
Machine Learning (2018) 107:1537–1560
https://doi.org/10.1007/s10994-018-5733-1

On the effectiveness of heuristics for learning nested
dichotomies: an empirical analysis

Vitalik Melnikov1 · Eyke Hüllermeier1

Received: 27 January 2018 / Accepted: 15 June 2018 / Published online: 27 June 2018
© The Author(s) 2018

Abstract
In machine learning, so-called nested dichotomies are utilized as a reduction technique, i.e.,
to decompose a multi-class classification problem into a set of binary problems, which are
solved using a simple binary classifier as a base learner. The performance of the (multi-
class) classifier thus produced strongly depends on the structure of the decomposition. In this
paper, we conduct an empirical study, in which we compare existing heuristics for selecting
a suitable structure in the form of a nested dichotomy. Moreover, we propose two additional
heuristics as natural completions. One of them is the Best-of-K heuristic, which picks the
(presumably) best among K randomly generated nested dichotomies. Surprisingly, and in
spite of its simplicity, it turns out to outperform the state of the art.

Keywords Nested dichotomies · Multi-class classification · Decomposition method

1 Introduction

Nested dichotomies (NDs) are known as models for polychotomous data in statistics and
used as classifiers for multi-class problems in machine learning (Frank and Kramer 2004).
By splitting the set of classes in a recursiveway, nested dichotomies reduce the original multi-
class problem to a set of binary problems, for which any (probabilistic) binary classifier can
be used. For example, the dichotomy shown in Fig. 1 decomposes a problemwith five classes
into four binary problems.

Nested dichotomies are interesting for a couple of reasons. In practice, they have been
shown to yield strong predictive accuracy (Frank and Kramer 2004; Leathart et al. 2016;
Rodríguez et al. 2010). Moreover, compared to other decomposition techniques, such as
all-pairs (Fürnkranz 2002) or one-versus-rest (Rifkin andKlautau 2004), they offermore flex-
ibility in the specification of binary problems. At the same time, the aggregation of individual

Editors: Jesse Davis, Elisa Fromont, Derek Greene, and Bjorn Bringmaan..

B Eyke Hüllermeier
eyke@upb.de

Vitalik Melnikov
melnikov@mail.upb.de

1 Department of Computer Science, Paderborn University, Paderborn, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-018-5733-1&domain=pdf

1538 Machine Learning (2018) 107:1537–1560

Fig. 1 Example of a nested
dichotomy. The first classifier
(C1) is supposed to separate class
C from the meta-class
{A, B, D, E}, i.e., the union of
classes A, B, D, and E ; likewise,
the second classifier separates
classes {A, D} from {B, E}, the
third classifier class A from D,
and the fourth B from E

C1

C2

C3 C4

Fig. 2 Distribution of 5 classes. Using linear models as base learners (indicated as dashed lines), the nested
dichotomy shown in Fig. 1 appears to quite suitable. Starting with a problem such as {A, E} versus {B,C, D},
on the other hand, would lead to much worse performance

predictions into an overall (multi-class) prediction can be accomplished in a very natural and
consistent manner, based on the chain rule of probability—a property that is specifically
appealing in case probabilistic predictions are sought instead of hard class assignments. This
is in contrast to other techniques such as error-correcting output codes (Dietterich and Bakiri
1995), which, while being even more flexible, may produce inconsistencies at prediction
time.

The flexibility in choosing a structure offers advantages but also comes with the chal-
lenge of finding a good decomposition. In fact, the performance of the multi-class classifier
eventually produced may strongly depend on the structure of the dichotomy, because the
latter specifies the set of binary problems that need to be solved. Obviously, as illustrated in
Fig. 2, some of these problemsmight bemuchmore difficult than others. This is confirmed by
Fig. 3, where the distribution of predictive accuracies (on the test data) of nested dichotomies
is shown for the datasets pendigits and mfeat-karhunen. As can be seen, depending on the
structure chosen, the performance may vary a lot.

