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Abstract
We consider multi-task regression models where the observations are assumed to be a linear
combination of several latent node functions and weight functions, which are both drawn
from Gaussian process priors. Driven by the problem of developing scalable methods for
forecastingdistributed solar andother renewable power generation,wepropose coupledpriors
over groups of (node or weight) processes to exploit spatial dependence between functions.
We estimate forecast models for solar power at multiple distributed sites and ground wind
speed at multiple proximate weather stations. Our results show that our approach maintains
or improves point-prediction accuracy relative to competing solar benchmarks and improves
over wind forecast benchmark models on all measures. Our approach consistently dominates
the equivalent model without coupled priors, achieving faster gains in forecast accuracy. At
the same time our approach provides better quantification of predictive uncertainties.

Keywords Gaussian processes · multi-task learning · Bayesian nonparametric methods ·
scalable inference · solar power prediction

1 Introduction

The problem of forecasting local solar output in the short term is of significant interest for
the purpose of distributed grid control and household energy management (Voyant et al.
2017; Widén et al. 2015). Variation in output is driven by two principal factors: diurnal
cyclical effects (variation due to sun angle and distance) and variability due toweather effects,
both inducing spatially-related dependence between proximate sites. In general, correlations
across sites depend on many particulars relating to system configuration, local environment
and so on. As such wewish to exploit spatial dependencies (and potentially other site-specific
covariates) between sites in a flexible manner. More importantly, inherent to this application
is the need for modeling uncertainty in a flexible and principled way (Antonanzas et al. 2016).

Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, Antti Ukkonen.

B Astrid Dahl
astridmdahl@gmail.com

1 School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

2 Data61, Sydney, Australia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05808-z&domain=pdf
http://orcid.org/0000-0003-3981-4186


1288 Machine Learning (2019) 108:1287–1306

Gaussian process (gp) models are a flexible nonparametric Bayesian approach that can be
applied to various problems such as regression and classification (Rasmussen and Williams
2006) and have been extended to numerous multivariate and multi-task problems including
spatial and spatio-temporal contexts (Cressie and Wikle 2011). Multi-task gp methods have
been developed along several lines (see e.g. Álvarez et al. 2012, for a review). Of relevance
here are various mixing approaches that combine multiple latent univariate Gaussian pro-
cesses via linear or nonlinear mixing to predict multiple related tasks (Wilson et al. 2012).
The challenge in multi-task cases is maintaining scalability of the approach. To this end,
both scalable inference methods and model constraints have been employed (Álvarez et al.
2010; Matthews et al. 2017; Krauth et al. 2017). In particular, latent Gaussian processes are
generally constrained to be statistically independent (Wilson et al. 2012; Krauth et al. 2017).

In this paper we consider the case where the statistical independence constraint is relaxed
for subsets of latent functions. We build on the scalable generic inference method of Krauth
et al. (2017) to extend themodel ofWilson et al. (2012) and allownonzero covariance between
arbitrary subsets, or ‘groups’ of latent functions. The grouping structure is flexible and can
be tailored to applications of interest, and additional features can potentially be incorpo-
rated to govern input-dependent covariance across functions. By adopting separable kernel
specifications, we maintain scalability of the approach whilst capturing latent dependence
structures.

With this new multi-task gp model, we consider the specific challenge of forecasting
power output of multiple, distributed residential solar sites.We apply our approach to capture
spatial covariance between sites by explicitly incorporating spatial dependency between
latent functions and test our method on three datasets comprised of solar output at distributed
household sites in Australia.

For many of the same reasons, short term wind power forecasting represents signifi-
cant challenges yet is critical to emerging energy technologies (Widén et al. 2015). Output
variability is driven by wind speed, which (as for solar) is driven by multiple interacting envi-
ronmental factors giving rise to spatial dependencies a priori. To demonstrate the broader
applicability of the model, we also illustrate our approach on a wind speed dataset comprised
of ground wind speed at distributed weather stations in Australia.

Our results show that, for solar models, introducing spatial covariance over groups of
latent functions maintains or improves point-prediction forecast accuracy relative to com-
peting benchmark methods and at the same time provides better quantification of predictive
uncertainties. Further, wind forecast accuracy and uncertainty is improved on all measures by
the introduction of spatial covariance. Timed experiments show that the newmodel dominates
the equivalent model without spatial dependencies, achieving similar or superior forecast
accuracy in a shorter time.

2 Related work

GaussianProcesses have been considered in themulti-task setting via a number of approaches.
Several methods linearly combine multiple univariate gp models via coefficients that may
be parameters (latent factor models as in Teh et al. 2005); linear coregional models (lcm;
Goovaerts 1997), or themselves input dependent (Wilson et al. 2012).

Most mixing approaches focus on methods to combine multiple underlying independent
latent functions. Recent developments in inference for multi-task gp models have improved
scalability of mixing approaches, building upon the variational framework of Titsias (2009).
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Nguyen and Bonilla (2014) develop a generic variational inference method that allows
efficient optimization for multi-task models with arbitrary likelihoods, while the sparse,
variational framework of Hensman et al. (2015); Matthews et al. (2017) supported signif-
icant gains in scalability of multi-task gp models. Dezfouli and Bonilla (2015) extend the
approach in Nguyen and Bonilla (2014) to the sparse variational context, exploiting inducing
points to improve scalability of the inference method using a general mixture-of-Gaussian
sparse, variational posterior. More recently, the approach of Dezfouli and Bonilla (2015) was
extended to integrate optimization that exploits leave-one-out objective learning in addition
to the sparse, variational lower bound (Bonilla et al. 2016; Krauth et al. 2017).

Othermulti-taskgp approaches allow task-specific predictions through use of task-specific
features or ‘free-form’ cross-task covariances (Bonilla et al. 2008), and more recently priors
placed over cluster allocations allowing cluster-specific covariances (Hensman et al. 2014;
Gardner et al. 2018). Combination via convolutions has also been developed and extended
to sparse, variational settings (Álvarez and Lawrence 2009, 2011).

