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Abstract
We consider the problem of minimizing the regularized empirical risk function which is
represented as the average of a large number of convex loss functions plus a possibly non-
smooth convex regularization term. In this paper, we propose a fast variance reducing (VR)
stochastic method called Prox2-SAGA. Different from traditional VR stochastic methods,
Prox2-SAGA replaces the stochastic gradient of the loss function with the corresponding
gradient mapping. In addition, Prox2-SAGA also computes the gradient mapping of the
regularization term. These two gradient mappings constitute a Douglas-Rachford splitting
step. For strongly convex and smooth loss functions, we prove that Prox2-SAGA can achieve
a linear convergence rate comparable to other acceleratedVR stochasticmethods. In addition,
Prox2-SAGA ismore practical as it involves only the stepsize to tune.When each loss function
is smooth but non-strongly convex, we prove a convergence rate ofO(1/k) for the proposed
Prox2-SAGAmethod, where k is the number of iterations. Moreover, experiments show that
Prox2-SAGA is valid for non-smooth loss functions, and for strongly convex and smooth
loss functions, Prox2-SAGA is prominently faster when loss functions are ill-conditioned.
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1 Introduction

In many artificial intelligence and machine learning applications, one needs to solve the fol-
lowing generic optimization problem in the form of regularized empirical risk minimization
(Hastie et al. 2009)

min
x∈Rd

f (x) + h(x). (1)

Given n samples, f is the average of a set of convex loss functions

f (x) = 1

n

n∑

i=1

fi (x), (2)

where fi : Rd → R denotes the empirical loss of the i-th samplewith regard to the parameters
x , and h is the regularization term, which is convex but possibly non-smooth. The goal is to
find the optimal solution of x that minimizes the regularized empirical loss over the whole
dataset.

Numerous efforts have been devoted to solve this problem (Bottou et al. 2016; Johnson
and Zhang 2013; Defazio et al. 2014; Shalev-Shwartz and Zhang 2013). When h is absent,
stochastic gradient descent (SGD) (Robbins and Monro 1951) is a standard and effective
method to solve (1), especially when the number of samples is very large. Specifically,
stochastic gradient is utilized in SGD to update x in each step instead of calculating the
full gradient, which yields lower per iteration cost. However, as a side effect, a rather large
variance introduced by the stochastic gradient will slow down the convergence (Bottou et al.
2016).

To address the issue, a number of variance reducing (VR) stochastic methods have been
developed in recent years, such as SVRG (Johnson and Zhang 2013), SAGA (Defazio et al.
2014) and SDCA (Shamir and Zhang 2013). As a key feature of the VR stochastic methods,
the variance of the stochastic gradient goes to zero asymptotically along the iterative updates.
Therefore, unlike SGD which needs a decaying step size to guarantee convergence, the step
size can be fixed for these methods. As a result, the convergence rate can be improved
from sub-linear in SGD to linear in the VR stochastic methods. Further, for the problem
with the non-smooth regularization term h, a proximal operator of h is introduced at the
end of each iteration of the VR stochastic methods, for example, Prox-SVRG (Xiao and
Zhang 2014), Prox-SAGA (Defazio et al. 2014) and Prox-SDCA (Shalev-Shwartz and Zhang
2014). In addition, acceleration techniques such as Acc-SDCA (Shalev-Shwartz and Zhang
2014), Catalyst (Lin et al. 2015, 2017) and Katyusha (Allen-Zhu 2017), can boost these
methods to faster convergence rates when the loss function is ill-conditioned. However,
existing accelerated VR stochastic methods often involve mulitple parameters to tune, which
brings difficulties to their implementations.

In this paper, we develop a simple accelerated VR stochastic method, named as Prox2-
SAGA, to solve (1). Similar to most non-accelerated algorithms, Prox2-SAGA only has
one parameter, the step size, to tune, and is hence easy to implement. Different from most
stochastic algorithms which utilize the gradients of fi , Prox2-SAGA uses the corresponding
gradient mappings, through applying the proximal operator on each fi . It is the proximal
operator that enables Prox2-SAGA to achieve the accelerated rate when the loss functions are
ill-conditioned. Prox2-SAGA can be regarded as the generalization of Point-SAGA (Defazio
2016) which considers a special case when the non-smooth regularizer h is absent. To handle
h, Prox2-SAGA employs another proximal operator. The two proximal operators in one
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iteration of Prox2-SAGA essentially constitute a Douglas-Rachford splitting step. Our main
contributions are listed below:

– We design Prox2-SAGA, a fast and simple VR stochastic method, to solve (1) with
Douglas-Rachford splitting.

– When loss functions fi are convex and smooth, we prove that Prox2-SAGA can achieve
a O(1/k) convergence rate, where k is the number of iterations. Further when fi ’s are
strongly convex, we prove that Prox2-SAGA converges with an accelerated linear rate.

– Experiments are conducted to demonstrate the efficacy of the proposed algorithm, no
matter whether the loss functions fi are smooth or not, in particular when the loss
functions fi are ill-conditioned.

2 Definitions and assumptions

In this section, we introduce definitions and assumptions used in this paper.

2.1 Definitions

For a function f , the proximal operator at point x with step size γ > 0 is defined as

proxγ

f (x) = argmin
y∈Rd

(
f (y) + 1

2γ
‖y − x‖2

)
. (3)

For many functions f of interest, the proximal operator proxγ

f has a closed form solution or
can be computed efficiently (Parikh and Boyd 2014).

