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Abstract
Minimizing the empirical risk is a popular training strategy, but for learning tasks where the
data may be noisy or heavy-tailed, one may require many observations in order to general-
ize well. To achieve better performance under less stringent requirements, we introduce a
procedure which constructs a robust approximation of the risk gradient for use in an itera-
tive learning routine. Using high-probability bounds on the excess risk of this algorithm, we
show that our update does not deviate far from the ideal gradient-based update. Empirical
tests using both controlled simulations and real-world benchmark data show that in diverse
settings, the proposed procedure can learn more efficiently, using less resources (iterations
and observations) while generalizing better.

Keywords Robust learning · Stochastic optimization · Statistical learning theory

1 Introduction

Any successful machine learning application depends both on procedures for reliable statis-
tical inference, and a computationally efficient implementation of these procedures. This can
be formulated using a risk R(w) ..= E l(w; z), induced by a loss l, where w is the parameter
(vector, function, set, etc.) to be specified, and expectation is with respect to z, namely the
underlying data distribution. Given data z1, . . . , zn , if an algorithm outputs ŵ such that R(ŵ)

is small with high probability over the random draw of the sample, this is formal evidence
for good generalization, up to assumptions on the distribution. Performance-wise, the statis-
tical side is important because R is always unknown, and the method of implementation is
important since the only ŵ we ever have in practice is one we can actually compute.

Empirical risk minimization (ERM), which admits any minimizer of n−1∑n
i=1 l(·; zi ),

is the canonical strategy for machine learning problems, and there exists a rich body of
literature on its generalization ability (Kearns and Schapire 1994; Bartlett et al. 1996; Alon
et al. 1997; Bartlett and Mendelson 2003). In recent years, however, some severe limitations
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of this technique have come into light. ERM can be implemented by numerous methods,
but its performance is sensitive to this implementation (Daniely and Shalev-Shwartz 2014;
Feldman 2016), showing sub-optimal guarantees on tasks as simple as multi-class pattern
recognition, let alone tasks with unbounded losses. A related issue is highlighted in recent
work by Lin and Rosasco (2016), where we see that ERM implemented using a gradient-
based method only has appealing guarantees when the data is distributed sharply around the
mean in a sub-Gaussian sense. These results are particularly important due to the ubiquity of
gradient descent (GD) and its variants in machine learning. They also carry the implication
that ERM under typical implementations is liable to become highly inefficient whenever the
data has heavy tails, requiring a potentially infinitely large sample to achieve a small risk.
Since tasks with such “inconvenient” data are common (Finkenstädt and Rootzén 2003), it
is of interest to investigate and develop alternative procedures which can be implemented as
readily as theGD-based ERM (henceforth, ERM-GD), but which have desirable performance
for a wider class of learning problems. In this paper, we introduce and analyze an iterative
routine which takes advantage of robust estimates of the risk gradient.
Review of related work Herewe review some of the technical literature related to ourwork. As
mentioned above, the analysis of Lin andRosasco (2016) includes the generalization of ERM-
GD for sub-Gaussian observations. ERM-GD provides a key benchmark to be compared
against; it is of particular interest to find a technique that is competitivewith ERM-GDwhen it
is optimal, but which behaves better under less congenial data distributions. Other researchers
have investigated methods for distribution-robust learning. One notable line of work looks
at generalizations of the “median of means” procedure, in which one constructs candidates
on disjoint partitions of the data, and aggregates them such that anomalous candidates are
effectively ignored. These methods can be implemented and have theoretical guarantees,
ranging from the one-dimensional setting (Lerasle and Oliveira 2011; Minsker and Strawn
2017) tomulti-dimensional and even functionalmodels (Minsker 2015;Hsu andSabato 2016;
Lecué and Lerasle 2017). Their main limitation is practical: when sample size n is small
relative to the complexity of the model, very few subsets can be created, and robustness
is poor; conversely, when n is large enough to make many candidates, cheaper and less
sophisticated methods often suffice.

An alternative approach is to use all the observations to construct robust estimates ̂R(w)

of the risk R(w) for each w to be checked, and subsequently minimize ̂R as a surrogate. An
elegant strategy using M-estimates of R was introduced by Brownlees et al. (2015), based
on fundamental results due to Catoni (2009, 2012). While the statistical guarantees are near-
optimal under very weak assumptions on the data, the proxy objective ̂R is defined implicitly,
introducing many computational roadblocks. In particular, even if R is convex, the estimate
̂R need not be, and the non-linear optimization required by this method can be both unstable
and costly in high dimensions.

Finally, conceptually the closest recent work to our research are those also analyzing novel
“robust gradient descent” algorithms, namely steepest descent procedures which utilize a
robust estimate of the gradient vector of the underlying (unknown) objective of interest. The
first works in this line are due to Holland and Ikeda (2017a) (a preliminary version of our
work) and Chen et al. (2017a) (later updated as Chen et al. (2017b)), which appeared as pre-
prints almost simultaneously. This was later followed bymore recent entries into the literature
due to Prasad et al. (2018) and Lecué et al. (2018). We give a more formal description of
these methods in Remark 1 at the end of Sect. 2, but describe key similarities and differences
here. All of these cited works are based upon the “median of means” strategy for aggregating
weak, independent estimators to produce a final estimate of the risk gradient to be plugged
into a steepest descent routine. These routines differ from each other in terms of how this
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aggregation is executed. Both Chen et al. (2017a) and Prasad et al. (2018) compute gradient
sample means on independent sub-samples (after partitioning), and then compute the high-
dimensional geometric median of these means to aggregate them into a final estimate. On the
other hand, Lecué et al. (2018) compute loss sample means on the sub-samples, identify the
sub-sample which realizes the median loss, and then plugs in the gradient sample mean based
on just this one sub-sample. These routines are fundamentally different from our approach
in that we do no partitioning at all, and make no use of any median-like quantity in our
sub-routines; using all data is used to construct an M-estimator which can be approximated
easily using fixed-point iterative updates, which amounts to a parameter falling between the
median and the mean. One key advantage to our approach is the ease of computation (see
Remark 2 and “Appendix A.4”). While the geometric median used by Chen et al. (2017b)
can indeed be computed using well-known iterative routines (Vardi and Zhang 2000), these
suffer from substantial overhead in computing pairwise distances over all partitions at each
iteration, and as mentioned above in reference to the work of Minsker (2015) and Hsu and
Sabato (2016), can run into significant bias when the number of partitions cannot be made
large enough.

To compare our problem setting with the setting of these works: we are considering the
potentially heavy-tailed situation, in which we do not assume the higher-order moments of
the observations are finite (thereby implying that sub-Gaussianity cannot be used for con-
centration inequalities). This heavy-tailed setting is shared by Prasad et al. (2018) and Lecué
et al. (2018), although we mention that Prasad et al. (2018) also propose an entirely sepa-
rate gradient-based algorithm for the case of data which may be subject to arbitrarily large
contamination, a setting shared with Chen et al. (2017b). This setting is fundamentally dif-
ferent from the heavy-tailed scenario, and methods designed for estimation under adversarial
outliers cannot be directly compared to those designed for the heavy-tailed setting, and thus
in our subsequent theoretical and empirical comparisons with these works, we constrain
our focus to methods proposed for the heavy-tailed setting, which allows for meaningful
comparison with our proposal.

We also remark that while our proposed algorithm is designed to be easy to integrate
into existing gradient-based learning algorithms, our chief focus is on improving the statis-
tical error incurred when trying to estimate the risk gradient for determining a good update
direction, and we do not attend to the problem of update distance, nor long-run convergence
via decreasing step sizes. Especially in the situation of small mini-batches, it is perfectly
plausible to apply algorithms with principled adaptive step sizes such as AdaGrad (Duchi
et al. 2011) or Adam (Kingma and Ba 2014), where instead of the empirical mean of the
gradient, one substitutes our robust gradient estimate (see Sects. 2, 3 for details).
Our contributions To deal with these limitations of ERM-GD and its existing robust alterna-
tives, the key idea here is to use robust estimates of the risk gradient, rather than the risk itself,
and to feed these estimates into a first-order steepest descent routine. In doing so, at the cost
of minor computational overhead, we get formal performance guarantees for a wide class of
data distributions, while enjoying the computational ease of a gradient descent update. Our
main contributions:

– A learning algorithm which addresses the vulnerabilities of ERM-GD, is easily imple-
mented, and can be adapted to stochastic sub-sampling for big problems.

– High-probability bounds on excess risk of this procedure, which hold undermildmoment
assumptions on the data distribution, and suggest a promising general methodology.
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– Using both tightly controlled simulations and real-world benchmarks, we compare our
routine with ERM-GD and other cited methods, obtaining results that reinforce the prac-
tical utility and flexibility suggested by the theory.

Content overview In Sect. 2, we introduce the key components of the proposed algorithm,
and provide an intuitive example meant to highlight the learning principles taken advantage
of. Theoretical analysis of algorithm performance is given in Sect. 3, including a sketch of the
proof technique and discussion of the main results. Empirical analysis follows in Sect. 4, in
which we elucidate both the strengths and limits of the proposed procedure, through a series
of tightly controlled numerical tests. Finally, concluding remarks and a look ahead are given
in Sect. 5. Proofs and extra information regarding computation is given in “Appendix A”.
Additional empirical test results are provided in “Appendix B”.

2 Robust gradient descent

Before introducing the proposed algorithm in more detail, we motivate the practical need for
a procedure which deals with the weaknesses of the traditional sample mean-based gradient
descent strategy.

2.1 Why robustness?

Recall that since ERM admits any minima of n−1∑n
i=1 l(·; zi ), the simplest implementation

of gradient descent (for ŵ(t) ∈ R
d ) results in the update

ŵ(t+1) = ŵ(t) − α(t)
1

n

n
∑

i=1

l ′(ŵ(t); zi ) (1)

where α(t) are scaling parameters. Taking the derivative under the integral we have R′(·) =
E l ′(·; z), meaning ERM-GD uses the sample mean as an estimator of each coordinate of R′,
in pursuit of a solution minimizing the unknown R. Without rather strong assumptions on the
tails and moments of the distribution of l(w; z) for each w, it has become well-known that
the sample mean fails to provide sharp estimates (Catoni 2012; Minsker 2015; Devroye et al.
2015; Lugosi and Mendelson 2016). Intuitively, the issue is that we expect bad estimates to
imply bad approximate minima. Does this formal sub-optimality indeed manifest itself in
natural settings? Can principled modifications improve performance at a tolerable cost?

