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Abstract
Active learning is an important machine learning setup for reducing the labelling effort of
humans. Although most existing works are based on a simple assumption that each labelling
query has the same annotation cost, the assumptionmaynot be realistic. That is, the annotation
costs may actually vary between data instances. In addition, the costs may be unknown before
making the query. Traditional active learning algorithms cannot deal with such a realistic
scenario. In this work, we study annotation cost-sensitive active learning algorithms, which
need to estimate the utility and cost of each query simultaneously. We propose a novel
algorithm, the cost-sensitive tree sampling algorithm, that conducts the two estimation tasks
together and solve it with a tree-structured model motivated from hierarchical sampling, a
famous algorithm for traditional active learning. Extensive experimental results using datasets
with simulated and true annotation costs validate that the proposed method is generally
superior to other annotation cost-sensitive algorithms.

Keywords Annotation cost-sensitive · Active learning · Clustering · Decision tree

1 Introduction

In many machine learning scenarios, vast quantities of unlabelled instances can be easily
acquired, yet high-quality labels are costly to obtain. For example, in fields such as medicine
(Liu 2004) or biology (King et al. 2004), a massive number of experiments and analyses
are needed to label a single instance, whereas collecting samples is a relatively easy task.
Active learning is a machine learning setup that allows the machines to “ask questions” to
the labelling oracle strategically (Settles 2010) to reduce the labelling cost. In particular,
given a budget of the labelling cost, active learning algorithms aim to create a set of labelled
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data with a sequence of labelling queries (questions) so that the labelled set carries sufficient
information to train an accurate learning model.

Active learning algorithms generally work by measuring the utility of each unlabelled
instance for the learning model. Uncertainty sampling algorithms, which query the instances
that are themost uncertain to the learningmodel, are arguably themost fundamental family of
active learning algorithms (Lewis and Gale 1994; Tong and Koller 2001; Holub et al. 2008).
That is, the uncertainty of each instance is taken as a measure of its utility within uncertainty
sampling algorithms. Another important family is representative sampling algorithms, which
take the uncertainty and representativeness of each instance as the utility measure (Kang et al.
2004; Huang et al. 2010; Xu et al. 2003; Dasgupta and Hsu 2008). The representativeness is
often calculated on basis of clustering of the unlabelled instances. As a concrete example of
representative sampling, the hierarchical sampling algorithm forms clusters by hierarchical
clustering and then queries the instances within uncertain clusters (Dasgupta and Hsu 2008).

For the algorithms introduced above, and actually for most existing active learning algo-
rithms, it is assumed that the labelling cost of each query is uniform. That is, the costs for
the oracle to label every instance are exactly the same. Nevertheless, this assumption might
not be true in real-world scenarios. For an article classification problem, the labelling cost
could be the time spent by an oracle (usually a human annotator) while deciding the label,
which depends on the length of the text and the complexity of the language and can differ
from article to article. Nonuniform costs can deteriorate existing active learning algorithms.
For instance, articles that are confusing to the annotator may have higher labelling costs, but
uncertainty sampling may suggest querying them. Then, with a fixed budget of the labelling
cost, uncertainty sampling can only query a few instances, leading to a possibly less-accurate
model. It is thus important to design active learning algorithms that are annotation-cost-
sensitive (or labelling-cost-sensitive) and will be the main focus of this work. For simplicity,
we will use the term cost-sensitive active learning to describe our focus, while noting that it
should not be confused with other works that study prediction-cost-sensitive active learning
(Huang and Lin 2016).

There are some variations in the setup of cost-sensitive active learning. In Margineantu
(2005), the labelling costs for all data instances are assumed to be known before querying,
whereas in Settles et al. (2008), the cost of a data instance can only be acquired after querying
its label.We focus on the latter setup, which closelymatches the real-world scenario of human
annotation. In other words, in each query of our setup, both the cost and label of the queried
instance are revealed,while others’ costs and labels remain unknown. Existingworks (Haertel
et al. 2008; Tomanek and Hahn 2010) thus need to estimate both the utility and cost of each
instance at the same time in the setup and choose the instances with a high utility and low
cost.

In this paper, we improve the joint estimation of the utility and cost for cost-sensitive
active learning with a tree-structured model. The model is inspired by hierarchical sampling
(Dasgupta and Hsu 2008), which also forms a tree with each internal node representing
a cluster of instances. The key idea behind hierarchical sampling is that instances within
the same cluster are likely to share the same label (Seeger 2000; Chapelle et al. 2003).
We extend the idea by assuming a smooth cost function, so that the cost of an instance
should be similar with its neighbors’. On the basis of the extended idea, we propose the
cost-sensitive tree sampling (CSTS) algorithm for cost-sensitive active learning, in which
both the utilities and costs are estimated in the tree-structured clusters constructed by a
revised decision tree algorithm. In contrast to the hierarchical sampling algorithm, CSTS
builds the clusters in a top-down manner to better use the label information. CSTS achieves
cost-sensitivity by including cost estimation in its procedure and querying on the basis of a
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carefully designed criterion that mixes both the utility and cost. Extensive experiments using
real-world datasets with simulated costs demonstrate that CSTS can usually provide superior
results in comparison with existing cost-sensitive active learning algorithms. Furthermore,
for a real-world benchmark dataset with true annotation costs, CSTS is stably superior to
existing algorithms. The results justify the validity of the proposed CSTS algorithms.

The remainder of this paper is organized as follows. Section 2 summarizes the related
works. In Sect. 3 we introduce the background of CSTS in detail and present the algorithms.
Experiment results are discussed in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Related work

There are two categories of active learning: stream-based and pool-based. Unlabelled data
instances can be sampled from the actual distribution with low costs under stream-based
active learning; in the mean time, the active learning algorithm should be able to decide
immediately whether to query the label of a newly sampled data instance or not (Cohn et al.
1994). On the other hand, pool-based active learning (Settles 2010) assumes that there exists
a pool of available unlabelled data instances, and the active learning algorithm can query the
label of any data instance inside the pool until the cost of total queries exceeds the budget. In
general, pool-based learning is a more realistic setup regarding real-world problems, which
is also the category we focus on.

Different querying strategies have been proposed to solve pool-based active learning
problems. They mostly follow several major approaches, such as uncertainty sampling,
representative sampling, query-by-committee, information theoretic, etc. Regarding the con-
nection with cost-sensitive active learning, we focus on two popular approaches: uncertainty
sampling and representative sampling.

