized as follows: Sect. 2 is devoted to the definition of the DA
problem with multiple sources, to the introduction of the optimal transport theory and some
related concentration inequalities. In Sect. 3, we present a new definition of the capability
term w.r.t. a Wasserstein distance-based error function and use it in Sect. 4 to establish
the uniqueness and the existence of the capability term for every distinct multi-source DA
problem. We further prove finite-sample inequalities for its empirical counterpart in both
one- and d-dimensional cases with two different strategies to compute it. In Sect. 5, we show
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the validity and the appropriateness of our estimation procedure by evaluating it on synthetic
data. We conclude in Sect. 6 by drawing future research directions of this work.

2 Preliminary knowledge

In this section, we formally define a DA problem and present the general form of DA gener-
alization bounds. Then, we introduce a brief overview of the concepts from optimal transport
used in the next sections.

2.1 Domain adaptation

Let us define a domain D as a pair consisting of a distribution μD on the instance space Ω

and a labeling function fD : Ω → [0, 1]. We further define a hypothesis class H as a set of
functions so that ∀h ∈ H, h : Ω → [0, 1]. With this notations, the error function of a given
domain can be defined as follows.

Definition 1 Given a convex loss-function � : [0, 1] × [0, 1] → R
+, the true risk according

to the distribution μD that a hypothesis h ∈ H disagrees with a labeling function fD (which
can also be a hypothesis) is defined as εD� (h, fD) = E

x∼μD
[�(h(x), fD(x))] .

When the source and target risks (or error functions) are defined w.r.t. h and fS or fT ,
we use the shorthand εS� (h, fS) = εS� (h) and εT� (h, fT ) = εT� (h). The ultimate goal of
DA is to learn a good hypothesis h on S (given by a labeled sample of size nS) that has a
good performance on T (given by a possibly unlabeled sample of size nT ). In what follows,
we consider the generalization of the DA problem, where not 1 but N source domains are
available. Furthermore, we place ourselves in a semi-supervised setting where a small portion
of labeled data is available from T . This setting is likely to be one of the most complicated
ones because it definitely prevents the learner from only using the target examples to learn
a hypothesis which would work well on target distribution. We define N different source
domains (where the target domain T can either be or not a part of this set) represented by N
labeled samples S j ( j = 1, . . . , N ) of size n j = β j n (

∑N
j=1 β j = 1,

∑N
j=1 n j = n) drawn

from some unknown distribution μS j and labeled by fS j . Now, let us consider the weighted
multi-source error of a hypothesis h defined for some vector α = {α1, . . . , αN } as follows:

εα
� (h) =

N∑

j=1

α jε
S j
� (h), (1)

where
∑N

j=1 α j = 1 and each α j represents a weight assigned to the source domain S j . We
further denote by ε̂α

� (h) its empirical counterpart defined over the empirical error functions

ε̂
S j
� (h). Denoting by ĥα and h∗

T the minimizers of ε̂α
� (h) and εT� (h) respectively, Ben-David

et al. (2010b) have shown that generalization bounds for multi-source DA can be expressed
as follows:

εT� (ĥα) ≤ εT� (h∗
T ) + 2

N∑

j=1

α j
(
d(μS j , μT ) + λ j

) + O
(

1√
n

)

,

where λ j is the combined error of the ideal hypothesis h∗ that minimizes ε
S j
� (h) + εT� (h)

and d(·, ·) is some divergence measure on the space of probability distributions. From this
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result, one can instantly see that both the distance between the source and target distributions
and the λ term have equal impact on the success of adaptation. Furthermore, as stated in
Ben-David et al. (2010a), “when the combined error of the ideal joint hypothesis is large,
then there is no classifier that performs well on both the source and target domains, so we
cannot hope to find a good target hypothesis by training only on the source domain”. This
statement is the core motivation of our work.

2.2 Optimal transport andWasserstein distance

Optimal transportation theory was first introduced in Monge (1781) to study the problem
of resource allocation. Assuming that we have a set of factories and a set of mines, the
goal is to move the ore from mines to factories in an optimal way, i.e., by minimizing
the overall transport cost. The Wasserstein metric is a distance between two probability
distributions which relies on the optimization problem of the optimal transport. Here, we
focus specifically on the Wassertein distance between the source and target distributions μS

and μT . Let Pp (Ω) := {μ ∈ P (Ω) : ∫
Ω

‖x‖pdμ(x) < ∞} be the space of probability
measures supported on Ω with finite pth moment. The Wasserstein distance of order p
between μS, μT for any p ≥ 1 is defined as:

W p
p (μS, μT ) = inf

γ∈Π(μS ,μT )

