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Abstract
Existing guarantees in terms of rigorous upper bounds on the generalization error for the orig-
inal random forest algorithm, one of the most frequently used machine learning methods,
are unsatisfying. We discuss and evaluate various PAC-Bayesian approaches to derive such
bounds. The bounds do not require additional hold-out data, because the out-of-bag samples
from the bagging in the training process can be exploited. A random forest predicts by taking
amajority vote of an ensemble of decision trees. The first approach is to bound the error of the
vote by twice the error of the correspondingGibbs classifier (classifyingwith a singlemember
of the ensemble selected at random). However, this approach does not take into account the
effect of averaging out of errors of individual classifiers when taking the majority vote. This
effect provides a significant boost in performance when the errors are independent or nega-
tively correlated, but when the correlations are strong the advantage from taking the majority
vote is small. The second approach based on PAC-Bayesian C-bounds takes dependencies
between ensemble members into account, but it requires estimating correlations between the
errors of the individual classifiers.When the correlations are high or the estimation is poor, the
bounds degrade. In our experiments, we compute generalization bounds for random forests
on various benchmark data sets. Because the individual decision trees already perform well,
their predictions are highly correlated and theC-bounds do not lead to satisfactory results. For
the same reason, the bounds based on the analysis of Gibbs classifiers are typically superior
and often reasonably tight. Bounds based on a validation set coming at the cost of a smaller
training set gave better performance guarantees, but worse performance in most experiments.

Keywords PAC-Bayesian analysis · Random forests · Majority vote

Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, Antti Ukkonen.

B Christian Igel
igel@di.ku.dk

Stephan S. Lorenzen
lorenzen@di.ku.dk

Yevgeny Seldin
seldin@di.ku.dk

1 Department of Computer Science, University of Copenhagen, Copenhagen, Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05803-4&domain=pdf
http://orcid.org/0000-0003-2868-0856


1504 Machine Learning (2019) 108:1503–1522

1 Introduction

A random forest is one of the most successful machine learning algorithms (Breiman 2001).
It is easy to use and to parallelize and often achieves high accuracies in practice (Fernández-
Delgado et al. 2014). In a survey on the machine learning competition website kaggle.com,1

46% of 16.000 surveyed users claimed to use the algorithm in their daily work. A random
forest for classification predicts based on the (possibly weighted) majority vote of a set (an
ensemble) of weaker classifiers, concretely decision trees. The model was first presented
by Breiman (2001), who provides an initial analysis and some theoretical bounds, showing
that the strength of the random forest depends on the strength of individual trees and their
correlation. Despite its popularity in practice, the algorithm is still not well understood the-
oretically (Arlot and Genuer 2014; Biau 2012; Denil et al. 2014), the main reason being that
the model is difficult to analyse because of the dependencies between the induced partitions
of the input space and the predictions within the partitions (Arlot and Genuer 2014). The
conceptually simpler purely random forests (Breiman 2002) avoids these dependencies by
creating a random partitioning independent of the training data. This is done by selecting
features and splits at random. Biau et al. (2008) show the purely random forests to be consis-
tent under some assumptions on the distribution of the input variables. Several modification
of the random forest have been introduced in the literature, most of them being in between
the standard random forest and the purely random forest in the sense that extra random-
ness is added to get independent partitions (Geurts et al. 2006; Genuer 2010). For instance,
Wang et al. (2016) introduce the Bernoulli random forests, which relies on Bernoulli random
variables for randomly choosing the strategy for partitioning the input space, and prove this
model to be consistent. Likewise, Denil et al. (2014) give a variant based on sampling of
predictions in a partition for determining best splits, and prove this variant to be consistent.
Theoretical bounds on the expected loss have been considered by Genuer (2010) in the case
of regression tasks when the input space is one-dimensional. Arlot and Genuer (2014) con-
sider the generalization error for the purely random forest in relation to the number of trees.
All these have nice analytical properties, but these come at the expense of degradation in
empirical performance compared to the standard random forest. Accordingly, the original
random forest still remains the best choice in practice (Wang et al. 2016), despite the lack of
strong theoretical guarantees.

This study considers the application of theoretical bounds based onPAC-Bayesian analysis
to the standard random forest as given by Breiman (2001). Here PAC stands for the Probably
Approximately Correct frequentist learningmodel (Valiant 1984). PAC-Bayesian approaches
are usually used for analysing the expected loss ofGibbs classifiers. Gibbs classifiers are ran-
domized classifiers that make predictions by applying a hypothesis drawn from a hypothesis
class H according to some distribution ρ on H (McAllester 1998; Seeger 2002; Thiemann
et al. 2017). While generalization bounds for Gibbs classifier may at first not seem directly
applicable to majority vote classifiers, they are in fact closely related. It can be shown that
the loss of a ρ-weighted majority vote classifier is at most twice that of the associated Gibbs
classifier, meaning that any bound for a Gibbs classifier leads to a bound for the majority vote
(Germain et al. 2015). However, such adaptation of the bounds for Gibbs classifiers typically
provides relatively weak bounds for majority vote classifiers, because the bounds for Gibbs
classifiers do not take into account dependencies between individual classifiers. One of the
main reasons for the good performance of majority vote classifiers is that when the errors of
individual classifiers are independent they tend to average out (Breiman 2001). Therefore,

1 http://www.kaggle.com/surveys/2017.
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the majority vote may perform very well even when the individual classifiers are weak (i.e.,
only slightly better than random guessing). In this case, application of PAC-Bayesian bounds
for the Gibbs classifier to the majority vote yields suboptimal results.