Previous work hasmostly focused on ensembles of nested dichotomies (Frank andKramer
2004; Dong et al. 2005; Rodríguez et al. 2010). In that case, structures are typically gener-
ated at random, and of course, ensembling reduces the importance of optimizing individual
structures. In this paper, however, we are interested in learning a single dichotomy. There are
several reasons for why a single model might be preferred to an ensemble, including com-
plexity and interpretability. Indeed, the latter has gained increasing importance in machine
learning in recent years. In contrast to an ensemble, a single dichotomy at least offers the
chance of interpretability (provided the individual binary classifiers are interpretable). Yet,

123

Machine Learning (2018) 107:1537–1560 1539

Fig. 3 The distribution of predictive accuracy on the pendigits (above) and mfeat-karhunen (below) datasets
for 10,000 randomly sampled nested dichotomies with three different classifiers: CART, logistic regression,
and decision stumps (CART). Each nested dichotomy is evaluated by the mean accuracy in a 10-fold CV

our main motivation for considering the problem of structure optimization for NDs origi-
nates from automated machine learning (Thornton et al. 2013; Feurer et al. 2015). Given
a dataset, the goal of AutoML is to select and parametrize a machine learning algorithm
(or, more generally, an ML pipeline including data pre- and postprocessing steps) in a most
favorable way. If ND is among the (meta) learning techniques the AutoML system can
choose from, the search for an optimal decomposition immediately becomes part of the
AutoML process. Here, ensembling is not an option, because each of the reduced problems
gives rise to a new (and potentially still very complex) AutoML problem. In other words,
NDs are indeed used as a means for recursive problem reduction, not merely as a decom-
position of a multi-class problem into binary problems, which are all solved in the same
way.

123

1540 Machine Learning (2018) 107:1537–1560

The problem of ND structure optimization is extremely difficult, mainly because of the
huge number of candidate structures. Therefore, several heuristic strategies have been pro-
posed in recent years. In this paper, we analyze and compare the performance of these
heuristics in an extensive empirical study. Unlike previous papers, we are not directly focus-
ing on accuracy as a measure for comparison. Instead, what we look at is the position of the
selected structure among all structures (sorted by accuracy); statistically, this translates into
the quantile that is reached in performance distributions like those in Fig. 3. For reasons that
will be explained in more detail further below, we believe this is a more appropriate way of
measuring the performance in structure optimization.

In addition, we also introduce two new heuristics, one based on hierarchical clustering and
the other on the simple idea of choosing the best among K random structures. To our surprise,
the latter turns out to be extremely effective, and even outperforms the current state-of-the-art
heuristic. This is one of the most important findings of the paper.

The rest of the paper is organized as follows. In the next section, we introduce nested
dichotomies and discuss some of their properties in more detail. In Sect. 3, we address the
problem of sampling from the space of ND structures, which is used as an important routine
in several heuristics. An overview of existing heuristics is then given in Sect. 4, where we also
introduce our new proposals. The empirical study is presented in Sect. 5, prior to concluding
the paper in Sect. 6.

2 Nested dichotomies

Given a set of n classes Y = {y1, . . . , yn}, a nested dichotomy (ND) is a recursive separation
(Yl ,Yr) of Y into pairs of disjoint, nonempty subsets. Equivalently, an ND can be defined
in terms of a full binary tree on n leaf nodes, which are (uniquely) labeled by the classes;
moreover, the n − 1 inner nodes are labeled by the set of classes in the subtree beneath
that node. For example, the ND shown in Fig. 1 corresponds to the recursive separation
(C, ((A, D), (B, E))).

To turn a nested dichotomy into a multi-class classifier, a binary classifier is assigned to
each inner node. The task of the classifier is to separate the set of classesYl associated with its
left successor node (the positive meta-class) from the set of classes Yr of its right successor
(the negative meta-class). Given a set of training data

D = {
(xi , yi)

}N
i=1 ⊂ X × Y ,

where X is the underlying instance space, the binary classifiers are produced by applying a
suitable base learner1 to the corresponding classification problems. We assume the classifier
CYl ,Yr associated with the dichotomy (Yl ,Yr) to be a mapping of the form X −→ [0, 1],
where CYl ,Yr (x) is an estimation of the conditional probability P

(
y ∈ Yl | y ∈ Yl ∪ Yr , x

)
,

and hence 1 − CYl ,Yr (x) an estimation of P(y ∈ Yr | y ∈ Yl ∪ Yr , x). Such a probabilistic
classifier is produced by the base learner on the relevant subset of training data {(xi , yi) ∈
D | yi ∈ Yl ∪ Yr }.