∫

Ω×Ω

c(x, y)pdγ (x, y),

where c : Ω×Ω → R
+ is ametric,Π(μS, μT ) is the collection of joint probabilitymeasures

on Ω × Ω with marginals μS and μT , also called the set of couplings. In practice, we deal
with the empirical measures μ̂S = 1

nS

∑nS
i=1 δx Si

and μ̂T = 1
nT

∑nT
i=1 δxTi

defined on finite
samples and represented by the uniformly weighted sums of Diracs with mass at locations
x Si and xTi , respectively. In such a context, theWassertein distanceW p

p (μ̂S, μ̂T ) corresponds
to the minimum cost of turning the source probability mass in the target probability mass
obtained by solving the Monge–Kantorovich problem. More formally, it can be written in
terms of the inner product between the coupling matrix γ and a cost matrix C as follows:

W p
p (μ̂S, μ̂T ) = min

γ∈Π(μ̂S ,μ̂T )
〈C, γ 〉F ,

where 〈·,·〉F is the Frobenius dot product and C is a dissimilarity matrix, i.e., Ci j =
c(x Si , xTj )p , defining the energy needed to move a probability mass from x Si to xTj . In case
when p = 1, one obtains the popular Earth mover’s distance (Rubner et al. 2000) commonly
used in image retrieval. Different results have been proposed in the literature regarding the
convergence in expectation of the empirical measure to the true one in terms of Wasser-
stein distance. As these results play a major role in our work, we present the concentration
inequality for measures supported on Rd below.

Theorem 1 (Fournier and Guillin 2015) Let μ ∈ P(Ω), Ω ⊂ R
d and let p ∈ (0, d/2).

Assume that Mq(μ) = ∫
Rd |x |qμ(dx) < ∞ for some q > p, q �= d

d−p . Then there exists a
constant ς depending on p, d and q such that for all n ≥ 1 the following bound holds

E
[
Wp(μ, μ̂)

] ≤ ςMp/q
q (μ)

(
n− p

d + n− q−p
q

)
.

This theorem shows that Wp(μ, μ̂) → 0 with probability one and the rate of convergence
depends on a variety of hypotheses and properties of the distribution μ that are discussed in
the following sections.
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3 Ideal joint hypothesis with theWasserstein distance-based error
function

The vastmajority of DA algorithms focuses onminimizing the divergence between the source
and target sets either by learning a shared representation space or by reweighting the source
data (Margolis 2011). However, the impossibility theorems for DA presented in Ben-David
et al. (2010b) suggest that for a successful adaptation, only minimizing the divergence is
not enough. The key term that is not taken into account but that, nevertheless, remains of
the huge importance is λ: the error of the best joint hypothesis over the source and target
domains. The importance of λ is highlighted by its appearance in many theoretical results
on DA. First introduced by Ben-David et al. (2007), it has then been taken into account in
Crammer et al. (2008) under the form of disparity coefficients measuring the disagreement
between labels of the source domains and in Mansour et al. (2009a) as the error defined
over the target distribution between the ideal source and target hypotheses.1 The intuition
behind λ is the following: while the divergence term in the bounds encourages one to reduce
the discrepancy between the available source and target samples in order to align them, λ

motivates to adapt in a way that ensures the separability of classes of the aligned samples.
This intuition highlights the importance of λ and prompts us to provide a complete theoretical
framework that allows an estimation of λ from observable data. In the next section, we show
that this can be achieved if we express the error functions of source and target domains in
terms of the Wasserstein distance.2

To proceed, we first note that the idea of using the Wasserstein distance as a loss function
has been proposed in Frogner et al. (2015) and applied successfully for multi-label and
multi-class classification. For the sake of completeness, we give its definition below.

Definition 2 Let K denote the space of all possible outputs and H be the hypothesis space.
∀h ∈ H, h : Ω → Δ|K|, let h(κ|x) = h(x)κ be the predicted value at element κ ∈ K, given
the input x ∈ Ω . Let f (κ) be the ground truth value for κ given by the corresponding label
y. Then, the Wasserstein loss is defined as

W p
p (h(·|x), f (·)) = min

γ∈Π(h(x), f )
〈C, γ 〉F .

For this particular loss function, the error with respect to a given domain is defined as:

εDWK(h, fD) = E
x∼μD

[
W p

p (h(·|x), fD
]
,

where for each x , h(·|x) and fD yield a distribution over the output space K providing the
information regarding the multiple possible labels of x . One may note that in case of multi-
class classification, fD(x) is given by a one-hot vector, while in multi-label classification it
can take non-trivial values that do not necessarily sum to 1. In both cases, the overall true
error amounts to taking the expectation with respect to the marginal data distribution over
the discrepancies measured by the Wasserstein distance between the desired output and the
obtained one.