– Uncertainty sampling The idea of uncertainty sampling (Lewis and Gale 1994) is to
query the label for the data instance with the highest uncertainty in the classifier. For
instance, Tong andKoller (2001) proposes querying of the data instance that is the closest
to the decision boundary in a support vector machine (SVM); Holub et al. (2008) selects
data instances for querying on the basis of the entropy of the label probabilities from
a probabilistic classifier. These algorithms assume that the trained classifier is already
sufficiently good; therefore only fine-tuning around the decision boundary is needed.

– Representative sampling In representative sampling, algorithms select data instances
considering both representativeness and informativeness by seeking a way to model the
data distribution. Among them, the clustering structure of the data instances is widely
used. In Kang et al. (2004), the data instances that are closest to the centroid of each
cluster are queried before other selection criteria are used; Huang et al. (2010) measures
the representativeness of each data instance from both the cluster structure of unlabelled
data instances and the class assignments of labelled data, and Xu et al. (2003) clusters
those data instances close to the decision boundary in an SVM, and queries the labels
of data instances near the center of each cluster; In Nguyen and Smeulders (2004),
clustering is used to estimate the label probability for unlabelled data instances, which
is the key component in measuring the utilities of each data instance. The approaches
in this category argue that by training on the representative data instances, the classifier
should be able to reach similar performance as training on the complete dataset.

In terms of the labelling cost, traditional active learning assumes a uniform cost for
labelling data instances, which is argued to be an unrealistic assumption in real-world active
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Algorithm 1 Cost-Sensitive Tree Sampling.
1: Initialize a tree structure with only a root node;
2: Assign all data instance to the root node;
3: while total_costs < Costbudget do
4: //Query stage
5: Leaf selection: Select a leaf node v from the tree for querying;
6: Instance selection: Select an unlabelled instance z in v to do the query;
7: Query z’s label and cost;
8: //Tree structure update stage
9: Update the performance metric in the tree with z’s label and cost
10: Tree reconstruction: find all nodes whose split needs renewal;
11: Tree expansion: find all leaves that ready to be split;
12: Update the tree structure by splitting the found nodes and leaves;
13: end while;
14: Label assignment: Construct the labelled dataset for base learner.

learning problems. Therefore, annotation cost-sensitive active learning is proposed to con-
sider the real human annotation costs in the active learning algorithms.

In the paper, we focus on the general multi-class cost-sensitive active learning problems
with single labeler and the costs remaining unknown before querying. There are various
works targeting on annotation cost-sensitive active learning with different problem settings,
such as the querying target (Greiner et al. 2002), the number of the labelers (Donmez and
Carbonell 2008; Huang et al. 2017; Guillory and Bilmes 2009), the availability of annotation
costs (Cuong and Xu 2016; Golovin and Krause 2011), the targeting classification problem
(Yan and Huang 2018) and the applied data domain (Vijayanarasimhan and Grauman 2011;
Liu et al. 2009). However, most of these works could not be intuitively applied to our problem
setting due to the fundamental difference.

To discuss the cost-sensitive active learning with unknown costs, the question that ought
to be answered first is whether the human annotation costs can be accurately estimated. In
Arora et al. (2009) and Ringger et al. (2007), different unsupervised models are proposed to
estimate the annotation costs for corpus datasets, while Settles et al. (2008) further shows
that the annotation costs can be accurately estimated by using a supervised learning model.

In solving the cost-sensitive active learning problems, Tomanek andHahn (2010) discusses
the role of cost and the benefit (utility) in cost-sensitive active learning and proposed a
querying strategy, return on investment, which combines the utility and cost in a measure.
Haertel et al. (2008) compares three different querying strategies in cost-sensitive learning
and demonstrates their performancewith real-world datasets. However, the estimations of the
utility and cost are usually taken as two independent tasks in cost-sensitive active learning,
and the connection between them is lacking in discussion, leading to unreasonable settings
in existing approaches. We will discuss this issue in the following section.

3 The proposed approach

The outline of CSTS is presented in Algorithm 1. There are two major stages in CSTS:

– Query stage Pick up the querying instance in the tree structure, which requires the selec-
tion of leaf and the selection of the querying instance within the leaf.

– Tree structure update stage Update the tree structure on the basis of the newly acquired
label and cost, including renewing old split and splitting leaf nodes in the tree.
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After the total costs meet the budget, a labelled dataset will be built by label assigning trick
in order to train the base learner.

We shall discuss the detail of each stage of CSTS in this section. First, the motivation
of the design of CSTS and the advantages in using tree structure to solve cost-sensitive
active learning problems are demonstrated. Then, CSTS is proposed with the construction of
tree-structured clusters, the query strategies and the label assigning trick explained in detail.

3.1 Background

The querying strategies in cost-sensitive active learning have two important components:

– Utilities the benefit that the classification task can gain for knowing the label of each
data instance.

– Costs the prices we need to pay to acquire the labels of data instances.

The uncertainty is a popular criterion for estimating the utilities in cost-sensitive active
learning algorithms (Haertel et al. 2008; Settles et al. 2008), yet a well-known drawback
of the uncertainty sampling is the sample bias problem. The uncertainty measurement is
highly related to the decision boundary in the trained classifier. Consider the case in Fig. 3 of
Dasgupta 2011. If the initial boundary in the 1-D dataset is in the center group, the uncertainty
samplingwill be trapped in the decision boundaryωwith 95%accuracy.However, the optimal
boundary should be ω∗, which has 97.5% accuracy. On the basis of the example, if the data
have multiple possible decision boundaries, the selected instances will be trapped in one of
the boundaries on the basis of the initial queried data instances, resulting in the inconsistency
of the algorithm or return a suboptimal solution (Dasgupta 2011). Aside from the model
inconsistency issue, the sampling bias problem will also affect the cost estimate. In Settles
et al. (2008), it was shown that a well-tuned regressor is capable of accurately estimating the
annotation costs under 10-fold-cross-validation. However, the cross-validation setting in the
experiments implies the demand on the unbiasedness of the training data. Therefore, when
using bias samples from uncertainty-based cost-sensitive active learning algorithms to train
the cost-estimating regressor, it is unlikely to yield promising result.