CouplingbetweenQ node (but notweight) latent functions directly is consideredbyRemes
et al. (2017), who build upon the Gaussian process regression network (GPRN) framework of
(Wilson et al. 2012). The authors propose a rich, GeneralizedWishart–Gibbs kernel that char-
acterizes covariance for latent functions. The fully-coupled kernel is internally parameterized
rather than utilizing feature-dependent cross-function covariance. The approach makes use
of variational inference to approximate the model. Unlike our method, however, the natural
disadvantage of such an approach is that it presents significant computational challenges in
terms of scalability to a large number of observations and tasks. This is primarily due to the
need for variational inference that requires batch optimization with O((NQ)3) complexity,
rendering it infeasible for larger scale applications. In fact, only small experiments were
carried out in Remes et al. (2017) with NQ in the order of (approximately) 100 to 500, since
the approach is primarily developed for small-data problems requiring a highly expressive
latent covariance structure.

2.1 Multi-task solar power forecasting

A number of studies have confirmed that multi-task learning approaches can be useful for
distributed solar irradiance or solar power forecasting, finding that cross-site information
is relevant (Yang et al. 2013, 2015). Several studies build on the early work of Sampson
and Guttorp (1992) and consider kriging methods for distributed solar irradiance forecasting
or spatial prediction (notably Yang et al. 2013; Shinozaki et al. 2016). Other approaches
include a range of linear statistical methods, shown to be competitive at shorter horizons, and
neural network methods (Inman et al. 2013; Widén et al. 2015; Voyant et al. 2017). These
approaches are generally constrained by data requirements, notably pre-flattening of data to
remove diurnal cyclical trends, which requires knowledge of local system and environment
variables. In the context of small scale, distributed residential sites, such information is often
unavailable, motivating approaches that do not rely on rich data history or feature sets as are
typically required by current approaches (Inman et al. 2013; Widén et al. 2015; Voyant et al.
2017; Antonanzas et al. 2016; Yang et al. 2018).

In addition to kriging studies,gpmodels have been considered for short term solar forecast-
ing (Bilionis et al. 2014;Dahl andBonilla 2017). Earlier approaches are generally constrained
to small-data problems by poor scalability of exact gp models. More recently, Dahl and
Bonilla (2017) use scalable sparse, variational inference to apply multi-task Gaussian (mtg)
and linear coregional models (lcm) to forecast solar output at multiple, distributed residen-
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tial sites. Multi-task approaches are found to improve model performance in mixed weather
conditions, less so in sunny conditions. The specifications adopted, however, did not show
strong improvement in overall forecast accuracy relative to the naive, univariate sitegp bench-
marks, with the lcm performing significantly worse than mtg and individual models in that
setting.Moreover, themtg presents scalability challenges since inducing inputs in the sparse,
variational framework adopted are shared across all observations and tasks.

3 Multi-task Gaussian process models

A Gaussian process (gp, Rasmussen and Williams 2006) is formally defined as a distri-
bution over functions such that f (x) ∼ GP(μ(x), κ(x, x′)) is a Gaussian process with
mean function μ(x) and covariance function κ(x, x′) iff any subset of function values
f (x1), f (x2), . . . , f (xN ) follows a Gaussian distribution with mean μ and covariance K,
which are obtained by evaluating the corresponding mean function and covariance function
at the input points X = {x1, . . . , xN }.

Standard single-task gp regression assumes observations are iid versions of the latent
function values corrupted by Gaussian noise. In this case, posterior inference can be carried
analytically (Rasmussen and Williams 2006, chap. 2). In this paper we consider the more
general case of multiple outputs, which sometimes is referred to in the literature as multi-task
gp regression. In other words, we are given data of the form D = {X ∈ R

N×D,Y ∈ R
N×P }

where each x(n) in X is a D-dimensional vector of input features and each y(n) in Y is a
P-dimensional vector of task outputs. Furthermore, we are interested in the case of generally
non-linear (non-Gaussian) likelihoods, for which there is no analytically tractable posterior.

3.1 Latent Gaussian process models with independent priors

Fortunately, advances in variational inference (Kingma and Welling 2014; Rezende et al.
2014) have allowed the development of efficient posterior inference methods with ‘black-
box’ likelihoods. In the case of models with gp priors, Krauth et al. (2017) have extended
these results to modeling multiple outputs under non-linear likelihoods and independent gp
priors over multiple latent functions. In short, under such amodeling framework, correlations
between the P outputs using Q independent latent functions { f j (x)}Qj=1 each drawn from a
zero-mean gp prior, i.e. f j (x) ∼ GP(0, κ j (x, x′; θ j )), can be encoded via the likelihood. As
we shall see in Sect. 5, an example of this is when the independent gps are linearly combined
via a set of weights, which can be deterministic as in the semi-parametric latent factor model
of Teh et al. (2005) or stochastic and input-dependent as in the gprn of Wilson et al. (2012).

Therefore, within the framework in Krauth et al. (2017) the prior over the latent function
values corresponding to the N observations along with the likelihood model is given by:

p(F|θ) =
Q∏

j=1

p(f j |θ j ) =
Q∏

j=1

N (f j ; 0,K j
xx), (1)

p(Y|F,φ) =
N∏

n=1

p(y(n)|f(n),φ), (2)

where F is the N × Q matrix of latent function variables; f j is the N -dimensional vector
for latent function j ; and θ j the corresponding hyper-parameters; f(n) is the Q-dimensional
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vector of latent function values corresponding to observation n and φ are the likelihood
parameters.

Krauth et al. (2017) exploit the structure of the model in Eq. (1) to develop a scalable
algorithm via variational inference. While the likelihood in this model is suitable for most
unstructured machine-learning problems such as standard regression and classification, the
prior can be too restrictive for problems where dependences across tasks can be incorporated
explicitly. In this paper, driven by the solar power prediction problem where spatial relat-
edness can be leveraged to improve predictions across different sites, we lift this statistical
independence (across latent functions) constraint in the prior to propose a new multi-task
model where some of the functions are coupled a priori.

4 Grouped priors for multi-task GPmodels

To group latent functions a priori, we can define arbitrarily chosen subsets of latent functions
in F, Fr , r = 1, . . . , R, where R is the total number of groups. For each group the number
of latent functions within is denoted Qr , which we will also refer to as the group size,
with

∑R
r=1 Qr = Q. Each group is comprised of latent functions Fr = {f j } j∈ group r and

covariance between latent functions f j and f j ′ is nonzero iff the functions f j and f j ′ belong
to the same group r .

