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Abstract
Representation learning is one of the most important aspects of multi-label learning because
of the intricate nature of multi-label data. Current research on representation learning either
fails to consider label knowledge or is affected by the lack of labeled data. Moreover, most of
them learn the representations and incorporate the label information in a two-step manner. In
this paper, due to the success of representation learning by deep learning we propose a novel
framework based on neural networks named SERL to learn global feature representation by
jointly considering all labels in an effective supervised manner. At its core, a two-encoding-
layer autoencoder, which can utilize labeled and unlabeled data, is adopted to learn feature
representation in the supervision of softmax regression. Specifically, the softmax regression
incorporates label knowledge to improve the performance of both representation learning
and multi-label learning by being jointly optimized with the autoencoder. Moreover, the
autoencoder is expanded into two encoding layers to share knowledge with the softmax
regression by sharing the second encoding weight matrix. We conduct extensive experiments
on five real-world datasets to demonstrate the superiority of SERL over other state-of-the-art
multi-label learning approaches.
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1 Introduction

Multi-label learning, which deals with the problem where one object may be associated
with one or more labels, has attracted extensive researches in the past decades (Tsoumakas
and Katakis 2006). Different from single-label problem where binary class and multi-
class classification hold, multi-label learning could model the world more exactly. Besides,
multi-label learning has widespread applications such as news classification and image pro-
cessing (Boutell et al. 2004). For example, one news may belong to multiple topics such as
politics and economy because it reports new policies on bank rate. A scenery picture, as a
more familiar example, may contain sky, road, cornfield and so on, where they can be viewed
as with multiple labels.

Traditionally in multi-label learning, the problem transformation method transformed the
multi-label dataset to a series of single label datasets (Zhang and Zhou 2014), such as the
binary relevancemethod (Tsoumakas et al. 2009) and the label powerset method (Tsoumakas
et al. 2011). This kind of methods neglect the fact that some labels are more likely to co-
exist in one instance, which is the main focus of many recent multi-label works. Therefore,
in order to parameterize the label correlations, Ghamrawi and McCallum (2005) proposed
a multi-label classifier in conditional random field by modeling the label co-occurrences
explicitly. Zhang and Zhang (2010) utilized a Bayesian network structure to encode the
conditional dependencies of the labels and the feature set. Nguyen et al. (2016) proposed a
Bayesian nonparametric approach to automatically learn the number of label-feature corre-
lation patterns. However, most existing multi-label methods utilized the raw instance data to
formalize the model, which might contain non-helpful feature attributes from the input space
prior to training. Hence, learning better feature representation is important for the multi-label
learning.

There exist some related works on multi-label learning classifiers based on represen-
tative features (Zhang and Zhou 2008; Read and Perezcruz 2014; Zhang and Wu 2015).
MMDM (Zhang and Zhou 2008) discovers a low-dimension feature space which maximizes
the dependence between the original features and the corresponding labels. LIFT (Zhang and
Wu 2015) uses clustering techniques to construct label-specific features for each label and
then solves binary classification problems based on the transformed features. MLFE (Zhang
et al. 2018) utilizes the structural information in feature space to enrich the labeling infor-
mation. However, these works either learn representative features without considering label
knowledge or suffer from the lack of labeled data. Recently, deep learning has proven to be
able to learn good representation in natural language processing, image classification, and so
on. And some effort has been devoted to handling multi-label learning problem to improve
the performance. Read and Perezcruz (2014) used restricted Boltzmann machine (RBM) to
get a better representation of the original features, and then applied the supervised learn-
ing algorithms to training classification models. However, they performed the optimization
framework in a two-step manner, while we try to learn the representation and incorporate
label knowledge in a joint optimization framework.

To address these issues, we propose a novel framework named SERL (SupErvised
Representation Learning for multi-label classification) in this paper. SERL adopts a two-
encoding-layer autoencoder to learn better representation of the original features in the
supervision of softmax regression. Specially, the softmax regression incorporates label
knowledge to improve the performance of both representation learning and multi-label learn-
ing by being jointly optimized with the autoencoder, where the autoencoder can sufficiently
utilize labeled and unlabeled data to learn nonlinear representation of the original features.
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In addition, the autoencoder is expanded into two encoding layers to share knowledge with
the softmax regression by sharing the second encoding weight matrix. We evaluate the pro-
posed approach on five real-world datasets and observe the effectiveness of SERL that it can
outperform the compared state-of-the-art algorithms significantly. The contribution of this
paper is summarized as follows.