1 In a less general case where the hypothesis space is restricted to the weighted combination of source
hypotheses, one can obtain λ-free bounds as shown in Mansour et al. (2009b).
2 Note that generalization bounds involving theWasserstein distance between the source and target probability
distributions have been proposed in Redko et al. (2017). This work, however, is different from the results of
the mentioned paper as it does not aim at introducing new generalization bounds for domain adaptation, nor
it considers the divergence between the source and target probability distributions in the provided analysis.
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Fig. 1 Comparison of empirical error functions defined with (left) traditional 0–1 loss, (middle) original
Wasserstein loss and (right) global error function from this paper. The errors were averaged based on class
probabilities obtained by fitting a linear classifier on samples consisting of 500–10,500 instances with step
equal to 1000 with 20 features and 2 classes. The classification problem is made gradually harder by randomly
flipping a certain proportion of instances’ labels (x-axis) between the two classes. For the original Wasserstein
loss, we calculate point-wiseWassertein distances between the vector of probabilities and the one-hot encoding
vector with the true label. For our error function, we calculate theWasserstein distance between the normalized
vectors of probabilities over all instances and that of true labels. We observe that despite the different scales,
all losses behave similarly and reflect the increasing difficulty of the classification problem

In order to introduce the definition of the error function that we use in our work, we first
note that in case of binary classification with |K| = 2, Definition 2 boils down to comparing
the two-dimensional vector [h(0|x), h(1|x)] of class probabilities produced by h to one-hot
vector given by fD . In this particular case, the information carried by elements of h(·|x)
becomes redundant as h(0|x) = 1− h(1|x) and knowing only h(0|x) or h(1|x) is enough to
calculate the Wasserstein loss at x . Driven by this observation, we propose to define the error
function of a given domain D in terms of the Wasserstein distance between the hypothesis
h and true labeling function fD considered as probability measures supported on Ω . In this
case, the definition reads:

εDW (h, fD) := W p
p (h(x), fD(x)), h, fD ∈ P(Ω). (2)

We note that our definition of the error function is quite different from the one used by
Frogner et al. (2015) as it compares the outputs of the hypothesis and labeling functions
directly over the whole input space. This means that εDW (h, fD) can be seen as a global
measure of disagreement as it does not rely on local point-wise averaging over the instances
of the input space. In order to evaluate the adequacy of the proposed error function, we
illustrate the behaviour of the traditional empirical error with 0-1 loss, the empirical error
calculated with the original Wasserstein loss and our proposed empirical error on a set of
classification problems with increasing difficulty in Fig. 1. From this figure, we note that
all error functions behave similarly thus justifying our proposed definition in case of binary
classification.

Throughout the rest of the paper, we assume that h(x), fS j (x) and fT (x) are normalized
so that

∫
Ω
h(x)dx = 1,

∫
Ω

fT (x)dx = 1 and
∫
Ω

fS j (x)dx = 1,∀ j = {1, . . . , N }. In case
of binary classification, the values of a hypothesis and labeling functions are given by the
probability of a given instance for belonging to one of the classes of interest as explained
above. One may further note that in the binary setting, normalising labelling function does
not change the outputted predictions. To see that, we can consider a labeling function f =
(0.2, 0.8, 0.8, 0.2) of 4 instances, where 1st and 4th instances belong to class 0 ( f ≥ 0.5)
while 2nd and 3rd are in class 1 ( f < 0.5). To obtain the same predictions for the normalized
f = (0.1, 0.4, 0.4, 0.1), one simply have to threshold it at 1

2
∑

f = 1
4 .
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We further set p = 2 in (2), where the squared 2-Wasserstein distance is chosen due to the
fact that it is strictly convex (Álvarez Esteban et al. 2011). Note that the Wasserstein distance
belongs to a vast family of Integral-probability metrics (IPMs) (Zolotarev 1984) along with
many other noticeable examples including the famous Maximummean discrepancy distance
(Smola et al. 2007) closely related to the regularized optimal transport (Genevay et al. 2018).
Nevertheless, the particular choice of the Wasserstein distance made in this paper is due to
the existence of a well-defined and extensively studied notion of the Wasserstein barycenter
that we make use of to establish our results.

We now turn our attention to the overall weighted joint error λα defined as the weighted
sum over all λ j as follows:

λα :=
N∑

j=1

α jλ j = min
h∈H

N∑

j=1

α j

(
εSW (h, fS j ) + εTW (h, fT )

)
.

Let us rewrite λα as λα = J (h∗), where

J (h∗) = min
h∈H J (h) = min

h∈H

N∑

j=1

α j

(
εSW (h, fS j ) + εTW (h, fT )

)

= min
h∈HE

⎡

⎣
N∑

j=1

α jW
2
2 (h, fS j ) + W 2

2 (h, fT )

⎤

⎦ .

Similarly, we define the empirical value of λα by λ̂α := Ĵ (h∗), where

Ĵ (h∗) = min
h∈H Ĵ (h) = min

h∈H

N∑

j=1

α j (ε̂
S
W (h, fS j ) + ε̂TW (h, fT )).

The goal of the next section is to study how the true λα can be related to its empirical
counterpart λ̂α .

4 Analysis of �˛

The core construction proposed in this section is the expression of λα based on the Wasser-
stein barycenter optimization problem defined for a parametric family of random probability
measures. To proceed, we start by defining the key quantities used to achieve this goal.