A simple example suggests affirmative answers to both questions. The plot on the left of
Fig. 1 shows contour lines of a strongly convex quadratic risk to be minimized, as well as
the trajectory of 10 iterations of ERM-GD, given four independent samples from a common
distribution, initiated at a common ŵ(0). With data z = (x, y) ∈ R

d+1, losses are generated
as l(w; zi ) = (〈w, xi 〉− yi )

2/2.We consider the case where the “noise” 〈w, xi 〉− yi is heavy-
tailed (log-Normal). Half of the samples saw relatively good solutions after ten iterations,
and half saw rather stark deviation from the optimal procedure. When the sample contains
errant observations, the empirical mean estimate is easily influenced by such points.

To deal with this, a classical idea is to re-weight the observations in a principled manner,
and then carry out gradient descent as normal. That is, in the gradient estimate of (1), we
replace the summands n−1l ′(·; zi ) with ωi l ′(·; zi ), where 0 ≤ ωi ≤ 1, i = 1, . . . , n and
∑n

i=1 ωi = 1. For example, we could set
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Fig. 1 A comparison of the minimizing sequence trajectories in a two-dimensional approximate risk min-
imization task, for the traditional ERM-based gradient descent (left) and a simple re-weighting procedure
(right). Trajectories of the oracle update using R′ (black) is pictured alongside the approximate methods (red).
All procedures use α(t) = 0.35, t = 0, . . . , 9 (Color figure online)

ωi
..= ω̃i
∑n

k=1 ω̃k
, ω̃i

..= ψ (〈w, x〉 − yi )

(〈w, x〉 − yi )

whereψ is an odd function of sigmoid form (seeA.1 andA.4). The idea is that for observations
zi that induce errors which are inordinately large, the weight ωi will be correspondingly
small, reducing the impact. In the right-hand plot of Fig. 1, we give analogous results for this
procedure, run under the exact same settings as ERM-GD above. The modified procedure
at least appears to be far more robust to random idiosyncrasies of the sample; indeed, if we
run many trials, the average risk is far better than the ERM-GD procedure, and the variance
smaller. The fragility observed here was in the elementary setting of d = 2, n = 500;
it follows a fortiori that we can only expect things to get worse for ERM-GD in higher
dimensions and under smaller samples. In what follows, we develop a robust gradient-based
minimization method based directly on the principles illustrated here.

2.2 Outline of proposed procedure

Were the risk to be known, we could update using

w∗
(t+1)

..= w∗
(t) − α(t)g(w∗

(t)) (2)

where g(w) ..= R′(w), an idealized procedure. Any learning algorithm in practice will not
have access to R or g, and thus must approximate this update with

ŵ(t+1)
..= ŵ(t) − α(t) ĝ(ŵ(t)), (3)

where ĝ represents some sample-based estimate of g. Setting ĝ to the sample mean reduces
to ERM-GD, and conditioned on ŵ(t), E ĝ(ŵ(t+1)) = g(ŵ(t+1)), a property used throughout
the literature (Rakhlin et al. 2012; Le Roux et al. 2012; Johnson and Zhang 2013; Shalev-
Shwartz and Zhang 2013; Frostig et al. 2015; Murata and Suzuki 2016). While convenient
from a technical standpoint, there is no conceptual necessity for ĝ to be unbiased. More
realistically, as long as ĝ is sharply distributed around g, then an approximate first-order
procedure should not deviate too far from the ideal, even if these estimators are biased. An
outline of such a routine is given in Algorithm 1.
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Algorithm 1 Robust gradient descent outline
inputs: ŵ0, T > 0
for t = 0, 1, . . . , T − 1 do

D(t) ← {l ′(ŵ(t); zi )}n
i=1 	 Update loss gradients.

σ̂ (t) ← rescale(D(t)) 	 Eq. (5).
̂θ(t) ← locate(D(t), σ̂ (t)) 	 Eqs. (4), (6).
ŵ(t+1) ← ŵ(t) − α(t)̂θ(t) 	 Plug in to update.

end for
return: ŵ(T )

Let us flesh out the key sub-routines used in a single iteration, for the w ∈ R
d case.

When the data is prone to outliers, a “soft” truncation of errant values is a prudent alternative
to discarding valuable data. This can be done systematically using a convenient class of M-
estimators of location and scale (van der Vaart 1998; Huber andRonchetti 2009). The locate
sub-routine entails taking a convex, even function ρ, and for each coordinate, computing
̂θ = (̂θ1, . . . ,̂θd) as

̂θ j ∈ argminθ∈R
n
∑

i=1

ρ

(

l ′j (w; zi ) − θ

s j

)

, j = 1, . . . , d. (4)

Note that if ρ(u) = u2, then̂θ j reduces to the sample mean of {l ′j (w; zi )}n
i=1, thus to reduce

the impact of extreme observations, it is useful to take ρ(u) = o(u2) as u → ±∞. Here the
s j > 0 factors are used to ensure that consistent estimates take place irrespective of the order
of magnitude of the observations. We set the scaling factors in two steps. First is rescale,
in which a rough dispersion estimate of the data is computed for each j using

σ̂ j ∈
{

σ > 0 :
n
∑

i=1

χ

(

l ′j (w; zi ) − γ j

σ

)

= 0

}

. (5)

Here χ : R → R is an even function, satisfying χ(0) < 0, and χ(u) > 0 as u → ±∞ to
ensure that the resulting σ̂ j is an adequate measure of the dispersion of l ′j (w; z) about a pivot
point, say γ j = ∑n

i=1 l ′j (w; zi )/n. Second, we adjust this estimate based on the available
sample size and desired confidence level, as

s j = σ̂ j

√

n/ log(2δ−1) (6)

where δ ∈ (0, 1) specifies the desired confidence level (1 − δ), and n is the sample size.
This last step appears rather artificial, but can be derived from a straightforward theoretical
argument, given in Sect. 3.1. This concludes all the steps1 in one full iteration of Algorithm 1
on R

d .
In the remainder of this paper,we shall investigate the learning properties of this procedure,

through analysis of both a theoretical (Sect. 3) and empirical (Sect. 4) nature. As an example,
in the strongly convex risk case, our formal argument yields excess risk bounds of the form

1 For concreteness, in all empirical tests to followwe use theGudermannian function (Abramowitz and Stegun
1964), ρ(u) = ∫ u

0 ψ(x) dx where ψ(u) = 2 atan(exp(u))−π/2, and χ(u) = u2/(1+ u2)− c, for a constant
c > 0. General conditions on ρ, as well as standard methods for computing the M-estimates, namely the ̂θ j
and σ̂ j , are given in “Appendix A.1”.
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R(ŵ(T )) − R∗ ≤ O

(

d(log(dδ−1) + d log(n))

n

)

+ O
(

(1 − αβ)T
)

with probability no less than 1−δ, for small enough α(t) = α over T iterations. Here β > 0 is
a constant that depends only on R, and analogous results hold without strong convexity (see
“AppendixA.3”). Of the underlying distribution, all that is assumed is a bound on the variance
of l ′(·; z), suggesting formally that the procedure should be competitive over a diverse range
of data distributions.

Remark 1 (Comparison with other robust gradient descent methods) Here we more formally
describe the algorithms of other robust gradient descent methods in the literature (Chen et al.
2017b; Prasad et al. 2018; Lecué et al. 2018). The core idea is to partition the sample into k
disjoint subsetsD1 ∪ · · ·∪Dk = {1, 2, . . . , n}, generate inexpensive empirical estimators on
each subset, and then robustly aggregate these estimators to output a final gradient estimate.
In the case of both Chen et al. (2017b) and Prasad et al. (2018), the estimate vector ĝ is
constructed as

ĝ(w) = argminu

k
∑

m=1

‖u − g̃m(w)‖

g̃m(w) = 1

|Dm |
∑

i∈Dm

l ′(w; zi ), m = 1, . . . , k

and plugged in to the gradient update (3). On the other hand, the update of Lecué et al. (2018)
uses

ĝ(w) = 1

|D
|
∑

i∈D


l ′(w; zi )


 = argminm∈[k]
∣

∣̃lm(w) − l(w)
∣

∣

l(w) = med
{

˜lm(w) : m ∈ [k]}

˜lm(w) = 1

|Dm |
∑

i∈Dm

l(w; zi ), m = 1, . . . , k.

Compare these updates to Eqs. (4) and (6), which determine our setting of ĝ(w) for use in
the steepest descent update (3). Both median (or geometric median, as above) updates and
M-estimator updates (as in our proposal) involve doing convex optimization as a sub-routine,
but the nature of the respective objective functions is in general completely different.

Remark 2 (On the efficiency of rescale and locate) Both of these sub-routines can be effi-
ciently solved using fixed-point updates, as described in “Appendix A.4”. Both routines have
convergence guarantees, and can be confirmed empirically to converge rapidly irrespective
of the underlying distribution. Formal proofs of convergence of the rescale and locate
sub-routines along with controlled empirical tests is given by Holland and Ikeda (2017b).

3 Theoretical analysis

Here we analyze the performance of Algorithm 1 on hypothesis classW ⊆ R
d , as measured

by the risk achieved, which we estimate using upper bounds that depend on key parameters of
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the learning task. A general sketch is given, followed by some key conditions, representative
results, and discussion. All proofs are relegated to Appendix A.2.
Notation For integer k, write [k] ..= {1, . . . , k} for all the positive integers from 1 to k.
Let μ denote the data distribution, with z1, . . . , zn independent observations from μ, and
z ∼ μ an independent copy. Risk is then R(w) ..= Eμ l(w; z), its gradient g(w) ..= R′(w),
and R∗ ..= infw∈W R(w). P denotes a generic probability measure, typically the product
measure induced by the sample. We write ‖ · ‖ for the usual (�2) norm on R

d . For function
F on Rd with partial derivatives defined, write the gradient as F ′(u) ..= (F ′

1(u), . . . , F ′
d(u))

where for short, we write F ′
j (u) ..= ∂ F(u)/∂u j .