– We propose an autoencoder based framework (SERL) to discover latent knowledge of
the original features by jointly considering all labels in an effective supervised manner.

– The autoencoder learns representation from labeled and unlabeled data in the supervision
of the softmax regression. Moreover, the autoencoder shares knowledge with softmax
regression by sharing the second encoding weight matrix.

– We conduct extensive experiments on five real-world datasets to demonstrate the supe-
riority of the proposed method over other state-of-the-art algorithms.

The remainder of this paper is organized as follows. Section 2 introduces the preliminary
knowledge. The framework and its solution are detailed in Sect. 3. The experimental results
are reported in Sect. 4. Section 5 discusses the related work and finally Sect. 6 concludes.

2 Preliminaries

2.1 Softmax regression

Softmax regression which is often used to solve the problem of multi-class classification
can be regarded as the generalization of the logistic regression. When given a test input x ,
softmax regression estimates the probability of each label (label space y ∈ {1, 2, . . . , k}) by
the hypothesis function as follows,

hθ (xi ) =

⎡
⎢⎢⎢⎣

p(yi = 1|xi ; θ)

p(yi = 2|xi ; θ)
...

p(yi = k|xi ; θ)

⎤
⎥⎥⎥⎦ = 1

∑k
j=1 eθ�

j x

⎡
⎢⎢⎢⎢⎣

eθ�
1 xi

eθ�
2 xi

...

eθ�
k xi

⎤
⎥⎥⎥⎥⎦

. (1)

The objective function of softmax regression can be described as follows,

min
θ

⎛
⎝−1

n

n∑
i=1

k∑
j=1

1{yi = j} log eθ�
j xi

∑k
l=1 eθ�

l xi

⎞
⎠ , (2)

where the indicator function 1{·} equals 1when xi holds label j and equals 0 otherwise. Given
training dataset {xi , yi }n

i=1 (yi ∈ {1, 2, . . . , k}), the model parameter θ can be derived by
minimizing Eq. (2). After training, the probability of each label can be computed using
Eq. (1), then the predicted label can be assigned as follows,

y = max
j

eθ�
j x

∑k
l=1 eθ�

l x
. (3)

2.2 Autoencoder

Autoencoder, which is a neural network, uses unsupervised learning method to learn com-
pressed features from original features. Amulti-layer autoencoder comprises one input layer,
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one output layer, and several hidden layers. The aim of the autoencoder is to reconstruct the
input signal in the output layer with the least amount of distortion. A simple autoencoder
consists of two parts, that is, an encoder including the input layer and hidden layer and a
decoder including the hidden layer and output layer. Given an input xi ∈ R

d×1, weight
matrix W1 ∈ R

k×d , W
′
1 ∈ R

d×k , and bias vector b1 ∈ R
k×1, b

′
1 ∈ R

d×1, a single hidden
layer autoencoder encodes it into the hidden layer ξi ∈ R

k×1 and decodes the hidden layer
into the output layer x̂i which is as same as possible with the input layer. This process can
be described as,

ξ i = f (W1xi + b1), x̂i = f (W
′
1ξ i + b

′
1). (4)

Here we use the sigmoid function as the activation function f . Given a set of inputs {xi }n
i=1,

the goal of autoencoder is to minimize the reconstruction error using L2 regularization as
follows,

min
W1,b1,W

′
1,b

′
1

n∑
i=1

‖x̂i − xi‖2. (5)

3 The SERL framework

In this section, we present our proposed framework in detail and the symbols used are listed
in Table 1.