1 In principle, a different base learner could be used for each binary problem, though this is normally not
done.

123

Machine Learning (2018) 107:1537–1560 1541

2.1 Inference

Once the hierarchy of classifiers required by a nested dichotomy has been trained, a new
instance x can be classified probabilistically as follows: For y j ∈ Y , let Y = Y0 ⊃ Y1 ⊃
· · · ⊃ Ym = {y j } be the chain of subsets associated with the nodes from the root to the leaf
node labeled by y j . Then, by virtue of the chain rule of probability,

P(y j | x) =
m−1∏

i=1

P
(
y j ∈ Yi+1 | y j ∈ Yi , x

)
,

where P(Yi+1 |Yi , x) is given by CYi+1,Yi\Yi+1(x) if Yi+1 is the left successor of Yi , and
1−CYi+1,Yi\Yi+1(x) if Yi+1 is the right successor of Yi . In other words, the probability p j of
class y j is obtained by multiplying the predicted probabilities along the path from the root of
the ND tree to the leaf node associated with y j (Frank and Kramer 2004). In case a definite
decision in favor of a single class has to be made, the expected loss minimizer can be derived
from the probability distribution (p1, . . . , pn); for 0/1 loss, this is simply the class y j for
which p j is highest.

Sometimes, a deterministic approximation of the above inference strategy is used, espe-
cially in the case of 0/1 loss. Roughly speaking, this strategy consists of submitting x to the
root of the dichotomy and following a single path in the tree, instead of exploring all paths.
At each inner node, the successor with the higher conditional probability is taken. Note that
this strategy can even be realized by any non-probabilistic binary classifier. An example for
this type of inference is provided in Duarte-Villaseñor et al. (2012) (see Sect. 4.2 for details).
In general, probabilistic and deterministic inference may yield different predictions.

2.2 The choice of base learners

The performance of a ND is of course not only determined by the choice of the decomposition
structure, but also by the choice of the base learner, which should be well adapted to the
binary problems involved. This can already be seen in the two examples in Fig. 3, where
performance differences between classification trees, logistic regression (LR), and decision
stumps are clearly visible. Note that these learners exhibit a natural order in terms of their
flexibility (as measured, for example, by the VC dimension): classification trees are able to
fit highly non-linear models, LR only linear ones, and stumps are even restricted to single
axis-parallel splits. While the flexibility of classification trees is obviously useful in the case
of pendigits, LR is a better choice for the mfeat-karhunen data.

While the average performance of the base learners is reflected by the location of the cor-
responding distribution in Fig. 3, one can also observe significant differences in the variance
of these distributions. In general, the less flexible the base learner, the higher the variance
in performance. This observation can be explained by the fact that flexible models can com-
pensate a suboptimal structure much better than less flexible ones; or, stated differently, the
choice of a suitable structure is much more critical when using simple models such as linear
discriminants or decision stumps. In the example in Fig. 2, for instance, the ND structure
(C, ((A, D), (B, E))) shown in Fig. 1 will yield a good solution when being trained with
logistic regression as a base learner. In contrast, a structure such as ((A, E), (B, (C, D)))

would lead to very poor performance, because it involves problems that call for highly non-
linear decision boundaries. Using classification trees as a base learner, the difference will be
less pronounced, since even nonlinear problems can be solved more or less accurately.

123

1542 Machine Learning (2018) 107:1537–1560

The idea of simplification, and of using simple binary learners, is at the core of decompo-
sition techniques such as nested dichotomies. From this point of view, the use of classification
trees as a base learner might be questioned, all the more because classification trees are not
restricted to binary problems, and hence could be applied to the original problem right away.
Although we could have used non-linear binary methods such as kernelized LR as well, we
nevertheless included classification trees as a representative of a non-linear learner in our
empirical study, simply because they have also been used in most of the previous studies.

2.3 Performance of nested dichotomies

Formally, one should distinguish between

(i) a nested dichotomy in the sense of a tree-structure or, equivalently, a recursive decom-
position of the set of classes Y , and

(ii) a nested dichotomy in the sense of a multi-class classifier, that is, the instantiation of a
structure through binary classifiers at the inner nodes.

Let Sn denote the set of all ND structures on n classes. Given a dataset D and a base learner
L , a structure S ∈ Sn is instantiated by training all binary classifiers required by S as outlined
above. Thus, the classifier S̄ = f (S,D, L) eventually produced depends on the structure,
the data, and the learner.