This has motivated the development of PAC-Bayesian bounds designed specifically for
averaging and majority vote classifiers (Germain et al. 2015; McAllester 1999; Oneto et al.
2018). One such bound is theC-bound, given by Germain et al. (2015), which is based on the
margin of the classifier. In contrast to the bounds for Gibbs classifiers, the C-bound takes the
correlations between the individual classifiers into account and could potentially yield tighter
bounds in the case described above. However, in the case with strong individual classifiers
and high correlation (as is the case for random forests), the C-bound deteriorates (Germain
et al. 2015) – in contrast to the Gibbs classifier bounds.

In this study, several of the above mentioned bounds are applied to the standard random
forest setting, where trees are trained using bagging, that is, using different random subsets
of the training data (Breiman 2001, 1996a). Since validation sets for individual trees are
constructed as part of the training procedure when using bagging, the theoretical bounds
come “for free” in the sense that no separate data needs to be reserved for evaluation. We
compare the quality of bounds obtained in this setting with bounds obtained by leaving out
a validation set for evaluation. We also consider optimization of the weighting of the voters
by minimization of the theoretical bounds (Thiemann et al. 2017; Germain et al. 2015).

2 Background

We consider supervised learning. Let S = {(X1, Y1), . . . , (Xn, Yn)} be an independent iden-
tically distributed sample from X × Y, drawn according to an unknown distribution D.
A hypothesis is a function h : X → Y, and H denotes a space of hypotheses. We eval-
uate a hypothesis h by a bounded loss function � : Y2 → [0, 1]. The expected loss of
h is denoted by L(h) = E(X ,Y )∼D [�(h(X), Y )] and the empirical loss of h on a sample
S is denoted by L̂(h, S) = 1

n

∑n
i=1 �(h(Xi ), Yi ). In this study, we focus on classifica-

tion. Given a set of hypotheses H and a distribution ρ on H , the Gibbs classifier hG is
a stochastic classifier, which for each input X randomly draws a hypothesis h ∈ H accord-
ing to ρ and predicts h(X) (Seeger 2002). The expected loss of the Gibbs classifier is given
by LGibbs(hG) = Eh∼ρ [L(h)], and the empirical loss of hG on a sample S is given by

L̂Gibbs(hG , S) = Eh∼ρ

[
L̂(h, S)

]
.

Closely related to the random Gibbs classifier are aggregate classifiers, whose predic-
tions are based on weighted aggregates over H . The ρ-weighted majority vote hM predicts
hM (X) = argmaxY∈Y

∑
h∈H∧h(X)=Y ρ(h). When discussing majority vote classifiers, it is

convenient to define the margin realised on a pattern (X , Y ) (Breiman 2001):

Mρ(X , Y ) = Ph∼ρ [h(X) = Y ] − max
j �=Y

Ph∼ρ [h(X) = j] , (1)

and the expected value of the margin Mρ = E(X ,Y )∼D
[Mρ (X , Y )

]
. Note, that a

large margin indicates a strong classifier. The expected loss of hM is then given
by LMV(hM ) = P(X ,Y )∼D

[Mρ(X , Y ) ≤ 0
]
, and the empirical loss L̂MV(hM , S) =

P(X ,Y )∼S
[Mρ(X , Y ) ≤ 0

]
, where we use (X , Y ) ∼ S to denote a uniform distribution over

the sample.
The Kullback–Leibler divergence between two distributions π and ρ is denoted by

KL(ρ‖π) and between Bernoulli distributions with biases p and q by kl(p‖q). Further-
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more, let ED[·] denote E(X ,Y )∼D[·] and Eρ[·] denote Eh∼ρ[·]. Finally, u denotes the uniform
distribution.

2.1 Random forests

Originally described by Breiman (2001), the random forest is amajority vote classifier, where
individual voters are decision trees. In the standard random forest setting, every voter has
equal weight (i.e., ρ = u). Let T ⊂ X × Y denote training patterns drawn according to D.
A random forest is constructed by independently constructing decision trees h1, h2, . . . , hm
(Hastie et al. 2009), where each hi is trained on Ti ⊆ T . A tree is constructed recursively,
starting at the root. At each internal node, a threshold θ and a feature j are chosen, and the
data set T ′ corresponding to the current node is then split into {X | X j ≤ θ} and {X | X j > θ}.
θ and j are chosen according to some splitting criterion, usually with the goal of maximizing
the information gain for each split, making the new subsets more homogeneous (Hastie
et al. 2009). Splitting is stopped when a node is completely pure (only one class is present)
or by some other stopping criterion (e.g., maximum tree depth). The tree construction is
randomized (Breiman 1996a, 2001). First, the selection of data sets Ti for training individual
trees is randomized. They are generated by the bagging procedure described below. Second,
only a random subset of all features is considered when splitting at each node (Breiman 2001;
Hastie et al. 2009).