3.1 Problem formalization

The proposed framework is composed of a two-encoding-layer autoencoder and soft-
max regression as shown in Fig. 1. The two components are jointly optimized and they

Table 1 Notations and
denotations Dr , Ds The training and test dataset

nr The number of instances in training dataset

ns The number of instances in test dataset

d The number of nodes in the input layer

k The number of nodes in the embedding layer

c The number of nodes in the label layer, also the
number of labels

x(r)
i , x(s)

i The i-th instance of training and test dataset

x̂(r)
i , x̂(s)

i The reconstructions of x(r)
i and x(s)

i

Y (r)
i , Y (s)

i The label sets of instance x(r)
i and x(s)

i

ξ
(r)
i , ξ (s)

i The hidden representations of x(r)
i and x(s)

i

ξ̂
(r)
i , ξ̂

(s)
i The reconstructions of ξ

(r)
i and ξ

(s)
i

z(r)
i , z(s)i The hidden representations of ξ

(r)
i and ξ

(s)
i

W i , bi Encoding weight and bias matrix for layer i

W
′
i , b

′
i Decoding weight and bias matrix for layer i

� The transposition of a matrix

◦ The element-wise product of vectors or matrixes
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Fig. 1 The framework of SERL

share the second encoding weight matrix W2. Given multi-label training dataset Dr =
{(x (r)

i , Y (r)
i )|1 ≤ i ≤ nr } and test dataset Ds = {(x (s)

i , Y (s)
i )|1 ≤ i ≤ ns}, where

x (r)
i , x (s)

i ∈ R
d×1 and Y (r)

i , Y (s)
i ⊆ Y (Y = {1, 2 . . . , c}) are sets of relevant labels associated

with x (r)
i , x (s)

i respectively. The objective function can be described as follows,

J =
∑

t∈{r ,s}
J (x(t), x̂(t)

) + αL(θ , ξ (r)) + βΩ(W , b,W
′
, b′). (6)

where J is the loss of autoencoder, L is the loss of softmax regression, Ω is the regulariza-
tion term, α and β are trade-off parameters for the whole framework. W , b include all the
parameters for encoding, and W

′
, b′ represent the ones for decoding.

There are three terms in Eq. (6). In the first term J (x(t), x̂(t)
), the reconstruction error is

calculated for both training and test datasets, and it is defined as follows,

J (x(t), x̂(t)
) =

∑
t∈{r ,s}

nt∑
i=1

||x(t)
i − x̂(t)

i ||2, (7)

where

ξ
(t)
i = f (W1x

(t)
i + b1), z

(t)
i = f (W2ξ

(t)
i + b2), (8)

ξ̂
(t)
i = f (W

′
2z

(t)
i + b

′
2), x̂

(t)
i = f (W

′
1ξ̂

(t)
i + b

′
1). (9)

There are three hidden layers in our framework. The first one called the embedding layer
has k nodes (k ≤ d) with output ξ

(t)
i ∈ R

k×1, weight matrix W1 ∈ R
k×d , and bias vector

b1 ∈ R
k×1. The second one called the label layer has c nodes (equals to the number of labels)
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with output z(t)i ∈ R
c×1, weight matrix W2 ∈ R

c×k and bias vector b2 ∈ R
c×1. The input of

the label layer is also the input of the softmax regression which incorporates label knowledge.

The third one is the reconstruction of the embedding layer with output ξ̂
(t)
i , weight matrix

W
′
2 ∈ R

k×c and bias vector b
′
2 ∈ R

k×1. The output layer is the reconstruction of input x(t)
i

with output x̂(t)
i ∈ R

d×1, weight matrix W
′
1 ∈ R

d×k and bias vector b
′
1 ∈ R

d×1.
The second term in the objective Eq. (6) is the optimization of softmax regression, which

incorporates the label knowledge from training data. Note here that the autoencoder is
expanded into two encoding layers to share the second encoding weight matrix W2 with
the softmax regression, which aims to share knowledge with the softmax regression.

Here we try to use the softmax regression to handle multi-label data. The basic idea is
to transform the multi-label data to multi-class data. Let σ : (xi , Yi ) → {(xi , y j )|y j ∈ Yi }
be the function which converts a (instance, labels) pair into a set of (instance, label) pair
where each (instance, label) pair contains only one label. For example, suppose we have one
instance xi with labels y1, y2, y4. σ converts (x1, {y1, y2, y4}) to (x1, y1), (x1, y2), (x1, y4).
In the training phase, we firstly converts the original multi-label training dataset Dr into the
following multi-class training dataset D†

r by σ as follows,

D†
r = {σ(xi , Yi )|1 ≤ i ≤ nr }. (10)

After that, softmax regression M is utilized to induce multi-class classifier g† : X →
Y, i .e., g† ← M(D†

r ) (X ∈ R
d×1, Y = {1, 2, . . . , c}). The objective function of softmax

regression can be formalized as follows,

L(θ , ξ (r)) = − 1

nr

nr∑
i=1

c∑
j=1

1{y(r)
i = j} log eθ�

j ξ
(r)
i

∑c
l=1 eθ�

l ξ
(r)
i

.