In the estimation of costs, unsupervised models are widely used in cost-sensitive active
learning. For instance, Haertel et al. (2008) uses the hourly cost model (Ringger et al. 2007)
to estimate the annotation costs of corpus datasets before applying active learning algorithms.
In these approaches, the costs are estimated without knowledge of the labels. However, the
labels may play an important role in accurately estimating the costs. Consider the case in
which doctors attempt to diagnose a disease in a group of patients; doctors will likely need
more time to arrive at a diagnosis for patients without obvious symptoms. In the example,
the annotation costs are highly related to the decision boundary in the label prediction;
therefore they cannot be accurately estimated without considering the information from the
labels. Furthermore, these unsupervised models can be only applied to restricted data types,
as the hourly cost model only works for corpus datasets. Owing to the issue, cost-sensitive
active learning algorithms that rely on unsupervised cost-estimation models are constrained
to limited applications, losing their versatility.

To avoid the problems mentioned above, our proposed method aims to estimate the cost
and utility jointly with the tree-structure clusters. There are many advantages in using tree-
structured clusters for active learning:

– Solve the model inconsistency issue in the sample bias problem (Dasgupta and Hsu
2008). Moreover, the sampling bias will no longer affect the cost estimate as mentioned
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above, owing to the independence between clusters and the uniform estimation of all data
instances within the same cluster.

– Give feasibility when modeling the label and cost distributions. The tree structure allows
us to reconstruct an impure cluster without reclustering and affecting other clusters.

– Mimic the behavior of uncertainty sampling. During the exploration of tree-structured
clusters, the clusters close to the decision boundary will suffer from a low label purity;
hence, more labels are required to build smaller clusters when replacing them in order to
better model the label distribution. As a consequence, the active learning algorithm will
favor querying data instances close to the boundary, which follows the querying strategy
in uncertainty sampling.

We then extend the usage of tree-structured clusters to the cost-sensitive active learning.
With the assumption that neighbors share similar labels and costs, we could further argue
that with a set of fine-grained clusters, data instances in the same cluster should share the
same label and similar costs. By estimating the utility with the label uncertainty and using
the average known costs as the estimated cost, we could gradually find the major label in
each cluster as the amount of queried data increases, and further label the entire dataset if
the label purity permits.

In real world datasets, the assumption of data instances having similar costswith neighbors
may not perfectly hold. In the case that datasets come with drifts between the costs of certain
pairs of neighboring instances, our tree-structured clusters shall remain effective as the drift
can be handled by splitting these pairs into different nodes. However, if the dataset completely
break the assumption, i.e., the costs in the dataset are no longer continuous, then the costs
prediction becomes an unsolvable problem for all approaches if no further information is
provided.

The practicality of the main assumption of clustering-based active learning algorithms,
data instances belong to the same cluster are likely to share the same label, remains a prob-
lem. Since clustering algorithms are unsupervised approaches, label information is assume
unknown or ignored in the algorithms. Therefore, there is no guarantee on the label purity in
clusters, making the assumption in clustering-based active learning algorithms questionable,
especially on the real-world datasets. This is also a seriously problem preventing clustering-
based active learning algorithms from practical usage.

Dasgupta and Hsu (2008) proposed an innovative approach to find out high purity clus-
ters. To solve a traditional pool-based active learning problem, they start by utilizing the
hierarchical clustering algorithm to model data instances into tree-structured clusters. An
active learning strategy is then proposed to discover and exploit informative pruning of the
cluster tree. The work mainly focuses on solving the model inconsistency issue in the sample
bias problem. On the other hand, the hierarchical clustering structure guarantee the exis-
tence of pure label clusters within the tree structure. However, The algorithm still requires
the existence of high purity clusters in the top layers of hierarchical structure, leading to
poor performances in real world datasets that fail to meet the requirement. Nevertheless, it
still reduces the impractical assumption problem, and gives an inspiration on our proposed
method.

While tree-structured clusters is built in advance under a bottom-up hierarchical clustering
approach in Dasgupta and Hsu (2008), it is hard to integrate label and cost information within
the cluster structure. Therefore, we design a revised decision tree algorithm which can build
the tree-structured clusters in a top-down manner during the query stage. The top-down
building approach allows us to integrate known cost and label information, which can be
regarded as a supervised approach, leading to a better guarantee on label purity and cost
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similarity than other unsupervised approaches. Combining with a designed query strategy,
the cost-sensitive tree sampling (CSTS) is then proposed to solve the cost-sensitive active
learning problems, which can divided into three parts: tree-structured clusters construction,
queried instance selection and label assignment.

3.2 Tree-structured clusters construction

Here, we shall discuss the revised decision tree algorithm for constructing the tree-structured
clusters. The original decision tree algorithm is first discussed. Then, we propose a novel
metric to evaluate the quality of a node, following with the detail design in the tree-structured
clusters construction.

3.2.1 Decision tree algorithm

Inmachine learning, the decision tree algorithm is awell-known tree-structuredmodel (Quin-
lan 1986, 2014;Breiman et al. 1984). The procedure of training a decision treemodel includes
three important components: a splitting method, an evaluation metric, and a stopping crite-
rion.

Splitting method Node splitting is mostly carried out by a simple decision stump algorithm,
which uses a simple threshold for a specific dimension of a feature to split data instances into
two halves. This part remains the same in our proposed algorithm.

Evaluation metric Although there are many possible ways to split a node, an evaluation
metric is needed to define which one is the best. In the cost-sensitive active learning problem,
the tree-structured clusters should be able to model both the label and cost; therefore, a novel
evaluation metric is proposed to fulfill this goal.

Stopping criterion The stopping criterion is key for preventing the model from overfitting.
In a binary classification problem, consider the following VC inequality (Vapnik 2013) for
the nodes of the decision tree model:

P
[
sup
f∈F

∣∣∣R̂N (f) − R (f)
∣∣∣ > ε

]
≤ 8S(F, N ) exp

(−Nε2/32
)
,

where F is the collection of all possible decision stump classifiers, R̂N (f) is the 0/1 loss
of classifier f for N training instances, R (f) stands for the testing error for classifier f , and
S(F, N ) is the growth function of decision stump, which is 2N . The inequality says that
the upper bound of the probability for the deviation between the training and testing errors
being less than ε is proportional to 16N exp(−Nε2/32), which is amonotonically decreasing
function for N ≥ 1. Therefore, for a small N , the algorithm may overfit on the labelled data,
leading to a difference between training error and testing error. We can extend the discussion
to the worst case of our active learning algorithm, i.e., querying instances randomly. The
issue becomes even harsher owing to the limited amount of labelled data. As a result, how
to prevent our tree-structured clusters from overfitting on the labelled datasets is an essential
problem to tackle. Here, we delicately solve the issue within the evaluation metric, which
will be discussed in detail in the following section.
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Table 1 Key quantities in the
algorithm L Total number of classes in the dataset

nv Number of labelled data instances in
node v

sv Number of data instances in node v

fv,l Real label l fraction in node v

f̂v,l Known label l fraction in node v

from labelled data

f̃v,l Estimated label l fraction in node v

Cv The set of known costs in node v

3.2.2 Metric for node evaluation

Owing to the demands of the evaluations on cost similarity and label purity, we propose a
novel metric to measure the quality of tree nodes, which contains two parts: the Gini impurity
and cost variance.