4.1 Uniqueness and existence

Let us consider a parametric set of probability measures { fθ , θ ∈ Θ ⊂ R
s, s ≥ 1}, where for

every parameter vector θ , we assume that fθ admits a density with respect to the Lebesgue
measure on Ω . Now, if θ ∈ Θ is a random vector with distribution Pθ admitting a density
function g : Θ → R+, then fθ is a random probability measure with distribution Pg .
Let us define the true source and target labeling functions as random probability measures
parameterized by random vectors θ j , θT ∈ Θ so that fS j = fθ j ,∀ j ∈ {1, . . . , N } and fT =
fθN+1 . For a vector α = {α1, . . . , αN+1} with αi ≥ 0,∀i , we can now define the measures

P̂ = ∑N+1
i=1 αiδ fθ i

and P̂N = ∑N+1
i=1 αiδ f̂θ i

, where f̂θ i = ∑ni
j=1 fSi (x

Si
j )δ

x
Si
j

and ni =
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βi n, ∀i ∈ {1, . . . , N } is the number of samples available in the i th source domain and {x Sij }nij=1

is its associated random sample drawn from μSi . Likewise, f̂θN+1 = ∑nT
j=1 fT (xTj )δxTj

,

where the sample {xTj }nTj=1 is drawn from μT with nN+1 = nT . To summarize, fθ is a
random probability measure that defines the underlying distribution of the source labeling
functions; { fθ j }N+1

j=1 are independent copies of fθ that can be seen as realizations of the

underlying distribution fθ and finally f̂θ j are empirical source labeling functions defined

w.r.t. the available finite samples in all source domains. We can now rewrite λα and λ̂α as
follows:

λα = min
h∈P2(Ω)

N+1∑

i=1

αiW
2
2 (h, fθ i ) = min

h∈P2(Ω)
E
P̂

[
W 2

2 (h, fθ )
]
,

λ̂α = min
h∈P2(Ω)

N+1∑

i=1

αiW
2
2 (h, f̂θ i ) = min

h∈P2(Ω)
E
P̂N

[
W 2

2 (h, fθ )
]
.

We further introduce the combined error defined over the unknown distribution Pg such that

λPg = min
h∈P2(Ω)

JPg (h) = min
h∈P2(Ω)

EPg

[
W 2

2 (h, fθ )
]

= min
h∈P2(Ω)

∫

Θ

W 2
2 (h, fθ )g(θ)dθ.

This functional is defined over the distribution that generated a sequence of random densities
fθ j ,∀ j . The proposed reformulation allows us now to relate the definition of the ideal joint
hypothesis to the Wasserstein barycenter optimization problem (Agueh and Carlier 2011)
defined as follows.

Definition 3 For a set of N probability measures {μ1, μ2, . . . , μN } ∈ Pp(Ω), the empirical
Wasserstein barycenter ν̂∗ is defined as

ν̂∗ = argmin
ν∈Pp(Ω)

N∑

i=1

αiW
p
p (ν, μi ),

where for all i , αi ≥ 0,
∑N

i=1 αi = 1. In a more general case, the population Wasserstein
barycenter ν∗ of a random measure μ with distribution P can be defined as

ν∗ = argmin
ν∈Pp(Ω)

E
[
W p

p (ν,μ)
] =

∫

Pp(Ω)

W p
p (ν, μ)dP(μ).

Given this definition, we note that the minimizers ĥ∗, h∗ and h∗
Pg

of Ĵ (h), J (h) and JPg (h),
respectively are all Wasserstein barycenters defined w.r.t. different sets of random measures.
Now, the following result for Ĵ (h) J (h), and JPg (h) can be obtained.

Theorem 2 Let (Ω, c) be a separable locally compact geodesic space. Assume that for any
θ ∈ Θ , fθ ∈ P2(Ω) has the probability distributionPg admitting a density function g : Θ →
R+. Let us denote by ĥ∗, h∗ and h∗

Pg
the minimizers of Ĵ (h), J (h) and JPg (h), respectively.

Then, for any α ∈ ΔN+1 the following statements hold:

1. the minimizers ĥ∗, h∗ and h∗
Pg

of Ĵ (h), J (h) and JPg (h) always exist and they are unique;

2. lim
N→∞W 2

2 (h∗, h∗
Pg

) = 0, lim∀i,ni→∞W 2
2 (ĥ∗, h∗) = 0.
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Proof From the theorem statement, we may write ĥ∗, h∗ and h∗
Pg

as

ĥ∗ = argmin
h

E
P̂N

[
W 2

2 (h, fθ )
]
,

h∗ = argmin
h

E
P̂

[
W 2

2 (h, fθ )
]
,

h∗
Pg

= argmin
h

EPg

[
W 2

2 (h, fθ )
]
.