In this term, ξ (r)
i is the output of the embedding layer and θ�

j ( j ∈ {1, . . . , c}) is the j-th
row of W2 which is also the second encoding weight matrix of autoencoder.

Finally, the last term in the objective Eq. (6) is the regularization on model parameters
which controls the complexity of the framework to improve its generalization ability. The
last term is defined as follows,

Ω(W , b,W
′
, b′) = ‖W1‖2 + ‖b1‖2 + ‖W2‖2

+‖b2‖2 + ‖W ′
1‖2 + ‖b′

1‖2 + ‖W ′
2‖2 + ‖b′

2‖2. (11)

3.2 Solution of the proposed framework

The optimization problem of our proposed framework is to minimize J (seen in Eq. (6)) as
a function of W1, b1, W2, b2, W

′
2, b

′
2, W

′
1 and b

′
1. This is an unconstrained optimization

problem and therefore we can adopt the gradient descent method to solve it.
We first introduce some intermediate variables for simplicity as follows,

A(t)
i =

(
x̂(t)

i − x(t)
i

)
◦ x̂(t)

i ◦
(
1 − x̂(t)

i

)
,

B(t)
i = ξ̂

(t)
i ◦

(
1 − ξ̂

(t)
i

)
,

C (t)
i = z(t)i ◦

(
1 − z(t)i

)
, D(t)

i = ξ
(t)
i ◦

(
1 − ξ

(t)
i

)
. (12)
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The partial derivatives of W1, W2, W
′
2, W

′
1 are as follows respectively,

∂J
∂W1

=
∑

t∈{r ,s}

nt∑
i=1

2W�
2 (W

′�
2 (W

′�
1 A(t)

i ◦ B(t)
i ) ◦ C (t)

i ) ◦ D(t)
i x(t)�

i

− α

nr

nr∑
i=1

c∑
j=1

1{y(r)
i = j}

(
W�

2 j − W�
2 eW2ξ

(r)
i

∑
l eW2l ξ

(r)
i

)
◦ D(r)

i x(r)�
i

+ 2βW1,

∂J
∂W2 j

=
∑

t∈{r ,s}

nt∑
i=1

2W
′�
2 j (W

′�
1 A(t)

i ◦ B(t)
i ) ◦ C (t)

i j ξ
(t)�
i

− α

nr j

( nr j∑
i=1

ξ
(r)�
i −

nr∑
i=1

eW2 j ξ
(r)
i

∑
l eW2l ξ

(r)
i

ξ
(r)�
i

)
+ 2βW2 j , (13)

∂J
∂W

′
2

=
∑

t∈{r ,s}

nt∑
i=1

2W
′�
1 A(t)

i ◦ B(t)
i z(t)�i + 2βW

′
2, (14)

∂J
∂W

′
1

=
∑

t∈{r ,s}

nt∑
i=1

2A(t)
i ξ̂

(t)�
i + 2βW

′
1, (15)

where W2 j is the j-th row of W2 and nr j is the number of instance associated with label j
in training dataset. According to the above partial derivatives, we update the parameters by
alternatively iterating following those rules,

W1 ← W1 − η
∂J
∂W1

, b1 ← b1 − η
∂J
∂b1

,

W
′
1 ← W

′
1 − η

∂J
∂W

′
1

, b
′
1 ← b

′
1 − η

∂J
∂b

′
1

,

W2 ← W2 − η
∂J
∂W2

, b2 ← b2 − η
∂J
∂b2

,

W
′
2 ← W

′
2 − η

∂J
∂W

′
2

, b
′
2 ← b

′
2 − η

∂J
∂b

′
2

.

(16)

whereη is step length controlling the learning rate. Finally, thewhole algorithm is summarized
in “Algorithm 1”.