Bagging is a general technique used for aggregated predictors (Breiman 1996a), which
generates the training sets Ti for the individual predictors by sampling |T | points from T
with replacement. The individual training sets T1, T2, . . . are known as bootstrap samples.
Because of sampling with replacement, not all patterns of T are expected to be in each Ti .
Let T̄i = T \ Ti denote the patterns not sampled for Ti . T̄i can now be used to give an
unbiased estimate of the individual classifier hi . The expected number of unique patterns in
Ti is approximately

(
1 − 1

e

) |T | � 0.632|T |, leaving us with slightly more than one third of
the training patterns for the validation sets (Breiman 1996a).

Bagging also allows us to compute out-of-bag (OOB) estimates. For each training pattern
(X , Y ) ∈ T , a majority vote prediction is computed over all voters hi with (X , Y ) /∈ Ti .
The empirical loss computed over these predictions is known as the OOB estimate, which
we denote by L̂MV

OOB(hM , T ). Empirical studies have shown that the OOB estimate on the
training data is a good estimator of the generalization error (Breiman 1996b).

Furthermore, the sets T̄1, T̄2, . . . , T̄m can be used to compute the empirical error of the
associated ρ-weighted Gibbs classifier hG by

L̂Gibbs
OOB (hG , T ) = Eρ

⎡

⎣ 1

|T̄i |
∑

(X ,Y )∈T̄i
� (hi (X), Y )

⎤

⎦ ,

and by considering T̄i ∩ T̄ j , we can also estimate the correlation between trees hi and h j , an
important ingredient in bounds for majority vote classifiers.

3 PAC-Bayesian bounds for majority vote classifiers

We now give an overview of the PAC-Bayesian bounds we apply to bound the expected
loss of random forests. PAC-Bayesian bounds have a form of a trade-off between ρ-weighted
empirical loss of hypotheses inH and the complexity ofρ,which ismeasured by itsKullback–
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Leibler divergence from a prior distribution π . The prior must be selected before the data
is observed and can be used to incorporate domain knowledge, while the posterior ρ can be
chosen based on the data.

3.1 PAC-Bayesian bounds for gibbs classifiers

The ρ-weighted majority vote classifier hM is closely related to the ρ-parameterized Gibbs
classifier hG . Whenever the majority vote makes a mistake, it means that more than a ρ-
weighted half of the voters make a mistake. Thus, the expected loss of the majority vote
classifier LMV(hM ) is at most twice the expected loss of the Gibbs classifier LGibbs(hG),

LMV(hM ) ≤ 2LGibbs(hG) (2)

(Mcallester 2003; Langford and Shawe-Taylor 2002; Germain et al. 2015). Therefore, any
bound on LGibbs(hG) provides a bound on the corresponding LMV(hM ). We consider the
following inequality originally due to Seeger (2002), which we refer to as the PBkl-bound
(PAC-Bayesian kl):

Theorem 1 (PBkl-bound, Seeger 2002) For any probability distribution π over H that is
independent of S and any δ ∈ (0, 1), with probability at least 1 − δ over a random draw of
a sample S, for all distributions ρ overH simultaneously:

kl
(
L̂Gibbs(hG , S)

∥
∥
∥LGibbs(hG)

)
≤ KL(ρ‖π) + ln 2

√
n

δ

n
.

A slightly tighter bound can be obtained by using

ξ(n) =
n∑

k=0

(
n

k

) (
k

n

)k (

1 − k

n

)n−k

(3)

instead of 2
√
n in the bound above, because we have

√
n ≤ ξ(n) ≤ 2

√
n (Maurer 2004).

In order to use Theorem 1 in the bagging setting, we need to make a small adjustment.
The empirical Gibbs loss L̂Gibbs(hG , T ) is computed using T̄1, T̄2, . . ., and since these sets
have different sizes, in order to apply the PBkl-bound, we use n = mini

(|T̄i |
)
. That this is

a valid strategy can easily be seen by going through the proof of Theorem 1, see Thiemann
et al. (2017).

Theorem 1 may also be applied to the final majority vote classifier hG if a separate
validation set is left out. In this case, |H | = 1, KL(ρ‖π) = 0, and L̂Gibbs(hM , S) =
L̂MV(hM , S). A separate validation set implies that the data available at training time has
to be split, and, therefore, the actual training set gets smaller. While L̂Gibbs(hM , S) may be
larger due to the smaller training data set size, the bound does no longer suffer from the factor
2 in (2). We will consider this way of bounding LMV(hM ) as an additional baseline denoted
as SH-bound (Single Hypothesis). Note that this bound requires the separate validation set
and, thus, cannot be applied in the bagging setting.