Further, we define

φ
γ

f (x) = 1

γ
(x − proxγ

f (x)) (4)

as the gradient mapping of f at point x with γ > 0. According to the definition of the
proximal operator in (3), φγ

f (x) is a subgradient of f at proxγ

f (x).
The subdifferential is introduced to facilitate the analysis of non-smoothness. The subd-

ifferential ∂ f (x) of f at x is the set of all subgradient

∂ f (x) = {
g | gT (y − x) ≤ f (y) − f (x),∀y ∈ dom f

}
.

Besides, the conjugate of a function f is defined as

f ∗(y) = sup
x∈dom f

(yT x − f (x)).

2.2 Assumptions

In this paper, we may assume that each fi is μ-strongly convex, namely, for any x, y ∈ R
d

and any subgradient gi of fi at x , it holds that

fi (y) ≥ fi (x) + 〈gi , y − x〉 + μ

2
‖y − x‖2 ,
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where μ > 0. The assumption can be easily satisfied by refining fi with a strongly-
convex regularizer. For a general convex function, the above inequality always holds with
μ = 0.

We may also assume that each fi is L-smooth, namely, for any x, y ∈ R
d , it holds

that

fi (y) ≤ fi (x) + 〈∇ fi (x), y − x〉 + L

2
‖y − x‖2 ,

where L > 0 and ∇ fi (x) is the gradient of fi at x .

3 Related work

This section gives an overview of VR stochastic methods. In particular, we emphasize the
accelertion techniques for ill-conditioned problems.

3.1 Variance reducing stochastic methods

To effectively reduce the variance of stochastic gradient in stochastic optimization, several
statistical VR methods, such as importance sampling and stratified sampling (Owen 2013;
Ross 2013), have been introduced. Although utilizing the internal structure of dataset to pro-
ceed importance sampling or stratified sampling, as considered in Zhao and Zhang (2014),
(2015) and Needell et al. (2014), works quite well, it cannot asymptotically reduce the vari-
ance to zero.

Meanwhile, some other methods which employ control variates (Owen 2013, Chapter 8.9)
have been considered in Johnson and Zhang (2013), Defazio et al. (2014), Shamir and Zhang
(2013), Xiao and Zhang (2014) and Schmidt et al. (2017). SAGA (Defazio et al. 2014) and
SVRG (Johnson and Zhang 2013) are two typical algorithms among them, which utilize the
following VR stochastic gradient

∇ f j (x
k) − ∇ f j (x̃) + 1

n

n∑

i=1

∇ fi (x̃), (5)

where x̃ is the saved “snapshot” of a previous x , to replace ∇ f j (xk) in SGD. In SAGA and
SVRG, ∇ f j (x̃) can be regarded as the control variate of ∇ f j (xk). The variance of the VR
stochastic gradient goes to zero asymptotically along the iterative updates as ∇ f j (xk) and
∇ f j (x̃) become closer in expectation. This leads to a much faster convergence rate than that
of SGD.

3.2 Acceleration for ill-conditioned problems

For an L-smooth andμ-strongly convex function, L/μ is known as its condition number and
we call a function ill-conditioned when L/μ is too large. Many gradient-based methods may
performpoorly in handling ill-conditioned functions. Fortunately, the convergence rate can be
boosted by some acceleration techniques. Specifically, for (1) where each fi is L-smooth and
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μ-strongly convex while h is convex but possibly non-smooth, most VR stochastic methods
such as Prox-SDCA, Prox-SAGA and Prox-SVRG require O ((n + L/μ) log(1/ε)) steps to
achieve an ε-accurate solution. Nevertheless, if we apply some acceleration techniques, the
numbers of iterations needed are O((n + √

nL/μ) log(L/μ) log(1/ε)) in Catalyst (Wood-
worth and Srebro 2016) and O((n + √

nL/μ) log(1/ε)) in Acc-SDCA (Shalev-Shwartz
and Zhang 2014) and Katyusha (Allen-Zhu 2017). As a result, these accelerated meth-
ods will be significantly faster than the non-accelerated ones when L/μ  n. In this
paper, we shall show that our algorithm can also achieve an accelerated rate O((n +√
nL/μ) log(1/ε)).

4 Algorithm

The proposed algorithm is outlined in Algorithm 1. It maintains four sequences, xk , yk , gkj
and zkj , where j stands for the j-th loss function. The starting point x0 is set arbitrarily.

Each g0i can be chosen as any gradient/subgradient of fi at x0. The algorithm has only
one parameter, the step size γ . In the k-th iteration, a loss function f j is randomly chosen.
Each g j is updated from gkj to gk+1

j (see (9)) and x is updated from xk to xk+1 (see (11)),

while zkj and yk can be regarded as the intermediate variables for the updates of xk and gkj .

According to the definition of zkj in (8) and update of yk+1 in (10), the main steps can be
written as

yk+1 = xk − γ
(
gk+1
j − gkj + 1

n

n∑

i=1

gki

)
, (6)

xk+1 = proxγ

h (yk), (7)

where gk+1
j is the gradient mapping of f j at zkj + xk − yk .

In every iteration of our algorithm, we make use of the proximal operator of fi
to calculate the gradient mapping, in addition to the proximal operator of h. This
setting enables the proposed algorithm to achieve the accelerated rate when the loss
functions fi ’s are ill-conditioned. The main iteration steps in our algorithm are sim-
ilar to those in Prox-SAGA, which, however, contains only one proximal operator to
handle the non-smoothness of h. In this sense, we name our algorithm as Prox2-
SAGA.

