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Abstract
Mixture-of-Experts (MoE) enable learning highly nonlinear models by combining simple
expert models. Each expert handles a small region of the data space, as dictated by the
gating network which generates the (soft) assignment of input to the corresponding experts.
Despite their flexibility and renewed interest lately, existing MoE constructions pose several
difficulties during model training. Crucially, neither of the two popular gating networks used
in MoE, namely the softmax gating network and hierarchical gating network (the latter used
in the hierarchical mixture of experts), have efficient inference algorithms. The problem
is further exacerbated if the experts do not have conjugate likelihood and lack a naturally
probabilistic formulation (e.g., logistic regression or large-margin classifiers such as SVM).
To address these issues, we develop novel inference algorithms with closed-form parameter
updates, leveraging some of the recent advances in data augmentation techniques. We also
present a novel probabilistic framework for MoE, consisting of a range of gating networks
with efficient inference made possible through our proposed algorithms. We exploit this
framework by using Bayesian linear SVMs as experts on various classification problems
(which has a non-conjugate likelihood otherwise generally), providing our final model with
attractive large-margin properties. We show that our models are significantly more efficient
than other training algorithms for MoE while outperforming other traditional non-linear
models like Kernel SVMs and Gaussian Processes on several benchmark datasets.
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1 Introduction

Learning complex models by combining several simpler models is at the heart of ensemble
methods. The Mixture-of-Experts (MoE) paradigm provides an attractive and principled,
probabilistic framework for constructing such ensembles by combining simple “experts” via
probabilistic mixture models (Yuksel et al. 2012; Masoudnia and Ebrahimpour 2014). Each
expert in theMoEhandles a small regionof the data spacewhere the data-to-expert assignment
is controlled by a gating network. The gating network essentially learns a flat/hierarchical
partitioning of the input space. The MoE paradigm has been successfully used to design
nonlinear models by combining simpler linear expert models. Note however that the MoE
setting does not restrict the experts to be linear models, e.g., each expert can be a Gaussian
Process (Meeds and Osindero 2006).

As compared to the other dominant paradigm for nonlinear learning, i.e., kernel meth-
ods (Shawe-Taylor and Cristianini 2004), the MoE paradigm is often more appealing due to
several reasons: (1) MoE has an inherently probabilistic formulation which enables a proba-
bilistic/fully Bayesian treatment, (2) MoE based methods are faster at training and test time
while also being efficient in terms of space since they do not have to deal with kernelmatrices;
and (3)MoE basedmethods provide nice interpretability—for example, a nonlinear classifier
learned by a MoE can be thought of as a combination of several linear classifiers. Finally,
MoE has also been gaining considerable attention lately in the design of very large neural
networks (Shazeer et al. 2017) due to MoE’s inherent property of conditional computation,
i.e., only a part of the model is active for a given input.

Despite these appealing properties, the MoE architectures are known to be considerably
difficult to train as they usually lack closed form parameter updates. Note that learning
a MoE model requires learning the parameters of each expert in the mixture, as well as
the parameters that define the gating network. A typical approach to learn MoE models is
to formulate them as latent variable models and use the Expectation–Maximization (EM)
(Jordan and Jacobs 1994) algorithm. In the EM algorithm for MoE, the latent variables
denoting the input-to-expert (soft) assignments are inferred in the E step and the parameters
defining the experts, and the gating network is updated in the M step. However, except for
some special cases, theM step updates forMoE usually do not have a closed form and require
iterative double loop procedures or iterative, recursive least squares solvers, which can be
exhibit slow convergence. The lack of a closed form of parameter updates onMoEmodels can
usually be (1) Due to the choice of gating network which is usually modeled by a softmax (in
case we want a flat partitioning of the inputs), or modeled by a hierarchy of logistic models
(in case we want a hierarchical partitioning, e.g., in hierarchical MoE models Jordan and
Jacobs 1994; Bishop and Svenskn 2002); and (2) Due to the choice of the expert models
which, for classification problems, are usually chosen to be logistic regression models (again
lacking closed form parameter updates).

In this work, we present a probabilistic MoE framework which addresses the above issues
in a principled manner. Our contributions can be summarized as follows:-

– We propose a rich suite of gating networks with appealing properties, for both flat and
hierarchical MoE (Bishop and Svenskn 2002). More importantly, the proposed inference
algorithms lead to efficient, closed-form parameter updates using variable augmentation
techniques. While there do exist, some inference methods for flat MoEs that have closed
form updates (Yuksel et al. 2012), they generally come with the cost of learning a huge
number of parameters. While, to the best of our knowledge, this is the first work that
offers closed form parameter updates for hierarchical MoE.
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– One of our gating networks (logistic stick-breaking process based gating) can also learn
the number of experts using a logistic stick-breaking prior (Ren et al. 2011), while still
having simple closed formupdates for the parameters, thanks to the variable augmentation
scheme we employ.

– Our MoE framework leverages Bayesian linear support machines (SVM) (Polson et al.
2011) as constituent experts. Bayesian SVMs as experts are appealing due to two reasons:
(1) The model naturally enjoys the large-margin properties of SVMs; and (2) Variable
augmentation techniques can also be exploited to derive closed-form parameter updates
for Bayesian linear SVMparameters. Crucially, theMoE frameworkwith Bayesian linear
SVM results in a nonlinear Bayesian SVM without employing the recently proposed
kernelized extensions of Bayesian SVM (Henao et al. 2014), which are difficult to do
inference on and are slow at training and test time. Our probabilistic framework can also
be a viable alternative to Gaussian Process (GP) based nonlinear classification, which
usually lacks conjugacy and is hard to do inference on Nickisch and Rasmussen (2008).

– We conduct extensive experiments to show that the use of closed-form updates lead
to much faster training times compared to existing MoE frameworks whereas the use
of Bayesian SVM as experts, leads to significant improvement in performance over
competing methods for non-linear large margin models (Henao et al. 2014; Cotter et al.
2013;Wang and Zhu 2014; Zhu et al. 2011) as well as strongMoE baselines (Zhou 2016).

Our work lays out a novel and principled foundation to build MoE models, as well as it
can be integrated into other more sophisticatedmodels that requireMoE as its building block,
e.g., recent work on conditional computation in deep neural networks (Shazeer et al. 2017).
Our inference algorithms with clean, closed-form updates are considerably more simple as
compared to the existing inference methods for MoE.

2 Background

Wefirst introduce some notation and provide a brief overview of theMixture of Experts (Yuk-
sel et al. 2012; Masoudnia and Ebrahimpour 2014) and Bayesian SVMs (Polson et al. 2011)
which we use as experts in our proposed framework. We will focus on binary classifica-
tion in which we assume we are given training data D = {xi , yi }Ni=1 where xi ∈ R

d and
yi ∈ {−1,+1} and the goal is to learn a classifier that can predict the label y∗ ∈ {−1,+1}
for a new input x∗. We will denote the feature matrix by X ∈ R

N×d and ground truth labels
by y ∈ {−1,+1}N . Although we present our framework focusing on binary classification, it
can be extended naturally to multi-class classification or regression problems.