Although the optimization of the objective function is not convex, we can get a better local
optimal solution through appropriate initialization of the weights and biases. Specifically, we
use the stacked denosing autoEncoder (SDAE) to initialize the values of W and b.

3.3 Prediction

After training, we use the softmax regression to predict the label set of each test instance.
Specifically, we can estimate the probability P(y(s)

i = j |x(s)
i ) of one certain test instance

belonging to each label. Then we sort all the label probabilities in descending order and
compute the difference between two adjacent label probabilities in this order. Finally we
assign the labels, which are in the front of the position of the max difference, as the predicted
labels of the instance. This process can be described by Fig. 2, where Pi is the probability of

123



754 Machine Learning (2019) 108:747–763

Algorithm 1: SupErvisedRepresentation Learning formulti-label classification (SERL)

1 Input: Training dataset Dr = {(x(r)
i , Y (r)

i )|1 ≤ i ≤ nr } and test dataset

Ds = {(x(s)
i , Y (s)

i )|1 ≤ i ≤ ns }, the number of nodes in the embedding layer k and label layer c,
trade-off parameters α, β.

2 Output: The predicted label set Y (s)
i of each test instance x(s)

i .
1. Convert training dataset according to Eq. (10);

2. Initialize W1, W2, W
′
2, W

′
1 and b1, b2, b

′
2, b

′
1 by SDAE which is trained on both training and test

dataset;
3. Compute the partial derivatives of all variables based on Eqs. (13), (13) (14) and (15);
4. Update the variables iteratively using Eq. (16);
5. Continue Step3 and Step4 until the algorithm converges;
6. Predict the label sets of test instances.

Fig. 2 The prediction strategy

one certain test instance belonging to label i and �Pj is the probability difference between
adjacent labels in the ordered list.

4 Experimental evaluation

In this section, we conduct extensive experiments on five benchmark multi-label datasets to
evaluate the performance of the proposed framework.

4.1 Datasets and preprocessing

These five datasets include slashdot, corel5k, bibtex, corel16k01 (sample 1) and corel16k02
(sample 2) fromMULAN (Tsoumakas et al. 2011) andMEKA (Read et al. 2016) multi-label
learning libraries. These datasets can evaluate the proposed framework in different cases
including text and image. For all the datasets, we randomly sample 50% of examples without
replacement to construct training dataset and the remaining 50% to construct test dataset. We
sample each dataset for five times and calculate the average accuracies. The information of all
the datasets is detailed in Table 2, #instances represents the number of instances, #features
represents the feature dimension, #labels represents the number of labels, and #domains
represents the domains of the datasets.
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Table 2 Datasets infomration Datasets #instances #features #labels #domains

slashdot 3782 1079 22 text

corel5k 5000 499 374 image

bibtex 7395 1836 159 text

corel16k01 13, 766 500 153 image

corel16k02 13, 761 500 164 image

4.2 Comparisonmethods

We compare our proposed model with seven multi-label algorithms as follows.

• Binary relevance (BR) (Boutell et al. 2004) This algorithm learns c independent binary
classifiers for each label and queries all the classifiers for prediction.

• Calibrated label ranking (CLR) (Fürnkranz et al. 2008) This algorithm uses pairwise
comparison to decompose themulti-label learning problem into the label ranking problem
with calibrated scenario.

• Random k-Labelsets (RAkEL) (Tsoumakas and Vlahavas 2007) This algorithm applies
Label Powerset techniques, which transforms the multi-label learning problem into the
multi-class classification problems, on an ensemble of k random label subsets.

• Ensemble of classifier chains (ECC) (Read et al. 2011) This algorithm is an ensemble of
classifier chain algorithm which considers high-order relations among labels represented
in an ordered chain and then trains c binary classifiers according to the chain.

• Multi-label learning with Label specIfic FeaTures (LIFT) (Zhang and Wu 2015) This
algorithm conducts clustering analysis on positive and negative instances of each label to
construct its specific features, then applies binary relevance algorithm on label-specific
features of each label.

• Multi-label learning with stacked denoising autoencoders (SDAE) (Vincent et al. 2010)
Here we use SDAE in a two-step manner to compare with our joint optimization frame-
work. Specially, we first train the autoencoder alone to learn feature representation and
then combine the new features with the labels to construct new training dataset. Finally,
we useBayesianMultinomial Regression(BMR) to learn the classifier on the new training
dataset.