When speaking about the performance of a nested dichotomy, what we actually have in
mind is the expected performance of a structure S, where the expectation is taken over the
random sample D used for training. More specifically, let E(S̄) denote the generalization
performance of the classifier S̄, i.e., the expected loss of this classifier on newly generated
(test) data. Assuming L to be fixed, S̄ depends on the random sampleD, and is hence random
itself. Therefore, assuming data points (x, y) to be generated according to the distribution P
on X × Y , we define the performance of a structure S on training data of size N as follows:

E(S) = E(S, N) = ED∼PN

(
E(f (S,D, L)

)
, (1)

where E denotes the expected value operator. In practice, the performance (1) can of course
only be approximated. In our experimental studies, corresponding approximations will be
obtained by means of standard cross-validation techniques.

Likewise, the distributions shown inFig. 3 canbe seen as approximations of the distribution
of the performance (1) of a structure S drawn uniformly at random from Sn . From the figure
and our discussion so far, it is clear that the location and shape of these distributions is
strongly influencedby thebase learner L .Onemaywonder, therefore,whether the (numerical)
performances E(S) are ideally suited as indicators of the effectiveness of heuristic algorithms
for optimizing the structure S.

Alternatively, we may consider the ranking of the |Sn | structures S according to their
performance, where a structure S precedes another one S′ if E(S) is better than E(S′). Then,
one could ask for the position that a structure S∗ = A(D) chosen by an algorithm A will
reach in this ranking. Normalizing by the length |Sn | of the ranking, this leads us to the
exceedance probability as a measure of performance of an algorithm A:

pexc(A) = P
(
X > e(A)

)
, (2)

where
e(A) = E(E(S∗)) = ED∼PN

(
E(A(D))

)
(3)

123

Machine Learning (2018) 107:1537–1560 1543

is the expected performance of a structure S∗ produced by algorithm A (and randomly
influenced by the data D), and X is the performance E(S) of a structure chosen uniformly
at random from Sn .

Roughly speaking, pexc(A) is the probability that a randomly chosen structurewill perform
better than a structure produced by A. This measure has a number of appealing properties,
especially compared to predictive accuracy as a performancemetric. It puts a stronger empha-
sis on the choice of the structure S, while depending less on the absolute performance of the
base learner. Therefore, in contrast to accuracy, it is also comparable across different datasets.
Assuming values in [0, 1], the exceedance is well calibrated and has a simple interpretation:
Since the extreme value 0 can indeed be assumed, pexc is the “gap” to perfect performance,
while 1/2 is the performance achieved by a random selection.

3 Uniform random sampling of ND structures

As already mentioned, searching the space Sn of ND structures for a structure with optimal
(estimated) performance (1) is extremely difficult due to the enormous size of this space.
In fact, the size of Sn is finite but grows very quickly with n. It is not difficult to see that
this set is equal to the set of unordered complete binary trees on n nodes. The problem of
counting this set has been considered in combinatorics (Stanley and Fomin 1999), and its
size is known to be

|Sn | = 1 · 3 · 5 · · · (2n − 3) = (2n − 3)!! (4)

Obviously, this number is prohibitive and excludes an exhaustive search unless n is very
small. This is the reason for why sampling techniques are playing an important role in ND
structure optimization, and have already been used in several papers (Frank and Kramer
2004; Leathart et al. 2016; Dong et al. 2005). Nevertheless, a concrete algorithm for uniform
sampling has never been provided. This is a bit surprising, because the problem is less obvious
than it may appear at first sight.

The uniform sampling approach we suggest is based on the one-to-one correspondence
between ND structures and rooted full binary trees. In addition, each leaf node in a nested
dichotomy is labeled with the corresponding class, a property called “terminally labeled” in
the literature on tree algorithms. This labeling uniquely determines the dichotomies at all
inner nodes. The problem of generating a nested dichotomy can therefore be divided into
two steps: (i) generation of a rooted terminally labeled full binary tree and (ii) propagation
of leaf labels towards the root in order to determine the dichotomies at the inner nodes.