2.1 Mixture of experts

A Mixture-of-Experts (MoE) model is defined by a set of K experts, each of which is a
probabilistic supervised learning model {p(y|x,wk)}Kk=1 parametrized by weights W =
[w1, . . . ,wK ], with wk ∈ R

d . In addition, the framework is defined by a gating network
parametrized byV = [v1, . . . , vK ], which defines the probabilities of assignment of an input
xn to each of the K experts. For example, the probability of input xn being assigned to expert
k is defined by a function πk(xn) where πk(·) is defined in terms of the parameters V of the
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gating network. Note that
∑K

k=1 πk(xn) = 1. The MoE defines the conditional probability
of yn given xn as

p(yn |xn,W,V) =
K∑

k=1

πk(xn) · p(y|xn,wk) (1)

Different versions ofMoE primarily differ in the choice of the experts and the gating network
(Yuksel et al. 2012; Masoudnia and Ebrahimpour 2014 provide an excellent overview). The
gating networks can learn a flat or a hierarchical partitioning of the input space (the latter
being the casewith hierarchicalmixture of experts Bishop and Svenskn 2002). It is their plug-
and-play nature that provides a considerable flexibility in designing MoE models. However,
learning the gating network parameters also poses difficulty in MoE models, where lack of
conjugacy in typically used softmax/logistic gating usually prevents from getting closed form
updates for the gating network parameters (and one has to rely on expensive procedures such
as inner-loop iterative recursive least square algorithms). In this work, we proposed a suite of
gating networks, along with efficient inference algorithms based on variable augmentation
schemes, which allows us to derive closed form parameter updates for the gating network
parameters.

2.2 Bayesian support vector machines

We use a probabilistic formulation of support vector machines—the Bayesian SVM (Polson
et al. 2011)—as experts in our proposed MoE framework. As we will show, this choice leads
to a simple and seamless inference procedure for all the parameters of our MoE framework
using latent variable augmentation strategies. At the same time, our framework also enjoys
the large-margin properties of SVMs.

The Bayesian SVM is based on representing the hinge-loss objective in non-probabilistic
SVM as a scale-mixture of Gaussians (Polson et al. 2011).

exp(−2max(0, 1 − yiw
T xi )) =

∫ ∞

0

1√
2πγi

· exp
(

− (1 + γi − yiw�xi )2

2γi

)

dγi (2)

Equation 2 enables writing the negative of the hinge-loss max(0, 1 − yiwT xi ) on each
example xi , yi as a Gaussian likelihood when conditioned on an auxiliary latent variable γi
with an inverse-Gaussian distribution. As shown in Polson et al. (2011), the likelihood when
conditioned on γi , is of the form

p(yi , γi |w, xi ) = N (1 − yiw
�xi | − γi , γi ) (3)

This is attractive since the Gaussian likelihood is conjugate with Gaussian priors or scale-
mixture of Gaussian priors on the weight vector w, which leads to simple, closed form
posterior updates.

Note that although the Bayesian SVM formulation proposed in Polson et al. (2011) is
applicable for linear SVMs, our MoE based formulation would naturally, allow it to be used
for solving nonlinear classification problems without having to rely on kernel extensions
which are usually much more difficult to do inference on, and are computationally very
expensive (Henao et al. 2014) since they work with kernel matrices.

There have been other works to tackle this problem such as Williams and Seeger (2001)
and Rahimi and Recht (2008). While such approximations can, to some extent, alleviate
the scalability issue, our MoE based framework offers several other benefits beyond just
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scalability, such as better interpretability and improved inference algorithms. The proposed
MoE framework can also be easily used with kernel-based experts (like Gaussian Process)
and these kernel-approximation techniques can further help in scaling up the model.

3 A probabilistic framework for large-marginmixture of experts

Our Mixture-of-Experts (MoE) architecture leverages Bayesian SVM as its constituent
experts. Assuming the number of experts to be K (which, as we will show in Sect. 4.2,
can also be learned from data), our MoE formulation uses K Bayesian SVMs defined by the
set of weight vectors W = [w1, . . . ,wK ] where wk denotes the weight vector of the kth
Bayesian SVM expert.

We use zik = 1 to denote zi = k, i.e., the input xi has been assigned to expert k. The
expectations of the latent variables zik and γik , given the current estimates Ŵ and V̂ of MoE
model parameters, can be computed in closed form

ηik = E[zik] ∝ p(yi |ŵk, xi , γik)p(zik = 1|xi , V̂)

τik = E[γ −1
ik ] = |1 − yi ŵ

�
k xi |−1 (4)

The form of p(zik = 1|xi , V̂) will depends on the form of gating network, discussed in
Sects. 4.1–4.4.

Wewill use an Expectation–Maximization (EM) (Dempster et al. 1977) algorithm to learn
the latent variables and the parameters. The E step will compute the expectation of the latent
variables as defined in Eq. 4 and the M step will compute the point estimate of the MoE
model parametersW and V.

Denoting Z = [z1, . . . , zN ] as the input-to-expert assignment latent variables and γ =
{γik}N ,K

i=1,k=1, the complete data log-likelihood of the model, as required to derive the EM
algorithm will be

L( y,Z, γ |X,W,V) =
N∑

i=1

K∑

k=1

zik(log p(yi , γik |xi ,wk) + log p(zik = 1|xi ,V)) (5)

For brevity, we have ignored the prior terms onW, V. We use zero-mean Gaussian prior on
the Bayesian SVM weight vectors W = [w1, . . . ,wK ]. The priors on the gating network
parameters V will depend on the choice of the gating network. Also, there may be additional
variable augmentations depending upon the gating network (which we discuss next), which
will require to accordingly modify the gating network probability in Eq. 5.

The EM algorithm alternates between computing the expectations of the latent variables
using Eq. 4 and using these expectations to maximize the complete data log-likelihood given
by Eq. 5 to find the point estimates of the model parameters W and V. Assuming Gaussian
priors N (0, λ−1I) on the Bayesian SVM weight vectors wk which act as regularization for
our SVM classifiers, the Gaussian likelihood in Eq. 3, leads to the following maximum-a-
posteriori (MAP) estimate

ŵk =
(

λI +
N∑

i=1

ηikτikxi x�
i

)−1 (
N∑

i=1

yi (τik + 1)ηikxi

)

(6)

As can be seen from Eq. 6, the updates for the expert models resemble those computed in
Polson et al. (2011), except the presence of ηik . The presence of ηik reweighs the examples
for each expert, thus, ensuring that each expert models only a subspace of the input. The
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estimates of ηik are computed using the gating network in the E-step of the EM algorithm.
Thus, the subspace of input that an expert models depends on the structure of the gating
network, that is, how we define πk(xi ) = p(zik = 1|xi ,V). In the next section, we discuss
such different gating networks. Note, however, the MAP estimate for the experts is agnostic
to the structure of the gating networks and is given by Eq. 6.

4 Gating networks

As discussed above, the choice of the gating network can have a major impact on the final
model that is learnt. In this work, we propose three separate choices for flat gating networks:
(1) Generative gating network (Sect. 4.1); (2) Polya-Gamma based Softmax gating network
(Sect. 4.2); (3) Logistic stick-breaking process (LSBP) prior (Ren et al. 2011) based gating
network (Sect. 4.2). We also discuss variable augmentation to learn Hierarchical Mixture-of-
Experts (Sect. 4.4). Further, we show, all our gating networks admit a closed form parameter
update which is a particularly appealing aspect from the point of view of computational
efficiency.