3.1 Sketch of the general argument

The analysis here requires only two steps: (i) A good estimate ĝ ≈ g implies that approx-
imate update (3) is near the optimal update. (ii) Under variance bounds, coordinate-wise
M-estimation yields a good gradient estimate. We are then able to conclude that with enough
samples and iterations, the output of Algorithm 1 can achieve an arbitrarily small excess risk.
Here we spell out the key facts underlying this approach.

For the first step, letw∗ ∈ R
d be aminimizer of R.When the risk R is strongly convex, then

using well-established convex optimization theory (Nesterov 2004), we can easily control
‖w∗

(t+1)−w∗‖ as a function of ‖w∗
(t)−w∗‖ for any step t ≥ 0. Thus to control ‖ŵ(t+1)−w∗‖,

in comparing the approximate case and optimal case, all that matters is the difference between
g(ŵ(t)) and ĝ(ŵ(t)) (Lemma 7). For the general case of convex R, since we cannot easily
control the distance of the optimal update from any potential minimum, one can directly
compare the trajectories of ŵ(t) and w∗

(t) over t = 0, 1, . . . , T , which once again amounts to
a comparison of g and ĝ. This inevitably leads to more error propagation and thus a stronger
dependence on T , but the essence of the argument is identical to the strongly convex case.

For the second step, since both ĝ and ŵ(t) are based on a random sample {z1, . . . , zn}, we
need an estimation technique which admits guarantees for any step, with high probability
over the random draw of this sample. A basic requirement is that

P
{

max
t≤T

‖̂g(ŵ(t)) − g(ŵ(t))‖ ≤ ε(δ)

}

≥ 1 − δ. (7)

Of course this must be proved (see Lemmas 5 and 11 ), but if valid, then running Algorithm 1
for T steps, we can invoke (7) to get a high-probability event on which ŵ(T ) closely approx-
imates the optimal GD output, up to the accuracy specified by ε. Naturally this ε = ε(δ) will
depend on confidence level δ, which implies that to get 1− δ confidence intervals, the upper
bound in (7) will increase as δ gets smaller.

In the locate sub-routine of Algorithm 1, we construct a more robust estimate of the
risk gradient than can be provided by the empirical mean, using an ancillary estimate of
the gradient variance. This is conducted using a smooth truncation scheme, as follows. One
important property of ρ in (4) is that for any u ∈ R, one has

− log(1 − u + Cu2) ≤ ρ′(u) ≤ log(1 + u + Cu2) (8)

for a fixed C > 0, a simple generalization of the key property utilized by Catoni (2012). For
the Gudermannian function (Sect. 2 footnote), we can take C ≤ 2, with the added benefit
that ρ′ is bounded and increasing. As to the quality of these estimates, note that they are
distributed sharply around the risk gradient, as follows.
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Lemma 3 (Concentration of M-estimates) For each coordinate j ∈ [d], the estimates ̂θ j of
(4) satisfy

1

2
|̂θ j − g j (w)| ≤ C varμ l ′j (w; z)

s j
+ s j log(2δ−1)

n
(9)

with probability no less than 1 − δ, given large enough n and s j .

To get the tightest possible confidence interval as a function of s j > 0, we must set

s2j = Cn varμ l ′j (w; z)

log(2δ−1)
,

from which we derive (6), with σ̂ 2
j corresponding to a computable estimate of varμ l ′j (w; z).

If the variance over all choices of w is bounded by some V < ∞, then up to the variance
estimates, we have ‖̂g(w)−g(w)‖ ≤ O(

√

dV log(2dδ−1)/n), with ĝ =̂θ fromAlgorithm 1,
yielding a bound for (7) free of w.

Remark 4 (Comparison with ERM-GD) As a reference example, assume we were to run
ERM-GD, namely using an empiricalmean estimate of the gradient. UsingMarkov’s inequal-
ity, with probability 1 − δ all we can guarantee is ε ≤ O(

√
d/(nδ)). In the case of only

assuming finite variance (matching our scenario), Catoni (2012, Proposition 6.2) derives a
lower bound on the deviations of the empirical mean which scales with 1/δ. This implies that
under a heavy-tailed setting such as ours, the upper bound given by Markov’s inequality is
in fact tight in terms of dependence on 1/δ. On the other hand, using the location estimate of
Algorithm 1 provides guarantees with log(1/δ) dependence on the confidence level, realizing
an exponential improvement over the 1/δ dependence of ERM-GD, and an appealing formal
motivation for using M-estimates of location as a novel strategy.

3.2 Conditions and results

On the learning task, we make the following assumptions.

A1. R(·) is to be minimized over a closed, convex W ⊂ R
d with diameter Δ < ∞.

A2. R(·) and l(·; z) (for all z) are λ-smooth, convex, and continuously differentiable onW .
A3. There exists w∗ ∈ W at which g(w∗) = 0.
A4. Distribution μ satisfies varμ l ′j (w; z) ≤ V < ∞, for all w ∈ W , j ∈ [d].

Algorithm 1 is run following (4), (5), and (6) as specified in Sect. 2. For rescale, the
choice of χ is only important insofar as the scale estimates (the σ̂ j ) should be moderately
accurate. To make the dependence on this accuracy precise, take constants cmin, cmax > 0
such that

c2min ≤ σ̂ j

varμ l ′j (w; z)
≤ c2max , j ∈ [d] (10)

for all choices of w ∈ W , and write c0 ..= (cmax + C/cmin). For 1 − δ confidence, we need
a large enough sample; more precisely, for each w, it is sufficient if for each j ,

1

4
≥ C log(2δ−1)

n

(

1 + C varμ l ′j (w; z)

σ̂ 2
j

)

. (11)
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For simplicity, fix a small enough step size,

α(t) = α,∀ t ∈ {0, . . . , T − 1}, α ∈ (0, 2/λ). (12)

Dependence on initialization is captured by two related factors R0
..= R(w∗

(0)) − R∗, and
D0

..= ‖w∗
(0) − w∗‖. Under this setup, we can control the estimation error.

Lemma 5 (Uniform accuracy of gradient estimates) For all steps t = 0, . . . , T − 1 of Algo-
rithm 1, we have

‖̂θ(t) − g(ŵ(t))‖ ≤ ε̃√
n

..= λ(
√

d + 1)√
n

+ 2c0

√

dV (log(2dδ−1) + d log(3Δ
√

n/2))

n

with probability no less than 1 − δ.

Remark 6 (On the technical assumptions) We remark here that the assumptions made above
can be considered standard in the literature. Assuming at the very least bounded variance
is essential (Devroye et al. 2015), and both Prasad et al. (2018, Section 7) and Lecué et al.
(2018, Sections 2–3) utilize similar moment assumptions for controlling the statistical error.
Convexity is generally needed to control the optimization error, and is utilized in all the
robust gradient descent works we have cited (Chen et al. 2017b; Lecué et al. 2018; Prasad
et al. 2018). We assume the smoothness of the loss (a Lipschitz condition on the gradient),
whereas for example Lecué et al. (2018) work with Lipschitz losses. This excludes from their
analysis the case of, for example, linear regression under the squared loss with unbounded
noise, while this setting is valid under our assumptions.

Under strongly convex risk In addition to assumptions A1–A4, assume that R is κ-strongly
convex. In this case, w∗ in A3 is the unique minimum. First, we control the estimation error
by showing that the approximate update (3) does not differ much from the optimal update
(2).

Lemma 7 (Minimizer control) Consider the general approximate GD update (3), with α(t) =
α such that 0 < α < 2/(κ +λ). Assume that (7) holds with bound ε. Write β ..= 2κλ/(κ +λ).
Then, with probability no less than 1 − δ, we have

‖ŵ(T ) − w∗‖ ≤ (1 − αβ)T /2D0 + 2ε

β
.

Since Algorithm 1 indeed satisfies (7), as proved in Lemma 5, we can use the control over the
parameter deviation provided by Lemma 7 and the smoothness of R to prove a finite-sample
excess risk bound.

Theorem 8 (Excess risk bounds) Write ŵ(T ) for the output of Algorithm 1 after T iterations,
run such that (11)–(12) hold, with step size α(t) = α for all 0 < t < T , as in Lemma 7. It
follows that

R(ŵ(T )) − R∗ ≤ λ(1 − αβ)T D2
0 + 4λ̃ε

β2n

with probability no less than 1 − δ, where ε̃ is as given in Lemma 5.

Remark 9 (Interpretation of bounds) There are two terms in the upper bound of Theorem 8, an
optimization term decreasing in T , and an estimation term decreasing in n. The optimization
error decreases at the usual gradient descent rate, and due to the uniformity of the bounds
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obtained, the statistical error is not hurt by taking T arbitrarily large, thuswith enough samples
we can guarantee arbitrarily small excess risk. Finally, the most important assumption on the
distribution is weak: finite second-order moments. If we assume finite kurtosis, the argument
of Catoni (2012) can be used to create analogous guarantees for an explicit scale estimation
procedure, yielding guarantees whether the data is sub-Gaussian or heavy-tailed an appealing
robustness to the data distribution.

Remark 10 (Doing projected descent) The above analysis proceeds on the premise that ŵ(t) ∈
W holds after all the updates, t ∈ [T ]. To enforce this, a standard variant of Algorithm 1 is
to update as

ŵ(t+1) ← πW
(

ŵ(t) − α(t)̂θ(t)
)

, t ∈ {0, . . . , T − 1}
where πW (u) ..= argminv∈W ‖u − v‖. By A1, this projection is well-defined (Luenberger
1969, Sec. 3.12, Thm. 3.12). Using this fact, it follows that ‖πW (u) − πW (v)‖ ≤ ‖u − v‖
for all u, v ∈ W , by which we can immediately show that Lemma 7 holds for the projected
robust gradient descent version of Algorithm 1.