3.2 PAC-Bayesian bounds for majority vote classifiers

The PBkl-bound provides a tight bound for the Gibbs classifier, but the associated bound for
the majority vote classifier may be loose. This is because the bound for the Gibbs classifier

123



1508 Machine Learning (2019) 108:1503–1522

does not take correlation between individual classifiers into account. The individual classifiers
may be weak (i.e., L(hi ) close to 1

2 ) leading to a weak Gibbs classifier, but if the correlations
between the classifiers are low, the errors tend to cancel out when voting, giving a stronger
majority vote classifier (Germain et al. 2015). The generalization bounds for Gibbs classifiers
do not capture this, as they depend only on the strength of the individual classifiers. In order
to get stronger generalization guarantees for majority vote classifiers, we need bounds that
incorporate information about the correlations between errors of classifiers as well, as already
pointed out by Breiman (2001).

Germain et al. (2015) propose to use the C-bound for this purpose, which is based
on the margin of the majority vote classifier. They consider only the case where the out-
put space is binary, Y = {−1, 1}, and (1) becomes Mρ(X , Y ) = Y

(∑
h∈H ρ(h)h(X)

)
.

With the first moment Mρ = ED
[Mρ(X , Y )

]
, the second moment is given by Mρ2 =

ED

[(Mρ(X , Y )
)2

]
= Eh1,h2∼ρ2 [ED [h1(X)h2(X)]]. Then the C-bound for the expected

loss of the ρ-weighted majority vote classifier reads:

Theorem 2 (C-bound, Germain et al. 2015) For any distribution ρ over H and any distri-
bution D on X × {−1, 1}, ifMρ > 0, we have

L(hM ) ≤ 1 − M2
ρ

Mρ2
.

The theorem follows from the one-sided Chebyshev inequality applied to the loss of hM . As
the first and second moments are usually not known, Germain et al. offer several ways to
bound them empirically. They start by showing that

Mρ = 1 − 2LGibbs(hG) (4)

meaning that the first moment of the margin can be bounded by the use of the PBkl-bound
(Theorem 1). For the second moment, we have that

Mρ2 = 1 − 2dρ, (5)

where dρ = 1
2

[
1 − ED

[(
Eρ [h(X)]

)2
]]

is the disagreement between individual classifiers.

Together with the C-bound, the relations above confirm the observations made by Breiman
(2001): the strength of hM depends on having strong individual classifiers (low LGibbs(hG),
i.e., largeMρ) and low correlation between classifiers (high disagreement dρ , i.e., lowMρ2 ).

By (4), the first moment of the margin can be bounded by the use of the PBkl-bound
(Theorem 1), while by (5) the second moment can be bounded using a lower bound on dρ .
With d̂ S

ρ denoting the empirical disagreement computed on S, dρ can be lower bounded by
the smallest d satisfying (Germain et al. 2015)

kl
(
d̂ S
ρ

∥
∥
∥d

)
≤ 2KL (ρ‖π) + ln ξ(n)

δ

n
.

Like in the case of Theorem 1, solutions to the above inequality can be computed by a
root-finding method. This leads to the following empirical C-bound, which we denote the
C1-bound:

Theorem 3 (C1-bound, Germain et al. 2015) For any probability distribution π overH that
is independent of S and any δ ∈ (0, 1), with probability at least 1 − δ over a random draw
of a sample S, for all distributions ρ overH simultaneously
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LMV(hM ) ≤ 1 − (1 − 2b)2

(1 − 2d)
.

Here b is an upper bound on LGibbs(hG), which can be found by Theorem 1, and d is a lower
bound on dρ .

The C1-bound allows direct bounding of LMV(hM ). However, Germain et al. (2015) also
provide another bound based on Theorem 2, which does not require bounding LGibbs(hG) and
dρ separately. First, we let eρ = Eh1,h2∼ρ2 [ED [I (h1(X) �= Y ) I (h2(X) �= Y )]] denote the
expected joint error and êSρ denote the empirical joint error computed on S. Then the loss of

the associated Gibbs classifier can be written as LGibbs(hG) = 1
2

(
2eρ + dρ

)
. The next bound

is then based on bounding dρ and eρ simultaneously, by bounding theKL-divergence between
two trivalent random variables. A variable X is trivalent if P (X = x1) = p1, P (X = x2) =
p2 and P (X = x3) = 1 − p1 − p2, and similar to kl (·‖·), kl (p1, p2‖ q1, q2) denotes the
KL-divergence between two trivalent random variables with parameters (p1, p2, 1− p1− p2)
and (q1, q2, 1 − q1 − q2).

Using the above and a generalization of the PAC-Bayes inequality to trivalent random
variables, Germain et al. derive the following bound, which we refer to as the C2-bound:

Theorem 4 (C2-bound, Germain et al. 2015) For any probability distribution π over H
independent of S and any δ ∈ (0, 1), with probability at least 1 − δ over a random draw of
a sample S, for all distributions ρ overH simultaneously

LMV(hM ) ≤ sup
d,e

(

1 − (1 − (2e + d))2

1 − 2d

)

,

where the supremum is over all d and e satisfying

kl
(
d̂ S
ρ , êSρ

∥
∥
∥ d, e

)
≤ 2KL (ρ‖π) + ln ξ(n)+n

δ

n
, d ≤ 2

(√
e − e

)
, 2e + d < 1. (6)

Again, we need to make adjustments in order to apply the C1-bound and C2-bound in the
bagging setting. When lower bounding the disagreement and the joint error in Theorem 4,
we consider the empirical disagreement d̂Tρ (and joint error êTρ ) between hi and h j estimated
on T̄i ∩ T̄ j and choose n = mini, j

(|T̄i ∩ T̄ j |
)
accordingly.