4.1 Generative gating

The Generative Gating (GG) network, as the name suggest, models input-expert assignment
through Gaussian Mixture Model like input modelling as shown below:

π j (xi ) = p(zik = 1|xi , αk,μk,Σk) ∝ α jN (xi |μk,Σk) (7)

Here αk represents the prior probability of expert k and μk,Σk denote the parameters of
the Gaussian likelihood of xk being assigned to expert k. Thus, the parameters of the gating
network are given by V = {αk,μk,Σk}Kk=1. This gating network seamlessly embeds within
the EM algorithm and the gating network parameters have closed form updated (similar to
generativemixturemodels for data). TheGaussian distributions here can be replaced by some
other distributions as well depending on the type of the inputs.

Using the input to expert assignment probabilities π j (xi ) defined above, we can compute
the expectation ηik in (4). The estimates of parameters in V can be computed by maximizing
the expected complete data log-likelihood, under the additional constraint that

∑K
k=1 αk = 1.

The updates for gating network parameters are as follows:

μk =
∑N

i=1 ηikxi
∑N

i=1 ηik
(8)

Σk =
∑N

i=1(xi − μk)(xi − μk)
T

∑N
i=1 ηik

(9)

From practical perspectives, we prefer to approximate Σk using a diagonal covariance
matrix, rather than the full covariance matrix (as implied by the expression above), which is
computationally more efficient to compute (as the number of parameters to be estimated are
linear in input data dimensionality as opposed to quadratic for a full covariancematrix). At the
same time, we found the empirical performance of the diagonal covariance approximation to
be comparable to that of a full covariance matrix. It is pertinent to mention that the generative
gating, the simplest of our gating networks, and similar gating networks have been tried in
other works as well (Meeds and Osindero 2006).
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4.2 Pólya-gamma based softmax gating

The softmax gating is the most commonly used gating network for MoEs, dating back to the
first work on MoEs (Jacobs et al. 1991) while also being used in recent works like (Shazeer
et al. 2017) as well. However, these prior usages of softmax gating did not have closed form
parameter updates and therefore, resort to iterative optimization. This makes our proposed
Pólya-Gamma based Softmax Gating construction an appealing alternative.

We overcome the non-conjugacy of softmax gating through a latent variable augmentation
scheme based on Pólya-gamma augmentation (SG-PG) (Polson et al. 2013) which leverages
the following identity:

(eψ)a

(1 + eψ)b
= 2−be(a− b

2 )ψ

∫ ∞

0
e−βψ2/2 p(β)dβ (10)

where p(β) represents the density of β ∼ PG(b, 0)with PG denoting the Pólya-gamma dis-
tribution (Polson et al. 2013). This result inspires the data augmentation described in Scott and
Sun (2013) to developGibbs sampling or EMbased routines for logistic regression,which can
be extended to softmax functions. For that, we introduce latent variables β = {βi j }i=N , j=K

i=1, j=1 .
In the softmax gating network, we are interested in learning V = [v1, . . . vK ]. Note that this
is equivalent to learning a multinomial classification model with data {xi , zi }Ni=1, albeit the
“labels” zi are latent variables.

The traditionally defined softmax probability of the assignment of an input xi to an expert
k, without the latent variable augmentation, can be expressed as:

p(zik = 1|V, xi ) = (1 + exp(−ψik))
−1 (11)

where ψik = xTi vk − log
∑K

l=1,l 	=k exp(x
T
i vl). This expresses the softmax probability as a

Bernoulli likelihood,which canbedecomposedby settinga = b = 1 in thePG identity.Using
the augmentation results from Scott and Sun (2013), we get log p(zik = 1|xi , βik,V) ∝
ψik/2− βikψ

2
ik/2. This expression is substituted in the expression of the complete data log-

likelihood in (5). The EM algorithm also requires the expectations of the PG latent variables,
which luckily are available in closed form

χik = E[βik] = 0.5ψ̂−1
ik tanh(0.5ψ̂ik) (12)

as derived in Polson et al. (2013). However, despite the augmentation, the parameter of V
are coupled in the complete data log-likelihood due to coupling in ψik . This is resolved by
assuming the values of vl , l 	= k to be fixed to their most recent estimates while estimating vk .
This is equivalent to conducting an Expectation Conditional Maximization (ECM) routine.
Assuming a Gaussian prior on vk , i.e., vk ∼ N (0, ρ−1I)., the resulting parameter updates
for vk are given by:

v̂k = (X�Ω̂kX + ρI)−1X�(κ̂1k, . . . , κ̂Nk)
� (13)

κ̂ik = ηik(0.5 + χik log
N∑

l=1,l 	= j

exp(x�
i v̂l))

Ω̂k = diag(χ1kη1k, . . . , χNkηN j ) (14)
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4.3 Logistic stick-breaking process gating

We present logistic stick-breaking gating network (Rigon and Durante 2017) based on the
logistic stick-breaking prior (LSBP) (Ren et al. 2011). LSBP-Gating is a non-parametric
gating network that partly relieves the machine learning practitioner from the need of tuning
the number of experts as it “learns” the hyperparameter from the training data itself.

The LSBP construction specifies a large enough truncation level on the number of experts.
Themodel prunes out unnecessary experts aswarranted by the data, converging on the number
of required experts. The gating probability for an input xi is defined as:

πk(xi ) =

⎧
⎪⎨

⎪⎩

α1(xi ) if k = 1

αk(xi )
∏k−1

l=1 (1 − αl(xi )) if 1 < k < K − 1
∏K−1

l=1 (1 − αl(xi )) if k = K

(15)

αk(xi ) =
(
1 + exp

(
−νTk xi

))−1
(16)

This essentially means that a data point is assigned to the first expert with probability α1(xi )
while for the rest of the gates, it is defined as the product of the probability that it has not
‘yet’ been assigned to an expert and the probability it will be assigned to the given gate. It
is easy to check that this is a proper distribution whereas, from a computational perspective,
we specify a fixed (but a large) number of gates. Each of the gates is assigned some (but not
all) probability mass. The remaining probability mass is then assigned to the last gate/expert.
This ensures that the probabilities still sum to unity i.e.,

∑K
k=1 αk(xi ) = 1, where K is the

large number of experts/truncation level.
Intuitively, LSBP gating network prunes the provided set of experts to be used, because

of its bias towards the initial set of experts. As an artifact of the Stick-Breaking Process
used in this construction, which is one of the possible representations of Dirichlet Process,
experts are considered in increasing order of their index, and experts down the queue are only
considered if the previous experts were inadequate to explain the labels. This is in contrast to
other gating functions, where all experts are treated equally and therefore, it becomes likely
that an increasing number of experts will overfit to the training data. We can effectively
consider the LSBP gating performing the role of a shrinkage prior. We demonstrate both the
shrinkage by LSBP and the overfitting of GG gating networks with an increasing number of
experts in our experiments.