• Multi-label learning with feature-induced labeling information enrichment (MLFE)
(Zhang et al. 2018) In MLFE, the structural information in feature space is utilized to
enrich the labeling information. The sparse reconstruction among the training examples
is conducted to characterize the underlying structure of feature space. Then the recon-
struction information is conveyed from feature space to label space so as to enrich the
labeling information.

4.3 Experimental settings

There are three factors in our proposed framework including trading-off parameters α, β and
the number of nodes k of the embedding layer. After cross-validations on training dataset,
we set α = 15, β = 0.005, k = 100 for all datasets. LIBSVM with linear kernel (Chang
and Lin 2011) is employed as the base classifier for all baselines except SDAE. Bayesian
multinomial regression (BMR) (Madigan et al. 2005) is employed as the base classifier for
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SDAE. Specifically, for RAkEL, the size of label subset k is set as 3 and the size of ensemble
is set as 2c (c is the number of labels) as a rule-of-thumb setting. For ECC, the size of
ensemble is set 100 to cover the high-order relations among labels sufficiently. For LIFT, the
ratio is set to 0.1 as reported in their original paper (Zhang and Wu 2015). For MLFE, the
penalty parameters β1, β2 and β3 are set as 2, 10, 1, respectively according to Zhang et al.
(2018).

4.4 Results and discussion

To compare our proposed model with baselines in a more comprehensive way, we adopt two
types of evaluation metrics, i.e., ranking metrics and classification metrics. Further more,
both types of metrics can be subdivided into example-based and label-based ones. Tables 3
and 4 summarizes the results on all five datasets, and the best results are marked in bold.
Next, we analyze the results on all these metrics in detail as follows.

4.4.1 Results on ranking evaluation metrics

Among all ranking evaluation metrics, OneError, Coverage, RankingLoss and AvgPrecision
are example-based, while MacroAUC is label-based.

– We can see that SERLperforms the best in all five datasets onCoverage andRankingLoss.
Even on the metric of OneError, SERL achieves the best performance on datasets corel5k
and corel16k01, and gets an comparable performance to CLR and MLFE, which obtain
best results on some corresponding datasets.

– For label-based ranking metric MacroAUC, SERL also achieves the best performance
in most datasets. According to Table 2, we can see that corel5k has the most labels up
to 374 and slashdot has the least labels of 22. The results in all the five datasets show
the outstanding performance of SERL in probability estimation over the datasets with
high-diversity of label size.

4.4.2 Results on classification evaluation metrics

Among classification evaluation metrics, Accuracy and F1 are example-based and MacroF1
is label-based.

– It is obvious that SERL achieves better performance than the baselines in terms of Accu-
racy and F1. We can get the following two observations from the results. The first one
is that our model performs well for each example, which contributes to high accuracy
and F1. And the other one is that some baselines such as BR and RAkEL output empty
sets for some examples, failing to predict label information, which makes no sense for
classification and leads to unsatisfying results.

– For MacroF1, SERL achieves the best in all data sets, which proves good performance
of SERL in classifying the positive and negative examples of each label. The fact that
SERL does well in both example-based and label-based classification metrics shows the
superior classification performance of our model.

Overall, all the results validate the effectiveness of our framework.
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Table 4 Multi-label learning performance comparison on classification evaluation metrics on five data sets