With prior information An interesting concept in machine learning is that of the relationship
between learning efficiency, and the task-related prior information available to the learner.
In the previous results, the learner is assumed to have virtually no information beyond the
data available, and the ability to set a small enough step-size. What if, for example, just the
gradient variance was known? A classic example from decision theory is the dominance of
the estimator of James and Stein over the maximum likelihood estimator, in multivariate
Normal mean estimation using prior variance information. In our more modern and non-
parametric setting, the impact of rough, data-driven scale estimates was made explicit by the
factor c0. Here we give complementary results that show how partial prior information on
the distribution μ can improve learning.

Lemma 11 (Accuracy with variance information) Conditioning on ŵ(t) and running one
scale-location sequence of Algorithm 1, with σ̂(t) = (̂σ1, . . . , σ̂d) modified to satisfy σ̂ 2

j =
C varμ l ′j (ŵ(t); z), j ∈ [d]. It follows that

‖̂θ(t) − g(ŵ(t))‖ ≤ 4

(

C trace(Σ(t)) log(2dδ−1)

n

)1/2

with probability no less than 1 − δ, where Σ(t) is the covariance matrix of l ′(ŵ(t); z).

Observe that in addition to being able to remove the c0 factor, we also are able to replace the
d V factor observed in Lemma 5 with trace(Σ(t)). Certainly, if the variance in all coordinates
is the same, then the trace will essentially scale with d V . However, if most coordinates have
variance much smaller than the maximum coordinate, then this d coefficient can be reduced
proportionally.

One would expect that with sharp gradient estimates, the variance of the updates should
be small with a large enough sample. Here we show that the procedure stabilizes quickly as
the estimates get closer to an optimum.

Theorem 12 (Control of update variance) Run Algorithm 1 as in Lemma 11, with arbitrary
step-size α(t). Then, for any t < T , taking expectation with respect to the sample {zi }n

i=1,
conditioned on ŵ(t), we have

E ‖ŵ(t+1) − ŵ(t)‖2 ≤ 2α2
(t)

(

32Cd trace(Σ(t))

n
+ ‖g(ŵ(t))‖2

)

.
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In addition to these results, one can prove an improved version of Theorem 8 in a perfectly
analogous fashion, using Lemma 11.

4 Empirical analysis

The chief goal of our experiments is to elucidate the relationship between factors of the
learning task (e.g., sample size, model dimension, initial value, underlying data distribution)
and the behavior of the robust gradient procedure proposed in Algorithm 1.We are interested
in how these factors influence performance, both in an absolute sense and relative to the key
competitors cited in Sect. 1.

We have carried out two classes of experiments. The first considers a concrete risk min-
imization task given noisy function observations, and takes an in-depth look at how each
experimental factor influences algorithm behavior, in particular the trajectory of performance
over time (as we iterate). The latter is an application of the proposed algorithm to the cor-
responding regression task under a large variety of data distributions, meant to rigorously
evaluate the practical utility and robustness in an agnostic learning setting.

4.1 Controlled tests

Experimental setup Our first set of controlled numerical experiments uses a “noisy convex
minimization” model, designed as follows. We construct a risk function taking a canonical
quadratic form, setting R(w) = 〈Σw,w〉/2+〈w, u〉+c, for pre-fixed constantsΣ ∈ R

d×d ,
u ∈ R

d , and c ∈ R. The task is to minimize R(·) without knowledge of R itself, but rather
only access to n random function observations r1, . . . , rn . These r : Rd → R are generated
independently from a common distribution, satisfying the property E r(w) = R(w) for all
w ∈ R

d . In particular, here we generate observations ri (w) = (〈w∗ − w, xi 〉 + εi )
2/2,

i ∈ [n], with x and ε independent of each other. Here w∗ denotes the minimum, and we have
that Σ = E xxT . The inputs x shall follow an isotropic d-dimensional Gaussian distribution
throughout all the following experiments, meaning Σ is positive definite, and R is strongly
convex.

We consider three main performance metrics in this section: the average excess empirical
risk (based on the losses r1, . . . , rn), the average excess risk (based on true risk R), and
the variance of the risk. Averages and variances are computed over trials, with each trial
corresponding to a new independent random sample. For all tests, the number of trials is 250.

For these first tests, we run three procedures. First is ideal gradient descent, denoted
oracle, which has access to the true objective function R. This corresponds to (2). Second,
as a standard approximate procedure (3) when R is unknown, we use ERM-GD, denoted
erm and discussed at the start of Sect. 2, which approximates the optimal procedure using
the empirical risk. Against these two benchmarks, we compare our Algorithm 1, denoted
rgd, as a robust alternative for (3).
Impact of heavy-tailed noise Let us examine the results. We begin with a simple question:
are there natural learning settings in which rgd outperforms ERM-GD? How does the same
algorithm fare in situations where ERM is optimal? Under Gaussian noise, ERM-GD is
effectively optimal (Lin and Rosasco 2016, Appendix C). We thus consider the case of
Gaussian noise (mean 0, standard deviation 20) as a baseline, and use centered log-Normal
noise (log-location 0, log-scale 1.75) as an archetype of asymmetric heavy-tailed data. Risk
results for the two routines are given alongside training error in Fig. 2.
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Fig. 2 Performancemetrics as a function of iterative updates. Top row:Normal noise. Bottom row: log-Normal
noise. Settings: n = 500, d = 2, α(t) = 0.1 for all t

In the situation favorable to erm, differences in performance are basically negligible. On
the other hand, in the heavy-tailed setting, the performance of rgd is superior in terms of
quality of the solution found and the variance of the estimates. Furthermore,we see that at least
in the situation of small d and large n, taking T beyond numerical convergence has minimal
negative effect on rgd performance; on the other hand erm is more sensitive. Comparing
true risk with sample error, we see that while there is some unavoidable overfitting, in the
heavy-tailed setting rgd departs from the ideal routine at a slower rate, a desirable trait.

At this point, we still have little more than a proof of concept, with rather arbitrary choices
of n, d , noise distribution, and initialization method. We proceed to investigate how each of
these experimental parameters independently impacts performance.
Impact of initializationGiven a fixed data distribution and sample size, howdoes the quality of
the initial guess impact learning performance? We consider three initializations of the form
w∗ + Unif[−Δ,Δ], with Δ = (Δ1, . . . , Δd), values ranging over Δ j ∈ {2.5, 5.0, 10.0},
j ∈ [d], where larger Δ j naturally correspond to potentially worse initialization. Relevant
results are displayed in Fig. 3.

Some interesting observations can be made. That rgd matches erm when the latter is
optimal is clear, but more importantly, we see that under heavy-tailed noise, rgd is far more
robust to poor initial value settings. Indeed, while a bad initialization leads to a much worse
solution in the limit for erm, we see that rgd is able to achieve the same performance as if
it were initialized at a better value.
Impact of distribution It is possible for very distinct distributions to have exactly the same
risk functions. Learning efficiency naturally depends heavily on the process generating the
sample; the underlying optimization problem is the same, but the statistical inference task
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Fig. 3 Performance over iterations, under strong/poor initialization. Here del refers to Δ j . Top row: Normal
noise. Bottom row: log-Normal noise. Settings: n = 500, d = 2, α(t) = 0.1 for all t

changes. Here we run the two algorithms of interest from common initial values as in the first
experimental setting, and measure performance changes as the noise distribution is modified.
We consider six situations, three for Normal noise, three for log-Normal noise. The location
and scale parameters for the former are respectively (0, 0, 0), (1, 20, 34); the log-location
and log-scale parameters for the latter are respectively (0, 0, 0), (1.25, 1.75, 1.9). Results are
given in Fig. 4.

Looking first at the Normal case, where we expect ERM-based methods to perform well,
we see that rgd is able to match erm in all settings. In the log-Normal case, as our previous
example suggested, the performance of erm degrades rather dramatically, and a clear gap in
performance appears, which grows wider as the variance increases. This flexibility of rgd
in dealing with both symmetric and asymmetric noise, both exponential and heavy tails,
is indicative of the robustness suggested by the weak conditions of Sect. 3.2. In addition,
it suggests that our simple dispersion-based technique (̂σ j settings in Sect. 2.2) provides
tolerable accuracy, implying a small enough c0 factor, and reinforcing the insights from the
proof of concept case seen in Fig. 2.
Impact of sample size Since the true risk is unknown, the size and quality of the sample
{zi }n

i=1 is critical to the output of all learners. To evaluate learning efficiency, we examine
how performance depends on the available sample size, with dimension and all algorithm
parameters fixed. Figure 5 gives the accuracy of erm and rgd in tests analogous to those
above, using common initial values across methods, and n ∈ {10, 40, 160, 640}.

Both algorithms naturally showmonotonic performance improvements as the sample size
grows, but the most salient feature of these figures is the performance of rgd under heavy-
tailed noise, especially when sample sizes are small. When our data may be heavy-tailed, this
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Fig. 4 Performance over iterations, under varying noise intensities. Here low, med, and high refer to the
three noise distribution settings described in the main text. Settings: n = 500, d = 2, α(t) = 0.1 for all t

Fig. 5 Performance over iterations, under different sample sizes. Settings: d = 2, α(t) = 0.1 for all t
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Fig. 6 Performance over iterations, under increasing dimension. Settings: n = 500, α(t) = 0.1 for all t

provides clear evidence that the proposed RGD methods can achieve better generalization
than ERM-GD with less data, in less iterations.
Impact of dimension Given a fixed number of observations, the role of dimension d , namely
the number of parameters to be determined, plays an important from both practical and
theoretical standpoints, as seen in the error bounds of Sect. 3.2. Fixing the sample size and
all algorithm parameters as above, we investigate the relative difficulty each algorithm has
as the dimension increases. Figure 6 shows the risk of erm and rgd in tests just as above,
with d ∈ {2, 8, 32, 128}.