To be specific, the main difference between Prox2-SAGA and Prox-SAGA is the defi-
nition of g j . In Prox2-SAGA, gk+1

j is a subgradient of f j at point prox
γ

f j
(zkj + xk − yk),

while in Prox-SAGA gk+1
j is the gradient of f j at xk . From (9) and (10), it holds that

proxγ

f j
(zkj + xk − yk) = yk+1 + xk − yk . That is to say, proxγ

f j
(zkj + xk − yk) involves

the “future” point yk+1, which is analogous to the update in Point-SAGA (Defazio 2016).
Therefore, compared to Prox-SAGA, our algorithm would achieve a faster convergence
rate.
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Algorithm 1 Prox2-SAGA

1: Input: x0 ∈ R
d , g0i (i = 1, 2, . . . , n), step size γ > 0.

2: for k = 0, 1, . . . do
3: Uniformly randomly pick j from 1 to n.
4: Calculate gk+1

j :

zkj = xk + γ
(
gkj − 1

n

n∑

i=1

gki

)
, (8)

gk+1
j = 1

γ

(
(zkj + xk − yk) − proxγ

f j
(zkj + xk − yk)

)
. (9)

5: Update x :

yk+1 = zkj − γ gk+1
j , (10)

xk+1 = proxγ

h (yk+1). (11)

6: Update gi (i = 1, 2, . . . , n) in the table:

gk+1
i =

{
gk+1
j , if i = j,

gki , otherwise.
(12)

7: end for
8: Output: xk+1.

Like Prox-SAGA, we maintain a table of gi and update one element of the table in each
iteration. The sum of gradient mappings

∑n
i=1 gi/n used in calculating zkj can be cached

and updated efficiently at each iteration by
∑n

i=1 g
k+1
i /n = ∑n

i=1 g
k
i /n + (gk+1

j − gkj )/n.
Besides, for linearly parameterized models where fi (x) can be represented as the more
structured form ψi (aT

i x), following the routine of SAGA, we just need to store a single real
value instead of a full vector for each gi . Linear regression and binary classification with
logistic or hinge losses both fall in this regime.

5 Connection with other methods

In this section, we show that Prox2-SAGA is essentially a Douglas-Rachford splitting algo-
rithm, and is a generalization of Point-SAGA. Further, we also establish the relations between
Prox2-SAGA and Prox-SDCA.

5.1 Connection with Douglas-Rachford splitting

When n = 1, since gkj = ∑n
i=1 g

k
i /n in Prox2-SAGA, the main iterations can be simplified

to

yk+1 = −xk + yk + proxγ

f (2x
k − yk),

xk+1 = proxγ

h (yk+1).
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These are the iterations of Douglas-Rachford splitting to minimize the composite cost func-
tion f (x) + h(x) (Eckstein and Bertsekas 1992; Bauschke and Combettes 2017). In this
sense, Prox2-SAGA is essentially a Douglas-Rachford splitting method, but aiming at solv-
ing the regularized empirical risk minimization problem when the number of samples n is
larger than 1.

5.2 Generalization of point-SAGA

When h = 0, we have xk = yk for Prox2-SAGA, and the main iterations can be simplified
to

zkj = xk + γ
(
gkj − 1

n

n∑

i=1

gki

)
,

gk+1
j = 1

γ
(zkj − xk+1),

xk+1 = proxγ

f j
(zkj ).

These are the iterations of Point-SAGA. Compared to Point-SAGA, Prox2-SAGA employs
another proximal operator of h and usesDouglas-Rachford splitting to combine two proximal
operators. Point-SAGA has been proven to have a O(1/k) convergence rate for non-smooth
but strongly convex problems, and achieve an accelerated rate when each fi is smooth and
strongly convex. Some convergence properties can also be inherited by Prox2-SAGA.

5.3 Relation to Prox-SDCA

Different from other VR stochastic methods such as Prox-SAGA and Prox-SVRG, Prox-
SDCA considers the dual problem of (1). In this section, we show that Prox-SDCA is
connected to Prox2-SAGA in the sense that it also involves calculating of gradient map-
pings and proximal operators. However, they are essentially different since Prox2-SAGA
handles functions in the primal domain, while Prox-SDCA works in the dual domain.

The Prox-SDCA algorithm has been considered in Shalev-Shwartz and Zhang (2014). In
order to unify notations, we work with fi (x) rather than the more structured ψi (ai x). Then
the dual objective to maximize is:

D (α) = 1

n

n∑

i=1

− f ∗
i (−αi ) − h∗

(1
n

n∑

i=1

αi

)
,

where f ∗
i , h

∗ are the conjugate functions of fi and h, respectively; αi ’s are d-dimension dual
variables.

Adopting Option I of Prox-SDCA in Figure 1 of Shalev-Shwartz and Zhang (2012), for
the selected index j in step k, we can represent the update of α j as

αk+1
j = αk

j + argmin
�α j∈Rd

{
f ∗
j (−αk

j − �α j ) + n

2

∥∥xk + 1

n
�α j

∥∥2
}
,

which is equivalent to

αk+1
j = argmin

y

{
f ∗
j (−y) + 1

2n

∥∥y − αk
j + nxk

∥∥2
}
. (13)
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Obviously, this update involves the calculation of the proximal operator of f ∗
j . The relation

between the proximal operator of a function and its convex conjugate can be established by
the extended Moreau decomposition (Parikh and Boyd 2014):

prox1/γf ∗
j

(u/γ ) = (u − proxγ

f j
(u))/γ,

which shows that prox1/γf ∗
j

(u/γ ) is identical to the gradient mapping of f j at u. Therefore,

the update of the dual variable α j in (13) implies the calculation of the gradient mapping of
f j . It is the gradient mapping that allows Prox-SDCA to directly solve the problems with
non-smooth loss functions. Next, we consider its update of the primal variable x .