Gini impurity The Gini impurity is a famous metric that is used by the CART algorithm
(Breiman et al. 1984) (Table 1). When solving an L-classes classification problem, let fv,l

be the fraction with label l within the node v. Then, the Gini impurity is computed by

G( fv) =
L∑

l=1

fv,l(1 − fv,l).

However, in an active learning setting, the number of labelled instances inside the node may
be too few to approximate the true label fraction. To solve this issue, we design an inherit
approach to estimate the label fraction for all nodes except the root.

Inside node v, sv denotes the total number of data instances, nv is the number of labelled
instances, and f̂v,l stands for the fractionwith label l in the nv labelled instances. By assuming
data instances within a node are i.i.d., the estimation of the true label fraction fv,l is actually
the same as the estimation of a Bernoulli distribution by conducting nv i.i.d experiments if
we regard the appearance of the label l as an outcome 1 and the rest as 0. Therefore, we can
use the length of the normal approximation confidence interval to show how confident we
are using f̂v,l to estimate fv,l :

Δv,l =
√

1

nv

f̂v,l(1 − f̂v,l).

In contrast to the traditional distribution approximation problem, we have a limited num-
ber of samples sv , which means as nv approaches sv , the length of the confidence interval
should become smaller. Moreover, for computational convenience, we use a global confi-
dence interval for all of the labels within the same node. On the basis of these facts, we
propose the following revised confidence interval:

Δ̂v =
(
1 − nv

sv

)
× 1

nv

+
(
1 − nv

sv

)
×

(
L∏

l=1

√
1

nv

f̂v,l(1 − f̂v,l)

) 1
L

. (1)

The 1− nv

sv
term considers the situation with limited samples; 1

nv
ensures that Δ̂v �= 0 when

only a single type of label is queried and that the confidence interval will become larger
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if less labelled data exist, which prevent the tree from over-expanding; the last term is the
geometric mean of Δv,l for all labels.

On the basis of revised confidence interval, we define the estimated label fraction as

f̃v,l =
{

∞ if αΔ̂v ≥ 1

(1 − αΔ̂v) f̂v,l + αΔ̂v f̃ p,l else
, (2)

where d is the depth of node v, and f̃ p,l is the estimated label fraction of its parents (set as
uniform label fractions for the top node). α is a parameter that can control how much we
trust in f̂v,l . To simplify the algorithm, we set α = 2 in our experiments.

The design of the estimated label fraction has two key points:

– Preventing overfitting As we mentioned in previous section, how to prevent overfitting
is an important question that ought to be answered in building the tree-structured clusters.
In our algorithm, the combination of parameter α and the revised confidence interval Δ̂v

can fulfill the target. A smaller value of Δ̂v indicates the higher confidence that the known
label fractions f̂v are close to the true label fractions fv , which is less likely for the node
v to be overfit. Combine with a parameter α to feasibly control the threshold, a judgment
αΔ̂v ≥ 1 is proposed to define when we are confident enough to build node v without
overfitting. If a node meet the judgment, it indicates the revised confidence interval is too
large to make current estimation trustworthy. As a results, infinite values are assigned to
the label fractions, which further prevent the parent node from being split into the case.

– Conservative inheriting estimationWhile the revised confidence interval indicates the
trust level of the known label fractions, it needs to be integrated into the estimated label
fractions to better decide the optimal split of a node. In our designed approach, we use
the formula of inner division point to calculate estimated label fractions f̃v , the weights
of the known label fractions are decided by 1 − αΔ̂v , which depends on the length of
confidence interval, showing how trustworthy the known label fractions are. The remain
part inherits the estimated label fractions f̃ p from the parent p. The inheriting fraction
stands for the result of the split overfit on the known labels, so a part of the unknown labels
still follow the parent’s fractions. The design yields a conservative estimation on the label
fractions, which also prevents the algorithm to over-trust the partial label information.

In summary, Eq. (2) prevents our tree model from overfitting, and utilizes the partially inher-
iting approach to integrate the confidence information into the estimated label fractions.

On the basis of Eq. (2) and the original Gini impurity formula, the Gini impurity of node
v is estimated by

Ge( f̃v) =
L∑

l=1

| f̃v,l(1 − f̃v,l)|. (3)

Cost variance In order to carry out cost estimation, the cost variance is another factor in the
node evaluation, which is calculated by

V (Cv) = 1

n2v

nv∑
i=1

nv∑
j=1

1

2
(Cv,i − Cv, j )

2

with the known annotation costs Cv for nv labelled data instances.
Scaling of the annotation costs is required when constructing the performance metric.

Since the optimal value for both the Gini impurity and cost variance is 0, the main idea is
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to scale the worst case of the cost variance to the same value as the Gini impurity, which is
computed by

Vscaled(Cv) = V (Cv) × Gw

Vw

, (4)

where {
Gw = ∑L

i=1
1
L (1 − 1

L ) = 1 − 1
L ,

Vw = 1
4 (max(Cp) − min(Cp))

2,

and Cp is the annotation costs of v’s parent.
The largest value of the Gini impurity for an L-class classification problem can be com-

puted by the Cauchy-Schwarz inequality. As to the worst case of the cost variance, we use
the largest variance for all possible splits from the node, which is splitting only two labelled
data instances with the largest and smallest costs to the same node.

Performance metric Combining both factors, the metric used for the evaluation is defined
as

M(v) = (1 − β) × Ge( f̃v) + β × Vscaled(Cv), (5)

whereGe( f̃v) and Vscaled(Cv) are defined in Eqs. (3) and (4), and β is a parameter for adjust-
ing the importance of these two factors. For simplicity, we use β = 0.5 in our experiments,
which means that both factors have the same weights in the evaluation.

3.2.3 Tree structure construction

Our model starts from all of the data instances in the root node. As more and more labels are
queried, the treewill be expanded until no further split on leaves can improve the performance
metric. Furthermore, we also propose a reconstruction criterion to ensure all expansions are
actually improving the performance metric during the query stage.