For the problem (i), several strategies have been proposed in the literature (Rohlf 1983;
Furnas 1984). Here, we provide a two-step procedure for uniform random sampling of rooted
terminally labeled full binary trees as suggested by Furnas (1984):

1. Generation of an unrooted terminally labeled full binary tree Tn . Given is a set of n
terminal nodes (leafs).

(a) Create a doublet “tree” T2 by connecting nodes 1 and 2 by a single edge.
(b) Until all n terminal nodes are connected to the tree, proceed with the following

random augmentation:
(i) Given a tree Tk on k < n terminal nodes, select an edge of Tk uniformly at

random.
(ii) On this edge, a new internal node of degree 3 is added and the (k+1)st terminal

node is connected. The result is a binary tree Tk+1 on k + 1 terminal nodes.

123

1544 Machine Learning (2018) 107:1537–1560

2. Transformation of Tn into a rooted tree.

(a) Choose an edge of Tn randomly with uniform probability.
(b) Introduce a new root node of degree 2 on this edge.

Furnas proved that this procedure provides a uniform random sampling of rooted termi-
nally labeled full binary trees. The time complexity of the first step is linear in the number of
classes n. The second step can be implemented in constant time, leading to an overall time
complexity of O(n).

For the label propagation problem (ii), we suggest the following solution. The leaf node
to which class yi has been assigned is labeled by the number 2i . The dichotomies at the
inner nodes are encoded with a pair of numbers [dl , dr], denoting the sum of all leaf labels in
the left and right subtree, respectively. Since all leaf nodes are encoded uniquely (with only
a single ‘1’ in the corresponding bit string), the encoding is unique. To propagate the leaf
labels, we traverse the nested dichotomy in postorder and encode every inner node with the
sum of the dichotomies of its child nodes [dll + dlr , drl + drr]. Since the complexity of tree
traversal is linear in the number of nodes and the summation, and generating the leaf labels
is nearly constant for a usual number of classes,2 step (ii) has an overall time complexity of
O(n). Using this approach, a single nested dichotomy can be sampled uniformly with the
time complexity O(n), i.e., linear in the number of classes in the original problem.

Interestingly, uniform random sampling is likely to produce NDs with a “degenerate” tree
structure (deeper trees). To show this, we consider a single inner node of a tree and compute
the probability for a split of the remaining classes at this node. We assume (k, n − k)-split
of n = |Y| ≥ 2 classes, where k ≥ 1 and k ≤ n/2 without loss of generality. According to
(4), the probability of observing such a split in the case of uniform random sampling is

PU (n, k) =
(n
k

)
T (k)T (n − k)

T (n)
=

(n
k

)
(2k − 3)!!(2(n − k) − 3)!!

(2n − 3)!! , (5)

where T (n) = (2n − 3)!! is the number of possible distinct NDs rooted at this node, T (k) =
(2k − 3)!! possible distinct NDs for the left subtree, T (n − k) = (2(n − k) − 3)!! for the
right subtree, and

(n
k

)
ways to choose k of n classes. The probability distributions is shown

in Fig. 4 for n = 20. It can be seen, that a uniform sampling procedure will tend to produce
splits where only a few classes are separated from the rest.

Intuitively, onemaywonderwhethermore balanced tree structuresmight not be preferable.
In particular, one could speculate that a short (average) path length from the root to a leaf of an
ND can increase the predictive performance, simply because the fewer the number of binary
decisions that are required, the smaller the probability of a mistake.3 On the other side, an
imbalanced binary problem might often be easier to solve, because there is a higher chance
of separability. In particular, separating a single class from the rest (a problem also solved by
the one-vs-rest decomposition) is probably easier than separating a randomly selected subset
of several classes from the remaining ones.

Interestingly, the CBND heuristic, to be explained in Sect. 4.3, deliberately produces
NDs with perfectly balanced tree structure. This heuristic suggests a quite simple sampling
technique that can be used to produce more balanced (and hence non-uniformly distributed)
structures: Starting with all classes Y in the root of a tree structure, the set of classes at

2 The length of the encoding number (as a bit string) is at most n. Both encoding operations (bit shift and
summation) will have roughly constant time for up to several hundred classes.
3 While this argument essentially applies to the case of deterministic inference, it also holds for probabilistic
inference, provided the probability mass concentrates on a few paths.