Hence, the prior on F can be expressed similarly to the generic prior defined in Eq. (1):

p(F|θ) =
R∏

r=1

p(Fr |θr ) =
R∏

r=1

N (Fr ; 0,Kr
f f ), (3)

where Kr
f f ∈ R

NQr×NQr is the covariance matrix generated by the group kernel function
κr ( f j (x), f j ′(x′)), which evaluates the covariance of functions f j and f j ′ at the locations x
and x′, respectively.

This structure allows arbitrary grouping of latent functions depending on the application
(in our case, groups are structured for distributed forecasting, discussed below). However
we emphasize that our inference method allows grouping between any latent functions in F
and does not make any assumptions (beyond the standard iid assumption) on the conditional
likelihood. Hence, since our model allows dependences between latent functions a priori,
we refer to it as grouped Gaussian processes (ggp). Although we develop a generic and
efficient method for ggp models in Sect. 6, our focus in this paper is on a particular class
of flexible multi-task regression models referred in the literature to as Gaussian process
regression networks (gprn, Wilson et al. 2012).

4.1 Separable kernels

Before describing how gprns fit into the framework of Krauth et al. (2017) and how we
generalize them to incorporate grouped priors, it is important to describe a simple yet efficient
way of modeling correlations across groups. Once latent functions are coupled a priori,
scalability becomes an important consideration. Thus, although κr ( f j (x), f j ′(x′)) is not
constrained in terms of kernel choice, for the problemat handwe consider separable kernels of
the form κr ( f j (x), f j ′(x′)) = κr (x, x′)κr (h j ,h j ′). h are defined as H -dimensioned feature
vectors forming an additional feature matrix Hr ∈ R

Qr×H that characterizes covariance
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across functions f j ∈ Fr . We describe in Sect. 7 below howHr can be used to exploit spatial
dependency between tasks.

This separable structure yields covariance matrices of the Kronecker formKr
f f = Kr

hh ⊗
Kr

xx, where K
r
xx ∈ R

N×N and Kr
hh ∈ R

Qr×Qr . By adopting the Kronecker-structured prior
covariance over functions within a group, we reduce the maximum dimension of required
matrix inversions, allowing scalable inference.

5 Grouped Gaussian process regression networks

Wilson et al. (2012) consider the case where the (noiseless) observations are a linear
combination of Gaussian processes, {g�(x)}, where the coefficients, {wp�(x)}, are also
input-dependent and drawn from Gaussian process priors. In other words, their conditional
likelihood model for a single observation at input point x and task p is given by:

yp(x) =
Qg∑

�=1

wp�(x)g�(x) + εp , p = 1, . . . P , (4)

where {wp�(x), g�(x)} are drawn from independent gp priors and εp is a task-dependent
Gaussian noise variable. This model is termed the Gaussian process regression network
(GPRN) by Wilson et al. (2012) and {wp�} and {g�} are referred to as weight functions and
node functions, respectively. It is easy to see how gprns fit into the latent Gaussian process
model formulation of Krauth et al. (2017), as described in Sect. 3.1. We simply make {wp�}
and {g�} subsets of latent functions in { f j }Qj=1 with PQg weight functions and Qg node
functions so that Qg(P + 1) = Q.

Given the observeddataD, for each latent process (overweights or node functions)weneed
to create as many latent variables as observations. Therefore, it is useful to conceptualize the
weights as PQg latent variables of dimension N × 1 arranged into a tensorW ∈ R

P×Qg×N .
Similarly, the node functions can be represented by Qg latent variables of dimension N × 1
arranged into a tensor G ∈ R

Qg×1×N . Therefore, the conditional likelihood for input x(n)

can be written in matrix form as

p(y(n)|f(n),φ) = N (y(n);W(n)g(n),�y), (5)

where the latent functions are given by node and weight functions, i.e. f(n) = {W(n), g(n)};
the conditional likelihood parameters φ = �y and �y is a diagonal matrix. P-dimensional
outputs are constructed at x(n) as the product of a P × Qg matrix of weight functions,W(n),
and Qg-dimensional vector of node functions g(n).

5.1 Grouping structure

Although our modeling and inference framework allows for arbitrary grouping structure,
we consider a correlated prior over the rows of the weight functions for the grouped gprn,
and give details of the exact setting for the solar and wind applications in Sect. 7. Figure 1
illustrates our ggp framework for the gprn likelihood.

Naturally, the greater flexibility of our approach comes at the expense of a high time-
and-memory complexity, which poses significant challenges for posterior estimation. In the
following section, we develop an efficient variational inference algorithm for our ggpmodel
that is not much more computationally expensive than the original gprn’s. In fact, we show

123



Machine Learning (2019) 108:1287–1306 1293

Fig. 1 Gaussian process regression network model where Y is a linear combination of node and weight
latent functions comprising F. In the grouped Gaussian process (ggp) framework, latent functions may be
grouped arbitrarily. A grouping scheme is illustrated where weight functions in W are grouped by rows
(grouped functions are shown in the same shade) and given a fully-coupled prior, while node functions in G
are independent. Here N is the number of observations per task; P is the number of tasks; and Qg is the group
size

in our experiments in Sect. 9 that our inference method can converge faster than gprn’s while
achieving similar or better performance.

6 Inference

Our inference method is based on the generic inference approach for latent variable Gaussian
processmodels set out byKrauth et al. (2017). This is a sparse variational method that consid-
ers the case where latent functions are conditionally independent. We adapt that framework
to the more general case where latent functions covary within groups, and for our case exploit
the Kronecker structures noted at Sect. 5. Since our inference method does not exploit any of
the specifics of the gprn likelihood, we consistently use the general grouped prior notation
defined in Sect. 4.

Under the sparse method, the prior at (3) is augmented with inducing variables, {ur }Rr=1,
drawn from the same gp priors as Fr at new inducing points Zr , where Zr ∈ R

M×D lie in the
same space as X ∈ R

N×D , M � N . Since ur are drawn from the same gp priors, inducing
variables within a group r are similarly coupled via κr ( f j (x), f j ′(x′)) evaluated at pointsZr .
The prior in Eq. (3) is thus replaced by

p(u|θ) =
R∏

r=1

p(ur |θr ) =
R∏

r=1

N (ur ; 0,Kr
uu), (6)

p(F|u) =
R∏

r=1

N (Fr ; μ̃r , K̃r ), (7)
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Table 1 A summary of the prior covariance matrix structures for a given group r for scalable variational
inference in the ggp model

Notation Specification Description

Kr
f f Kr

hh ⊗ Kr
xx Covariance between latent functions

Kr
uu Kr

hh ⊗ Kr
zz Covariance between inducing variables

Kr
f u Kr

hh ⊗ Kr
xz Covariance between latent functions and inducing variables

K̃r Kr
f f − ArKr

u f Covariance of conditional prior p(F|u)

Ar IQr ⊗ Kr
xz(K

r
zz)

−1 Auxiliary matrix

where μ̃r = Arur , K̃r = Kr
f f − ArKr

u f and Ar = Kr
f u(K

r
uu)

−1 = IQr ⊗ Kr
xz(K

r
zz)

−1.