Tree expansion The procedure of tree expansion is as follows: Use the decision stump
algorithm on each data dimension to determine away to split the node that leads to the optimal
performance metric. If the expansion does help in improving the performance, we say that
the node is ready to be split. To emphasize, the confidence interval we propose in Eq. (1)
takes the amount of labelled data instances and the label distribution in to consideration.
Therefore, when combining it with parameter α in Eq. (2), the user can adjust the tolerance
on the confidence level to prevent the tree model from overfitting.

Tree reconstructionEven thoughwe can prevent a tree fromoverfitting,we cannot guarantee
that all expansions are effective at any time. In the other words, we may find that some splits
of nodes in the tree do not optimize the value of the performance metric when we acquire
new labels and costs. Therefore, during the query stage, the model will keep track of the
metric values of all nodes. Once it finds a split of a node that leads to a poorer metric value,
it will mark the node as dirty, so the split of the node and its subtree will be renewed during
the tree structure update.

Tree structure update In order to reduce the computational overhead and improve the regu-
larization, we use a dirty bit to indicate if the node is ready to be split or needs reconstruction.
Notice that if a node needs reconstruction, all of the nodes in its subtree will be set as dirty.
Once the proportion of dirty leaves exceeds a certain threshold γ , our algorithm will update
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the tree structure from the top of the tree by finding the best split of the dirty nodes and expand
them until no leaf node can be expanded. The detail of tree structure update is showed in in
Algorithm 2.

3.3 Cost-sensitive tree sampling

In using the proposed tree-structured clusters to solve the cost-sensitive active learning prob-
lems, how to pick the querying instance is another key issue. In the following, we shall discuss
the two important components in the query stage: leaf selection and instance selection. After
that, the label assigning trick are introduced, which could further improve the performance
of CSTS. The full design of CSTS is listed in Algorithm 2.

3.3.1 Query stage

Touse the treemodel to solve cost-sensitive active learning problems, it is necessary to specify
the selection of data instances to query their labels. During the query stage, the instances are
always selected from a leaf inside the tree structure; therefore, the problem can be split into
two parts: leaf selection and instance selection within leaves.

Leaf selection The estimated impurity multiplied by the number of unlabelled data instances
within a node stands for the estimate of the utilities in our proposed approach, whereas the
estimated cost is the average cost of a labelled data instance in the cluster. Combining both
factors, the probability that a leaf node v is selected is as follows:

pv ∝ Ge( f̃v) × (sv − nv)︸ ︷︷ ︸
utility

/ C̄v︸︷︷︸
cost

, (6)

where C̄v is the average annotation cost in the leaf node.
Some analysis of the behavior of the query criterion. The estimated utility includes the

estimated impurity and the number of unlabelled data instances. The estimated impurity is
calculated by Eq. (3), which considers both the estimated confidence and label impurity issue.
Therefore, the proposed query criteria is a coordination of four elements in a leaf: estimated
confidence, label impurity, number of unlabelled instances and estimated costs. Since the
effect of the estimated costs on the query criterion is straightforward, we focus only on the
behavior of utility and assume an uniform cost for simplicity.

Consider a case that two children from the same parent share the same quantities, except
that the first child has less labelled data instances than the second one. Therefore, the first
child have a longer confidence interval, leading to a larger inherit fraction and end up with
higher estimated Gini impurity. As a results, we could observe the favor to enhance the less
confident node in our designed query criteria. On the other hands, suppose two children
have different label fractions while other quantities remain the same, the query criteria will
naturally focus on the one with higher Gini impurity value and select more instances to query
from it.

On the other hand, considering the number of unlabelled data instances in our query
criteria can balance the query selection. Suppose there are only two labels, and only two
same sized clusters are found. Cluster A has 5% of minority label, and can be split out by
decision stump, while cluster B has even label fractions (50% each) and cannot be improved
by further splitting. Our query criteria will first focus on improving cluster B, even though
the impurity cannot be reduced after queries in the cluster B. As the number of unlabelled

123



796 Machine Learning (2019) 108:785–807

Algorithm 2 Cost-Sensitive Tree Sampling.
Input: pool of unlabelled data P; Cost budget B
1: T ← {root}; (all data instances in the root)
2: while current_budget < B do
3: while dir ty_lea f _proportion < γ do
4: //Query stage
5: Leaf selection: v ← select_leaf(T ) base on (6);
6: Instance selection:z ← select_instance(v, P);
7: Query z’s label and cost;
8: remove z from P;
9: Update performance metric for all nodes in T ;
10: Tree reconstruction: Set nodes that need split renewal as dirty;
11: Tree expansion: Set leaves that ready to be split as dirty;
12: end while;
13: //Tree structure update
14: for all dirty nodes n ∈ T in top-down order do
15: set n as not dirty;
16: T ← T \ {subtree of n};
17: children ← decision_stump(n);
18: if children �= Null then
19: set children as dirty;
20: T ← T ∪ children;
21: end if
22: end for
23: end while;
24: for all leaf node v ∈ T do
25: if Ge( f̃v) < t then
26: Label assigning: Assign majority label to all unlabelled data in v

27: end if
28: end for

data instance gradually drops in cluster B, the query criteria may turn to select data instance
from cluster A, and therefore, take the chance to further improve the label purity.

To sum up, the designed query criteria considers the trade off between costs and utilities,
where includes label purity, label confidence and label instances balancing, making it an
strong query criteria in solving cost-sensitive active learning problems with our proposed
tree-structured clusters.

Instances selectionwithin leavesWeuse the length of the confidence interval Δ̂v to measure
whether a node is trustworthy with its labelled data. Therefore, regardless of the method for
selecting queried instances, it will not change the guarantee of the stable condition in the
performance metric, which gives us flexibility in choosing data instances inside a leaf. The
followings are some options:

– Random sampling Choose any unlabelled instances with uniform probability.
– Uncertainty sampling on a classifier Choose the instance with the minimum distance

to current decision boundary or tge maximum value of any uncertainty measurement.
– Representative sampling Choose the unlabelled data instance closest to the centroid of

the selected leaf.
– Least cost sampling Choose the unlabelled data instance closest to instance with the

lowest cost in the selected leaf.