123

Machine Learning (2018) 107:1537–1560 1545

Fig. 4 Probability for (k, n − k)-splits with n = 20 for uniform sampling (top) and biased sampling (bottom)

each node is randomly decomposed into two subsets. This step is applied recursively until
every set contains only a single class. Each decomposition is done by drawing a subset of
the given set of classes uniformly at random.4 Although every ND can be generated by this
procedure, it will yield a biased (non-uniform) distribution. In the case of biased sampling,
the corresponding split probability is given by

PN (n, k) =

⎧
⎪⎨

⎪⎩

(nk)
2n−2
2

= (nk)
2n−1−1

, k < n/2

1
2 (

n
k)

2n−2
2

= (nk)
2n−2 , k = n/2

, (6)

because
(n
k

)
is the number of ways to choose a subset of size k, and the total number of splits

is half the number of (neither empty nor complete) subsets of n classes; the factor of 1/2 in
the case of k = n/2 is to avoid double counting of splits into two subsets of the same size.
It can be shown that PN (n, k) �= PU (n, k) as soon as n > 3. From the Fig. 4 it is clear that
the biased sampling method will more likely produce NDs with balanced tree structure.

4 Heuristics for ND structure optimization

Several heuristic methods for finding an optimal ND structure S ∈ Sn have been proposed
in the literature. In this section, we provide an overview of these methods and, moreover,
present two additional heuristics that can be seen as a natural completion of the existing
ones. Our description of the heuristics is restricted to the step of structure generation—once
a structure S is given, the step of turning it into a classifier S̄ by training binary classifiers is
essentially always the same.

4 CBND does not sample from all decompositions but only from balanced ones.

123

1546 Machine Learning (2018) 107:1537–1560

4.1 Random-pair selection (RPND)

The random-pair selection heuristic recently proposed by Leathart et al. (2016) is a random-
ized top-down heuristic that involves a predefined base learner L . Starting with the set of
all classes Y ′ = Y at the root node, the following procedure is applied recursively until sets
reduce to singletons:

1. A pair of classes yl , yr is chosen from Y ′ uniformly at random.
2. The base learner L is trained on examples of yl and yr to obtain a classifier h : X −→

{yl , yr } that discriminates between these two classes.
3. Two meta-classes Y ′

l and Y ′
r are created and initialized with {yl} and {yr }, respectively.

4. The instances from the remaining classes Y ′ \ {yl , yr } are classified using h.
5. For each class y ∈ Y ′ \ {yl , yr }, it is checked whether the majority of its instances are

classified as yl or yr . In the first case, y is added to the meta-class Y ′
l , in the second case

to Y ′
r .

6. A recursive call is made for Y ′
l and Y ′

r .

As already mentioned, the heuristic itself only determines a structure S, not a classifier
S̄. Thus, once S has been produced, the random-pair classifiers h are discarded, and the
classifiers required for the inner nodes of S are retrained.

4.2 Nested dichotomies based on clustering (NDC)

The structure optimization method suggested by Duarte-Villaseñor et al. (2012) is a
clustering-based heuristic. The dichotomies are again generated recursively in a top-down
manner, this time based on a (divisive) clustering in the instance space. To this end, the
centroids of all classes are computed:

x̄i = 1

|Di |
∑

(x,y)∈Di

x,

where Di = {(x, y) ∈ D | y = yi }. Starting with Y ′ = Y , a dichotomy for any remaining
(non-singleton) set of classes Y ′ is determined based on the following procedure:

1. The two maximally remote classes yl , yr are chosen from Y ′, i.e., the classes with the
highest distance ‖x̄l − x̄r‖ among all pairs of classes.

2. Two corresponding meta-classes Y ′
l = {yl} and Y ′

r = {yr } are initialized.
3. Every remaining class yi ∈ Y ′ \ {yl , yr } is added to the closest meta-class, i.e., to Y ′

l if‖x̄i − x̄l‖ < ‖x̄i − x̄r‖, and to Y ′
r otherwise.

4. A recursive call is made for Y ′
l and Y ′

r .

4.3 Class-balanced nested dichotomies (CBND)

The CBND heuristic proposed by Dong et al. (2005) is another top-down approach, mainly
aiming at creating NDs with a balanced tree structure. To achieve this goal, the dichotomies
are obtained by splitting the set of remaining classes Y ′ recursively into two roughly equal5
parts until Y ′ contains only a single class:
1. A subset Y ′

l ⊂ Y ′ is chosen from all subsets of size �|Y ′|/2� uniformly at random.

5 Equality refers here to the number of classes, not to their size.

123

Machine Learning (2018) 107:1537–1560 1547

2. The complement Y ′
r = Y ′ \ Y ′

l is determined to create a dichotomy.
3. A recursive call is made for Y ′

l and for Y ′
r .