The update of x in Prox-SDCA can be represented as

vk+1 = vk + 1

n
�α j ,

xk+1 = ∇h∗(vk+1), (14)

where v is an auxiliary variable.Aswe optimize the strongly convex function,we can consider
that there is an L2 regularization in h(x). We represent h as: h(x) = λ2

2 ‖x‖2+λ1r(x), where
r(x) is the non-smooth part. Then, the conjugate function of h is

h∗(v) = max
x∈Rd

{
vT x − λ2

2

∥∥x
∥∥2 − λ1r(x)

}
.

Therefore, it follows that

∇h∗(vk+1) = argmax
x∈Rd

{
(vk+1)T x − λ2

2

∥∥x
∥∥2 − λ1r(x)

}

= argmin
x∈Rd

{
r(x) + 1

2

λ2

λ1

∥∥x − vk+1

λ2

∥∥2
}
,

which is the proximal operator of r at vk+1

λ2
. Thus, the update of x in (14) can be regarded as

applying a proximal operator with step size λ1
λ2

on non-smooth r .
In conclusion, similar to Prox2-SAGA, Prox-SDCA involves computing the gradientmap-

pings and proximal operators. Both (12) and (13) can be regarded as the calculation of the
gradient mapping of fi ; the main difference is that in (13) the gradient mapping is calculated
through the conjugate function of fi , while in (12) the gradient mapping is calculated in the
primal domain and by a rather straightforward way. Likewise, both (11) and (14) are the
calculation of the proximal operator, except that (11) is more intuitive as it does not involve
conjugate functions. Moreover, the gradient mapping in Prox2-SAGA involves the “future”
point. Therefore, althrough both Prox2-SAGA and Prox-SDCA are able to converge linearly
when each loss function is smooth and strongly convex, Prox2-SAGA would be faster than
Prox-SDCA, as evidenced by the experiments.

6 Theory

In this section, we show that Prox2-SAGA converges to the optimal solution of (1) at a
rate of O(1/k) when each fi is smooth, and achieves an accelerated linear rate when each
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fi is further assumed to be strongly convex. We begin with several useful propositions and
lemmas.

6.1 Preliminaries

Our analysis is built upon the theory of Moreau envelope (Lemaréchal and Sagastizábal
1997). The Moreau envelope of a continuous function f : Rd → R with a regularization
parameter γ > 0 is defined as

f γ (x) = inf
y

{
f (y) + 1

2γ
‖x − y‖2

}
. (15)

The followingproposition demonstrates the basic properties ofMoreau envelope (Lemaréchal
and Sagastizábal 1997).

Proposition 1 (Properties of Moreau envelope) Given a convex continuous function f :
R
d → R and a regularization parameter γ > 0, we consider its Moreau envelope f γ

defined in (15). Then

1. f γ is continuously differentiable even when f is non-differentiable, and

∇ f γ (x) = 1

γ
(x − proxγ

f (x)). (16)

Moreover, f γ is 1
γ
-smooth.

2. If f is μ-strongly convex, then f γ is μ
μγ+1 -strongly convex.

From the definition of the gradient mapping φ
γ

f (x) = 1
γ
(x −proxγ

f (x)) in (4), we observe

that ∇ f γ (x) = φ
γ

f (x). According to the fact that f γ is 1
γ
-smooth when f is convex and

μ
μγ+1 -strongly convex when f isμ-strongly convex, we have the following lemma (Nesterov
2013).

Lemma 1 (Lower bounds of inner product) For any x, y ∈ R
d , any convex function f :

R
d → R and any regularization parameter γ > 0, we have

〈
φ

γ

f (x) − φ
γ

f (y), x − y
〉
≥ γ ‖φγ

f (x) − φ
γ

f (y)‖2. (17)

Further, if f is strongly convex with constant μ > 0, we have
〈
φ

γ

f (x) − φ
γ

f (y), x − y
〉
≥ μ

μγ + 1
‖x − y‖2. (18)

A direct corollary of Lemma 1 gives the following nonexpansiveness results, which are
useful in the analysis.

Corollary 1 (Nonexpansiveness) For any x, y ∈ R
d , any convex function f : Rd → R and

any regularization parameter γ > 0, we have the firm nonexpansiveness of proxγ

f (x), given
by

‖proxγ

f (x) − proxγ

f (y)‖2 ≤ 〈
proxγ

f (x) − proxγ

f (y), x − y
〉
,

and the nonexpansiveness of 2proxγ

f (x) − x, given by

‖2proxγ

f (x) − x − (2proxγ

f (y) − y)‖ ≤ ‖x − y‖,
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Proof The two inequalities follow from substituting φ
γ

f (x) = 1
γ
(x − proxγ

f (x)) into (17) in
Lemma 1 and reorganizing terms. ��

Lemma 1 gives lower bounds for the inner product
〈
φ

γ

f (x) − φ
γ

f (y), x − y
〉
when f is

convex or strongly convex, no matter whether f is smooth or not. When f is convex and
smooth, we can deduce another lower bound for the inner product.