Here, we simply use the random sampling approach in all the experiments, which choose
any unlabelled instances to query with a uniform probability.
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3.3.2 Label assigning trick

At the end of the query stage, a natural ability of the tree model is to label all the unlabelled
data instanceswith themajority label inside every leaf node.However, as the evaluationmetric
for tree construction does not focus entirely on enhancing the label purity, it is unlikely to
accurately label all the data instances. Therefore, if we simply label all the data instances,
it may made a large number of mistakes at those impure nodes and further degrade the
performance of the model trained on it. A design in our model is that the estimated Gini
impurity can properly reflect the label purity within each nodes. Hence, we introduce another
parameter t as a threshold on the estimatedGini impurity, and only regard themajority label in
a cluster as trustworthy when the impurity≤ t and assign the majority label to the unlabelled
data instances.

4 Experiments

In the section, we shall first discuss the experiment settings, followed by quantitative com-
parisons between CSTS and other state-of-the-art competitors on three types of datasets:
dataset with artificial costs, dataset with attribute costs and dataset with real annotation costs.
Finally, extensive experiments on CSTS using different parameters are conducted in order to
analyze the parameter sensitivity.

4.1 Experiment setting

In all the following experiments, we simply set parameters (α, β, γ ) = (2, 0.5, 0.5) in CSTS
to generalize the model, despite the fact that further experiments show the performance of
CSTS can be improved if an optimal set of parameters is used. Parameter t is tuned with
4-fold-cross-validation by adding self-labelled data instances to the training validation set
for different values of t in order to coordinate the various properties of the datasets.

We compared CSTS with four different methods: random sampling (RS), cost-sensitive
hierarchical sampling (CSHS), return on investment (ROI) (Haertel et al. 2008) and rank
combination cost-constrained sampling (LRK) (Tomanek and Hahn 2010).

– RS: Random sampling is a baseline approach that chooses a data instance to label at
random, ignoring both the utility and the annotation cost.

– CSHS: Cost-sensitive hierarchical sampling is a transformation of hierarchical sampling
(Dasgupta and Hsu 2008). The only change is to divide the original probability for
choosing a leaf to query by the average of known annotation costs in the leaf, turning it
into a cost-sensitive method.

– ROI and LRK: These methods are two different ways of combining the utility and cost
to form the query criteria. To estimate the utilities, both of them use the uncertainty
measurement, calculated by the entropy of the predicted probabilities in each class. The
costs are estimated by a regression tree with tuned limited depth ∈ [5, 10, 15, 20, 25], in
order to give even comparisons with our tree-structured model. Note that the tree model
will be retrained every time when a data instance is newly queried and added to the
training set. In ROI, it uses the ratio of the utility and cost as the selection criterion; LRK
determines the ranks of data instances for the utility and cost and combines the rank with
a ratio, which we set as 0.5 in our experiments, to form the metric for choosing data
instances to label.
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Table 2 Characteristics of UCI datasets

Dataset N L Dataset N L Dataset N L

liver 345 2 german 996 2 knowledge 258 4

vote 411 2 mushroom 8124 2 vehicle 846 4

breast 699 2 adult 32, 561 2 nursey 12, 960 5

diabetes 764 2 seeds 210 3 yeast 1484 9

We used a l2-regularized logistic regression as the base learner to be trained on the label
data we acquire from active learning for all methods. The parameters of the base learner are
tuned by 4-fold-cross-validation independently in each method. For all datasets, we reserve
80% of the data as the data pool and retain 20% as the final testing set. The presented results
are the average over 10 times of experiments, and the budget of label costs grows in small
increments with a maximum 30% of the total costs.

4.2 Datasets with artificial costs

4.2.1 Dataset

We compare CSTS with other competitors on twelve datasets from the UCI Repository
(Lichman 2013) with artificially created annotation costs. The size of the datasets N and the
number of classes L are summarized in Table 2.

4.2.2 Artificial costs creation

The annotation cost is created on the basis of two assumptions:

– The data instances closed to the decision boundary should have larger costs.
– The cost distribution should have a connection to the data distribution.

The first assumption is based on the argument that if a data instance is closer to the decision
boundary, the feature that we can directly use to classify it is less clear, so the oracle (usually
human beings) will need to spend more effort to correctly label the data instance. On the
other hand, two similar data instances should have similar annotation costs, indicating that
the data distribution is essential in creating the annotation cost, which implies the second
assumption.

Figure 1 demonstrates the procedure to create the costs. Notice that the cost creation is
independent from the active learning, so we assume all the labels in datasets are available.

1. Utilize a SVM model with RBF kernel and the parameter C = 100 to fit on the datasets,
take the hyper-planes as the decision boundaries in the oracle.

2. Model the data distribution, where the k-means clustering with k = N/10 is used. Base
on the assumption (2), we simply assume that those data instances in the same cluster
share the same annotation cost.

3. Calculate D̄v , the average distance to the closest decision boundary for data instances in
v, which is used to construct the reverse distance cost and the distance cost.

The reverse distance cost takes the original assumption by setting the annotation cost of
data instances that belong to cluster v as 1/D̄v . However, the setting will lead to a dilemma
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Fig. 1 Procedure of cost creation

Table 3 AUC scores for UCI datasets with the reverse distance cost

Datasets CSTS RS CSHS ROI LRK

liver 16.58/1.749(4) 16.98/2.257(3) 14.99/1.573(5) 18.29/0.782(1) 17.63/1.341(2)

vote 26.41/0.888(2) 26.46/0.783(1) 25.66/1.182(5) 26.3/0.49(4) 26.33/0.65(3)

breast 27.47/0.485(1) 27.42/0.481(2) 27.23/0.371(3) 27.06/0.362(4) 27.01/0.4(5)

diabetes 22.29/1.09(3) 22.14/0.709(4) 21.32/1.165(5) 22.65/0.499(1) 22.59/0.552(2)

german 21.03/0.681(1) 20.66/0.865(2) 20.38/1.083(3) 20.14/0.424(5) 20.37/0.523(4)

mushroom 27.32/0.449(1) 27.21/0.482(3) 27.27/0.223(2) 26.97/0.141(5) 27.0/0.155(4)

adult 23.97/0.066(1) 23.92/0.086(2) 23.66/0.08(5) 23.89/0.037(4) 23.9/0.031(3)

seeds 25.68/1.274(1) 25.03/1.333(4) 23.34/2.575(5) 25.54/1.078(2) 25.24/1.241(3)

knowledge 19.65/1.866(1) 19.36/2.712(3) 15.83/2.232(5) 19.36/1.093(2) 19.16/1.217(4)

vehicle 19.85/0.825(1) 19.29/1.443(2) 14.91/1.1(5) 19.11/0.638(4) 19.22/0.539(3)

nursey 21.79/0.175(3) 21.71/0.176(4) 19.88/0.582(5) 21.86/0.103(2) 21.86/0.091(1)

yeast 15.64/0.639(1) 15.16/0.61(2) 14.52/1.081(5) 14.93/0.345(4) 15.03/0.341(3)

sum_of_ranks 20 32 53 38 37

The toppest rank entry is marked in bold

in uncertainty sampling since the instances with higher costs are also the ones that are most
informative in their criteria. Therefore, we also conduct experiments on distance cost, setting
the average distances to the boundaries D̄v in cluster v as the annotation cost. The setting
gives a considerable advantage to uncertainty-sampling-based algorithm, in order to observe
if CSTS is able to adapt to different cost settings and provide comparable performance.