The EM updates for LSBP gating can be derived, again by plugging in the gating prob-
abilities into Eq 5. As was the case for PG–SG gating, we need data augmentation for
over-coming non-conjugacy due to the softmax. Hence during the E-step, the expected value
of the auxiliary variable is as follows:

ωik =
(
2xTi ν

(t)
k

)−1
tanh

(
0.5xiν

(t)
k

) K∑

i=k

πk(xi ) (17)

Then in theM-Step, using the auxiliary variable and gating probabilities from the previous
step, the weights of the logistic are updated as follows:

ν
(t+1)
k =

(
XT diag(ω1k, ω2k, . . . , ωnk) + Σ−1

ν

)−1 (
XT diag(κ1k, κ2k, . . . , κnk)

+Σ−1
ν μν

)
(18)

Σ−1
ν = λinvregI−1, μν ∼ N (0, I) (19)
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Fig. 1 (Left) a A diagrammatic representation of the structure of a 3-level Hierarchical MoE (right). b Final
decision boundaries learnt by a 7-level Hierarchical MoE on banana dataset and (bottom). c Partitions learnt
by different nodes of a 3-level HierarchicalMoE (black: root partition, red and blue: children partitions) (Color
figure online)

κih = πik − 0.5
K∑

i=k

πik (20)

4.4 Hierarchical gating (hierarchical mixture of experts)

We now shift our focus to Hierarchical MoEs (HME). First proposed in Jordan and Jacobs
(1994), it assumes a hierarchical partitioning of the input space, providing an alternative
to partitioning provided by the flat gating networks. Despite its success, an efficient algo-
rithm with closed-form parameter updates has eluded Hierarchical MoEs (to the best of our
knowledge). Interestingly, we can again leverage the latent-variable augmentations to con-
struct HMEs which can be trained efficiently. The fundamental observation is that all internal
nodes (non-leaf nodes) in a hierarchical MoE are essentially performing classification, and
thus, can be constructed using Bayesian SVMs.While we focus on the construction of HMEs
using Bayesian SVMs, HMEs can similarly be constructed using logistic models while using
Pólya-Gamma augmentation.

We will restrict our discussion of Hierarchical MoEs to complete binary trees (of arbitrary
depths), as was done in Jordan and Jacobs (1994). In these models, the internal nodes play
the function of gating and the leaf nodes play the role of experts. Since we are using only
binary nodes, we construct our HME using Bayesian SVMs.We can usemulti-class Bayesian
SVMs in case of non-binary trees.

Since, the notation for Hierarchical MoEs can get cumbersome, we restrict our discussion
to a Hierarchical MoE shown in Fig. 1. Here, W = [w1, . . . w7] denote the weight vectors.
Also, we assume the classification labels to be y ∈ {0, 1}. If an internal node predicts 0, left
child is chosen for the next prediction, or else right. Let zi j = 1 denote the event that node
j was chosen in the prediction for xi . We can define the recursive probability rule (assume
integer division for indices and % denotes the modulo operation)

p(zik = 1|xi ,W) ∝ p
(
k%2|xi ,wi k2

)
p(zi k2

= 1|xi ,W) (21)

Note that, p(y|xi ,wk) ∝ exp(−2max(0, 1−2(y−1)wT
k xi )) (Bayesian SVM) and p(zi1 =

1|xi ,W) = 1 (the root node is necessarily visited). The final prediction is the weighted
combination of predictions by leaf nodes, weights being computed by normalizing p(zi j =
1|xi ,W) for leaf nodes. When learning the model, we will assume zi j to be a latent variable.
For leaf nodes, we introduce γi j as latent variable for Bayesian SVM. However, for all
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internal nodes, we introduce two latent variables for every example xi , that is γ 0
i j , γ

1
i j . Internal

nodes take both labels (albeit with different probabilities) unlike the leaf nodes which have
a deterministic label from the training data. The likelihood function from Eq. 5 has to be
changed to the following

L( y,Z, γ |X,W,V) =
N∑

i=1

7∑

k=4

zik(log p(yi , γik |xi ,wk)

+ log p(zik = 1, γ |xi ,W)) (22)

Here, p(zik = 1, γ |xi ,W) ∝ p(k%2, γ k%2
i k2

|wk/2, xi )× p(zi k2
= 1, γ |xi ,W). Now,we need

to compute the following expectations in the E step (besides ηik which retains its definition)

τ
j
ik = E

[
(γ

j
ik)

−1
]

= |1 − ( j − 1)x�
i wk |−1 ( j = 0, 1, k /∈ leaf) (23)

τik for leaf nodes retain their original definition. Solving the likelihood, we get the update

wk = (X�AkX + λI)−1
(∑N

i=1 bikxi
)

Here,Ak = diag(a1k, . . . ank), aik = ηikτ
0
ik +η′

ikτ
1
ik and bik = η′

ik(1+τ 1ik)−ηik(1+τ 0ik).
For internal nodes, ηik represents the posterior probability that xi goes in the left subtree
of node k which is equivalent to the sum of posterior probabilities of experts in its left
subtree. Similarly, η′

ik represents the posterior probability of right subtree. As a sanity check,
following this update for the leaf nodes is equivalent to the MAP estimate in Sect. 2.2.

4.5 Discussion on gating networks

With the construction discussed in the previous sections, we now have a plug-and-play setup,
wherewe can switch our gating networks independent of our experts.While it is difficult to say
aprioriwhichnetworkwill performbetter, someproperties of these networksmerit discussion.
GG, a fairly robust construction, in part contributed to the success ofMoEs (Yuksel et al. 2012;
Meeds and Osindero 2006). The problem of havingO(K D2) parameters can be ameliorated
by using diagonal co-variances to an extent as suggested earlier. However, our other gating
network architectures (softmax, LSBP, HME) require far fewer parameters to be estimated,
without further approximations.

Although the real benefit of augmentation schemes can be seen in SG–PG andHME con-
structions. Softmax gating networks previously relied on an IRLS optimization with an EM
iteration, which is extremely expensive while Hierarchical models never had an algorithm
with closed form updates and again relied on such iterative schemes for optimization. Both
these constructions can be efficiently learned using variable augmentation schemes we have
discussed.

We have also discussed a LSBP which provides a non-parametric construction to auto-
matically prune experts, reducing the number of hyperparameters associated with the model
and thereby relieving themachine learning practitioner of computational burden of tuning the
number of experts. This is a significant (and desirable) modeling departure from the current
machine learning models/algorithms which seem to be predicated upon an ever-increasing
number of hyperparameters. However, there is a tradeoff here. GG has only K augmenta-
tions, SG–PG and LSBP have 2K augmentations while HME has 3K − 2 Augmentations
per data point. More the number of augmentations, more the network becomes susceptible
to poor initialization. As expectation–maximization only guarantees convergence to a local
maximum (Balakrishnan et al. 2017), poor initialization becomes an issue with increasing
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augmentations. We can partly resolve this by re-running models with different random ini-
tializations. However, better analysis of initialization of augmented models will be a fruitful
future endeavor.

5 Related work

Mixture of Expert (MoE) based models have had a rich history in machine learning, starting
with the early works by Jacobs et al. (1991), Jordan and Jacobs (1994). An excellent survey
can be found in Yuksel et al. (2012). Advances in MoE based models have been in several
directions, primarily focusing on better gating networks, e.g., generative gating (Xu et al.
1995; Meeds and Osindero 2006), or in using more powerful/flexible experts, such as Gaus-
sian Processes (Yuan and Neubauer 2009). However, these MoE formulations are difficult
to do inference on and, moreover, the experts are limited to probabilistic models. The MoE
classification setting is evenmore challenging because not only the gating network is difficult
to learn, learning of the experts too is difficult due to non-conjugacy of the underlying model.
The hierarchical MoE (HMoE) model offers a better interpretability than flat MoE. However,
inference in HMoE is even more challenging, which has precluded its adoption by practi-
tioners. Our proposed large-margin MoE framework with diverse choices for gating network
and efficient closed-form inference in each of the cases is an attempt to address these issues.