As the dimension increases, since the sample size is fixed, both non-oracle algorithms tend
to require more iterations to converge. The key difference is that under heavy tails, the excess
risk achieved by our proposed method is clearly superior to ERM-GD over all d settings,
while matching it in the case of Gaussian noise. In particular, erm hits bottom very quickly
in higher dimensions, while rgd continues to improve for more iterations, presumably due
to updates which are closer to that of the optimal (2).
Comparison with robust loss minimizer Another interesting question: instead of paying the
overhead to robustify gradient estimates (d dimensions to handle), why not just make robust
estimates of the risk itself, and use those estimates to fuel an iterative optimizer? Just such a
procedure is analyzed by Brownlees et al. (2015) (denoted bjl henceforth). To compare our
gradient-centric approachwith their loss-centric approach, we implement bjl using the non-
linear conjugate gradient method of Polak and Ribière (Nocedal and Wright 1999), which is
provided by fmin_cg in the optimizemodule of the SciPy scientific computation library
(default maximum number of iterations is 200d). This gives us a standard first-order general-
purpose optimizer for minimizing the bjl objective. To see how well our procedure can
compete with a pre-fixed max iteration number, we set T = 25 for all settings. Computation

123



Machine Learning (2019) 108:1523–1560 1539

Fig. 7 Comparison of our robust gradient-based approach with the robust objective-based approach. Top:
Normal noise. Bottom: log-Normal noise. Performance is given as a function of the number of d, the number
of parameters to optimize, given in log2 scale. Settings: n = 500, α(t) = 0.1 for all t (Color figure online)

time is computed using the Python time module. To give a simple comparison between
bjl and rgd, we run multiple independent trials of the same task, starting both routines at
the same (random) initial value each time, generating a new sample, and repeating the whole
process for different settings of d = 2, 4, 8, 16, 32, 64. Median times taken over all trials
(for each d setting) are recorded, and presented in Fig. 7 alongside performance results.

From the results, we can see that while the performance of both methods is similar in low
dimensions and under Gaussian noise, in higher dimensions and under heavy-tailed noise,
our proposed rgd realizes much better performance in much less time. Regarding excess
empirical risk, random deviations in the sample cause the minimum of the empirical risk
function to deviate away fromw∗, causing the rgd solution to be closer to the ERM solution
in higher dimensions. On the other hand, bjl is minimizing a different objective function.
It should be noted that there are assuredly other ways of approaching the bjl optimization
task, but all of which require minimizing an implicitly defined objective which need not be
convex. We believe that rgd provides a simple and easily implemented alternative, while
still utilizing the same statistical principles.
Regression application In this experiment, we apply our algorithm to a general regression
task, under a wide variety of data distributions, and compare its performance against standard
regression algorithms, both classical and modern. For each experimental condition, and for
each trial, we generate n training observations of the form yi = xT

i w∗ + εi , i ∈ [n]. Distinct
experimental conditions are delimited by the setting of (n, d) and μ. Inputs x are assumed
to follow a d-dimensional isotropic Gaussian distribution, and thus our setting of μ will be
determined by the distribution of noise ε. In particular, we look at several families of distri-
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butions, and within each family look at 15 distinct noise levels, namely parameter settings
designed such that sdμ(ε) monotonically increases over the range 0.3–20.0, approximately
linearly over the levels.

To capture a range of signal/noise ratios, for each trial, w∗ ∈ R
d is randomly generated

as follows. Defining the sequence wk
..= π/4 + (−1)k−1(k − 1)π/8, k = 1, 2, . . . and

uniformly sampling i1, . . . , id ∈ [d0] with d0 = 500, we set w∗ = (wi1 , . . . , wid ). Comput-
ing SNμ = ‖w∗‖22/ varμ(ε), we have 0.2 ≤ SNμ ≤ 1460.6. Noise families: log-logistic
(denoted llog in figures), log-Normal (lnorm), Laplace (lap), and arcsine (asin).
Even with just these four, we capture bounded, sub-Gaussian (arcsine), and sub-exponential
(Laplace) noise, and heavy-tailed data bothwith (log-Normal) andwithout (log-logistic) finite
higher-order moments. Results for many more noise distributions are given in “Appendix B”.

Our key performance metric of interest is off-sample prediction error, here computed as
excess RMSE on an independent large testing set, averaged over trials. For each condition
and each trial, an independent test set of m observations is generated identically to the
corresponding n-sized training set. All competing methods use common sample sets for
training and are evaluated on the same test data, for all conditions/trials. For each method,
in the kth trial, some estimate ŵ(k) is determined. To approximate the �2-risk, compute root
mean squared test error ek(ŵ) ..= (m−1∑m

i=1(ŵ
T xk,i − yk,i )

2)1/2, and output prediction
error as the average of normalized errors ek(ŵ(k))−ek(w

∗(k)) taken over all K trials. While
n values vary, in all experiments we fix K = 250 and test size m = 1000.

Regarding the competing methods, classical choices are ordinary least squares (�2-ERM,
denoted OLS) and least absolute deviations (�1-ERM, LAD). We also look at four recent
methods of practical and theoretical importance described in Sect. 1, namely the robust
regression routines of Hsu and Sabato (2016) (HS) and Minsker (2015) (Minsker), and the
robust gradient descent methods of Prasad et al. (2018) (Pras18) and Lecué et al. (2018)
(Lec18). For HS, we used the source published online by the authors. For Minsker, on
each subset the ols solution is computed, and solutions are aggregated using the geometric
median (in �2 norm), computed using the well-known algorithm of Vardi and Zhang (2000,
Eqn. 2.6), and the number of partitions is set to max(2, �n/(2d)�). For Pras18, we follow
their Algorithm 3 and partition into 1+ �3.5 log(δ−1)� blocks. This same setting is used for
the partitioning done in Lec18. Both of these robust gradient descent methods are initialized
to the OLS solution. For comparison to these methods, we also initialize RGD to the OLS
solution, with confidence δ = 0.005, and α(t) = 0.1 for all iterations. Maximum number of
iterations is T ≤ 100; the routine finishes after hitting this maximum or when the absolute
value of the gradient falls below 0.001 for all conditions. Illustrative results are given in
Fig. 8.

First we fix the model dimension d , and evaluate performance as sample size n ranges
from very small to quite large (top row of Fig. 8). We see that regardless of distribution, rgd
effectively matches the optimal convergence of OLS in the norm and tri_s cases, and
is resilient to the remaining two scenarios where ols breaks down. There are clear issues
with the median of means based methods at very small sample sizes, though the geometric
median based method does eventually at least surpass OLS in the llog and lnorm cases.
Essentially the same trends can be observed at all noise levels.

Next, we look at performance over noise settings, from negligible noise to significant
noise with potentially infinite higher-order moments (middle row of Fig. 8). We see that rgd
generalizes well, in a manner which is effectively uniform across the distinct noise families.
We note that even in such diverse settings with pre-fixed step-size and iteration numbers,
very robust performance is shown. It appears that under small sample size, rgd reduces
the variance due to errant observations, while incurring a smaller bias than the other robust
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Fig. 8 Top row: Prediction error over sample size 12 ≤ n ≤ 122, fixed d = 5, noise level = 8. Center
row: Prediction error over noise levels, for n = 30, d = 5. Bottom row: Prediction error over dimensions
5 ≤ d ≤ 40, with ratio n/d = 6 fixed, and noise level = 8. Each column corresponds to a distinct noise family
(Color figure online)

methods. When ols (effectively ERM-GD) is optimal, note that rgd follows it closely, with
virtually negligible bias. When the former breaks down, rgd remains stable.

Finally, we fix the ratio n/d and look at the role played by increasingly large dimension
(bottom row of Fig. 8).We see that for all distributions, the performance of rgd is essentially
constant. This coincides with the theory of Sect. 3.2, and our intuition since Algorithm 1 is
run in a by-coordinate fashion. On the other hand, competing methods show sensitivity to
the number of free parameters, especially in the case of asymmetric data with heavy tails.

4.2 Application to real-world benchmarks

To close out this section, and to gain some additional perspective on algorithm performance,
we shift our focus to some nascent applications to real-world benchmark data sets.

Having already paid close attention to regression models in the previous section, here we
consider applications of robust gradient descent to classification tasks, under both binary
and multi-class settings. The model assumed is standard multi-class logistic regression: if
the number of classes is C , and the number of input features is F , then the total number of
parameters to be determined is d = (C −1)F . The loss function is convex in the parameters,
and its partial derivatives all exist, so the model aligns well with our problem setting of
interest. In addition, a squared �2-norm regularization term a‖w‖2 is added to the loss, with
a varying over datasets (see below). All learning algorithms are given a fixed budget of
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gradient computations, set here to 20n, where n is the size of the training set made available
to the learner.

We use three well-known data sets for benchmarking: the CIFAR-10 data set of tiny
images,2 the MNIST data set of handwritten digits,3 and the protein homology dataset made
popular by its inclusion in the KDD Cup.4 For all data sets, we carry out 10 independent
trials, with training and testing tests randomly sampled as will be described shortly. For all
datasets, we normalize the input features to the unit interval [0, 1] in a per-dimension fashion.
For CIFAR-10, we average the RGD color channels to obtain a single greyscale channel. As
a result, F = 1024. There are ten classes, so C = 10, meaning d = (C − 1)F = 9216.
We take a sample size of n = 4d = 36864 for training, with the rest for testing, and set
a = 0.001. For MNIST, we have F = 784 and once again C = 10, so d = 7056. As
with the previous dataset, we set n = 4d = 28224, and a = 0.0001. Note that both of
these datasets have all classes in equal proportions, so with uniform random sampling, class
frequencies are approximately equal in each trial. On the other hand, the protein homology
dataset (binary classification) has highly unbalanced labels, with only 1296 positive labels
out of over 145,000 observations. We thus take random samples such that the training and
test sets are balanced. For each trial, we randomly select 296 positively labeled examples,
and the same amount of negatively labeled examples, yielding a test set of 592 examples. As
for the training set size, we use the rest of the positive labels (1000 examples) plus a random
selection of 1000 negatively labeled examples, so n = 2000, and with C = 2 and F = 74,
we have d = 74. Regularization parameter a is 0.001. For all datasets, the parameter weights
are initialized uniformly over the interval [−0.05, 0.05].