Lemma 2 (Another lower bound of inner product)For any x, y ∈ R
d , any L-smooth function

f : Rd → R and any regularization parameter γ > 0, we have
〈
φ

γ

f (x) − φ
γ

f (y), x − y
〉
≥ γ

(
1 + 1

Lγ

)
‖φγ

f (x) − φ
γ

f (y)‖2. (19)

Proof Denote f ∗ as the conjugate function of f . Note that L-smoothness of f implies 1
L -

strong convexity of f ∗. According to (17) and (18) in Lemma 1, we have

〈
φ

γ

f ∗(x) − φ
γ

f ∗(y), x − y
〉
≥

1
L

2 γ
L + 1

‖x − y‖2 + γ (
γ
L + 1)

2 γ
L + 1

‖φγ

f ∗(x) − φ
γ

f ∗(y)‖2.
(20)

Recalling the extended Moreau decomposition (Parikh and Boyd 2014)

proxγ

f ∗(x) = x − γ prox1/γf (x/γ ),

we have

φ
γ

f ∗(x) = 1

γ

(
x − proxγ

f ∗(x)
) = prox1/γf (x/γ ) = 1

γ

(
x − φ

1/γ
f (x/γ )

)
. (21)

Plugging φ
γ

f ∗(x) = 1
γ

(
x − φ

1/γ
f (x/γ )

)
into (20) and simplifying the terms lead to (19). ��

For the purpose of analysis, it is convenient to plug (9) into (10) to express Algorithm 1
in the form of

{
yk+1 = −xk + yk + proxγ

f j
(ukj ),

gk+1
j = 1

γ

(
ukj − proxγ

f j
(ukj )

)
.

(22)

Here we define

ukj = zkj + xk − yk, (23)

while zkj = xk+γ
(
gkj− 1

n

∑n
i=1 g

k
i

)
, xk = proxγ

h (yk), as defined in (8) and (11), respectively.

In these definitions, j ∈ {1, 2, . . . , n}.
Before giving the main results, we show that the fixed point of the Prox2-SAGA iteration,

if it exists, is exactly a minimizer of (1).

Proposition 2 Suppose that (y∞, {g∞
i }i=1,...,n) is the fixed point of the Prox2-SAGA iteration

(22). Then x∞ = proxγ

h (y∞) is a minimizer of (1).

Proof Define z∞j = x∞ +γ
(
g∞
j − 1

n

∑n
i=1 g

∞
i

)
. Since (y∞, {g∞

i }i=1,...,n) is the fixed point

of (22), y∞ = −x∞ + y∞ + proxγ

fi
(z∞i + x∞ − y∞), which implies

(z∞i − y∞)/γ ∈ ∂ fi (x
∞), i = 1, . . . , n. (24)
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Meanwhile, because x∞ = proxγ

h (y∞), we have

(y∞ − x∞)/γ ∈ ∂h(x∞). (25)

Observing that

1

n

n∑

i=1

(z∞i − y∞) + (y∞ − x∞) = 1

n

n∑

i=1

z∞i − x∞ = 0,

from (24) and (25), we have 0 ∈ ∂ f (x∞)+ ∂h(x∞), meaning that x∞ is a minimizer of (1).
��

Denote x∗ as a minimizer of (1). According to the first-order optimality condition of (1),
there exist a set of subgradients g∗

j , one for each loss function f j at x∗, and a subgradient

∂h(x∗) for the regularization function h at x∗, such that 0 ∈ 1
n

∑n
i=1 g

∗
i + ∂h(x∗). Define

g∗ = 1

n

n∑

i=1

g∗
i , y∗ = z∗j − γ g∗

j , z∗j = x∗ + γ
(
g∗
j − g∗) , u∗

j = z∗j − x∗ − y∗.

(26)

It is not difficult to verify from these definitions and the properties of the proximal operator
that

g∗
j = 1

γ

(
u∗
j − proxγ

f j
(u∗

j )
)
, x∗ = proxγ

h (y∗). (27)

Throughout the analysis, all expectations are taken with respect to the choice of j at
iteration k unless stated otherwise. Two particularly useful expectations are

E[gkj ] = 1

n

n∑

i=1

gki , E[g∗
j ] = g∗. (28)

6.2 Main results

The proofs of the main results rely on a Lyapunov function, which at time k + 1 is defined
as

T k+1 = c

n

n∑

i=1

∥∥γ (gk+1
i − g∗

i )
∥∥2 + ∥∥yk+1 − y∗∥∥2, (29)

where c > 0 is a constant. We shall choose c as different values in the proofs of Theorems
1 and 2. The following lemma gives an upper bound for the expecation of the Lyapunov
function.

Lemma 3 (Expectation of Lyapunov function) Assume that each loss functions fi is convex
and L-smooth, while the regularization function h is convex. Then for Prox2-SAGA, at any
time k > 0, the expectation of the Lyapunov function defined in (29) satisfies

E[T k+1] ≤
(
1

2
+

(
1 − 1

n

)
c

)
1

n

n∑

i=1

∥∥γ (gki − g∗
i )

∥∥2 +
(
2 + c

n

)
E

∥∥γ (gk+1
j − g∗

j )
∥∥2

+1

2
‖yk − y∗‖2 + 1

2
E

∥∥ukj − u∗
j

∥∥2 − 2E
〈
ukj − u∗

j , γ (gk+1
j − g∗

j )
〉
. (30)
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Proof Taking expectation over the first term of T k+1, we have

c

n
E

n∑

i=1

∥∥γ (gk+1
i − g∗

i )
∥∥2 =

(
1 − 1

n

)
c

n

n∑

i=1

∥∥γ (gki − g∗
i )

∥∥2 + c

n
E

∥∥γ (gk+1
j − g∗

j )
∥∥2.