3.3 Optimizing the posterior distribution

Aside from providing guarantees on expected performance, PAC-Bayesian bounds can be
used to tune classifiers. The prior distributionπ must be chosen before observing the data, but
we are free to choose the posterior distribution ρ afterwards, for instance one could choose
ρ such that the empirical loss L̂MV(hM , S) is minimized.

Breiman has applied boosting (Schapire and Singer 1999) to random forests in order
to optimize the weighting of the vote, finding that it improved the accuracy in some cases
(Breiman 2001). We instead consider optimization of the posterior by minimizing the the-
oretical bounds (Thiemann et al. 2017; Germain et al. 2015). However, none of the bounds
provided above can easily be used to directly optimize ρ, because they are non-convex in ρ

(Thiemann et al. 2017). Thiemann et al. (2017) and Germain et al. (2015) came up with two
different ways to resolve the convexity issue.

Thiemann et al. apply a relaxation of Theorem 1 based on Pinsker’s inequality, which
leads to the following result that we refer to as the λ-bound:
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Theorem 5 (λ-bound, Thiemann et al. 2017) For any probability distribution π overH that
is independent of S and any δ ∈ (0, 1), with probability at least 1 − δ over a random draw
of a sample S, for all distributions ρ overH and λ ∈ (0, 2) simultaneously

LGibbs(hG) ≤ L̂Gibbs(hG , S)

1 − λ
2

+ KL(ρ‖π) + ln 2
√
n

δ

λ
(
1 − λ

2

)
n

. (7)

They show that the λ-bound is convex in ρ and in λ (but not jointly convex). They give an
iterative update procedure, which alternates between updating λ and ρ, and prove that, under
certain conditions, the procedure is guaranteed to converge to the global minimum.

Germain et al. (2015) state a version of the C-bound that is suited for optimization of
ρ. However, the bound is restricted to self-complemented hypothesis classes and posteriors
aligned on the prior. A hypothesis class is said to be self-complemented, if h ∈ H ⇔ −h ∈
H , where −h is a hypothesis that always predicts the opposite of h (in binary prediction).
A posterior ρ is said to be aligned on π if ρ(h) + ρ(−h) = π(h) + π(−h). Thus, the final
statement of the bound, which we denote by C3-bound, becomes:

Theorem 6 (C3-bound, Germain et al. 2015) For any self-complemented hypothesis set H ,
any probability distribution π overH independent of S and any δ ∈ (0, 1), with probability
at least 1 − δ over a random draw of a sample S, for all distributions ρ aligned with π

simultaneously

LMV(hM ) ≤ 1 − (1 − 2r)2

(1 − 2d)
,

where

r = min

⎛

⎝1

2
, L̂Gibbs(hG , S) +

√

ln 2ξ(n)
δ

2n

⎞

⎠ ,

d = max

⎛

⎝0, d̂ S
ρ −

√

ln 2ξ(n)
δ

2n

⎞

⎠ .

The authors show how to minimize the bound in Theorem 6 over the posterior ρ, by solving
a quadratic program. The quadratic program requires a hyperparameter μ, used to enforce
a minimum value of the first moment of the margin. μ can be chosen by cross validation
(Germain et al. 2015). Furthermore, they note how the restriction to aligned posteriors acts
as regularization.

For both the λ-bound and the C3-bound, we need to make the same adjustments as for
the PBkl-bound and the C-bound, that is, we choose n = mini, j

(|T̄i ∩ T̄ j |
)
. When applying

the optimization procedure of the C3-bound, we also need to make sure that the H is self-
complemented; given a set of hypotheses, this can be done by copying all hypotheses and
inverting their predictions.

4 Experiments

We have applied the bounds of Sect. 3, summarized in Table 1, in different random forest
settings. First,we considered the standard settingwith bagging and used the sets T̄1, T̄2, . . . for
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evaluation and computation of the bounds as described in Sect. 3. The posterior distribution ρ

was taken uniform and not optimized. Thenwe considered a setting with a separate validation
set Tval. The majority vote bounds suffer from the low number of training patterns available
for evaluating the correlation between classifiers. Therefore, we also evaluated the quality
of the bounds when a separate validation set Tval was set aside before training. Tval was
then used in addition to T̄1, T̄2, . . ., when evaluating and computing the bounds. Again, the
posterior distribution ρ = u was not optimized. Finally, we looked at random forests with
optimized posteriors. We used bagging and the bounds in Theorems 5 and 6 to optimize the
posterior distribution ρ.

For all settings, the accuracy of the final majority vote classifier hM is also of interest.
Hence, a separate test set Text is left out in each setting. This set is used only for evaluating the
final classifier by L̂MV(hM , Text). We are mainly concerned with the tightness of the bounds
when individual voters are strong. Therefore, all features are considered in each split during
the training of the random forest (using Gini impurity as splitting criterion), and trees are
trained until all leaves are pure [see, e.g., Gieseke and Igel (2018), for arguments why this
can be beneficial].