Regarding the competingmethods used, we test out a randommini-batch version of robust
gradient descent given in Algorithm 1, with mini-batch sizes ranging over {5, 10, 15, 20},
roughly on the order of n−1/4 for the largest datasets. We also consider a mini-batch in the
sense of randomly selecting coordinates to robustify: select min(100, d) indices randomly at
each iteration, and run the RGD sub-routine on just these coordinates, using the sample mean
for all the rest. Furthermore, we considered several minor alterations to the original routine,
including using log cosh(·) instead of the Gudermannian function for ρ, updating the scale
much less frequently (compared to every iteration), and different choices of χ for re-scaling.
We compare our proposed algorithm with stochastic gradient descent (SGD), and stochastic
variance-reduced gradient descent (SVRG) proposed by Johnson and Zhang (2013). For
each method, pre-fixed step sizes ranging over {0.0001, 0.001, 0.01, 0.05, 0.10, 0.15, 0.20}
are tested. SGD uses mini-batches of size 1, as does the inner loop of SVRG. The outer loop
of SVRG continues until the budget is spent, with the inner loop repeating n/2 times.

Representative results are given in Fig. 9. For each of the three methods of interest, and
each dataset, we chose the top two performance settings, displayed as *_1 and *_2 respec-
tively. Here “top performance” is measured by the median value of the last five iterations. We
see that in general, robust gradient descent is competitive with the best settings of these well-
known routines, hasminimal divergence between the performance of its first- and second-best
settings, and in the case of smaller data sets (protein homology), indeed significantly outper-
forms the competitors. While these are simply nascent applications of RGD, the strong initial
performance suggests that further investigation of efficient strategies under high-dimensional
data is a promising direction.

2 http://www.cs.toronto.edu/~kriz/cifar.html.
3 http://yann.lecun.com/exdb/mnist/.
4 http://www.kdd.org/kdd-cup/view/kdd-cup-2004/Tasks.
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Fig. 9 Test error (misclassification rate) over budget spent, as measured by gradient computations, for the top
two performers within each method class. Each plot corresponds to a distinct dataset (Color figure online)

5 Concluding remarks

In this work, we introduced and analyzed a learning algorithm which takes advantage of
robust estimates of the unknown risk gradient, integrating statistical estimation and practical
implementation into a single routine. Doing so allows us to deal with the statistical vul-
nerabilities of ERM-GD and partition-based methods, while circumventing computational
issues posed by minimizers of robust surrogate objectives. The price to be paid is new com-
putational overhead and potentially biased estimates. Is this price worth paying? Bounds on
the excess risk are available under very weak assumptions on the data distribution, and we
find empirically that the proposed algorithm has desirable learning efficiency, in that it can
competitively generalize, with less samples, over more distributions than its competitors.

Moving forward, a more careful analysis of the role that prior knowledge can play on
learning efficiency, starting with the first-order optimizer setting, is of significant interest.
Characterizing the learning efficiency enabled by sharper estimates could lead to useful
insights in the context of larger-scale problems, where a small overhead might save countless
iterations and dramatically reduce budget requirements, while simultaneously leading to
more consistent performance across samples. Another natural line of work is to look at
alternative strategies which operate on the data vector as a whole (rather than coordinate-
wise), integrating information across coordinates, in order to infer more efficiently.
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A Technical appendix

A.1 Preliminaries

Our generic data shall be denoted by z ∈ Z. Let μ denote a probability measure on Z,
equipped with an appropriate σ -field. Data samples shall be assumed independent and iden-
tically distributed (iid),written z1, . . . , zn .We shallworkwith loss function l : Rd ×Z → R+
throughout, with l(·; z) assumed differentiable for each z ∈ Z.WriteP for a generic probabil-
ity measure, most commonly the product measure induced by the sample. Let f : Z → R be
a measurable function. Expectation is written Eμ f (z) ..= ∫

f dμ, with variance varμ f (z)
defined analogously. For d-dimensional Euclidean space R

d , the usual (�2) norm shall be
denoted ‖ · ‖ unless otherwise specified. For function F on R

d with partial derivatives
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defined, write the gradient as F ′(u) ..= (F ′
1(u), . . . , F ′

d(u)) where for short, we write
F ′

j (u) ..= ∂ F(u)/∂u j . For integer k, write [k] ..= {1, . . . , k} for all the positive integers
from 1 to k. Risk shall be denoted R(w) ..= Eμ l(w; z), and its gradient g(w) ..= R′(w). We
make a running assumption that we can differentiate under the integral sign in each coordinate
(Ash and Doleans-Dade 2000; Talvila 2001), namely that

g(w) =
(

Eμ

∂l(w; z)

∂w1
, . . . ,Eμ

∂l(w; z)

∂wd

)

. (13)

Smoothness and convexity of functions shall also be utilized. For convex function F on
convex setW , say that F is λ-Lipschitz if, for all w1, w2 ∈ W we have |F(w1) − F(w2)| ≤
λ‖w1 − w2‖. We say that F is λ-smooth if F ′ is λ-Lipschitz. Finally, F is strongly convex
with parameter κ > 0 if for all w1, w2 ∈ W ,

F(w1) − F(w2) ≥ 〈F ′(w2), w1 − w2〉 + κ

2
‖w1 − w2‖2

for any norm ‖ · ‖ onW , though we shall be assumingW ⊆ R
d . If there exists w∗ ∈ W such

that F ′(w∗) = 0, then it follows thatw∗ is the unique minimum of F onW . Let f : Rd → R

be a continuously differentiable, convex, λ-smooth function. The following basic facts will
be useful: for any choice of u, v ∈ R

d , we have

f (u) − f (v) ≤ λ

2
‖u − v‖2 + 〈 f ′(v), u − v〉 (14)

1

2λ
‖ f ′(u) − f ′(v)‖2 ≤ f (u) − f (v) − 〈 f ′(v), u − v〉. (15)

Proofs of these results can be found in any standard text on convexoptimization, e.g. (Nesterov
2004).

We shall leverage a special type of M-estimator here, built using the following convenient
class of functions.

Definition 13 (Function class for location estimates) Letρ : R → [0,∞) be an even function
(ρ(u) = ρ(−u)) with ρ(0) = 0 and the following properties. Denote ψ(u) ..= ρ′(u).

1. ρ(u) = O(u) as u → ±∞.
2. ρ(u)/(u2/2) → 1 as u → 0.
3. ψ ′ > 0, and for some C > 0, and all u ∈ R,

− log(1 − u + Cu2) ≤ ψ(u) ≤ log(1 + u + Cu2).

Of particular importance in the proceeding analysis is the fact that ψ = ρ′ is bounded,
monotonically increasing and Lipschitz on R, plus the upper/lower bounds which let us
generalize the technique of Catoni (2012).

Example 14 (Valid ρ choices) In addition to the Gudermannian function (Sect. 2 footnote),
functions such as 2(

√

1 + u2/2−1) and log cosh(u) arewell-known examples that satisfy the
desired criteria. Note that the wide/narrow functions of Catoni do not meet all these criteria,
nor does the classic Huber function.

A.2 Proofs

Proof of Lemma 3 For cleaner notation, write x1, . . . , xn ∈ R for our iid observations. Here
ρ is assumed to satisfy the conditions of Definition 13. A high-probability concentration
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inequality follows by direct application of the specified properties ofρ andψ ..= ρ′, following
the general technique laid out by Catoni (2009, 2012). For u ∈ R and s > 0, writing
ψs(u) ..= ψ(u/s), and taking expectation over the random draw of the sample,

E exp

(

n
∑

i=1

ψs(xi − u)

)

≤
(

1 + 1

s
(E x − u) + C

s2
E(x2 + u2 − 2xu)

)n

≤ exp

(

n

s
(E x − u) + Cn

s2
(var x + (E x − u)2)

)

.

The inequalities above are due to an application of the upper bound on ψ , and and the
inequality (1 + u) ≤ exp(u). Now, letting

A ..= 1

n

n
∑

i=1

ψs(xi − u)

B ..= 1

s
(E x − u) + C

s2
(var x + (E x − u)2)

we have a bound on E exp(n A) ≤ exp(nB). By Markov’s inequality, we then have

P{A > B + ε} = P{exp(n A) > exp(nB + nε)}
≤ E exp(n A)

exp(nB + nε)

≤ exp(−nε).

Setting ε = log(δ−1)/n for confidence level δ ∈ (0, 1), and for convenience writing

b(u) ..= E x − u + C

s
(var x + (E x − u)2),

we have with probability no less than 1 − δ that

s

n

n
∑

i=1

ψs(xi − u) ≤ b(u) + s log(δ−1)

n
. (16)

The right hand side of this inequality, as a function of u, is a polynomial of order 2, and if

1 ≥ D ..= 4

(

C2 var x

s2
+ C log(δ−1)

n

)

,

then this polynomial has two real solutions. In the hypothesis, we stated that the result holds
“for large enough n and s j .” By this we mean that we require n and s to satisfy the preceding
inequality (for each j ∈ [d] in the multi-dimensional case). The notation D is for notational
simplicity. The solutions take the form

u = 1

2

(

2E x + s

C
± s

C
(1 − D)1/2

)

.

Looking at the smallest of the solutions, noting D ∈ [0, 1] this can be simplified as

u+ ..= E x + s

2C

(1 − √
1 − D)(1 + √

1 − D)

1 + √
1 − D

= E x + s

2C

D

1 + √
1 − D

≤ E x + s D/2C, (17)
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where the last inequality is via taking the
√
1 − D term in the previous denominator as small

as possible. Now, writing x̂ as the M-estimate using s and ρ as in (4), note that x̂ equivalently
satisfies

∑n
i=1 ψs (̂x − xi ) = 0. Using (16), we have

s

n

n
∑

i=1

ψs(xi − u+) ≤ b(u+) + s log(δ−1)

n
= 0,

and since the left-hand side of (16) is a monotonically decreasing function of u, we have
immediately that x̂ ≤ u+ on the event that (16) holds, which has probability at least 1 − δ.
Then leveraging (17), it follows that on the same event,

x̂ − E x ≤ s D/2C .