(31)

To calculate the expectation for the second term of T k+1, recall the definition of zkj in (8)

and ukj in (23), we start by rewriting the iteration of yk+1 in (22) as

yk+1 = 1

2

(
yk + γ

(
gkj − 1

n

n∑

i=1

gki
)) + 1

2

(
2proxγ

f j
(ukj ) − ukj

)
. (32)

Rewriting y∗ in the same way that y∗ = 1
2

(
y∗ + γ (g∗

j − g∗)
) + 1

2

(
2proxγ

f j
(u∗

j ) − u∗
j

)
, then

by Young’s inequality, we have

E
∥∥yk+1 − y∗∥∥2 = 1

4
E

∥∥yk − y∗ + γ
(
gkj − 1

n

n∑

i=1

gki − g∗
j + g∗)

+(
2proxγ

f j
(ukj ) − ukj

) − (
2proxγ

f j
(u∗

j ) − u∗
j

)∥∥2

≤ 1

2
E

∥∥yk − y∗ + γ
(
gkj − 1

n

n∑

i=1

gki − g∗
j + g∗)∥∥2

+1

2
E

∥∥(
2proxγ

f j
(ukj ) − ukj

) − (
2proxγ

f j
(u∗

j ) − u∗
j

)∥∥2. (33)

Because yk−y∗ is independentwith the selection of j , andE(gkj − 1
n

∑n
i=1 g

k
i −g∗

j +g∗) =
0 according to (28), we have E

〈
yk − y∗, γ (gkj − 1

n

∑n
i=1 g

k
i − g∗

j + g∗)
〉 = 0. Then, for the

first term at the right-hand side of (33), it holds

E
∥∥yk − y∗ + γ

(
gkj − 1

n

n∑

i=1

gki − g∗
j + g∗)∥∥2

= ‖yk − y∗‖2 + E‖γ (
gkj − 1

n

n∑

i=1

gki − g∗
j + g∗)∥∥2

≤ ‖yk − y∗‖2 + E‖γ (
gkj − g∗

j

)∥∥2. (34)

The inequality comes from the variance formula E(X −EX)2 ≤ EX2 applied to E
∥∥γ

(
gkj −

g∗
j − 1

n

∑n
i=1 g

k
i + g∗)∥∥2, since E(gkj − g∗

j ) = 1
n

∑n
i=1 g

k
i − g∗.

We furthermanipulate the second termat the right-hand side of (33).Observe thatγ gk+1
j =

ukj − proxγ

f j
(ukj ) by (9) and γ g∗

j = u∗
j − proxγ

f j
(u∗

j ) by (27). Then we have

E
∥∥(
2proxγ

f j
(ukj ) − ukj

) − (
2proxγ

f j
(u∗

j ) − u∗
j

)∥∥2

= E

∥∥∥ukj − 2γ gk+1
j − u∗

j + 2γ g∗
j

∥∥∥
2

= E
∥∥ukj − u∗

j

∥∥2 + 4E
∥∥γ (gk+1

j − g∗
j )

∥∥2 − 4E
〈
ukj − u∗

j , γ (gk+1
j − g∗

j )
〉
. (35)

Substituting (34) and (35) into (33) and combining with (31), we obtain the upper bound
given by (30). ��
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Theorem 1 (Non-strongly convex case) Assume that each loss function fi is convex and L-
smooth, while the regularization function h is convex. Then for Prox2-SAGA with step size
γ ≤ 1/L, at any time k > 0 it holds

E
∥∥ḡkj − g∗

j

∥∥2 ≤ 1

k

( n∑

i=1

∥∥g0i − g∗
i

∥∥2 + ‖ 1
γ

(y0 − y∗)‖2
)
,

where ḡkj = 1
k

∑k
t=1 g

t
j . Here the expectation is taken over all choices of index j up to time

k.

Proof We further manipulate the upper bound of E[T k+1] given by (30). Recalling the defi-
nitions of ukj = zkj + xk − yk in (23) and u∗

j = z∗j + x∗ − y∗ in (26) as well as the definitions
of zkj in (8) and z∗j in (26), we bound E‖ukj − u∗

j‖2 as

E‖ukj − u∗
j‖2 = E

∥∥∥2xk − yk − (2x∗ − y∗) + γ
(
gkj − 1

n

n∑

i=1

gki − g∗
j + g∗)

∥∥∥
2

= ∥∥2xk − yk − (2x∗ − y∗)
∥∥2 + E

∥∥∥γ
(
gkj − 1

n

n∑

i=1

gki − g∗
j + g∗)

∥∥∥
2

≤ ∥∥yk − y∗∥∥2 + E

∥∥∥γ
(
gkj − 1

n

n∑

i=1

gki − g∗
j + g∗)

∥∥∥
2

≤ ∥∥yk − y∗∥∥2 + E
∥∥γ

(
gkj − g∗

j

)∥∥2. (36)

The first inequality is due to the nonexpansiveness of 2proxγ

h (y) − y as stated in Corollary
1, since xk = proxγ

h (yk) by (11) and x∗ = proxγ

h (y∗) by (27). The second inequality comes

from the variance formulaE(X−EX)2 ≤ EX2 applied toE
∥∥γ

(
gkj −g∗

j − 1
n

∑n
i=1 g

k
i +g∗)∥∥2,

since E(gkj − g∗
j ) = 1

n

∑n
i=1 g

k
i − g∗.