From the perspective of MoE’s ability to learn nonlinear models, our Bayesian SVM
based MoE framework is similar in spirit to the work on kernel-based Bayesian SVMs pro-
posed recently (Henao et al. 2014). However, their model does not admit as simple inference
procedure as ours and is also much more computationally expensive as compared to our
model. In our experiments, we also compare with this model and our results show that our
model achieves much better classification accuracies, despite not using kernels. Therefore,
our Bayesian SVM based MoE framework can also be an attractive method for Bayesian
nonlinear large-margin classification, without having to use kernels.

6 Experiments

We present experimental results for our proposed MoE framework on several benchmark
datasets and compare with various state-of-the-art baselines, both MoE based as well as
Bayesian models designed for nonlinear classification. We retain our abbreviations for the
four variants from the previous sections.

Firstly, we show a visualization of the decision boundaries learned by our MoE model
(with generative gating network) on banana dataset as the number of experts is varied in
Fig. 2. It is clear that a larger number of experts are able to generate increasingly non-linear
decision boundaries.

6.1 Experimental settings

OurMoE set up consists of two main hyper-parameters. The number of experts for flat gating
networks/the number of levels for hierarchical gating network and a regularization parameter
for the weight vectors of the expert and the gating networks. Throughout this work, we use
zero-mean Gaussian priors for our weight vectors which amounts to L2 regularization over
the weight vectors for both gating networks and experts.
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Fig. 2 A visualization of the decision boundaries learnt by our Gaussian Generative Gating model as the
number of experts are increased from 1 to 50

Table 1 Description of all the
datasets used in the
experimentation section, where a
hyphen under Ntest indicates that
the dataset did not come with a
pre-defined train/test split

Dataset Ntrain Ntest Dimension

Banana 400 4900 2

Waveform 400 4600 21

Image 1300 1010 18

Breast cancer 200 77 9

Pima 768 – 8

Wisconsin 683 – 9

Sonar 208 – 60

Adult(a8a) 22,696 9865 123

IJCNN 49,990 91,701 22

The weight matrices for our models are initialized using random samples from N (0, I ).
We experimented with experts ranging from 2 to 20 for flat models while we varied the
number of levels between 3 and 6 (equivalent to 4–32 experts) for hierarchical models. The
regularization parameter was tuned between .01 to 100. Finally, for the number of iterations,
we set a cap of 25 iterations for generative gating (GG) and 100 for other networks (as
GG tends to converge much earlier than others), with a convergence threshold of .01 on
the expected complete log-likelihood. In order to tune these hyper-parameters, we perform
a simple grid search over some pre-specified values from the respective ranges (specified
above) of the hyperparameters.

To ascertain the best combination of hyper-parameters, we perform a cross-validation over
the training set, similar to the procedure in Henao et al. (2014). For datasets in the Table 3, we
perform a fivefold validation, while for datasets in Table 2, we do a tenfold validation along
the lines of Henao et al. (2014) and Zhou (2016) respectively. For the latter, we reuse the first
ten pre-defined splits available here.1 The dataset statistics are summarized in Table 1.

1 https://github.com/tdiethe/gunnar_raetsch_benchmark_datasets.
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Table 2 Classification error rates (Part 1) (results in bold indicate the lowest mean error for the dataset)

Model Banana Waveform Image Breast cancer

LR 47.76 (4.38) 13.33 (0.59) 17.52 (1.05) 28.05 (3.68)

AMM 18.76 (4.09) 11.81 (1.13) 3.82 (0.87) 31.56 (0.87)

RVM 11.08 (0.69) 11.16 (0.72) 3.82 (0.59) 31.82 (4.66)

RBF-SVM 10.85 (0.57) 10.22 (0.86) 2.84 (0.52) 28.44 (4.52)

Stack-τ 33.21 (5.76) 12.25 (0.69) 7.97 (0.52) 27.92 (3.31)

SS-τ 11.89 (0.61) 11.69 (0.69) 2.73 (0.53) 28.83 (3.40)

OSSVM 12.32 (0.52) 14.31 (0.97) 5.17 (0.65) 28.94 (5.01)

BSVM 11.66 (.81) 11.97 (.36) 3.23 (.55) 30.00 (3.7)

GPC 10.70 (0.58) 32.95 (0.20) 2.64 (0.3861) 31.68 (3.94)

GG 10.60 (0.41) 9.41 (1.5) 3.1 (0.45) 21.04 (1.91)

LSBP 11.53 (0.91) 10.49 (1.6) 3.65 (0.94) 21.56 (3.01)

SG–PG 16.23 (1.96) 8.85 (0.15) 5.52 (1.11) 21.17 (3.24)

HME 10.62 (0.15) 9.74 (.12) 4.82 (.72) 21.04 (2.58)

Our proposedmodels are in the lower half of the table.Wherever reported, numbers in bracket indicate standard
deviation of the error

6.2 Baselines

We compare our model against various MoE and non-linear SVM baselines. We briefly
describe these baselines below:

– Sum-Stacked-Softplus (SS-τ ) classifier and Stacked-Softplus classifier (Stack-τ ) (Zhou
2016): These are the present state-of-art MoE classification models that use a family
of softplus functions, convolving countably infinite stacked gamma distributions. Here
SS-τ consists of hierarchies (akin to our Hierarchical MoE), while Stack-τ is flat.

– Adaptive Multi-Hyper-plane Machines (AMM) (Wang et al. 2011): AMMs provide a
framework to adapt the number of hyper-planes used for classification. It prunes the
weights of the learnt model to improve computational efficiency at test time for SVMs.

– Optimally Sparse SVM (OSSVM) (Cotter et al. 2013): OSSVM provides an algorithm to
sparsify the support vectors learnt for the data when doing non-linear classification with
kernels for SVMs. It provides theoretical guarantees for the number of support vectors
learnt by the algorithm.

– Bayesian Non-Linear SVM (BSVM) (Henao et al. 2014): Bayesian formulation of the
SVM Hinge loss which uses a Gaussian Process Classifier. This is optimized using
Expectation Conditional Maximization (ECM).

– GP Classifier (GPC): Standard off-the-shelf GP based classifier which uses a Gaussian
ernel for non-linear classification.

– Relevance Vector Machines (RVM) (Tipping 2001): Probabilistic formulation of SVMs
using generalized linear models for classification.