From Definition 3, it immediately follows that ĥ∗, h∗ and h∗
Pg

are Wasserstein barycenters of

random probability measure fθ with respect to the distributions P̂N , PN and Pg , respectively.
The existence of Wasserstein barycenters with respect to any probability distribution for
locally compact geodesic space was proved in Le Gouic and Loubes (2017, Theorem 2) and
thus it ensures the existence of ĥ∗, h∗ and h∗

Pg
. The uniqueness follows from the fact that

fθ is assumed to be absolutely continuous with respect to the Lebesgue measure and thus
satisfies the uniqueness condition as proved in Boissard et al. (2015, Theorem 3.1). Finally,
the consistency of the Wasserstein barycenters follows from Le Gouic and Loubes (2017,
Theorem 3). ��

This theorem has two important consequences. First, it states that for any probability
measures μS j , μT ∈ P2(Ω) and any labeling functions fS j , fT : Ω → [0, 1] that are
absolutely continuous with respect to the Lebesque measure on Ω , the true and empirical
ideal joint errors λα and λ̂α calculated based on the available source and target samples
are unique. Secondly, it establishes the convergence of λ̂α to λα and λα to λPg with the
increasing number of available sources and the increasing size of available source samples,
respectively. The first consequence shows that each adaptation problem given by a set of
source domains and a target one can be uniquely characterized by the adaptability term λα

which determines the a priori success of DA. Furthermore, the second consequence implies
that with the increasing number of source domains, the estimation of the λα term becomes
more reliablemeaning that λ̂α can be explicitly learnedwhen the number of available labeling
functions grows to infinity.

4.2 Finite-sample inequalities

Even though Theorem 2 gives a first analysis of λα , it does not provide a way to estimate it
based on the available finite samples. In order to bridge this gap, our next result establishes
an inequality that bounds λα by λ̂α and a term depicting the Wasserstein distance between
the true and empirical ideal joint hypotheses.

Theorem 3 With the assumption of Theorem 2, let δ2(Ω) := supx∈Ω

{|x |2}, and let h∗, ĥ∗

denote the minimizers of J (h) and Ĵ (h), respectively. Then, the following inequality holds

λα ≤ λ̂α + √
2δ(Ω)E

[
W2(h

∗, ĥ∗)
]
.

Proof

λα = λα + λ̂α − λ̂α

= λ̂α + E
[
W 2

2 (h∗, fθ )
] − E

[
W 2

2 (ĥ∗, fθ )
]
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≤ λ̂α +
∣
∣
∣
∣E

[
W 2

2 (h∗, fθ )
] − E

[
W 2

2 (ĥ∗, fθ )
] ∣∣
∣
∣

≤ λ̂α + E

[∣
∣
∣
∣W

2
2 (h∗, fθ ) − W 2

2 (ĥ∗, fθ )

∣
∣
∣
∣

]

(3)

≤ λ̂α + √
2δ(Ω)E

[
W2(h

∗, ĥ∗)
]
. (4)

Here (3) is obtained using Jensen inequality for expected value taken over the convex absolute
value function. (4) is due to the reverse triangle inequality and the uniform boundedness of
the class of functions F = {W 2

2 (μ, ν)|μ ∈ P (Ω)} for some ν ∈ P (Ω) in the supremum
norm. ��

This result shows that the convergence of λ̂α to λα is controlled by the convergence of
ĥ∗ to h∗ w.r.t. the Wasserstein distance. As mentioned in Sect. 2, this convergence can be
characterized in a variety of ways depending on the support of

{
fθ i
}N+1
i=1 and on the algorithm

used to calculate the barycenter.

Measures supported on R For our first result, we assume that the source and target labeling
functions are supported on the interval Ω ⊂ R. In this one-dimensional case, computing
the Wasserstein barycenter simply amounts to averaging (in the usual way) their quantile
functions. This setting, known as quantile synchronization (Zhang and Müller 2011), leads
to the following theorem.

Theorem 4 With the assumptions of Theorem 3, let us suppose that h∗
Pg

and fθ i ∈ P2(Ω ⊂
R), θ i ∈ R

s, s ≥ 1 for all i = {1, . . . , N + 1} are absolutely continuous w.r.t. the
Lebesgue measure dx on R. Denote by F− a quantile function of fθ and let J2(μ) =
∫ 1
0

[
(F−1)′(x)

√
x(1 − x)

]2
d(x) for some probability measure μ ∈ P(Ω) with cumulative

function F such that F−1 is absolutely continuous. Then for any ni ≥ 1, i = {1, . . . , N + 1}
and N ≥ 1 the following holds

λα ≤ λ̂α + √
2δ(Ω)

⎛

⎜
⎝
10J

1
2
2 (h∗

Pg
)

√
N + 1

+
√
2EJ2( fθ )

N + 1

N+1∑

i=1

(ni )
− 1

2

+
√

1

N + 1

∫ 1

0
Var(F−(τ ))dτ

⎞

⎠ .