According to the definitions of gk+1
j by (9) and g∗

j by (27), g
k+1
j is the gradient mapping

at ukj , while g
∗
j is the gradient mapping at u∗

j , we further apply Lemma 2 to bound −γ
〈
ukj −

u∗
j , g

k+1
j − g∗

j

〉
to deduce

− E
〈
ukj − u∗

j , γ (gk+1
j − g∗

j )
〉 ≤ −(

1 + 1

Lγ

)
E

∥∥γ (gk+1
j − g∗

j )
∥∥2. (37)

Plugging (36) and (37) into (30) and reorganizing terms, we obtain

E[T k+1] ≤ T k +
(
1 − c

n

) 1

n

n∑

i=1

∥∥γ (gki − g∗
i )

∥∥2

+
(
c

n
− 2

Lγ
+ 1

)
E

∥∥γ (gk+1
j − g∗

j )
∥∥2 − E

∥∥γ (gk+1
j − g∗

j )
∥∥2.

In particular, we set c = n and γ ≤ 1/L to ensure that 1 − c
n and c

n − 2
Lγ

+ 1 are both
non-positive, such that

E[T k+1] ≤ T k − E
∥∥γ (gk+1

j − g∗
j )

∥∥2. (38)
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Taking expectation on both sides of (38) and summing up over times from 0 to k, we have

k∑

t=1

E
∥∥γ (gtj − g∗

j )
∥∥2 ≤ T 0 − E[T k].

Using Jensen’s inequality
∑k

t=1 E
∥∥(gtj − g∗

j )
∥∥2 ≥ kE

∥∥ḡkj − g∗
j

∥∥2 where ḡkj = 1
k

∑k
t=1 g

t
j ,

and throwing away the non-positive term −E[T k], we further have

E
∥∥ḡkj − g∗

j

∥∥2 ≤ 1

γ 2 · k T
0.

Substituting c = n into T 0 completes the proof. ��

Theorem 2 (Strongly convex case) Assume that each loss functions fi is μ-strongly convex
convex and L-smooth, while the regularization function h is convex. Then for Prox2-SAGA

with stepsize γ = min
{

1
μn ,

√
9L2+3μL−3L

2μL

}
, for any time k > 0 it holds

E
∥∥xk − x∗∥∥2 ≤ (

1 − μγ

2μγ + 2

)k · μγ − 2

2 − nμγ

{ n∑

i=1

∥∥γ (g0i − g∗
i )

∥∥2 + ‖y0 − y∗‖2
}
.

(39)

Here the expectation is taken over all choices of index j up to k.

Proof We elaborate on the upper bound of E[T k+1] given by (30) in a different way than
that in the proof of Theorem 1. Since f j is μ-strongly convex as well as gk+1

j and g∗
j is the

gradient mapping of f j at ukj and u
∗
j , respectively, from (18) in Lemma 1, it holds that

− 1

2

〈
ukj − u∗

j , γ (gk+1
j − g∗

j )
〉 ≤ − μγ

2(1 + μγ )

∥∥ukj − u∗
j

∥∥2. (40)

Plugging (40) and (37) into (30) in Lemma 3 and recalling the upper bound for E‖ukj − u∗
j‖2

given by (36) in the proof of Theorem 1, we obtain

E[T k+1] ≤
(
1 − μγ

2μγ + 2

)
T k + 1

2

(
μγ

μγ + 1
c − 2c

n
+ μγ + 2

μγ + 1

)
1

n

n∑

i=1

∥∥γ (gki − g∗
i )

∥∥2

+1

2

(
1 − 3

Lγ
+ 2c

n

)
E

∥∥γ (gk+1
j − g∗

j )
∥∥2. (41)

We choose proper values for c and γ to ensure that the coefficients of the last two terms at
the right-hand side of (41) are non-positive. Here we take

c = μγ + 2

2/n − μγ
, γ = min

{ 1

μn
,

√
9L2 + 3μL − 3L

2μL

}
. (42)

Dropping these two non-positive terms and then taking expectation for (41) with respect to
all the previous steps give

E[T k+1] ≤
(
1 − μγ

2μγ + 2

)
E[T k].
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Further chaining over k yields

E[T k] ≤
(
1 − μγ

2μγ + 2

)k

· T 0.

Due to the firm nonexpansiveness of xk = proxγ

h (yk), we have

E‖xk − x∗‖2 ≤ E‖yk − y∗‖2 ≤ E[T k] ≤
(
1 − μγ

2μγ + 2

)k

· T 0.

Substituting c = μγ+2
2/n−μγ

into T 0 completes the proof. ��

Remark 1 Under the step size rule γ = min
{

1
μn ,

√
9L2+3μL−3L

2μL

}
, to achieve an ε-accurate

solution xk such thatE
∥∥xk−x∗∥∥2 ≤ ε, the number of required steps isO(n+L/μ) log(1/ε),

which is consistent with existing VR stochastic algorithms. Nevertheless, when fi is ill-
conditioned, namely, L/μ  n, we can use a different step size rule

γ = min
{ 1

μn
,
6L + √

36L2 − 6(n − 2)μL

2(n − 2)μL

}
,

under which the number of required steps to achieve an ε-accurate solution is O(n +√
nL/μ) log(1/ε). This accelerated rate is consistent with the fastest accelerated methods

such as Acc-SDCA and Katyusha.

7 Experiments

In this section, we conduct numerical experiments to validate the effectiveness and the theo-
retical properties of the proposed Prox2-SAGA algorithm. In the experiments, we focus on
sparse SVMs:

min
x

F(x) = 1

n

n∑

i=1

max
{
0, 1 − bia

T
i x

} + λ1 ‖x‖1 + λ2

2
‖x‖2 (43)

and 
1
2-Logistic Regression (LR):

min
x

F(x) = 1

n

n∑

i=1

log
(
1 + exp

(−bia
T
i x

)) + λ1 ‖x‖1 + λ2

2
‖x‖2 , (44)

where ai ∈ R
d , bi ∈ {−1,+1} and λ1, λ2 ≥ 0. The first problem involves the non-smooth

hinge loss, from which we verify the effectiveness of Prox2-SAGA to handle non-smooth
loss functions. The 
1
2-logistic regression contains smooth logistic functions, from which
we verify the acceleration effect of Prox2-SAGA and the performance of Prox2-SAGA for
non-strongly convex problems.