4.2.3 Experiments results on reverse distance cost

Table 3 shows the area under the cost/accuracy curve (AUC) of algorithms for all twelve
datasets under reverse distance cost. Figure 2 shows the results for six selected datasets.
We also compare the mean accuracy scores from different algorithms when setting different
percentages of the total cost as the budget. Table 4 summarizes a comparison of CSTS against
the others using a two-sample t-test at 95% significance, which gives better insights into the
model performance at each query stage.

The results in Table 3 clearly indicates that none of the algorithms are capable of providing
consistently superior performance.Despite this,CSTShas the best performance for 8 datasets,
which is the most compared with the others. Regarding the overall performance, the sum of
the ranks indicates that CSTS is still the best model on average.
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Table 4 Win/tie/lose based on a two-sample t-test

Base: CSTS Percentage of total queried instance’s costs Total

Competitors 5% 10% 15% 20% 25% 30%

RS 2/9/1 2/10/0 2/10/0 2/10/0 1/11/0 1/11/0 10/61/1

CSHS 5/7/0 8/4/0 11/1/0 9/3/0 10/2/0 7/5/0 50/22/0

ROI 5/5/2 4/6/2 2/8/2 6/4/2 4/7/1 3/7/2 24/37/11

LRK 5/5/2 4/6/2 2/8/2 5/6/1 4/5/3 3/8/1 23/38/11

total 17/26/5 18/26/4 17/27/4 22/23/3 19/25/4 14/31/3 107/158/23

There are two important observation in the table:

– Our proposed approach significantly outperforms CSHS. The observation indicates that
the supervised tree-structured clusters building approach can lead to a better performance
than traditional unsupervised approach.

– Our proposed approach have better performance in most of the datasets in comparison
with ROI and LRK, proving that CSTS can be a better approach in solving cost-sensitive
active learning problems than uncertainty-based methods.

We can also observe that CSHS, ROI and LRK have worse performance than the ran-
dom sampling in parts of the datasets. As discussed in Sect. 3, a main criticism for the
clustering based active learning approaches is that they over-rely on the performance of unsu-
pervised clustering methods. Therefore, the CSHS can only provide effective performance
on few datasets (german and mushroom) which can be easily modelled by the clusters. The
uncertainty based approaches, ROI and LRK, suffer from the contradiction between the cost
setting and their query strategy. Besides, the cost learning in these approaches are based on
the biased data, making it harder to give accurate predictions on the annotation costs. Our
approach, on the other hand, can deal with all the issuesmentioned above and yield promising
performance.

From the two-sample t-test comparison inTable 4,we can observe thatCSTS ismostly able
to provide comparable or even better accuracy than the competitors in each stage, especially
when the budget reach around 20% of total costs. While the early stage are highly affected
by the initially queried instance and all models have sufficient labelled instances to provide
similar performance in the later stage, the superiority of CSTS in the middle stage strongly
prove its effectiveness once again.

4.2.4 Experiment results on distance cost

Table 5 present the experiment results on distance cost. Compared with the reverse dis-
tance cost, both LRK and ROI have a slight improvement on the sum of ranks and also
have the best AUC for more datasets; in the mean time, the ranks of CSTS slightly drop
under the new setting. However, comparing the sum of the ranks, CSTS still provides
the best performance under such a favorable setting for uncertainty sampling, indicating
that our proposed method is able to handle different cost distributions and yield stable
performance.
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Table 5 AUC scores for UCI datasets with the distance cost

Datasets CSTS RS CSHS ROI LRK

liver 16.92/2.072(4) 16.93/1.779(3) 14.13/1.429(5) 17.67/1.575(2) 17.84/1.323(1)

vote 26.55/0.932(1) 26.39/0.771(3) 25.55/1.136(5) 26.33/0.53(4) 26.41/0.506(2)

breast 27.48/0.381(1) 27.4/0.446(2) 27.33/0.314(3) 26.89/0.205(5) 27.0/0.311(4)

diabetes 22.41/0.826(3) 22.36/0.942(4) 21.47/0.741(5) 22.56/0.508(1) 22.46/0.467(2)

german 21.16/0.781(1) 20.66/0.694(2) 20.48/1.231(3) 20.28/0.441(4) 20.24/0.501(5)

mushroom 27.34/0.503(1) 27.18/0.319(3) 27.31/0.226(2) 26.97/0.154(5) 26.99/0.129(4)

adult 23.96/0.08(1) 23.92/0.065(2) 23.7/0.077(5) 23.88/0.037(4) 23.88/0.031(3)

seeds 25.37/1.582(3) 25.06/1.286(4) 23.88/1.907(5) 25.37/1.289(2) 25.38/1.103(1)

knowledge 19.05/2.423(4) 19.34/2.066(3) 15.16/2.777(5) 19.46/1.337(1) 19.38/1.021(2)

vehicle 20.04/1.01(1) 19.56/1.362(3) 14.58/1.433(5) 19.61/0.475(2) 19.34/0.591(4)

nursey 21.71/0.266(3) 21.7/0.143(4) 19.84/0.525(5) 21.87/0.096(2) 21.88/0.101(1)

yeast 15.28/0.712(2) 15.52/0.626(1) 14.46/0.941(5) 14.77/0.448(4) 14.86/0.423(3)

sum_of_ranks 25 34 53 36 32

The toppest rank entry is marked in bold

4.3 Dataset with attribute costs

4.3.1 Dataset

The UCI (Lichman 2013) german dataset collects attributes for a group of people to predict
their credit risk. Among the attributes, one of them is the duration of people’s checking
account in month. As a longer duration of the checking account requires longer time to
analyze, the cost for human beings to label an data instance should be highly related to
the duration of the checking account. Therefore, we remove the duration attribute from the
dataset and use it as the costs in our ACSAL setup, in order to observe if CSTS could adapt
to the nearly real world costs setting.