Kr
uu ∈ R

MQr×MQr is the covariance matrix induced by κr ( f j (x), f j ′(x′)) evaluated overZr ,
Hr , yielding the structureKr

uu = Kr
hh ⊗Kr

zz and importantly the decomposition (Kr
uu)

−1 =
(Kr

hh)
−1 ⊗ (Kr

zz)
−1. We similarly define Kr

f u and Kr
u f (Table 1).

6.1 Posterior estimation

The (analytically intractable) joint posterior distribution of the latent functions and inducing
variables under the prior and likelihood models in Eqs. (1) and (6) is approximated via
variational inference (Jordan et al. 1998). Specifically, p(F,u|Y) = p(F|u,Y)p(u|Y) ≈
q(F,u|λ)

def= p(F|u)q(u|λ). The variational posterior q(u|λ) is defined as a mixture of K
Gaussians (mog) with mixture proportions πk . We assume that q(u|λ) also factorizes over
groups (and in the diagonal case over individual latent functions). The variational posterior
is thus defined as

q(u|λ) =
K∑

k=1

πk

r∏

r=1

qk(ur |λkr ) (8)

where qk(ur |λkr ) = N (ur ;mkr ,Skr ) and λkr = {mkr ,Skr , πk}. We then estimate the model
bymaximizing the so-called evidence lower bound (elbo), which de-constructs toLelbo(λ)

def=
Lent(λ)+Lcross(λ)+Lell(λ), which are the entropy, cross-entropy and expected log likelihood
terms, respectively. The explicit expression required forLelbo is a generalization of the results
in Krauth et al. (2017). For the entropy term we have that (using Jensen’s inequality):

Lent(λ) = Eq(u|λ)

[
log q(u|λ)

]

≥ −
K∑

k=1

πk log
K∑

l=1

πlN (mk;ml ,Sk + Sl), (9)

where mk is the vector {mkr }Rr=1 = {mk j }Qj=1 and Sk is the block diagonal matrix with

diagonal elements {Skr }Rr=1 (and equivalent forml ,Sl ). For the cross-entropy and the expected
log likelihood terms:
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Lcross(λ) = Eq(u|λ)

[
log p(u|θ)

]

= −1

2

K∑

k=1

πk

R∑

r=1

[Mr log(2π)+ log
∣∣Kr

uu

∣∣ +m′
kr (K

r
uu)

−1mkr+tr ((Kr
uu)

−1Skr )]
(10)

Lell(λ) = Eq(F|λ)

[
log p(Y|F,φ))

] =
N∑

n=1

Eq(n)(f(n)|λ)

[
log p(y(n)|f(n),φ)

]
(11)

where q(F|λ) results from integration of the joint approximate posterior over inducing
variables u. Note that tr ((Kr

uu)
−1) factorizes as tr ((Kr

zz)
−1) tr ((Kr

hh)
−1) and ln

∣∣Kr
uu

∣∣
factorizes as Qr ln

∣∣Kr
zz

∣∣ + M ln
∣∣Kr

hh

∣∣. Given factorization of the joint and variational pos-
teriors over k and r and standard conjugacy results, we have

q(F|λ) =
K∑

k=1

πk

R∏

r=1

N (bkr ,�kr ),

bkr = Armkr , and �kr = K̃r + ArSkrA′
r (12)

The distribution q(n)(f(n)|λ) similarly factorizes as

q(n)(f(n)|λ) =
K∑

k=1

πkqk(n)(f(n)|λk)

=
K∑

k=1

πk

R∏

r=1

N (bkr(n),�kr(n)). (13)

Lell may be estimated by Monte Carlo, requiring sampling only from Qr -dimensional multi-
variate Gaussians N (fr(n);bkr(n),�kr(n)) where bkr(n) is the vector comprised of every nth
element of bkr , and �kr is the (full) Qr × Qr matrix comprised of nth diagonal elements of
posterior covariance �k j j ′ sub-matrices of �kr . Thus, we estimate

L̂ell = 1

S

N∑

n=1

K∑

k=1

πk

S∑

s=1

ln p(y(n)|f (k,s)(n) ). (14)

Under the separable structure adopted, each mixture component covariance for fr(n), �kr(n)

can be seen to consist of structure arising from the grouped prior plus a term arising from
the variational posterior:

�kr(n) = K̃r(n) + Ar(n)SkrA′
r(n), where

K̃r(n) = Kr
hh × [

κr (x(n), x(n) − κr (x(n),Zr )Kr
zzκr (Zr , x(n))

]
and

Ar(n) = [
IQr ⊗ κr (x(n),Zr )(Kr

zz)
−1] (15)

Thus cross-function covariance within a group will be either driven by the prior, where Skr
is diagonal, or more flexible in form where Skr is non-diagonal.
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6.2 Prediction

Prediction for a new point y� given x� is taken as the expectation over the general posterior
distribution for the new point:

p(y�|x�) =
∫

p(y�|f�)q(f�|λ)dF

=
K∑

k=1

πk

∫
p(y�|f�)qk(f�|λk)dF�, (16)

where qk(f�|λk) is defined as for qk(n)(f(n)|λk) in (13). Given the explicit expression for the
posterior distribution, the expectation in Eq. (16) is estimated by sampling:

Ep(y�|x�)

[
y�

] ≈ 1

S

S∑

s=1

Ws
�g

s
�, (17)

where {Ws
�,g

s
�} = fs� are samples from qk(f�|λk).

6.3 Complexity

Under the ggp with a Kronecker-structured prior the time complexity per iteration changes
slightly from the independent function case. For the same P, Qg and M , fewer M-
dimensioned inversions are required for ggp versus gprn, without any increase in maximum
dimension under the Kronecker specification assuming M ≥ Qr . This represents a substan-
tial reduction in M-dimensioned inversions, depending on the grouping scheme.