To study how the bounds depend on the strengths of the individual classifiers, we varied
the maximum tree depth and the number of features considered in each split in the first two
settings. This allows us to investigate the evolution of the bounds as the strength of individual
classifiers increases by going from decision stumps to full-grown trees. We either set the
number of random features considered for splitting to the maximum number or, to further
weaken the classifiers, to a single random feature. We restricted these experiments to two
data sets.

Experiments were run on several binary UCI data sets (see left part of Table 2). For each
data set, all patterns with one or more missing features were removed. Since the C-bound is
only analysed for binary classification, we restrict ourselves to binary tasks. The number of
treesm for any data set of size N was chosen as the largest value from {100, 200, 500, 1000}
that was smaller than N/4.

For each setting, N/2 patterns were randomly sampled for Text. In the first and third
settings, all remaining patterns were used for training. In the second setting, a further N/4
patterns were sampled for Tval, with the remaining patterns used for training, see Fig. 1 for
an illustration.

When evaluating the bounds, we chose π = u and δ = 0.05.

4.1 Random forest with bagging

We started with the original random forest setting, where an individual tree hi is trained on a
bootstrap sample Ti of size |T |, drawn with replacement from the training set T consisting of
half the data with the other half Text used for evaluating the final classifier. As mentioned, the
posterior distribution ρ was chosen uniform. In this experiment, T comprised all available
data. The empiricalGibbs losswas evaluated using T̄i = T \Ti and the empirical disagreement
and joint error between two trees hi and h j using T̄i ∩ T̄ j .

We considered thePBkl-bound and the two empiricalC-bounds,C1-bound andC2-bound,
with sample sizes n calculated as described in Sect. 3. Furthermore, the trained classifier hM

was evaluated on Text.
Table 2 (middle) lists the results. The test score L̂MV(hM , Text) provides an estimate of

the accuracy of the classifier. The PBkl-bound always gave the tightest bounds. For 6 out
of the 14 data sets the bound was below 0.5. The better performance of the PBkl-bound is
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Fig. 2 Evolution of bounds depending on voter strength (measured by Gibbs risk) on data sets Letter:AB
(top) andMushroom (bottom) in the bagging setting, using the best feature for splits (left) or a random feature
(right). In addition, the empirical disagreement d̂ρ between the trees is plotted

explained by the high accuracy of the individual trees. Asmentioned byGermain et al. (2015)
and discussed in Sect. 3, the C-bound degrades when the individual classifiers are strong.
Thus, the PBkl-bound including the factor of 2 coming from (2) is tighter. Furthermore, for
theC-bounds the bagging setting is particularly difficult, because there is only a small amount
of data available for estimating correlations. This is especially true for the C2-bound, since
it relies only on the intersection between the two samples T̄i and T̄ j , which may be small.

In the bagging setting we get the bounds “for free” in the sense that all evaluations are
based on the T̄i sets, which are by-products of the training, and we do not have to set aside a
separate validation set. Thus, more data is available for selecting the hypothesis.

Figure 2 shows the evolution of the bounds as the strength of the individual voters varies
for the data sets Letter:AB and Mushroom. Voter strength was controlled by increasing
the maximum allowed tree depth until only pure trees were obtained, and by feature selection
during splits, that is, using either the best feature (stronger voters) or a random feature (weaker
voters).

From the figure, we see that the PBkl-bound is tighter than both theC1-bound and theC2-
bound, even though the C-bounds are expected to perform better, when individual classifiers
are weak. However, this theoretical advantage is outweighed by the low amount of data
available for bounding the disagreement/joint error, that is, n = mini, j

(|T̄i ∩ T̄ j |
)
is very

small, leading to loose bounds.

123



1516 Machine Learning (2019) 108:1503–1522

4.2 Random forest with a separate validation set

As a reference, we considered the scenario where a separate validation set Tval was set aside
before the random forest was trained, which allows for a better estimate of the correlations
in the C-bounds. Recall that a separate test set Text was set aside for evaluating the classifier
beforehand. Now the remaining half of the data set was split into two equal sized parts, T
and Tval. The random forest was then trained on T as before using bagging, but the empirical
Gibbs loss and disagreement were now measured on the sets T̄1, T̄2, . . . combined with
Tval. We also considered the setting in which only Tval was used for computing the bounds.
This, as expected, led to slightly worse bounds. The results can be found in Table 4 in the
“Appendix A”. As in the previous setting, we had to take care when applying the bounds.
Again, the sample sizes n for the theorems were calculated as described in Sect. 3, but now
with extra N/4 points available. As before, we applied the PBkl-bound, the C1-bound and
the C2-bound, but now with the addition of the SH-bound. Having the separate validation
set allowed us to apply this single hypothesis bound, which is based only on Tval.