Proof

λα ≤ λ̂α + √
2δ(Ω)E

[
W2(h

∗, ĥ∗)
]

(5)

≤ λ̂α + √
2δ(Ω)

(
E

[
W2(h

∗, h∗
Pg

) + W2(h
∗
Pg

, ĥ∗)
])

(6)

≤ λ̂α + √
2δ(Ω)

10J
1
2
2 (h∗

Pg
)

√
N + 1

+ E

[
W2(h

∗
Pg

, ĥ∗)
]

(7)

≤ λ̂α + √
2δ(Ω)

⎛

⎜
⎝
10J

1
2
2 (h∗

Pg
)

√
N + 1

+
√
2EJ2( fθ )

N + 1

N+1∑

i=1

(ni )
− 1

2
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+
√

1

N + 1

∫ 1

0
Var(F−(τ ))dτ

⎞

⎠ . (8)

Equation (5) follows from Theorem 3; (6) is the application of the triangle inequality with
W2(h∗, h∗

Pg
) standing for the Wasserstein distance between the true and the population

barycenters, whileW2(h∗
Pg

, ĥ∗) is the distance between the true and the empirical barycenters
considered above. (7) is the application of the concentration inequality given in the theorem
above. Finally, (8) is due to Bigot et al. (2018, Theorem 3.2). ��

The obtained inequality implies the convergence of λ̂ term to its true value with the
increasing number of source domains. However, when the number of source domains is
fixed and only the size of samples available in each source domain tends to infinity, the

inequality suggests the existence of a bias introduced by J
1
2
2 (h∗

Pg
) and

∫ 1
0 Var(F−(τ ))dτ ,

where
∫ 1
0 Var(F−(τ ))dτ is always finite for any square-integrable measure h∗

Pg
. In cases

where J2(h∗
Pg

) = ∞ or J2( fθ ) = ∞, the convergence requires both the number of source
domains and the size of source domain samples to tend towards infinity. Surprisingly, this
would be the case for Gaussian distributions that are commonly used as a toy example
in many experimental evaluations. Finally, we also note the presence of the variance of the
quantile function in the bound. Given the probabilistic interpretation of the labeling functions
introduced above, this term reflects the variability that exists between instances of different
classes across the source domains and the target one. This is meaningful in the context of the
ideal joint hypothesis that is common to source and target domains but should also perform
well on each of them.

We also note that when ni = p,∀i , the barycenter can be calculated as ĥ∗ = 1
p

∑p
j=1 δX̄∗

j
,

where X̄∗
j = 1

N+1

∑N+1
i=1 X∗

i, j and X∗
i, j are order statistics of the i

th sample of observations
{
x Sij

}

j=1...p
for source domains and

{
xTj

}

j=1...p
for the target one. By definition, the order

statistic of a set of random variables is obtained by sorting them in the increasing order, i.e.,
X∗
i,1 = min{x Si1 , xT1 } and X∗

i,p = max{x Sip , xTp }. In this case, the inequality simplifies to the
following result (Bigot et al. 2018, Theorem 3.1):

λα ≤ λ̂α + √
2δ(Ω)

⎛

⎜
⎝
10J

1
2
2 (h∗

Pg
)

√
N + 1

+
√

1

N + 1

∫ 1

0
Var(F−(τ ))dτ + 2

p + 1
J2(h∗

Pg
)

⎞

⎟
⎠ .

Measures supported on R
d In order to prove our next result, we assume that the source

and target labeling functions are supported on a subspace of Rd . Furthermore, we consider
a barycenter construction, where h∗

E is the minimizer of the Wasserstein barycenter problem
with entropy regularization of hE given as follows:

h∗
E = argmin

h∈P2(Ω)

1

N + 1

N+1∑

i=1

W 2
2 (h, fθ i ) + γ E(h),

where E(h) = ∫
Rd gh(x) log(gh(x))dx assuming that h admits a density gh on Ω . This

particular choice ismade for practical reasons as entropic regularizationwas proved to provide
smooth barycenters especially when the input probability measures are irregular (Bigot et al.
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2018b). Bearing in mind that we aim to calculate the λ̂α term from finite samples, this choice
appears natural and justified. The following theorem gives a finite-sample inequality for λα

when the barycenter is calculated with entropic regularization.

Theorem 5 With the assumptions of Theorem 3, let Mq(μ) = ∫
Rd |x |qμ(dx) for q > 0.

Assume that h∗, ĥ∗ are strictly log-concave probability measures supported on Ω ⊂ R
d .

Then for a constant ς depending on d and N f = n
− 2

d
i + n

− q−2
q

i the following holds:

λα ≤ λ̂α + √
2δ(Ω)

√
√
√
√ 2ς

γ (N + 1)

N+1∑

i=1

M2/q
q ( fθ i )N f .

Proof

λα ≤ λ̂α + √
2δ(Ω)E

[
W2(h

∗, ĥ∗)
]

≤ λ̂α + √
2δ(Ω)E

[√

KL(h∗, ĥ∗)
]

(9)

≤ λ̂α + √
2δ(Ω)E

[√

KL(h∗, ĥ∗) + KL(ĥ∗, h∗)
]

(10)

= λ̂α + √
2δ(Ω)E

[√

dE (h∗, ĥ∗)
]

(11)

≤ λ̂α + √
2δ(Ω)E

⎡

⎣

√
√
√
√ 2

γ (N + 1)

N+1∑

i=1

W2( f̂θ i , fθ i )

⎤

⎦ (12)

≤ λ̂α + √
2δ(Ω)

√
√
√
√ 2

γ (N + 1)