4.3.2 Experiment results

Figure 3 shows the test accuracy. We can observe that CSTS stably outperforms the other
approaches. In the mean time, CSHS yields a comparable performance in the early stage.
The experiments results show the superiority of clustering based active learning approach,
indicating that the dataset can be easily modeled by the clusters. On the other hand, both
the uncertainty based approach, ROI and LRK, only have similar performance as random
sampling. In summary, the experimental results shows the superiority of CSTS and the
effectiveness of clustering based active learning approaches.

4.4 Dataset with real annotation costs

4.4.1 Dataset

Due to the limited number of datasets with annotation costs information, we only conduct
experiments on one dataset, the Speculative Text Corpus dataset provided by Settles et al.
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Fig. 3 Test accuracy of CSTS
and the competitors

Fig. 4 Test accuracy of CSTS
and the competitors

2008, to show the performance of CSTS for real annotation costs. It includes 850 sentences
labelled to be speculative or definite by three different people, and the average annotation
time is taken as the cost. In the experiments, we use a bag-of-words representation for the
sentences, removing stopping words and terms with a frequency less than two.

4.4.2 Experiment results

Figure 4 shows the test accuracy.We can observe thatCSTS outperforms the other approaches
as the budget increases to 10% of the total cost. The trend is consistent with the design: In
the early stage, the number of labelled data instance may be too few to build high quality
clusters, which leads to the similar performance with random sampling; as more and more
labels and costs we obtain, high quality clusters can be built and a significant improvement
on the model performance can be observed. In summary, the experimental results indicate
that our proposed approach is capable of providing superior results in comparison with four
other methods for the dataset with real annotation costs.
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4.5 Parameter sensitivity analysis

4.5.1 Parameters

We further conduct experiments to analyze the parameter’s impact on themodel performance.
There are four important parameters in our proposed methods: In Eq. 2, α controls the
proportion of known label fraction f̂ in estimated label fraction f̃ and the threshold on
confidence interval in deciding whether the estimation is trustworthy; β decides the balance
between Gini impurity and cost variance in the evaluation metric; γ is the threshold on the
fraction of dirty leaves, controlling when the tree structure should be updated; t decides
whether the unlabelled data instances in a cluster can be labelled with the majority label and
be included in the training dataset for the base learner.

To better demonstrate the results, we only test the performance of CSTS on german
dataset with the artificial reverse distance costs. Except for the changed parameter, others
are always set as (α, β, γ ) = (2, 0.5, 0.3) and t ∈ {0, 0.1, 0.2, 0.3} is tuned by 4-fold cross
validation. In parameter t , we simply compare three different settings in order to demonstrate
the effectiveness of label assigning trick:

– cv_tuned: tuned the threshold t ∈ {0, 0.1, 0.2, 0.3} by 4-fold cross validation.
– optimal: used the optimal threshold t ∈ {0, 0.1, 0.2, 0.3} that leads to the best accuracy

on testing set.
– no_label_assigned: set t as 0, that is, no additional data instance is labelled and

added to the training dataset except the queried data instances.

4.5.2 Discussion

Figure 5 shows the experiments results on four parameters (α, β, γ, t). As can be seen, the
performance of CSTS does not significantly change when different values set to parameter
α, β and γ , which prove that our proposed CSTS algorithm is less sensitive to the parameter
values and capable of providing stable performance. Some observations on the parameters’
behavior:

– parameter α. A lower value on α can let a leaf be easier to be split, creatingmore clusters
and leading to a higher label purity, but with a higher risk on overfitting. Therefore, when
parameter α is set to a larger value 8, it could prevent CSTS from overfitting and reach
the best performance in the early and middle stage; while α = 1 could provide the best
performance in the final stage where the number of label is large enough to lower the
chance of overfitting.

– parameter β. A higher β makes the tree structure focusing more on the cost variance,
giving a better control on the costs but losing the label purity, while a lower β has the
opposite behavior. Since there is no superiority in either settings, the experiment result
shows no clear trend in model performance as β increases.

– parameter γ . With higher γ (0.7 and 0.9), the performance of CSTS slightly drop owing
to the low tree structure update rate.

– parameter α and γ . We extract two of the most sensitive parameters, α and γ , for joint
analysis. The experiment result shows that when both α and γ are set to either high values
(α=8, γ=0.5/0.9) or low values (α=2, γ=0.1), the algorithm has the better performance.
The results indicating that when the leaves are easier to be split, the algorithm requires
a higher tree structure update rate, while a low structure update rate is needed when the
model is more conservative in splitting leaves.
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(a) parameter-α (b) parameter-β

(c) parameter-γ (d) parameter-α&γ

(e) parameter-t

Fig. 5 Parameter-performance analysis

– parameter t. As can be seen, the label assigning trick performs a strong improvement on
the accuracy. Notice that there is a great difference between using the optimal threshold
and the cross-validation tuned threshold, indicating that the performance of CSTS can
still be further improved if a better threshold parameter t is set.

In summary, changes on the parameter α, β and γ only lead to minor difference on the
performance of CSTS, demonstrating that it is a stable approach in terms of the parameter
sensitivity. On the other hand, the label assigning trick does enhance the model performance,
while the cross-validation tuned threshold t still has a great room for improvement.
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5 Conclusion

In this paper, we proposed the CSTS approach for annotation cost-sensitive active learning.
The main contributions can be split to two areas: First, our proposed method is a innovative
algorithm that jointly model both label and cost distribution in the supervised-built clustering
structure when solving annotation cost-sensitive active learning. Furthermore, it is the first
algorithm that tackles the annotation cost-sensitive active learning problems by representative
sampling to the best of our knowledge. Second, the supervised tree constructing algorithm
solves the issue on the impractical pure label cluster assumption in traditional representative
sampling based active learning algorithms, while the overfitting problem can be delicately
handled by the proposed evaluation metric. Empirical studies demonstrate the comparability
and superiority of CSTS in comparing with previous methods on datasets with simulated and
real annotation costs. The experiments results confirm the validity of our proposed method,
and indicate CSTS is a promising approach for annotation cost-sensitive active learning.
Future research should certainly further studies on label estimation considering the non-
i.i.d. data distribution within a node, which could possibly be handle by other probability
distributions and improve the accuracy of the estimation on the confidence interval and the
label fractions. More real datasets are also welcome to better understands the behavior of
CSTS in solving real world problems.
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