An analogous argument provides a 1−δ event on which x̂ −E x ≥ −s D/2C , and thus using
a union bound, one has that

|̂x − E x | ≤ 2

(

C var x

s
+ s log(δ−1)

n

)

(18)

holds with probability no less than 1 − 2δ. Setting the xi to l ′j (w; zi ) for j ∈ [d] and some

w ∈ R
d , i ∈ [n], and x̂ to ̂θ j corresponds to the special case considered in this Lemma.

Dividing δ by two yields the (1 − δ) result. ��

Proof of Lemma 5 For any fixed w and j ∈ [d], note that
|̂θ j − g j (w)| ≤ ε j

..= 2

(

C varμ l ′j (w; z)

s j
+ s j log(2δ

−1)

)

= 2

√

log(2δ−1)

n

(

C varμ l ′j (w; z)

σ̂ j
+ σ̂ j

)

(19)

≤ ε∗ ..= 2

√

V log(2δ−1)

n
c0 (20)

holds with probability no less than 1 − δ. The first inequality holds via direct application
of Lemma 3, which holds under (11) and using ρ which satisfies (8). The equality follows
immediately from (6). The final inequality follows fromA4 and (10), alongwith the definition
of c0.

Making the dependence onw explicitwitĥθ j = ̂θ j (w), an important question to ask is how
sensitive this estimator is to a change inw. Say we perturbw to w̃, so that ‖w− w̃‖ = a > 0.
By A2, for any sample we have

‖l ′(w; zi ) − l ′(w̃; zi )‖ ≤ λ‖w − w̃‖ = λa, i ∈ [n]
which immediately implies |l ′j (w; zi ) − l ′j (w̃; zi )| ≤ λa for all j ∈ [d] as well. That is, the
maximum that any data point can move in either direction is λa. Given a sample of n ≥ 1
points, consider the impact that the a-sized shift from w to w̃ has on̂θ j (w) shifting tôθ j (w̃).
Without loss of generality, say all the points shifted to the right by the maximum amount,
that is, l ′j (w̃; zi ) − l ′j (w; zi ) = λa for all i ∈ [n]. Then note that
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s

n

n
∑

i=1

ψs

(

̂θ j (w) + λa − l ′j (w̃; zi )
)

= s

n

n
∑

i=1

ψs

(

̂θ j (w) + λa − (l ′j (w; zi ) + λa)
)

= s

n

n
∑

i=1

ψs

(

̂θ j (w) − l ′j (w; zi )
)

= 0

by definition of̂θ j (w). It thus follows that̂θ j (w̃) = ̂θ j (w)+λa. Next, modify our assumption
on the data to allow for at least one point to have moved to the right less than the maximum
amount, namely that l ′j (w̃; zi ) − l ′j (w; zi ) ≤ λa for some i . In this case, by monotonicity of

ψ , it follows that ̂θ j (w̃) ≤ ̂θ j (w) + λa. An identical argument can be made for movement
in the negative direction, implying that no matter how the points are distributed after the
perturbation from w to w̃, the change from̂θ j (w) tôθ j (w̃) can be no more than λa. That is,
smoothness of the loss function immediately implies a Lipschitz property of the estimator:

|̂θ j (w) −̂θ j (w̃)| ≤ λ‖w − w̃‖.
Considering the vector of estimateŝθ(w) ..= (̂θ1(w), . . . ,̂θd(w)), we then have

‖̂θ(w) −̂θ(w̃)‖ ≤ √
dλ‖w − w̃‖. (21)

This will be useful for proving uniform bounds on the estimation error shortly.
First, let’s use these one-dimensional results for statements about the vector estimator of

interest. In d dimensions, usinĝθ(w) just defined for any pre-fixed w, then for any ε > 0 we
have

P
{‖̂θ(w) − g(w)‖ > ε

} = P
{‖̂θ(w) − g(w)‖2 > ε2

}

≤
d
∑

j=1

P
{

|̂θ j (w) − g j (w)| >
ε√
d

}

.

Using the notation of ε j and ε∗ from (19), filling in ε = √
dε∗, we thus have

P
{

‖̂θ(w) − g(w)‖ >
√

dε∗} ≤
d
∑

j=1

P
{|̂θ j (w) − g j (w)| > ε∗}

≤
d
∑

j=1

P
{|̂θ j (w) − g j (w)| > ε j

}

≤ dδ.

The second inequality is because ε j ≤ ε∗ for all j ∈ [d]. It follows that the event

E(w) ..=
⎧

⎨

⎩

‖̂θ(w) − g(w)‖ > 2

√

dV log(2dδ−1)

n
c0

⎫

⎬

⎭

has probability P E(w) ≤ δ. In practice, however, ŵ(t) for all t > 0 will be random, and
depend on the sample. We seek uniform bounds using a covering number argument. By A1,
W is closed and bounded, and thus compact, and it requires no more than Nε

..= �(3Δ/2ε)d�
balls of ε radius to cover W , where Δ is the diameter of W .5 Write the centers of these ε

5 This is a basic property of covering numbers for compact subsets of Euclidean space (Kolmogorov 1993).
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balls by {w̃1, . . . , w̃Nε }. Given w ∈ W , denote by w̃ = w̃(w) the center closest to w, which
satisfies ‖w − w̃‖ ≤ ε. Estimation error is controllable using the following new error terms:

‖̂θ(w) − g(w)‖ ≤ ‖̂θ(w) −̂θ(w̃)‖ + ‖g(w) − g(w̃)‖ + ‖̂θ(w̃) − g(w̃)‖. (22)

The goal is to be able to take the supremum over w ∈ W . We bound one term at a time.
The first term can be bounded, for any w ∈ W , by (21) just proven. The second term can be
bounded by

‖g(w) − g(w̃)‖ ≤ λ‖w − w̃‖ (23)

which follows immediately from A2. Finally, for the third term, fixing any w ∈ W , w̃ =
w̃(w) ∈ {w̃1, . . . , w̃Nε } is also fixed, and can be bounded on the δ event E(w̃) just defined.
The important fact is that

sup
w∈W

∥

∥̂θ(w̃(w)) − g(w̃(w))
∥

∥ = max
k∈[Nε ]

∥

∥̂θ(w̃k) − g(w̃k)
∥

∥ .

We construct a “good event” naturally as the event in which the bad event E(·) holds for no
center on our ε-net, namely

E+ =
⎛

⎝

⋂

k∈[Nε ]
E(w̃k)

⎞

⎠

c

.

Taking a union bound, we can say that with probability no less than 1 − δ, for all w ∈ W ,
we have

‖̂θ(w̃(w)) − g(w̃(w))‖ ≤ 2

√

dV log(2d Nεδ−1)

n
c0. (24)

Taking the three new bounds together, we have with probability no less than 1 − δ that

sup
w∈W

‖̂θ(w) − g(w)‖ ≤ λε(
√

d + 1) + 2

√

dV log(2d Nεδ−1)

n
c0.

Setting ε = 1/
√

n we have

sup
w∈W

‖̂θ(w) − g(w)‖ ≤ λ(
√

d + 1)√
n

+ 2c0

√

dV (log(2dδ−1) + d log(3Δ
√

n/2))

n
.

Since every step of Algorithm 1 (with orthogonal projection if required) has ŵ(t) ∈ W , the
desired result follows from this uniform confidence interval. ��
Proof of Lemma 7 Given ŵ(t), running the approximate update (3), we have

‖ŵ(t+1) − w∗‖ = ‖ŵ(t) − αĝ(ŵ(t)) − w∗‖
≤ ‖ŵ(t) − αg(ŵ(t)) − w∗‖ + α‖̂g(ŵ(t)) − g(ŵ(t))‖.

The first term looks at the distance from the target given an optimal update, using g. Using
the κ-strong convexity of R, via Nesterov (2004, Thm. 2.1.15) it follows that

‖ŵ(t) − αg(ŵ(t)) − w∗‖2 ≤
(

1 − 2ακλ

κ + λ

)

‖ŵ(t) − w∗‖2.

Writing β ..= 2κλ/(κ + λ), the coefficient becomes (1 − αβ).
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To control the second term simply requires unfolding the recursion. By hypothesis, we
can leverage (7) to bound the statistical estimation error by ε for every step, all on the same
1 − δ “good event.” For notational ease, write a ..= √

1 − αβ. On the good event, we have

‖ŵ(t+1) − w∗‖ ≤ at+1‖ŵ(0) − w∗‖ + αε
(

1 + a + a2 + · · · + at)

= at+1‖ŵ(0) − w∗‖ + αε
(1 − at+1)

1 − a
.

To clean up the second summand,

αε
(1 − at+1)

1 − a
≤ αε(1 + a)

(1 − a)(1 + a)

= αε(1 + √
1 − αβ)

αβ

≤ 2ε

β
.

Taking this to the original inequality yields the desired result. ��

Proof of Theorem 8 Using strong convexity and (14), we have that

R(ŵ(T )) − R∗ ≤ λ

2
‖ŵ(T ) − w∗‖2

≤ λ(1 − αβ)T D2
0 + 4λε2

β2 .

The latter inequality holds by direct application of Lemma 7, followed by the elementary
fact (a + b)2 ≤ 2(a2 + b2). The particular value of ε under which Lemma 7 is valid (i.e.,
under which (7) holds) is given by Lemma 5. Filling in ε with this concrete setting yields the
desired result. ��

Proof of Lemma 11 As in the result statement, we write

Σ(t)
..= Eμ

(

l ′(ŵ(t); z) − g(ŵ(t))
) (

l ′(ŵ(t); z) − g(ŵ(t))
)T

, w ∈ W.

Running this modified version of Algorithm 1, by minimizing the bound on the right-hand
side of the inequality in Lemma 3 as a function of scale s j , j ∈ [d], plugging in the optimal
scale setting to Lemma 3 yields that the estimateŝθ(t) = (̂θ1, . . . ,̂θd) at each step t incur an
error of

|̂θ j − g j (ŵ)| > 4

(

C varμ l ′j (ŵ(t); z) log(2δ−1)

n

)1/2

(25)

with probability no greater than δ. For clean notation, let us also denote

A ..= 4

(

C log(2δ−1)

n

)1/2

, ε∗ ..= A
√

trace(Σ(t)).
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For the vector estimates then, we have

P
{‖̂θ(t) − g(ŵ(t))‖ > ε∗}

= P

⎧

⎨

⎩

d
∑

j=1

(̂θ j − g j (ŵ(t)))
2

A2 > trace(Σ(t))

⎫

⎬

⎭

= P

⎧

⎨

⎩

d
∑

j=1

(

(̂θ j − g j (ŵ(t)))
2

A2 − varμ l ′j (ŵ(t); z)

)

> 0

⎫

⎬

⎭

≤ P
d
⋃

j=1

{

(̂θ j − g j (ŵ(t)))
2

A2 > varμ l ′j (ŵ(t); z)

}

≤ dδ.