The cost of calculating Lcross is dominated by the cost of inversions, being

O
(∑R

r=1(M
3 + Q3

r )
)
for the grouped case and O (

QM3
)
for the independent case. Under

the diagonal posterior specification, Sk in Eq. (9) reduces to the same form as the independent
case of Krauth et al. (2017). Lastly, Lell under the grouped structure requires sampling from
low-dimensional Qr × Qr multivariate Gaussians with non-diagonal posterior covariance
matrices, whereas this is avoided under the independent framework. However, the low dimen-
sionality (number of tasks in our empirical evaluation) involved yields minimal additional
cost.

7 Grouped Gaussian processes for spatially dependent tasks

It is natural to consider amulti-task framework in a spatio-temporal setting such as distributed
solar forecasting, where power output at solar sites in a region would a priori be expected
to covary over time and space. Given the expectation of spatially-driven covariance across
sites, i.e. tasks, we seek to exploit this structure to increase both efficiency and accuracy of
multi-task forecasts. Our approach does this by incorporating explicit spatial dependencies
between latent functions in the model.

Latent functions in the general framework do not necessarily map to a particular task. The
question therefore arises as to how to use spatial information relating to tasks to structure
covariance between latent functions. We solve this by setting Qg = P and grouping latent
functions within rows of W i.e. f j ∈ Wi :, i = 1, . . . P . We then define a feature matrix
Hr that governs covariance across the P functions in each row (Fig. 1). With Qg ≥ P it is
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possible to obtain a very general representation of the multi-task process with full mixing
between tasks via G, which now contains P node functions. This grouping structure allows
parameters to vary across tasks, and at the same time, the coupled prior can act to regularize
latent function predictions.

Model settings In our setting, we consider each latent process in G to be an independent
gp, i.e.,

〈
g j , g j ′

〉 = 0 for j 	= j ′. Furthermore, input features of g j , j = 1, . . . , P are defined
to be task features i.e. features for g j relate to task j , specifically lagged-target values for j .

We define spatial features h j = (lati tude j , longitude j ) governing weightings applied
to node functions. For a given task i , Ep(Y|F,φ)

[
y(n)i

] = w(n)ig(n) where w(n)i denotes the
i th row vector of W(n). It can be seen that, in addition to depending on input features x(n),
relative weights placed on node functions are now smoothed by spatial covariance imposed
over the weights in w(n)i . This allows site-by-site optimization of spatial decay in (cross-
task) weights in addition to site-specific parameterization and features in w(n)i . In total, this
grouping structure yields 2P groups: P groups of size P (corresponding toW) and P groups
of size 1 (corresponding to G).

Kernels and features for κr (x, x′) and κr (h j ,h j ′) are selected in line with previous studies
relating to multi-task distributed forecasting (Inman et al. 2013; Dahl and Bonilla 2017). In
particular, for our task of forecasting distributed solar output over time, for g j , j = 1, . . . , P ,
we define κg j (xt , xs) = κg j (l t , ls) as a radial basis function kernel (κRBF ) applied to a
feature vector of recent lagged observed power at site j , i.e. for site j at time t , l j,t =
(y j,t , y j,t−1, y j,t−2).

For row-group r , we define a separable, multiplicative kernel structure as discussed above,
i.e. κr ( f j (x), f j ′(x′)) = κr (x, x′)κr (h j ,h j ′). We set the kernel over the inputs as κr (x, x′) =
κPer .(t, s)κRBF (lr t , lrs), where κPer .(t, s) is a periodic kernel on a time index t capturing
diurnal cyclical trends in solar output.

We adopt a compact kernel over functions, specifically a separable rbf- Epanech-
nikov structure, i.e., κr (h j ,h j ′) = κRBF (h j ,h j ′)κEp.(h j ,h j ′), j, j ′ = 1 . . . P , where
h j = (lati tude, longitude) for site j . By using a more flexible compact kernel, we aim to
allow beneficial shared learning across tasks while reducing negative transfer by allowing
cross-function weights to reduce to zero at an optimal distance.

8 Experiments

We evaluate our approach on forecasting problems for distributed residential solar installa-
tions and wind speed measured at proximate weather stations.

8.1 Solar forecasting

The task for solar is to forecast power production 15min ahead at multiple distributed sites in
a region. Data consist of 5min average power readings from groups of proximate sites in the
Adelaide and Sydney regions in Australia. We present results for three datasets: ten Adelaide
sites (adel- autm) and twelve Sydney sites (syd- autm), both over 60 days during Autumn
2016, and ten Adelaide sites (adel- summ) over 60 days in Spring–Summer 2016. We train
all models on 36 days of data, and test forecast accuracy for 24 subsequent days (days are
defined as 7 am to 7pm). In all, for each site, we have 5000 datapoints for training and 3636
datapoints for testing.
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Datasets have varying spatial dispersions.adel- autm (adel- summ) sites are spread over
an approximately 30 × 40 (20 × 20) km area, while syd- autm sites are evenly dispersed
over an approximately 15 × 20 km area.

8.1.1 Benchmark models

We compare forecast performance of our ggp method to the fully independent gprn and
several other benchmark models. We estimate (1) separate independent gp forecast models
for each site (igp), (2) pooled multi-task models with task-specific (spatial) features for sites
(mtg), and (3) multi-task linear coregional models (lcm). The final benchmark model (4) is
the gprn with independent latent functions (Wilson et al. 2012).

These models can be expressed in terms of the general latent function framework with
differing values of P , Q and R, and different likelihood functions. As discussed in Sect. 5,
where latent functions are independent, group size is equal to 1 and R = Q. Key model
constants are presented at Table 3.

Both igp and mtg models have a standard, single task Gaussian likelihood functions,
while the lcm model is comprised of P node functions mapped to outputs via a P × Qg

matrix of deterministicweights, i.e. p(y(n)|f(n),φ) = N (y(n);W(n)g(n),�y)whereW(n)i j =
wi j ∀n = 1, . . . , N and Qg = P . Kernels for all models are presented at Table 2. We
maintain similar kernel specification across models. All kernels are based on the specification
described at Sect. 7.

Models are presented for diagonal and full mog posterior specifications, with K = 1. In
the case of the ggp, to maintain the scalable specification, we adopt a Kronecker construction
of the full posterior for each group R in line with the prior specification.