N+1∑

i=1

E

[
W2( f̂θ i , fθ i )

]
(13)

≤ λ̂α + √
2δ(Ω)

√
√
√
√ 2ς

γ (N + 1)

N+1∑

i=1

M2/q
q fθ i N f . (14)

Here (9) is due to the Talagrand inequality for strictly log-concavemeasures; (10) comes from
the fact that Kullback–Leibler divergence is always nonnegative; (11) introduces dE which
is the symmetrized Kullback–Leibler divergence; (12) is obtained from Bigot et al. (2018b,
Theorem 3.4); (13) is due to the Jensen inequality for the concave square root function.
Finally, (14) is a consequence of Theorem 1. ��

This theorem shows the convergence of the λ̂α to λα when the number of source domains
or the number of samples available in the source domains goes to infinity under the condition
that Mq exists and thus is finite. Note that the assumption of strict log-concavity imposed
on h∗, ĥ∗ follows from the use of the Talagrand inequality that was proved to hold in the
case p = 2 only for Gaussian and strictly log-concave distributions. In the case of measures
supported on a subspace of Rd , this assumption means that h∗ and ĥ∗ can be written as
a(x)cb(cx), where c is some positive constant, a(x) is a log-concave measure and b(cx) is
the normal density N (0, cId). Regarding a(x), note that popular densities are log-concave,
e.g. Gaussian and uniform densities on the compact and convex subsets ofRd . Note also that
Theorem 5 is proved for uniform weights α. This choice is dictated by the sake of simplicity
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in order to keep the proofs and theorem statements as simple as possible. Nevertheless, the
same inequalities can be proved with non uniform weights using the analysis of unbalanced
optimal transport (Chizat et al. 2015).

Finally, another popular way of obtaining smooth barycenters is to add a convex regu-
larization on optimal transport plans as it was done in Cuturi and Doucet (2014). This kind
of regularization relies on the Sinkhorn divergence introduced in Cuturi (2013) and leads to
an optimization problem that can be solved efficiently using the Sinkhorn–Knopp algorithm
(Sinkhorn and Knopp 1967). The analysis proposed in our paper can be also established for
this particular penalization scheme using the concentration equalities for Sinkhorn barycen-
ters provided in Bigot et al. (2018a).

5 Empirical results

In this section, we evaluate the usefulness of λ estimation in accesing the intrinsic difficulty
of a domain adaptation problem. To this end, we first consider an illustrative example with
2 domains that shows how our estimation of a priori adaptability takes into account not only
the geometric information but also the labeling of the considered source and target domains
points. We further extend our empirical evaluation to a data set with increasing adaptation
difficulty with 5 source domains.

5.1 Simulated data with two source domains

We present here experiments that aim at illustrating the appropriateness of our estimation
procedure in quantifying the a priori difficulty of a DA problem. We consider a binary
classification task with two source and one target domains, where source and target samples
are composed of 600 and only 40 labeled points, respectively. Note that this imbalance
between the sizes of the source and target domains is an approximation of a real-world
adaptation problem where only a handful of target domain’s labeled instances is assumed to
be available. We consider two different scenarios that vary in terms of the intrinsic difficulty
of the underlying DA problem. For the first case, we generate the classes of the source and
target data according to Gaussian distributions having the same means and a slightly varying
variance leading to highly similar labeling functions across the source and target domains.
Figure 2(right) shows the generated data, where the class label +1 (resp. −1) is represented
in light color (resp. dark color). In the second case, we flip the labels of the target examples to
obtain a much more difficult adaptation scenario with completely different source and target
labeling functions [Fig. 2(left)]. In this case, we expect a complete failure of the classifier
learned on the source samplewhen applied to the target one. In order to illustrate our approach,
we calculate the best joint hypothesis for each problem as a solution of the entropy regularized
Wasserstein barycenter problem between the source and target labeling functions with equal
weights. In this case, λ̂ (indicated on top of each plot in Fig. 2) corresponds to the final value
of the loss function of this optimization procedure.

We can make the following comments regarding the empirical estimation of λ̂. First, we
get a smaller value (0.008 versus 0.056) on the easier adaptation problem. This confirms that
the value of λ indeed helps to access the a priori adaptation difficulty. Second, the distances
between the marginal distributions of the source and target data stay almost unchanged for
both setups, while we could have naively expected an increase of the discrepancy in the
second case. This is an evidence that the divergence is not sufficient to properly reflect the
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Fig. 2 Two different DA scenarios: (left) the target function is very dissimilar compared to the source ones;
(right) the target and source labeling functions are very similar; (middle) interpolation between the two previous
extreme situations and its impact on λ̂. Surprisingly, in both cases, theWasserstein distances between the source
and target marginal distributions do not change: 0.01 for the first source and 0.2 for the second one