Datasets Methods Accuracy F1 MacroF1

slashdot BR .1219 ± .0018 .1843 ± .0026 .2502 ± .0084

CLR .0022 ± .0005 .0024 ± .0005 .1184 ± .0218

RAkEL .3506 ± .0085 .3628 ± .0088 .3388 ± .0112

ECC .4271 ± .0029 .4433 ± .0032 .3908 ± .0193

LIFT .3489 ± .0098 .3615 ± .0098 .3684 ± .0188

SDAE .3754 ± .0050 .4100 ± .0053 .3206 ± .0196

MLFE .3512 ± .0060 .3624 ± .0064 .3367 ± .0214

SERL .5323 ± .0030 .5694 ± .0032 .4255 ± .0183

corel5k BR .0029 ± .0003 .0054 ± .0005 .0680 ± .0053

CLR .1115 ± .0065 .1900 ± .0091 .0766 ± .0079

RAkEL .0137 ± .0005 .0191 ± .0004 .0686 ± .0058

ECC .0565 ± .0018 .0792 ± .0021 .0781 ± .0049

LIFT .0398 ± .0036 .0555 ± .0052 .0829 ± .0048

SDAE .0979 ± .0012 .1498 ± .0019 .0847 ± .0056

MLFE .0771 ± .0029 .1099 ± .0036 .0830 ± .0052

SERL .1399 ± .0029 .2079 ± .0036 .0866 ± .0051

bibtex BR .2742 ± .0019 .3235 ± .0027 .2187 ± .0052

CLR .2718 ± .0107 .3182 ± .0149 .2235 ± .0046

RAkEL .2742 ± .0019 .3231 ± .0028 .2178 ± .0047

ECC .2796 ± .0032 .3280 ± .0038 .2130 ± .0032

LIFT .2477 ± .0058 .2939 ± .0057 .1913 ± .0086

SDAE .2303 ± .0041 .2851 ± .0040 .1183 ± .0034

MLFE .2149 ± .0064 .2549 ± .0073 .1037 ± .0017

SERL .3508 ± .0035 .4261 ± .0042 .2249 ± .0041

corel16k01 BR .0136 ± .0018 .0191 ± .0025 .0094 ± .0019

CLR .0133 ± .0018 .0185 ± .0025 .0076 ± .0015

RAkEL .0157 ± .0017 .0222 ± .0024 .0087 ± .0013

ECC .0523 ± .0011 .0713 ± .0013 .0258 ± .0014

LIFT .0218 ± .0043 .0300 ± .0058 .0215 ± .0020

SDAE .1239 ± .0008 .1817 ± .0013 .0443 ± .0024

MLFE .0728 ± .0024 .0998 ± .0032 .0375 ± .0007

SERL .1640 ± .0023 .2321 ± .0029 .0573 ± .0012

corel16k02 BR .0162 ± .0017 .0234 ± .0024 .0139 ± .0017

CLR .0153 ± .0013 .0221 ± .0020 .0126 ± .0013

RAkEL .0157 ± .0018 .0227 ± .0026 .0136 ± .0014

ECC .0459 ± .0017 .0636 ± .0023 .0278 ± .0028

LIFT .0245 ± .0024 .0338 ± .0032 .0314 ± .0022

SDAE .1234 ± .0017 .1812 ± .0025 .0483 ± .0020

MLFE .0731 ± .0022 .1021 ± .0029 .0393 ± .0021

SERL .1599 ± .0029 .2292 ± .0039 .0530 ± .0020
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Fig. 3 The parameter affects

4.5 Parameter sensitivity

For analyzing the influence of the parametersα,β, k, we do a series of sensitivity experiments.
We choose RankingLoss as the criterion of sensitivity experiments. All the results are shown
in Fig. 3.

– Forα, RankingLoss has a obvious inflection pointwhenα changes from0 to 15. Specially,
RankingLoss achieves the best value when α gets 15 and 30. In general, the trend of
RankingLoss is gentle when α changes, which shows that our proposed framework is not
sensitive to α when its value is not too small.

– For β, RankingLoss gets the best value when β is 0.005 and 0.01. When β increases
after 0.01, RankingLoss gets worse obviously.

– For the number of nodes k of the embedding layer, RankingLoss reduces firstly and then
increases slightly. It is interesting that RankingLoss gets its best value when k is relatively
small, which guarantees that we can speed up the construction of our model because of
the low dimension. Moreover, the trend of RankingLoss is gentle when k changes, which
is helpful for the tuning process of k.

As a whole, we set α = 15, β = 0.005, k = 100 for all datasets according to the parameter
sensitivity experiments.

4.6 Effects on supervision information

To study the effectiveness of the proposed model in the case there are different numbers of
labeled instances are available, we do a series of experiments in variable ratios of labeled
instances. Specifically, the ratio of labeled instances increases from 5% to 50% and the
step size is 5%. The results are shown in Fig. 4. It is obvious that SERL achieves the best
performance in all ratios,whichdemonstrates the effectiveness ofSERL.Moreover, compared
to the baselines, the superiority of SERL is higher in small ratios than high ratios, which shows
that SERL can make full use of labeled and unlabeled data sufficiently.