Table 2 Latent function kernel
specifications for ggp and
benchmark models

Model κ j (x, x′; θ j ) (benchmark models)

igp κPer .(t, s)κRBF (l i t , l is )

mtg κPer .(t, s)κRBF (l i t , l js )κRBF−Ep.(2)(hi , h j )

lcm κPer .(t, s)κRBF (l i t , l is ), i = 1 to P .

gprn

Wi, j κPer .(t, s)κRBF (l i t , l is )

g j κRBF (l i t , l is ), i = 1 to P

ggp κr ( f j (x), f j ′ (x′)) (ggp solar)
Wi,: κPer .(t, s)κRBF (l i t , l is )κRBF−Ep.(2)(hi , h j )

g j κRBF (l i t , l is ), i = 1 to P

ggp κr ( f j (x), f j ′ (x′)) (ggp wind)
Wi, j 	=i κPer .(t, s)κRBF (l i t , l is )κRBF−Ep.(2)(hi , h j )

Wi,i κPer .(t, s)κRBF (l i t , l is )

g j κRBF (l i t , l is ), i = 1 to P

κPer .(t, s) is a periodic kernel applied to a time index; κRBF (l i t , l is )
is a radial basis function kernel applied to recent lagged power out-
put; κRBF−Ep.(2)(hi , h j ) is a separable, multiplicative radial basis-
Epanechnikov function kernel applied to cross-site spatial features
(latitude and longitude)
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Table 3 Key constants for ggp
and benchmark models

Model P Qg Q R M Agg. Ind.

adel- autm, adel- summ

igp 1 1 1 543 543

mtg 1 1 1 543 543

lcm 10 10 10 10 252 2520

gprn 10 10 110 110 113 12,463

ggp 10 10 110 20 200 4000

syd- autm

igp 1 1 1 577 577

mtg 1 1 1 577 577

lcm 12 12 12 12 252 3024

gprn 12 12 156 156 107 16,718

ggp 12 12 156 24 200 4800

wind

igp 1 1 1 524 524

mtg 1 1 1 524 524

lcm 6 6 6 6 288 1730

gprn 6 6 42 156 107 6300

ggp 6 6 42 18 200 3600

Output dimension (P); number of node functions (Qg , lcm, gprn and
ggp only); number of latent functions (Q); number of latent function
groups (R); dimension of inducing point matrices Kr

zz (M); and total
inducing points (Agg. Ind.) M has been set to obtain roughly the same
computational cost per iteration across all models

To compare model performance under equivalent settings, we consider the complexity of
the different approaches and standardize model settings by reference to a consistent target
computational complexity per iteration. In our variational framework, the time complexity is
dominated by algebraic operations with cubic complexity on the number of inducing inputs
M .We therefore set QM3 = RM3 = 20×(200)3 for adel- autm and adel- summmodels,
QM3 = RM3 = 24× (200)3 for syd- autm, and adjust the number of inducing points, M ,
accordingly (Table 3).

8.1.2 Experiment settings and performance measures

Allmodels are estimated based on the variational framework explained inSect. 6.Weoptimize
the elbo iteratively until its relative change over successive epochs is less than 10−5 up to
a maximum of 200 epochs. Optimization is performed using adam (Kingma and Ba 2014)
with settings {LR = 0.005;β1 = 0.09;β2 = 0.99}. All data except time index features are
normalized prior to optimization. Reported forecast accuracymeasures are rootmean squared
error (rmse) and negative log predictive density (nlpd). The non-Gaussian likelihood ofgprn
models makes the usual analytical expression for nlpd intractable. We therefore estimate it
using Monte Carlo:

nlpd = −Eq(f�|λ)

[
ln p(y�|f�)

] ≈ − 1

S

S∑

s=1

lnN (y�;Ws
�g

s
�,φ),
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where Ws
�g

s
� are draws from their corresponding posterior over f�. In addition, we compute

average ranking (m- rank) over both accuracymeasures (rmse andnlpd), andmean forecast
variance (f- var), which is critical to the use of short term forecasts as inputs to system or
market management algorithms.

8.1.3 Results

Results for solar models are presented at Table 4 with diagonal and full-Gaussian posterior
specifications. ggpmaintains or improves point accuracy when compared to best performing
benchmarks on both rmse and nlpd individually. For rmse, accuracy under ggp differs by
less than 1% relative to gprn, and similarly matches or improves on nlpd relative to lcm and
other benchmarks. ggp performs strongly in terms of overall accuracy across both measures,
consistently achieving the highest average rank across both measures (m- rank). In contrast,
competing baselines either perform well on rmse at the expense of poor performance under
nlpd or vice versa.

The benefit of regularization under the ggp is clear when considering mean forecast
variance, which is lower underggp than all benchmarkmodels for all experiments. Compared
to the un-grouped gprn (lcm), variance for solar forecasts is reduced by 18 to 24 (13 to 40)%
under the most accurate ggp model.

We test statistical significance of differences in performance discussed above via 95%
intervals estimated by Monte Carlo.1 Results of the analysis show that rmse under gprn is
statistically significantly lower than under ggp for solar datasets. In all other cases, rmse is
either not significantly different or significantly higher than under ggp. Results are similar
for nlpd, which is statistically significantly lower under lcm for two of three datasets, and
otherwise higher or not significantly different.

With the exception of the mtg model, all multi-task models consistently improve on
the naive independent forecast models. Figure 3 illustrates the benefit observed under the
ggp (and other multi-task models) in reducing large forecast errors associated with variable
weather conditions.

8.2 Wind speed forecasting

Wind variability shares characteristics with solar variability, as discussed in Sect. 1, with
similar approaches applied to the problem of short term forecasting (Widén et al. 2015). We
test our ggp method forecasting ground wind speed 30min ahead at six weather stations in
Victoria, Australia, within an approximately 30 × 40 km area. Data are half-hourly wind
speed readings collected over an eight month period. The wind data present an interesting
challenge, with frequent missing and noisy observations (Fig. 2). After filtering, we have
4000 training points and 1024 test points per station.

We adopt the same kernel and feature definitions as for solar (Table 2) however use a
different grouping structure for the ggp. We allow functions on the diagonal of W to be
independent and group off-diagonal functions within each row. This structure for each task j
allows weight placed on its ‘own’ univariate node function g j to be independent of weights
placed over remaining sites, which are still spatially smoothed. Wea similarly adjust the

1 The Monte Carlo procedure tests for significance of differences between model performance metrics by
repeatedly resampling from the test data and recalculating the difference in performancemetrics across models
for each sample (sample size is Ntest ). Differences are deemed statistically significantly different from zero
where the null value falls outside the interval defined by percentiles (0.025, 0.975) of the constructed empirical
distribution.