We employ datasets from LIBSVM (Chang et al. 2011) which are summarized in Table 1.
By referring to the previous works, we set the values of λ1 and λ2. Some values of λ1
and λ2 are also listed in Table 1. Prox-SAGA (Defazio et al. 2014), Prox-SDCA (Shalev-
Shwartz andZhang 2014), Prox-SGD (Duchi and Singer 2009; Langford et al. 2009) andAcc-
SDCA (Shalev-Shwartz and Zhang 2014) are included in the experiments for comparison.
In the k-th iteration, the step size of Prox-SGD is set as γ k =γ 0/(1+ γ 0ηk) with γ 0, η > 0,
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Table 1 Summary of the datasets
and models used in the
experiments

Dataset n d Model λ1 λ2

svmguide3 1243 21 SVM 10−3 10−3

rcv1 20242 47236 SVM 10−5 10−5

covtype 581012 54 SVM 10−5 10−5

ijcnn1 49990 22 SVM 10−4 10−5

mushrooms 8124 112 LR 10−4

w7a 24692 300 LR 5 × 10−5

and we take the fixed step size for other algorithms. We tune the step size and the other
parameters for different algorithms so that they can achieve the best performance. To make
a fair comparison, the initial value of x is set to zero in all algorithms. Denote the number of
samples as n, we measure the objective gap at x as f (x) − f (x∗) + g(x) − g(x∗) and the
epoch as the evaluation of n component gradients to evaluate the performance of algorithms.

7.1 Sparse SVMs

Wefirst compare the performance of the proposedProx2-SAGAwith Prox-SGD, Prox-SAGA
and Prox-SDCA for solving (43). For the non-smooth hinge loss fi (x) = max{0, 1−biai x},
we take its subgradient gi = −1{biaT

i x ≤ 1}biai , and the proximal operator has a closed-
form expression:

proxγ

fi
(x) = x − γ biuai ,

where

u =

⎧
⎪⎨

⎪⎩

−1, if s ≥ 1

0, if s ≤ 0

−s, othersize

, s = 1 − bi · aT
i x

y‖ai‖2 .

Note that only Prox-SDCA and Prox-SGD can be theoretically guaranteed to converge to the
minimizer of (1).

Experiments are conducted on four datasets, and the results are shown in Fig. 1. It can be
seen that Prox2-SAGA works well with non-smooth loss functions. In contrast, the per-
formance of the Prox-SGD algorithm is poor on all the datasets. Meanwhile, although
Prox-SAGA may perform well in the beginning, it is possible to get stuck in the later itera-
tions, which is particularly evident on the rcv1 dataset.

7.2 �1�2-logistic regression

In the investigation here, we compare the performance of Prox2-SAGA with Prox-SGD,
Prox-SAGA, Prox-SDCA and Acc-SDCA for solving (44). Prox2-SAGA and Acc-SDCA
are the accelerated methods for Prox-SAGA and Prox-SDCA, respectively. For the log loss
fi (x) = log(1 + exp(biaT

i x)), the proximal operator can be computer efficiently by several
Newton iterations. That is to say, we start from an initial point c0 ∈ R, and do the following
iterations until convergence
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Fig. 1 Comparison of several algorithms with sparse SVMs

sk = − bi
1 + exp(bi ck)

,

ck+1 = ck − γ ‖ai‖2sk + ck − aT
i x

γ ‖ai‖2 exp(bi ck)s2k + 1
.

Then the proximal operator is

proxγ

fi
(x) = x − (aT

i x − ck)ai/‖ai‖2.
Note that the Prox-SDCA and Acc-SDCA (Shalev-Shwartz and Zhang 2014) algorithms
also need to employ such Newton iterations in practice. In order to understand the impacts
of condition number on these algorithms, we set three different values of λ2 for each dataset,
which are marked in Fig. 2. Note that λ2 = 0 corresponds to the non-strongly convex case,
where Prox-SDCA and Acc-SDCA are not suitable. We use Acc-SDCA for comparison
rather than other accelerated algorithms, since Acc-SDCA has less parameters to tune and is
more practical.

Experiments are conducted on the datasets of mushrooms and w7a, and the results are
shown in Fig. 2. One can observe that for relatively large λ2, most VR stochastic methods
perform similarly. On the other hand, when λ2 gets smaller, the accelerated methods are
significantly faster than the non-accelerated methods in most cases. This shows that as the
accelerated algorithms, Prox2-SAGA and Acc-SDCA can resist the ill conditions well. Fur-
thermore, Prox2-SAGA is more stable and performs better than Acc-SDCA according to
Fig. 2.
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Fig. 2 Comparison of several algorithms with 
1
2-Logistic Regression
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8 Conclusion

In this paper, we propose a novel VR stochastic algorithm, Prox2-SAGA, to solve the regu-
larized empirical risk minimization problem. At every iteration of Prox2-SAGA, we use two
proximal operators, one on a randomly chosen loss function and the other on the regular-
ization function. Accelerated convergence rate can be achieved when each loss function is
strongly convex and smooth. Experimental results demonstrate its superiority over the other
VR stochastic methods.
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