– RBF-Kernel SVM (RBF-SVM) and Linear Regression (LR): Standard baselines for com-
parison.
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Table 3 Classification error rates (Part 2) (results in bold indicate the lowest mean error for the dataset)

Model pima wisconsin sonar adult(a8a) IJCNN

LR 24.32 (7.11) 5.7475 (3.00) 22.5 (6.45) 15.00 8.00

AMM 34.21 (4.92) 13.06 (1.23) 16.25 (4.78) 14.88 1.3

RVM 24.67 (5.41) 3.67 (3.50) 19.44 (5.83) 14.95 1.29

RBF-SVM 24.22 3.07 11.54 14.6 6

Stack-τ 22.35 (10.25) 5.4375 (3.29) 20 (14.14) 15.00 6.64

SS-τ 21.05 (8.00) 5.51 (3.03) 22.5 (10.40) 15.02 2.24

OSSVM 24.73 (6.76) 13.6 (4.28) 28.5 (10.28) 14.75 1.8

BSVM 21.9 2.93 11.06 - -

GPC 22.0 2.64 12.50 - -

GG 18.7 (4.0) 1.76 (1.1) 6.36 (5.1) 14.49 2.02

LSBP 17.7 (5.5) 2.23 10.00 (6.5) 20.02 2.44

SG–PG 18.4 (2.9) 1.76 (1.3) 4.86 (3.2) 14.81 8.04

HME 20.6 (3.3) 1.76 (1.1) 8.5 (4.5) 14.93 4.36

Our proposedmodels are in the lower half of the table.Wherever reported, numbers in bracket indicate standard
deviation of the error. Ones left blank meant that the model didn’t scale on a 12 core 60 GBs memory system

Fig. 3 Confusion matrices for our models on the image dataset (left to right: GG, LSBP, PG, HME)

The results, summarized in Tables 2 and 3 show that most of our models outperform
the baselines, on all datasets except image and IJCNN (where GG and LSBP come close).
Particularly notable is the performance of our models on the breast cancer and Sonar dataset
where all our models outperform the baselines by a margin.

We have also benchmarked against the Small Variance Dirichlet Process Mixture SVM
(M2DPM) proposed by Wang and Zhu (2014), infinite-SVM (Zhu et al. 2011) and dpMNL
(Shahbaba and Neal 2009). The comparisons with these models can be found in the
“Appendix”.

In Fig. 3, we provide a confusion matrix as an analysis of the of the errors made by
different gating networks.

6.3 Automatic tuning of experts using LSBP

LSBP gating successfully prunes out the unnecessary experts without overfitting while
GG tends to overfit as K increases. This is shown in the left plot in Fig. 4 which compares
GG and LSBP, indicating the robustness of LSBP to increasing number of experts. For the
graph on the right, we compared the distribution of training data assignment to the experts
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Fig. 4 Left: test accuracy versus # of experts in GG and LSBP models Right: number of points assigned to
each expert in banana dataset with 10 experts

when we specify a large number of experts (K = 16). Here, LSBP gating model assigns the
data points to only the first three experts whereas GG gating distributes data point among
all the experts. This clearly shows the LSBP model’s ability to do shrinkage and provide
comparable performance with a smaller # of experts.

6.4 Timing experiments

6.4.1 Hierarchical MoE

We first compare our HME (VA-HME) with a traditional HME (BFGS-HME) formulation of
the same structure, which approximately follows Jordan and Jacobs (1994). For the traditional
HME, we have a softmax classifier for both internal and leaf nodes.Within the EM iterations,
the weights of the nodes are optimized using L-BFGS. We carry out a fixed number of EM
iterations (100). The experiment is repeated 20 times for every tree level, varied from 2 to 7.
We report both real computation time, and CPU time. Note, both codes were implemented
in python, using numpy and scipy. In particular, no effort was made to parallelize the code
(although inbuilt library functions could have, due to which the difference in real time is
observed). From the data, our HME model is nearly 5 times faster in real time and 2.5 times
faster in computation time (Fig. 5).

6.4.2 Flat MoE

To emphasize the role of closed-form (CF) updates, we do a runtime comparison of different
MoEmodels.We comparewithGG+LogisticRegression (LR)Experts,whereLRexperts are
optimized using L-BFGS. Similarly, we compare with Softmax Gating (SG) with Bayesian
SVM experts, where SG is optimized using L-BFGS. Also, we do a comparison with SG+LR
which does gradient descent (using Adam) directly on the incomplete likelihood.

Note, that our models with closed-form updates, which are implemented in Python +
NumPy are at a significant disadvantage to the rest of these implementations, which have
highly optimized C-based backend implementation (PyTorch for Adam, SciPy for L-BFGS).
Yet, from Table 4, we can see that (1) our BSVM based MoE models are much faster than
traditional LR based MoE that relies on iterative update (no closed-form updates), and (2)
L-BFGS scales rather poorly.
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Fig. 5 Timing comparison of our
proposed inference algorithm for
HME and traditional EM-BFGS
based algorithm for HME

Fig. 6 Training accuracy as a function of time (left) and as a function of iterations (right) with 128 experts for
all models

Next, we evaluate the training time of Generative Gating as the data dimensionality
increases in Table 5. This shows how our models scale with dimensions when compared
with other baselines and also with the standard Kernel-SVM. Our proposed models still
present themselves as the computationally efficient alternative.

Finally, we compare the number of iterations required for different iterative algorithms to
converge. As can be seen from Fig. 6 (right), our proposed models and the competing models
have a comparable number of iterations needed to reach maximum accuracies (except for the
Adam optimized SG+LR MoE model that needs a large number of iterations).

We also visualize the training accuracies as a function of computing time in Fig 6(left).
This figure again illustrates the fact that both of our models can achieve higher accuracies in
a lesser amount of time, which further strengthens the argument for closed form updates.

6.5 On role of Bayesian SVMs

Wehighlight the role ofBayesianSVMs.Particularly,we compare againstLogisticRegres-
sion experts (GG+LR) instead of Bayesian SVM (GG+BSVM), and a non-closed-form
L-BFGS update version of Softmax Gating which still uses Bayesian SVM (SG+BSVM).
The results are summarized in Table 6. Bayesian SVMs consistently increase the accuracies
when compared to Logistic Regression experts. SG + BSVM also seems to give similar
performance to GG + BSVM, which indicates that Bayesian SVMs are responsible for the
performance boost in our earlier experiments.
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Table 6 Error rate comparison to show the significance of Bayesian SVM as experts (CF: Closed Form
Updates) on Set I

Model Optimization Banana Waveform Image Breast cancer

GG+BSVM CF+CF 10.60 (0.41) 9.41 (1.5) 3.1 (0.45) 21.56 (3.01)

GG+LR CF+L-BFGS 11.02 (0.75) 11.94 (0.42) 8.57 (0.61) 23.37 (2.96)

SG+BSVM L-BFGS+CF 10.78 (0.36) 10.10 (0.32) 2.94 (0.48) 22.94 (5.59)

7 Conclusion

We have presented a novel mixture of experts based framework which uses large-margin
classifier like SVM as experts by using the Bayesian formulation of SVM, and consists
of a variety of gating networks, each of which admits a simple inference procedure with
closed-form updates for the model parameters. One of the gating networks (LSBP) also
allows learning the number of experts from data, while the hierarchical MoE offers more
interpretability as compared to MoE with gating networks that rely on flat partitioning. Our
framework, with each of the gating networks, also enjoys conjugacy in all of its components
(both Bayesian SVM as well as the gating network), which makes it easy to do inference.
In addition to providing a rich and flexible framework for learning MoE based models,
as our experiments demonstrate, our framework is also competitive to Bayesian nonlinear
classification models that use kernels (Henao et al. 2014).

Acknowledgements Piyush Rai acknowledges support from Visvesvaraya Young Faculty Research Fellow-
ship from MEITY India.

A Appendix

A.1 MAP estimate for naivemixture of experts with Bayesian SVMs

Let Θ = {θg, θe} where θg = {vi }Ki=1 represents the vectors for gating network of K experts
and θe = {wi }Ki=1 represents the weight vectors for K experts (modelled using Bayesian
SVMs), γ i = {γi1, γi2, . . . γi N } represent the per-example augmentations representation for
the expert i and zi is a one-hot vector denoting the allocation of example i to an expert. Note,
D = {X, y} denotes the training data as usual.