123



Machine Learning (2019) 108:1287–1306 1301

Ta
bl
e
4

Fo
re
ca
st
ac
cu
ra
cy

an
d
va
ri
an
ce

of
g
g
p
an
d
be
nc
hm

ar
k
m
od
el
s
us
in
g
di
ag
on
al
(D

)
an
d
fu
ll
(F
)
G
au
ss
ia
n
po
st
er
io
rs

a
d
el
-
a
u
tm

a
d
el
-
su

m
m

rm
se

n
lp
d

m
-
ra

n
k

f-
v
a
r

rm
se

n
lp
d

m
-
ra

n
k

f-
v
a
r

g
g
p
(D

)
0.
28

2
0.
24

3
2.
5

0.
14

0
0.
31

8
0.
32

3
2.
5

0.
11

8

g
g
p
(F
)

0.
28
8

*
0.
26
5

*
4.
0

0.
13

6
*

0.
32

1
*

0.
35

2
*

4.
0

0.
11

3
*

lc
m
(D

)
0.
29

4
*

0.
24

0
4.
0

0.
16

2
*

0.
32

5
*

0.
33

2
*

4.
5

0.
16

5
*

lc
m
(F
)

0.
29

3
*

0.
24

0
*

3.
0

0.
16

0
*

0.
32

3
*

0.
32

3
3.
0

0.
15

8
*

g
pr
n
(D

)
0.
27

8
*

0.
31

1
*

3.
0

0.
17

3
*

0.
31

5
*

0.
37

6
*

3.
0

0.
15

2
*

g
pr
n
(F
)

0.
28

3
0.
32

0
*

4.
5

0.
17

4
*

0.
31

6
*

0.
38

2
*

4.
0

0.
15

2
*

m
tg

(D
)

0.
30

1
*

0.
33

7
*

7.
0

0.
17

4
*

0.
44

4
*

0.
67

5
*

10
.0

0.
25

6
*

m
tg

(F
)

0.
30

4
*

0.
37

6
*

9.
0

0.
20

6
*

0.
44

1
*

0.
67

4
*

9.
0

0.
26

7
*

ig
p
(D

)
0.
31

5
*

0.
36

8
*

9.
0

0.
17

7
*

0.
34

1
*

0.
41

5
*

7.
5

0.
15

3
*

ig
p
(F
)

0.
31

4
*

0.
37

0
*

9.
0

0.
18

3
*

0.
34

3
*

0.
41

4
*

7.
5

0.
15

6
*

sy
d
-
a
u
tm

w
in
d

g
g
p
(D

)
0.
28

4
0.
25

7
2.
5

0.
15

7
0.
45

4
*

0.
67

0
*

2.
5

0.
28

2
*

g
g
p
(F
)

0.
29
8

*
0.
28
6

*
6.
0

0.
14

2
*

0.
45

0
0.
66

1
1.
0

0.
28

1

lc
m
(D

)
0.
31

0
*

0.
27

3
*

6.
5

0.
18

0
*

0.
46

5
*

0.
67

5
*

4.
0

0.
30

5
*

lc
m
(F
)

0.
30

2
*

0.
25

7
5.
5

0.
17

8
*

0.
46

5
*

0.
67

7
*

5.
0

0.
30

8
*

g
pr
n
(D

)
0.
28

1
*

0.
32

3
*

3.
5

0.
18

5
*

0.
46

0
*

0.
70

2
*

3.
5

0.
30

8
*

g
pr
n
(F
)

0.
28

4
0.
32

6
*

5.
5

0.
18

7
*

0.
45

5
*

0.
69

3
*

5.
0

0.
30

6
*

m
tg

(D
)

0.
28

0
0.
34

2
*

5.
0

0.
20

7
*

0.
47

4
*

0.
73

5
*

10
.0

0.
34

8
*

m
tg

(F
)

0.
28

3
0.
36

0
*

6.
5

0.
21

9
*

0.
47

2
*

0.
72

8
*

8.
0

0.
33

6
*

ig
p
(D

)
0.
28

6
0.
34

0
*

7.
5

0.
20

4
*

0.
47

2
*

0.
72

1
*

7.
0

0.
33

5
*

ig
p
(F
)

0.
28

6
0.
33

5
*

6.
5

0.
20

2
*

0.
47

3
*

0.
72

8
*

9.
0

0.
34

6
*

m
-
ra

n
k
is
m
ea
n
of

rm
se

an
d
n
lp
d
ra
nk

s
an
d
f-

v
a
r
is
m
ea
n
fo
re
ca
st
va
ri
an
ce
.L

ow
er

va
lu
es

in
di
ca
te

be
tte
r
pe
rf
or
m
an
ce

fo
r
al
l
m
ea
su
re
s.
*
in
di
ca
te
s
si
gn
ifi
ca
nt

di
ff
er
en
ce

fr
om

be
st
g
g
p
m
od

el
((
D
)
or

(F
))
ba
se
d
on

95
%

cr
ed
ib
le
in
te
rv
al

123



1302 Machine Learning (2019) 108:1287–1306

Fig. 2 Example data for normalized solar power (adel- summ—left hand side) and normalized wind speed
(wind—right hand side). Wind data exhibit strong noise relative to Summer time solar data

Fig. 3 Mean squared error under the ggp and igp approaches for adel- autm. Results shown for a single day
with variable cloud cover causing high variability in power output

number of inducing points, M to test models under equivalent settings, specifically setting
QM3 = RM3 = 18 × (200)3.

Results forwind are presented at Table 4 with diagonal and full-Gaussian posterior spec-
ifications. On this dataset ggp outperforms all other models on all measures including point
accuracy (nlpd and rmse), overall accuracy as measured bymeanmodel ranking across both
rmse and nlpd, and forecast variance. Consistent reductions in variance are observed for the
wind dataset, ranging from 7 to 25% improvements over competing models. As for solar,
confidence intervals are constructed via Monte Carlo. For wind, all differences in model
performance are confirmed to be statistically significant.