hardness of adaptation. This observation agrees well with the arguments that motivated us
to analyze the ideal joint error in DA: even when the discrepancy between the source and
target marginal distributions is small, the existence of a good hypothesis for both domains
is a crucial component for the success of DA. On the other hand, we studied the behavior of
the λ̂ term when the target labeling function [Fig. 2(right)] gradually changes towards that
of Fig. 2(left). To this end, we performed interpolation between the two labeling functions
by varying their weights [α; 1 − α] for all α ∈ [0, 1] with step 0.05 in order to move from
the oppositely labeled domains to similarly labeled ones. This interpolation is portrayed by
the 3d plot inside Fig. 2(middle) where the target labeling function changes from a bi-modal
distribution in the first case to a uni-modal distribution in the second one while the source
labeling functions remain uni-modal and fixed. In general, we note that one may tune the
values of α following the asymptotic analysis of its optimal mixing values proposed in Blitzer
et al. (2008) and included later in Ben-David et al. (2010a). In our study, however, we choose
to cover the whole interval of possible α values to fully observe the behaviour of the λ̂ term.
For each labeling function obtained in this way, we calculated the empirical λ̂ term as before.
The results are given in Fig. 2(middle). We note that λ̂ becomes smaller and smaller when
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Fig. 3 Generated samples from the Moons dataset with different rotation degrees

the target labeling function approaches in shape the one considered in Fig. 2(left). This result
agrees with the intuition behind the λ term explained in this study.

5.2 Moons data set

In order to go further in the empirical evaluation of our theoretical framework, we perform
experiments on the well used Moons dataset described in Germain et al. (2013). Following
this paper, we generate the first source domain as two entangled moons consisting of 300
data points such that each of the two moons corresponds to one of the classes. We further
generate 4 more source domains by rotating the one generated previously at a random angle
between −15◦ and 15◦. The target domain’s data is obtained by generating 20 points using
the same distribution as before and by rotating them at a given angle varying between 0◦ and
360◦. Generated samples for several angles are given in Fig. 3.

Note that for this particular data generating procedure, it is commonly assumed that
increasing the rotation angle leads to a more difficult adaptation problem. Indeed, one can
observe from Fig. 3 that the source samples become more and more shifted with respect
to the target samples when the rotation angle varies from 0◦ to 90◦. For the rotation angle
between 90◦ and 180◦, the unlabeled samples start to become geometrically closer even
though the source and target points that can be found in the same regions have opposite
labels. Consequently, the classifier learned on source sample and applied directly on the
target sample is expected to have a degrading performance for angles between 0◦ and 180◦
while the distance between the source and target samples should be bell-shaped with a peak
around 90◦. The process is then reversed on the range of rotation angles between 180◦ and
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Fig. 4 (Left) λ̂ and the true target error of a 1NN classifier as a function of the rotation angle; (right)Wasserstein
distance, MMD distance and the true target error of a 1NN classifier as a function of the rotation angle

360◦. To verify this, we resort to a standard 1NN classifier on the source domain’s data and
measure its error in classifying the target samples averaged over 30 randomly drawn samples.
We further calculate the Wasserstein and Maximum mean discrepancy (MMD) (Smola et al.
2007) distances between the source and target samples for each rotation angle considered
and the λ̂ term as before. The results are presented in Fig. 4(left) and (right) for our method
and the calculated divergence measures, respectively. From this figure, we can see that the
proposed estimation procedure for λ̂ allows to predict and captures correctly the behavior of
the true target error while only the distance between the unlabeled samples fails to do so. As
before, this can be explained by the fact that the considered divergence measures do not take
into account the information about the labels of multiple source and target domains and thus
reflects only the geometric proximity of points across two domains.

6 Conclusions and future perspectives

In this paper we proposed a new theoretical analysis for the λ term describing the a priori
success of DA. The main idea of our work was to express the joint ideal error term by using
the Wasserstein distance-based error function. We proved the uniqueness and the existence
of the λ term for each DA task and derived new finite-sample inequalities for it. These
generalization bounds cover two cases: in the first one, the considered source and target
measures are supported on the real line; the second focus on the d-dimensional case with
an entropic barycenter regularization. These theoretical results are quite important as, to the
best of our knowledge, the term depicting the existence of the best hypothesis for source
and target domains has never been thoroughly analyzed in the DA field and was the only
remaining element that has never been estimated in the bounds.

Ourwork can be extended in different directions.We plan to investigate a possible applica-
tion of the proposed analysis tomulti-viewandmulti-task learning. Inmulti-view learning, the
analogue of the adaptability term may be defined as the error achieved by the best hypothesis
function over all views. This scenario is pretty similar to multi-source DA while the pecu-
liarity here lies in the fact that the available views may be interdependent and that learning
a good hypothesis should benefit from their interaction. In this case, the proposed analysis
should be extended in order to correctly model the learning problem. In multi-task learning,
we may also consider the problem of characterizing the possible benefit of learning a set
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of tasks simultaneously by a term defined as an agreement between the predictors that are
learned for each task. In this case, similar to multi-source DA, the success of learning will
naturally depend on the existence of a shared representation, where all the task are learned.

Acknowledgements Funding was provided by Agence nationale de la recherche (Grant No. ANR-15-CE23-
0026).
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