Now, γ and z act as the latent variables. As is the case with EM, instead of max-
imizing p(Θ|D), we maximize E[log p(Θ, γ , z|D)]. The expectation is with respect to
p(γ , z|Θ(t),D) where Θ (t) represents the estimate of Θ at iteration t . Now,

p(Θ, γ , z|D) ∝ p(Θ)p(y, γ , z|X, Θ)

log p(Θ, γ , z|D) ∝ log p(Θ)

+
N∑

i=1

K∑

j=1

1[zi j = 1](log p(zi j = 1|xi , θg) + log p(yi , γ i j |xi , θe, zi j = 1))

E[log p(Θ, γ , z|D)] ∝ log p(Θ)

+
N∑

i=1

K∑

j=1

E[zi j ](log p(zi j = 1|xi , θg) + E[log p(yi , γ i j |xi , θe, zi j = 1)])

(24)
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There is an implicit assumption in this: The posterior expectation of zi j does not depend on
γ . In the current setup, we are using the softmax gating. We get:

E[zi j ] = p(zi j = 1|xi , yi ,Θ (t))

∝ p(yi |xi , zi j = 1, θ(t)
e )p(zi j |xi , θ(t)

g )

∝ exp(−2max(0, 1 − yi x
T
i w

(t)
j )) exp(xTi v

(t)
j )

E[zi j ] = exp(xTi v
(t)
j − 2max(0, 1 − yi xTi w

(t)
j ))

∑K
l=1 exp(x

T
i v

(t)
l − 2max(0, 1 − yi xTi w

(t)
l ))

= ηi j (25)

Now, onto the other expectation:

E[log(yi , γ i j |xi , θe, zi j = 1)]
=

∫ ∞

0
log p(yi , γi j |w j , xi , yi )p(γ i j |xi , w(t)

j , yi )dγi j

=
∫ ∞

0
log

[
1

√
2πγi j

exp

(

− (1 + γi j − yiwT
j xi )

2

2γi j

)]

p(γi j |xi , w(t)
j , yi )dγi j

Here,

log

[
1

√
2πγ i j

exp

(

− (1 + γ i j − yiwT
j xi )

2

2γ i j

)]

= −1

2
log 2π − 1

2
log γ i j − (1 + γ i j )

2

2γ i j

− (yiwT
j xi )

2

2γ i j
+ yiwT

j xi (1 + γ i j )

γ i j

Weonly care about the terms involvingw j , that is, only the last two terms. Therefore, we only

care about the expectationE[ 1
γ i j

] = |1− yi xTi w
(t)
j |−1 = τ−1

i j (Polson et al. 2011). Therefore,

theE[log p(yi , γ i j |xi , θe, zi j = 1)] can be replaced by −(yiwT
j xi )

2+2yiwT
j xi

2τi j
+2yiwT

j xi in (24)
to get the final objective (note we are ignoring the terms not involving w j ). Replacing the
appropriate expectations in (24), the final objective for the problem is:

L(Θ,Θ (t)) = log p(Θ)

+
N∑

i=1

K∑

j=1

ηi j

[
log

exp(vTj xi )
∑K

l=1 exp(v
T
l xi )

− (yiwT
j xi )

2 − 2yiwT
j xi

2τi j
+ 2yiw

T
j xi

]

(26)

We maximize this objective, that is, Θ (t+1) = argmaxΘL(Θ,Θ (t)). Now, assume a zero
mean gaussian prior for weight vectors of both softmax gating and expert weight vectors,
that is, p(wi ) ∼ N (0, λ−1 I ) and p(vi ) ∼ N (0, β−1 I ). Note, ∂ log p(wi )

∂wi
= −λwi and

similarly, ∂ log p(vi )
∂vi

= −βvi . Now, take derivatives of the objective L with respect to w j , v j .
Therefore,
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∂L(Θ,Θ (t))

∂w j
= 0

⇒
(

λw j +
N∑

i=1

ηi j

τi j
(wT

j xi )xi

)

=
N∑

i=1

ηi j

(
yi xi
τi j

+ yi xi

)

(27)

⇒ w j = (XTA jX + λI)−1

(
N∑

i=1

ηi j
τi j + 1

τi j
yi xi

)

(28)

where X represents the data matrix and A j = diag(
η1 j
τ1 j

, . . .
ηN j
τN j

). As expected, we get a
closed form update for mixture of Bayesian SVMs. However, we cannot get a closed form
update for the softmax gating parameters, which needs to resort to iterative update methods.
If using gradient descent, the following gradient is used:

∂L(Θ,Θ (t))

∂v j
= −βv j +

N∑

i=1

ηi j xi −
N∑

i=1

K∑

j=1

ηi j
∂ log

∑K
l=1 exp(v

T
l xi )

∂v j

=
N∑

i=1

[
ηi j − exp(vTj xi )

∑K
l=1 exp(v

T
l xi )

]
xi − βv j (29)

A.2 Towards closed form updates

Two approaches are discussed which will allow closed form updates for all the parameters
of the model. The first approach changes the gating network from a discriminative softmax
to a generative network (Xu et al. 1995), while the second approach uses the ‘Polya-Gamma
Data Augmentation’ for the softmax weight vectors (Polson et al. 2013; Scott and Sun 2013).

A.2.1 Generative gating networks

The results derived in this section borrows some results fromXu et al. (1995), and the previous
section. We wish to maximize Ep(γ ,z|Θ(t),D)[log p(y, x, γ , z|Θ)] with respect to Θ . Here,

log p(y, x, γ , z|Θ) =
N∑

i=1

K∑

j=1

1[zi j = 1]
(
log p(yi , γ i j |xi , w j ) + logα j + log p(xi |θg , zi j = 1)

)

E[log p(y, x, γ , z|Θ)] =
N∑

i=1

K∑

j=1

E[zi j ]
(
E[log p(yi , γ i j |xi , w j )] + logα j + log p(xi |θg , zi j = 1)

)
(30)

Now,

E[zi j ] = p(zi j = 1|xi , yi ,Θ (t))

∝ p(yi |xi , zi j = 1,Θ (t))p(xi |Θ (t), zi j = 1)p(zi j = 1|Θ(t))

∝ exp(−2max(0, 1 − yi x
T
i w

(t)
j ))N (xi |μ(t)

j ,Σ
(t)
j )α

(t)
j

= exp(−2max(0, 1 − yi xTi w
(t)
j ))N (xi |μ(t)

j ,Σ
(t)
j )α

(t)
j

∑K
l=1 exp(−2max(0, 1 − yi xTi w

(t)
l ))N (xi |μ(t)

l ,Σ
(t)
l )α

(t)
l

= η
(t)
i j

The other expectation remains the same from the previous section. We can introduce a prior
distribution on all the parameters to get a MAP estimate. The update for the experts remain
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the same (assuming the same gaussian prior on the weights). Referring to the update for w

in (28):

w
(t+1)
j = (XTA(t)

j X + λI)−1

(
N∑

i=1

η
(t)
i j

τ
(t)
i j + 1

τ
(t)
i j

yi xi

)

The updates for the parameters of the gating network are borrowed from Xu et al. (1995).
The results do not assume any prior on the gating network parameters (which can be easily
introduced). Note that there is an additional constraint that

∑N
j=1 α j = 1. The updates are

as follows:

α
(t+1)
j =

∑N
i=1 η

(t)
i j

N
= N j

N

μ
(t+1)
j =

∑N
i=1 η

(t)
i j xi

N j

Σ
(t+1)
j =

∑N
i=1 η

(t)
i j (xi − μ

(t)
j )(xi − μ

(t)
j )T

N j

where N j = ∑N
i=1 η

(t)
i j . Thus, we get closed form updates in both the E and M steps.