Table 2 (right) lists the results. Again, the loss of hM on Text is given as an estimate of
the accuracy of the classifier. As before, we see that the PBkl-bound was tighter than the
C-bounds in almost all cases, and again the explanation lies in the strength of the individual
classifiers. We also see that the C2-bound was tighter than C1-bound. This is in accordance
with the observation by Germain et al. (2015) that the C2-bound is often tighter when there
is an equal amount of data available for estimating the empirical Gibbs loss and the empirical
correlation between any two classifiers. However, we see in all cases that the single hypothesis
bound gives the best guarantees. This indicates that the PBkl-bound does indeed suffer from
not taking correlations into account, even if it outperforms the C-bounds.

Comparing the results to the bounds obtained in the previous experiment, we see that,
with the exception of the SH-bound, the bounds overall were very similar, some bounds
better, some worse. This can be explained by the trade-off between using data for training
the classifier and using data for evaluating the classifier as part of computing the bounds.
In the previous experiment, more data was used to train the random forest, which typically
gives a better classifier (as also indicated by the performance on the test set Text), resulting
in a lower empirical Gibbs loss. Still, in this experiment the bound can be tighter because
more data is used to evaluate the classifiers. This is demonstrated in Fig. 6 in “Appendix B”
which shows a comparison of the two settings on two exemplary data sets, Letter:DO and
Adult. The figure illustrates the difference in tightness of the bounds.

The SH-bound provides the best guarantees for all data sets across both experiments,
indicating that the other bounds are still too loose. The SH-bound does not come for free
though, as data must be set aside, whereas the bounds computed in the bagging setting often
provide useful guarantees and a better classifier.

The dependence of the bounds on the strengths of the individual voters is shown in Fig. 3
for the data sets Letter:AB and Mushroom. As in the previous setting, maximum tree
depth and feature selection at splits (using the best or a random feature) were used to control
voter strength.

Even when individual voters got weaker, the SH-bound remained tighter. As expected, the
C2-bound now outperformed the PBkl-bound when individual voters are weak and disagree-
ment is high. However, to observe this effect it was necessary to consider a single random
feature for splitting. Considering the best feature with shallow trees also results in weak
voters, but because of lower disagreement (due to trees being very similar), the C-bounds
are still loose.

123



Machine Learning (2019) 108:1503–1522 1517

Fig. 3 Evolution of bounds depending on voter strength (measured by Gibbs risk) on data sets Letter:AB
(top) and Mushroom (bottom) in the setting with a separate validation set, using the best feature for splits
(left) or a random feature (right). In addition, the empirical disagreement d̂ρ between the trees is plotted

Comparing to the bagging setting, we see the impact of having extra data from the left
out validation set, Tval, when evaluating the bounds. Still, the PBkl-bound remained tighter
for strong voters, that is, when the Gibbs risk is close to zero.

4.3 Random forest with optimized posterior

Finally, we optimized the posteriors based on the λ-bound (Theorem 5) and the C3-bound
(Theorem 6). The former was updated by iterative application of the update rules given
by Thiemann et al. (2017). For the latter, we made sure that the hypothesis set is self-
complemented (Germain et al. 2015) by adding a copyof all trained treeswith their predictions
reversed. The quadratic program was then solved using the solver CVXOPT (Andersen and
Vandenberghe 2019).

For each experiment, we split the data set into a training set T and an external test set Text
not used in the model building process, see Fig. 1. We only considered larger benchmark data
sets, because T and Text needed to be of sufficient size. The random forest was then trained
using bagging, and the posteriors were then optimized using the individual sets T̄1, T̄2, . . ..
We selected the hyperparameter μ for the quadratic program of Theorem 6 that minimized
the OOB estimate. Once the optimal ρ was found, the random forest with optimized weights
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Table 3 Loss on Text obtained
when ρ is chosen by
minimizations of the λ-bound
(ρ = ρλ) and the C3-bound
(ρ = ρC ), compared to loss
obtained with ρ = u

Data set u ρλ ρC

Adult 0.152 0.170 0.152

Mushroom 0.000 0.000 0.000

Letter:AB 0.010 0.010 0.010

Letter:DO 0.044 0.051 0.044

Letter:OQ 0.051 0.061 0.051

Tic-Tac-Toe 0.079 0.069 0.086

Credit-A 0.144 0.153 0.144

Fig. 4 Optimized distribution ρλ and for each tree i the error on the subset T̄i of the training data not used for
building the tree. Shown are the results for the Credit- A data set using 50 trees

was evaluated on Text. A random forest with uniform posterior was trained and evaluated in
the same setting as a baseline.

Table 3 lists the loss on Text for the seven largest data sets when optimizing ρ by min-
imization of the λ-bound and C3-bound. ρλ and ρC denotes the optimal posteriors found
using the optimization with the λ-bound and the C3-bound respectively. Note that for ρC ,
the hypothesis set is modified such that it is self-complemented.

For the optimization using the λ-bound, we see that, except on the Tic- Tac- Toe data
set, the test loss for the optimized posterior was equal or slightly higher. The reason is that,
because the λ-bound does not consider interactions between ensemble members, it tends to
put most weight on only a few trees. Thus, the effect of cancellation of errors vanishes.

Figure 4 demonstrates that indeed most of the probability mass was centered on the few
trees.

However, recomputing the PBkl-bound, C1-bound and C2-bound using posterior ρλ, we
observed that the PBkl-bound (and actually also the C-bounds) became tighter, indicating
that the bounds are still quite loose.