5 Related work

Multi-label learning has attracted a lot of interest in recent years. There are two kinds of
multi-label algorithms, problem transformation and algorithm adaptation methods.
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Fig. 4 The performance in variable ratios of labeled instances

Problem transformation methods transform multi-label learning problem into other
problems which have solid theories and well-established solutions. For example, Binary
Relevance (Boutell et al. 2004), AdaBoost.MH (Schapire and Singer 2000), Stacked Aggre-
gation (Godbole and Sarawagi 2004) and Classifier Chains (Read et al. 2011) transform
multi-label learning problem into binary classification problems. Calibrated Label Ranking
transforms multi-label learning problem into label ranking problems with calibrated scenario
by pairwise comparison (Fürnkranz et al. 2008). Random k-Labelsets (Tsoumakas and Vla-
havas 2007) transforms multi-label learning problem into multi-class classification problems
on an ensemble of k random label subsets.

Algorithm adaptation methods adapt traditional algorithms to multi-label data (Zhang
and Zhou 2014). For example, ML-kNN (Zhang and Zhou 2005) adapts traditional k-nearest
neighbor algorithm to multi-label data and uses maximum a posteriori(MAP) principle to
predict labels for the new instance. ML-DT (Clare and King 2002) calculates information
gain based onmulti-label entropy. Rank-SVM (Elisseeff andWeston 2002) fits the maximum
margin to differentiate the relevant and irrelevant labels of one instance. BP-MLL (Zhang and
Zhou 2006) uses feedforward neural network to hold multi-label data where a error function
capturing ranking correlation between relevant and irrelevant labels is calculated through
backpropagation algorithm. CML (Ghamrawi and McCallum 2005) utilizes conditional ran-
dom field to model label co-occurrences in multi-label data. Nguyen et al. (2016) proposed a
Bayesian nonparametric approach to learn the number of label-feature correlation pat- terns
automatically. MLFE (Zhang et al. 2018) utilized the structural information in feature space
to enrich the labeling information.

Except these algorithms, representation learning is also one of the most important aspects
of multi-label learning (Zhang and Zhou 2008; Read and Perezcruz 2014; Zhang and Wu
2015; Yu et al. 2005; Chen et al. 2008; Sun et al. 2008; Qian and Davidson 2010; Ji et al.
2010; Karalas et al. 2015; Zhou et al. 2017). For example, Read and Perezcruz (2014) uti-
lized restricted Boltzmann machine (RBM) to achieve better representation of the original
features to train the classifier. BILC (Zhou et al. 2017) mapped the label relationship into
a binary embedded space instead of real-valued to achieve better performance. However,
current works about representation learning neglect label knowledge, or suffer from the
lack of labeled data, or are limited to linear projection. The most related work (Li and Guo
2014), which proposed a bi-directional representation model for multi-label classification, in
which the mid-level representation layer is constructed from both input and output spaces. In
essence, their network structure is different from ours. Their framework contained two basic
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autoencoders, i.e., one for the input features and the other one for output labels, and had to
compute the additional parameters of encoding weights from low-dimensional representa-
tion of the input features to output labels and prediction model from input features to the
low-dimensional representation of the output labels. In this paper, we propose a framework
named SERL, which adopts a two-encoding-layer autoencoder to learn feature representation
in a supervised manner. The autoencoder can sufficiently utilize labeled and unlabeled data
simultaneously under the supervision of softmax regression. The softmax regression incor-
porates label knowledge to improve the performance of both representation learning and
multi-label learning by being jointly optimized with the autoencoder. Extensive experiments
on five data sets demonstrate the good performance of our framework.

6 Conclusion

In this paper, we proposed a framework named SERL, which adopts autoencoder to learn fea-
ture representation in a supervised manner. In this framework, labeled and unlabeled data can
be handled by the autoencoder, meanwhile the softmax regression incorporates label knowl-
edge by being jointly optimized with autoencoder. Moreover, the autoencoder is expanded
into two encoding layers to share knowledge with softmax regression by sharing the second
encoding weight matrix. Extensive experiments on five real-world datasets demonstrate the
superiority of SERL over other state-of-the-art multi-label learning algorithms.
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