A.2.2 Polya-gamma data augmentation

Polya-Gamma augmentation is discussed in detail (Polson et al. 2013; Scott and Sun 2013).
For every example and for every weight vector, we augment another set of latent variables
βi j ∼ PG(1, 0). Here, PG(1, 0) represents the Polya-Gamma distribution, and each of the
K softmax weight vectors get an augmented latent variable for each of the example (that
is, NK latent variables). For simplicity of notation, we only consider the MLE optimiza-
tion under EM (which can easily be converted to MAP estimation). We want to maximize
E[log p(y, γ , z, β|Θ,X)], where the expectation is with respect to p(γ , β, z|Θ (t),X, y):

log p(y, γ , β, z|Θ,X) =
N∑

i=1

K∑

j=1

1[zi j = 1] log p(yi , zi j = 1, βi , γ i j |Θ, xi )

=
N∑

i=1

K∑

j=1

1[zi j = 1]
(
log p(yi , γ i j |Θ, xi , zi j = 1) (31)

+ log p(βi j , zi j = 1|Θ, xi )
)

E[log p(y, γ , β, z|Θ,X)] =
N∑

i=1

K∑

j=1

E[zi j ]
(
E[log p(yi , γ i j |Θ, xi , zi j = 1)] (32)

+ E[log p(βi j , zi j = 1|Θ, xi )]
)

(33)

We have factorized the ‘Expectation of a Product’ into a ‘Product of Expectation’, that is

E[1[zi j = 1] log p(yi , γ i j |Θ, xi , zi j = 1)] = E[zi j ]E[log p(yi , γ i j |Θ, xi , zi j = 1)]
(34)
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This, in general, is incorrect. But, factorization has been used in all the EM derivations
carried out above (the factors are slightly different). The justification for this step is as
follows (LHS = E[1[zi j = 1] log p(yi , γ i j |Θ, xi , zi j = 1)]):

LHS =
∫

1[zi j = 1] log p(yi , γ i j |w j , xi , zi j = 1)p(γ i j , βi , zi |Θ(t),X, y)dγ i j dβi d zi

=
∫

1[zi j = 1] log p(yi , γ i j |w j , xi , zi j = 1)p(γ i j , zi |Θ(t),X, y)dγ i j d zi

=
∫

p(zi j = 1|Θ (t), xi , yi ) log p(yi , γ i j |w j , xi , zi j = 1)p(γ i j |Θ(t), xi , yi , zi j = 1)dγ i j

= E[zi j ]E[log p(yi , γ i j |Θ, xi , zi j = 1)]

The other expectation factorizations (carried out in this and previous derivations) can be
similarly justified. This factorization is possible because of the use of the indicator function.
Now, let’s consider the softmax without augmentation, that is

p(zi j = 1|θg, xi ) = exp(xTi v j )
∑K

l=1 exp(x
T
i vl)

= exp(xTi v j − log
∑K

l=1,l 	= j exp(x
T
i vl))

1 + exp(xTi v j − log
∑K

l=1,l 	= j exp(x
T
i vl))

= exp(ψi j )

1 + exp(ψi j )

Here, ψi j = xTi v j − log
∑K

l=1,l 	= j exp(x
T
i vl). Using augmentation results from Scott and

Sun (2013), we get:

log p(zi j = 1|θg, xi , βi j ) ∝ log

[

exp

(
ψi j

2

)

exp

(

−βi j
ψ2
i j

2

)]

∝ ψi j

2
− βi j

ψ2
i j

2

Here, log p(βi |θg, xi ) = log p(βi ) is ignored because it does not depend on any parameters.
Therefore, the final objective can be written as

L(Θ,Θ (t)) =
N∑

i=1

K∑

j=1

ηi j

(
E[log p(yi , γ i j |Θ, xi , zi j = 1)] + 1

2
ψi j − E[βi j ]

ψ2
i j

2

)

The discussion from the first section applies directly over here. The results for η and w are
directly applicable in this derivation. Now, β

(t)
i j = E[βi j ] = 1

2ψ(t)
i j

tanhψ
(t)
i j (Scott and Sun

2013). The coupling of parameters mandates the usage of Expectation Conditional Maxi-
mization (ECM), when maximizing with respect to v j (Scott and Sun 2013). In particular,
when maximizing with respect to v j , we assume vl , l 	= j to be fixed at their ‘most recent

estimates’ (not necessarily v
(t)
l , as we would iterate over vk from k = 2 to k = K ). For

identifiability, v1 is fixed at [0, 0 . . . 0]T throughout iterations. Therefore,

∂L
∂v j

=
N∑

i=1

ηi j

(1

2
xi − β

(t)
i j (xTi v j − log

K∑

l=1,l 	= j

exp(xTi v̂l))xi
)

= 0
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Fig. 7 Accuracies on the Parkinsons Dataset compared to different non-linear SVMs, Wang and Zhu (2014),
Zhu et al. (2011) and Shahbaba and Neal (2009)

N∑

i=1

ηi j

(1

2
+ β

(t)
i j log

K∑

l=1,l 	= j

exp(xTi v̂l)
)
xi =

( N∑

i=1

β
(t)
i j ηi j xi x

T
i

)
v j

⇒ v
(t+1)
j = (XTΩ jX)−1XT κ j (35)

where,

κ j =
⎡

⎣η1 j

⎛

⎝1

2
+ β

(t)
1 j log

N∑

l=1,l 	= j

exp(xT1 v̂l )

⎞

⎠ , . . . , ηN j

⎛

⎝1

2
+ β

(t)
N j log

N∑

l=1,l 	= j

exp(xTN v̂l )

⎞

⎠

⎤

⎦

T

(36)

Ω j = diag(β(t)
1 j η1 j , . . . β

(t)
N jηN j ) (37)

As is clear, we have closed form updates for all steps and parameters.

A.3 Other classificationmodels

We also consider the Small Variance Dirichlet Process Mixture SVM (M2DPM) proposed
by Wang and Zhu (2014), infinite-SVM (Zhu et al. 2011) and dpMNL (Shahbaba and Neal
2009). M2DPM is an efficient version of infinite-SVM, which in turn, combines a Dirichlet
process with Kernel-SVMs to learn the number of experts, as opposed to our approach
of combining different experts for non-linear learning. In particular, infinite-SVM is closely
related with the LSBP gating network.We use the Parkinson’s disease dataset, which consists
of 195 subjects that may or may not have the disease. We follow Wang and Zhu (2014) for
reporting accuracies, where we have used a tenfold Cross Validation and report the mean
and standard deviation. The results are reported in Fig. 7. As it can be seen, our LSBP gating
with BSVM outperforms both M2DPM and infinite-SVM learned by Gibbs sampling.
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