Optimizing using the C-bound in Theorem 6 does not suffer from the probability mass
being concentrated on very few tress, because of the restriction to posteriors aligned on the
prior (which is uniform inour case) and the fact that the individual treeswere rather strong.The
probability mass can only be moved between a tree and its complement. If hi has a small loss,
ρC (hi ) is close to 1/m, since − hi is very weak. Figure 5 shows an example. The algorithm
selected almost exclusively the strong classifiers, and due to the required alignment, the ρC
was basically the uniform distribution on the original (non-self-complemented) hypothesis
set, explaining the similarities in accuracy and bounds.
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Fig. 5 Optimized distribution ρC and for each tree i the error on the subset T̄i of the training data not used
for building the tree. Shown are the results for the Credit- A data set using 100 self-complemented trees

5 Conclusions

PAC-Bayesian generalization bounds can be used to obtain rigorous performance guarantees
for the standard random forest classifier used in practice. No modification of the algorithm is
necessary and no additional data is required because the out-of-bag samples can be exploited.
In our experiments using the standard random forest, bounds inherited from the corresponding
Gibbs classifiers clearly outperformed majority vote bounds that take correlations between
ensemble members into account. The reason is that the individual decision trees are already
rather accurate classifiers, which makes it difficult to estimate the correlations of errors. As
expected, we could observe the opposite result when using weaker individual classifiers.
However, this required enough disagreement between the classifiers (which we enforced by
increasing randomization) and using a separate validation set, because the out-of-bag samples
alone provided not enough data for reliably estimating the correlation between two voters.
We also replaced the majority vote by a weighted majority vote and optimized the weights
by minimizing the PAC-Bayesian bounds. This led to better performance guarantees, but
weaker empirical performance.

When we split the data available at training time into a training and a validation set, we
can use the hold-out validation set to compute a generalization bound. In our experiments,
this led to considerably tighter bounds compared to the PAC-Bayesian approaches. However,
because less data was available for training, the resulting classifiers performed worse on
an external test set in most cases. Thus, using a validation set gave us better performance
guarantees, but worse performance.

Our conclusion is that existing results that are derived for ensemble methods and take
correlations of predictions into account are not sufficiently strong for guiding model selec-
tion and/or weighting of ensemble members in majority voting of powerful classifiers, such
as decision trees. While the C-bounds are empirically outperformed by the generalization
bounds based on the Gibbs classifier, the latter ignore the effect of cancellation of errors
in majority voting and, thus, are of limited use for optimizing a weighting of the ensemble
members and guiding model selection. Therefore, more work is required for tightening the
analysis of the effect of correlations in majority voting. Nevertheless, to our knowledge, the
PAC-Bayesian approach in this study provides the tightest upper bounds for the performance
of the canonical random forest algorithm without requiring hold-out data.

Acknowledgements We acknowledge support by the Innovation Fund Denmark through the Danish Center
for Big Data Analytics Driven Innovation (DABAI).
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A Extra results for second setting

Table 4 lists the bounds and losses obtained in the validation set setting using only Tval for
computing the bounds.

Table 4 The PBkl-bound, C1-bound, C2-bound and SH-bound computed for the binary UCI data sets in the
validation set setting, where only Tval is used for computing the bounds

Data set n d Test score PBkl C1 C2 SH

Adult 45222 14 0.154 0.432 0.510 0.483 0.169

Credit-A 653 15 0.135 0.632 0.854 0.812 0.294

Haberman 306 3 0.333 > 1 > 1 > 1 0.577

Heart 297 13 0.282 0.893 0.992 0.990 0.412

ILPD 579 10 0.307 > 1 > 1 > 1 0.441

Ionosphere 351 34 0.125 0.728 0.931 0.910 0.299

Letter:AB 20000 16 0.015 0.152 0.266 0.192 0.035

Letter:DO 20000 16 0.067 0.237 0.383 0.300 0.072

Letter:OQ 20000 16 0.059 0.352 0.519 0.418 0.119

Mushroom 8124 22 0.001 0.017 0.036 0.041 0.008

Sonar 208 60 0.250 > 1 > 1 > 1 0.510

Tic-Tac-Toe 958 9 0.142 0.765 0.908 0.807 0.221

USvotes 232 16 0.052 0.513 0.784 0.739 0.228

WDBC 569 30 0.063 0.342 0.567 0.490 0.102

The majority vote loss on Text is given as an estimate of the accuracy of the trained classifier denoted as test
score. The best bound is marked with bold, while italics is used to indicate trivial bounds (≥ 0.5)

B Comparison plots for the bagging and validation set settings

Figure 6 shows the comparison of the bounds obtained for the Letter:DO and Adult data
set. The figure includes all three settings: using only the hold-out sets from bagging (T̄ ),
using only the validation set (Tval), and using a combination of both (T̄+Tval)
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Fig. 6 Comparison of the bounds obtained for a random forest with 500 trees trained on the Letter:DO data
set. Comparison of the bounds obtained for a random forest with 500 trees trained on the Letter:DO data set
(left) and for a random forest with 1000 trees trained on the Adult data set (right)
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