The first inequality uses a union bound, and the second inequality follows from (25). Plugging
in A and taking confidence δ/d implies the desired result. ��

Proof of Theorem 12 From Lemma 11, the estimation error has exponential tails, as follows.
Writing

A1
..= 2d, A2

..= 4

(

C trace(Σ(t))

n

)1/2

,

for each iteration t we have

P{‖̂θ(t) − g(ŵ(t))‖ > ε} ≤ A1 exp

(

−
(

ε

A2

)2
)

.

Controlling moments using exponential tails can be done using a fairly standard argument.
For random variable X ∈ Lp for p ≥ 1, we have the classic inequality

E |X |p =
∫ ∞

0
P{|X |p > t} dt

as a starting point. Setting X = ‖̂θ(t) − g(ŵ(t))‖ ≥ 0, and using substitution of variables
twice, we have

E |X |p =
∫ ∞

0
P{X > t1/p} dt

=
∫ ∞

0
P{X > t}pt p−1 dt

≤ A1 p
∫ ∞

0
exp

(− (t/A2)
2) t p−1 dt

= A1Ap
2 p

2

∫ ∞

0
exp(−t)t p/2−1 dt .

The last integral on the right-hand side, written Γ (p/2), is the usual Gamma function of
Euler evaluated at p/2. Setting p = 2, we have Γ (1) = 0! = 1, and plugging in the values
of A1 and A2 yields the desired result. ��
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A.3 Guarantees in the case without strong convexity

Lemma 15 (Comparing trajectories) Comparing (2) and (3), assume that ĝ satisfies (7).
Setting α(t) ∈ (0, 1) for all 0 ≤ t < T , and initializing to ŵ(0) = w∗

(0), with probability at
least 1 − T δ, we have

‖ŵ(T ) − w∗
(T )‖ ≤ ε

(

T −1
∏

t=0

(1 + λα(t)) − 1

)

. (26)

Proof of Lemma 15 For arbitrary step t , comparing the results of updates (2) and (3) with
common step size α(t), we have

‖ŵ(t+1) − w∗
(t+1)‖ ≤ ‖ŵ(t) − w∗

(t)‖ + |α(t)|
(

‖̂g(ŵ(t)) − g(ŵ(t))‖ + ‖g(ŵ(t)) − g(w∗
(t))‖

)

≤ ‖ŵ(t) − w∗
(t)‖
(

1 + λα(t)
)+ α(t)ε. (27)

The latter inequality follows from the ε-accuracy and λ-smoothness in A2. Next, note that
for any t ≥ 1, if we have

‖ŵ(t) − w∗
(t)‖ ≤ ε

λ

(

t−1
∏

k=0

(

1 + λα(k)

)− 1

)

,

then using (27), it follows that in the next iteration

‖ŵ(t+1) − w∗
(t+1)‖ ≤ ε

λ

(

t−1
∏

k=0

(

1 + λα(k)

)− 1

)

(

1 + λα(t)
)+ α(t)ε

= ε

λ

(

t
∏

k=0

(

1 + λα(k)

)− 1

)

.

Finally noting that we have the base case

‖ŵ(1) − w∗
(1)‖ ≤ α(0)ε = ε

λ

(

(1 + λα(0)) − 1
)

,

taking the form assumed in the induction step. The desired result follows by mathematical
induction. ��

Without strong convexity, control of the risk becomes slightly more cumbersome, but
weaker guarantees can be derived in a straightforward manner. Using A2 and (14):

R(ŵ(T )) − R∗ = R(ŵ(T )) − R(w∗
(T )) + R(w∗

(T )) − R∗

≤ λ

2
‖ŵ(T ) − w∗

(T )‖2 + 〈g(w∗
(T )), ŵ(T ) − w∗

(T )〉 + R(w∗
(T )) − R∗

≤ λ

2
‖ŵ(T ) − w∗

(T )‖2 + ‖g(w∗
(T ))‖‖ŵ(T ) − w∗

(T )‖ + R(w∗
(T )) − R∗.

Furthermore, using g(w∗) = 0 and (15), we have

‖g(w∗
(T ))‖2 = ‖g(w∗

(T )) − g(w∗)‖2

≤ 2λ
(

R(w∗
(T )) − R(w∗) − 〈g(w∗), w∗

(T ) − w∗〉
)

= 2λ
(

R(w∗
(T )) − R(w∗)

)

.
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By convexity and A3 , we have R∗ = R(w∗). Writing A ..= ‖ŵ(T ) − w∗
(T )‖2 and B ..=

R(w∗
(T )) − R(w∗), it follows that

R(ŵ(T )) − R∗ ≤ λA

2
+ √

2λAB + B.

Control of the estimation error A can be done using a direct application of Lemmas 5 and
15, which naturally yield

‖ŵ(T ) − w∗
(T )‖ ≤ ε̃√

n

(

(1 + λα)T − 1
)

with probability at least 1 − δ.
As for the optimization error B, this can be controlled using Theorem 2.1.14 of Nesterov

(2004), as

B ≤ 2R0D2
0

2D2
0 + T α(2 − λα)R0

=
(

T α(2 − λα)

2D2
0

+ R0

)−1

which is valid using A2 and (12). Plugging these in as upper bounds on A and B in the risk
control inequality gives the desired result.

A.4 Computational methods

Here we discuss precisely how to compute the implicitly-defined M-estimates of (4) and (6).
Assuming s > 0 and real-valued observations x1, . . . , xn , we first look at the program

min
θ

1

n

n
∑

i=1

ρs (xi − θ)

assuming ρ is as specified in Definition 13, with ψ = ρ′. Writêθ for this unique minimum,
and note that it satisfies

s

n

n
∑

i=1

ψs
(

xi −̂θ) = 0.

Indeed, by monotonicity of ψ , this ̂θ can be found via ρ minimization or root-finding. The
latter yields standard fixed-point iterative updates, such as

̂θ(k+1) = ̂θ(k) + s

n

n
∑

i=1

ψs
(

xi −̂θ(k)

)

.

Note the right-hand side has a fixed point at the desired value. In our routines, we use the
Gudermannian function

ρ(u) ..=
∫ u

0
ψ(x) dx, ψ(u) ..= 2 atan(exp(u)) − π/2

which can be readily confirmed to satisfy all requirements of Definition 13.
For the dispersion estimate to be used in re-scaling, we introduce function χ , which is

even, non-decreasing on R+, and satisfies

0 <

∣

∣

∣

∣

lim
u→±∞ χ(u)

∣

∣

∣

∣

< ∞, χ(0) < 0.
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In practice, we take dispersion estimate σ̂ > 0 as any value satisfying

1

n

n
∑

i=1

χ

(

xi − γ

σ̂

)

= 0

where γ = n−1∑n
i=1 xi , computed by the iterative procedure

σ̂(k+1) = σ̂(k)

(

1 − 1

χ(0)n

n
∑

i=1

χ

(

xi − γ

σ̂(k)

)

)1/2

which has the desired fixed point, as in the location case. Our routines use the quadratic
Geman-type χ , defined

χ(u) ..= u2

1 + u2 − c

with parameter c > 0, noting χ(0) = −c. Writing the first term as χ0 so χ(u) = χ0(u) − c,
we set c = Eχ0(x) under x ∼ N (0, 1). Computed via numerical integration, this is c ≈ 0.34.

B Additional test results

In this section, we provide some additional experimental results obtained via the tests of
Sect. 4. In particular, we consider the regression application at the end of Sect. 4.1, where
due to space limitations, we only showed results for four distinct families of noise dis-
tributions. Here, we consider all of the following distribution families: Arcsine (asin),
Beta Prime (bpri), Chi-squared (chisq), Exponential (exp), Exponential-Logarithmic
(explog), Fisher’s F (f), Fréchet (frec), Gamma (gamma), Gompertz (gomp), Gum-
bel (gum), Hyperbolic Secant (hsec), Laplace (lap), Log-Logistic (llog), Log-Normal
(lnorm), Logistic (lgst), Maxwell (maxw), Pareto (pareto), Rayleigh (rayl), Semi-
circle (scir), Student’s t (t), Triangle (asymmetric tri_a, symmetric tri_s), U-Power
(upwr), Wald (wald), Weibull (weibull).

The content of this section is as follows:

– Figs. 10–11: performance as a function of sample size n.
– Figs. 12–13: performance over noise levels, with fixed n and d .
– Figs. 14–15: performance as a function of d , with fixed n/d ratio and noise level.
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Fig. 10 Prediction error over sample size 12 ≤ n ≤ 122, fixed d = 5, noise level = 8. Each plot corresponds
to a distinct noise distribution (Color figure online)
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Fig. 11 Prediction error over sample size 12 ≤ n ≤ 122, fixed d = 5, noise level = 8. Each plot corresponds
to a distinct noise distribution (Color figure online)
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Fig. 12 Prediction error over noise levels, for n = 30, d = 5. Each plot corresponds to a distinct noise
distribution (Color figure online)
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Fig. 13 Prediction error over noise levels, for n = 30, d = 5. Each plot corresponds to a distinct noise
distribution (Color figure online)
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Fig. 14 Prediction error over dimensions 5 ≤ d ≤ 40, with ratio n/d = 6 fixed, and noise level = 8. Each plot
corresponds to a distinct noise distribution (Color figure online)

123



Machine Learning (2019) 108:1523–1560 1559

Fig. 15 Prediction error over dimensions 5 ≤ d ≤ 40, with ratio n/d = 6 fixed, and noise level = 8. Each plot
corresponds to a distinct noise distribution (Color figure online)
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