Comparison to approach of Remes et al. (2017) In addition to the above benchmarks,
estimated using the generic sparse, variational inference framework, we also consider the
approach of Remes et al. (2017). Since this method is a variational approach with complexity
of O (

(QN )3
)
, which does not use inducing points, in order to fit a model under equivalent

complexity conditions, we take a subset of the training data such that (QN )3 approximates
the settings above.We estimate amodel for thewind dataset, which has amanageable number
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of tasks. We set Q = 2. Equivalent complexity would imply N = 66 for wind, however we
limit the minimum data size at N = 200.

We utilize the model implementation made available by the authors and allow all param-
eters to be optimized2 The model gradient was optimized over 50 iterations, repeated ten
times using different random parameter initial values. The model with the best performance
(lowest objective function) was used to generate predictions.

The estimated value for rmse was 0.88 for the wind dataset, significantly higher than
results under the ggp.

9 Timed experiments

To further examine the properties of the ggpmodel in relation to existing scalable multi-task
methods, we conduct a series of timed experiments. We re-estimate models for the same
forecasting problems as presented at Sect. 8 and, for each epoch completed, capture time and
performance measures at that point. The goal of the analysis is to evaluate time taken for the
ggp approach to achieves gains in forecast accuracy relative to the independent gprn and
other benchmarks, as well as final forecast performance attained upon completion.

We reiterate that, as for experiments presented at Sect. 8, the number of inducing points
for each model is set to approximately standardize computational complexity per iteration.

All models are estimated on amulti-GPUmachine with four NVIDIATITANXp graphics
cards (memory per card 12GB; clock rate 1.58 GHz). Experiments were run until either
convergence criteria were reached (see Sect. 8), or to a maximum of 500 epochs or 300 min
runtime (these constraints were set conservatively based on previous experimental results).
Starting values for common components were set to be equal across all models. Optimization
settings were as for all other experiments.

9.1 Results of timed experiments

Representative rates of improvement in performance measures over time are presented at
Fig. 4 for two datasets,wind and adel- summ. These datasets were selected since results for
adel- autm and syd- autmwere similar to those forwind. Results are shown for all multi-
task benchmark approaches with full variational posterior specifications (similar results were
obtained for the diagonal posterior setting). Performance metric values shown are recorded at
the end of each epoch (hence the first value for eachmodel is recorded at different times, being
the time taken to estimate the initial epoch) and adjusted for calculation time for performance
capture.

For performance at a given point in time, results suggest a consistent ranking acrossmodels
tested.We observed that ggp achieves higher forecast accuracy significantly faster than gprn
in the majority of cases, with a few cases performing similarly to gprn. Specifically, for all
datasets except adel- summ, rmse reduces significantly faster under the ggpmethod relative
to thegprn, andnlpd for theggp surpassesgprn relatively early in the optimization. Relative
rates of improvement in rmse andnlpd as shown forwind at Fig. 4 provide a typical example
of the performance difference between the two models.

2 TheMatlab implementation of the model presented in Remes et al. (2017) is available at https://github.com/
sremes/wishart-gibbs-kernel. Models presented in Remes et al. (2017) for the gprn likelihood were estimated
using fixed parameter values for weight latent functions.
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Fig. 4 Forecast accuracy for wind (a) and adel- summ (b) datasets over optimization time in minutes for all
multi-task benchmark models. rmse and nlpd are recorded after each epoch during optimization

In terms of final accuracy, over the four datasets considered, results confirm the general
rankings of final model accuracy as shown in Table 4. Specifically, gprn achieves the best
accuracy in terms of rmse in two of four cases (adel- autm and adel- summ), while
ggp improves on gprn in two cases (syd- autm and wind, with mtg performing best on
syd- autm). Considering both speed and final accuracy together, ggp dominates the gprn,
achieving lower rmse and nlpd in a significantly shorter time than gprn in the majority of
cases. In some cases, gprn after some time will overtake ggp to achieve a slightly better
result on rmse, however in no case achieves a better result on nlpd. The results of timed
experiments are therefore consistent with an improvement over the gprn in terms of speed of
convergence without loss of accuracy in terms of nlpd, and minor loss of accuracy in terms
of rmse.

With respect to the lcm andmtgmodels, these methods achieve improvements in forecast
accuracy significantly more quickly than the ggp and gprn. Consistent with results shown
at Table 4, lcm achieves lower or similar nlpd to the ggp, with ggp outperforming lcm in
two of four cases (syd- autm and wind). However, we note that as show in Fig. 4, the lcm
converges relatively prematurely, and never achieves ggp or gprn performance on rmse. A
similar phenomenon was observed to a greater degree for the mtg, which converges quickly
but achieves poor accuracy relative to other models on both rmse and nlpd, the exception
being rmse for the syd- autm dataset.

Across the datasets considered, the ggp approach tends to achieve better forecast accuracy
than the lcmwhere data are noisier, consistent with improved accuracywhere the data require
a more expressive model than the (fixed-weight) lcm approach. For example, the adel-
summ dataset has significantly less noise relative to Autumn and wind datasets (Fig. 2).
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Consequently, gprn, lcm and ggp all perform similarly for the adel- summ dataset in terms
of final accuracy, but lcm is significantly faster, suggesting there is little advantage from a
more costly, expressive model such as gprn or ggp. In contrast, for noisier datasets, ggp and
gprn continue to improve over lcm, and ggp does so at a faster rate than the gprn. Figure 4
illustrates the typical relative accuracy over time of multitask models.

10 Discussion

We have proposed a general multi-task gp model, where groups of functions are coupled a
priori. Our approach allows for input-varying covariance across tasks governed by kernels
and features and, by building upon sparse variational methods and exploiting Kronecker
structures, our inference method is inherently scalable to a large number of observations.

We have shown the applicability of our approach to forecasting short term distributed solar
power and wind speed at multiple locations, where it matches or improves point forecast
performance of single-task learning approaches and other multi-task baselines under similar
computational constraints while improving quantification of predictive variance. We have
also demonstrated that our approach can yield important reductions in time taken to achieve
the same accuracy relative to the equivalent model without coupled priors. In general, the ggp
strikes a balance between flexible, task-specific parameterization and effective regularization
via structure imposed in the prior.

While we focus on a priori spatial dependencies, we emphasize that other grouping
structures and kernels, likelihood functions or applications are possible. For example, non-
spatial covariates in other domains, or grouping of functions according to clusters of tasks,
could be adopted.
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