Actually, the main motivation for this heuristic is a reduction of the runtime for training a
nesteddichotomy:Splitting the data in amore balancedway leads to smaller (average) training
data per binary problem, and hence to more efficient training of base learners. Moreover, a
balanced tree is also advantageous at prediction time, because the (average) path length
is only logarithmic (and not linear, as for degenerate trees). Indeed, the empirical results
provided by the authors suggest that this heuristic achieves a significant reduction in runtime
for ensembles of nested dichotomies while preserving predictive accuracy.

It has not been analyzed in Dong et al. (2005), however, how the heuristic affects the
performance of a single nested dichotomy. Yet, as we discussed in Sect. 3, there are reasons
to assume that a balanced structure can also have advantages from this point of view.

4.4 The Best-of-K heuristic (BoK)

The first heuristic we additionally propose is a very simple strategy that is also used for many
other optimization problems where solutions may vary from run to run (e.g., because of
local optima or randomization effects): Produce K candidate solutions and pick the best one.
In our case, being equipped with the sampling procedure for nested dichotomies from the
previous section, a natural idea for producing candidate solutions is to select them uniformly
at random. Thus, we arrive at the following algorithm, referred to as Best-of-K (BoK):

1. Sample K structures S1, . . . , SK ∈ Sn uniformly at random.
2. Train corresponding predictors S̄1, . . . , S̄K on D using the base learner L .
3. Select the (presumably) best structure Ŝ∗

K ∈ {S1, . . . , SK } based on performance esti-
mates Ê(Sk), for example the training or validation error of predictors S̄k (in our
implementation, we use the latter).

In spite of its simplicity, this approach has a strong theoretical justification, since the
exceedance probability of S∗

K , the model with the best generalization performance among
all K candidates, follows itself an extreme value distribution:

P
(
E(S∗

K) ≤ x
) = 1 − P

(
E(S∗

K) > x
)

= 1 −
K∏

k=1

P (E(Sk) > x)

= 1 − (1 − x)K

Thus, the probability of a high exceedance quickly reduces for increasing K , and the expected
exceedance goes to 0 (see Fig. 5).

Obviously, this line of reasoning is not completely valid, as it only refers to

S∗
K = argmax {E(S1), . . . , E(SK)} ,

i.e., the best selection based on the true performances E(Sk). Actually, however, the selection
is based on corresponding estimates Ê(Sk), i.e.,

Ŝ∗
K = argmax

{
Ê(S1), . . . , Ê(SK)

}
.

Depending on how noisy these estimates are, Ŝ∗
K = S∗

K is therefore not guaranteed. Never-
theless, in spite of this problem of “noisy selection”, the argument of course remains a strong
motivation.

123

1548 Machine Learning (2018) 107:1537–1560

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

exceedance

p(
ex

ce
ed

an
ce

)

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

K

ex
pe

ct
ed

 e
xc

ee
da

nc
e

Fig. 5 Left: Probability density functions of the (theoretical) exceedance of S∗
K for K ∈ {5, 10, 20}. Right:

Expected value of exceedance as a function of K ∈ {1, . . . , 100}

4.5 Heuristic based on agglomerative clustering (ACND)

The second heuristic we suggest is based on the concept of agglomerative hierarchical clus-
tering. This approach is mainly motivated by the observation that all previously suggested
heuristics are generating nested dichotomies in a top-down manner, i.e., starting with the
entire set of classes in the root node and recursively splitting it into subsets. In particular,
this also includes the NDC heuristic, which is based on divisive clustering. Thus, applying
clustering in the reverse direction, from bottom to top, appears like a rather obvious idea.

Correspondingly, the ACND heuristic works bottom-up and makes use of agglomerative
clustering. The classes Y constitute the leafs that are successively aggregated into a single
cluster. The agglomerative approach guarantees that the clusters with the smallest distance
to each other will be combined first, thereby shifting the presumably harder classification
problems further away from the root of the tree. The heuristic consists of three steps:

1. Every class yi ∈ Y is considered to be a pre-defined cluster

Ci = {x | (x, yi) ∈ D}
consisting of those instances in the training data labeled by this class. Correspondingly,
the set of initial clusters is C = {C1, . . . ,Cn}.

2. Using the UPGMA algorithm (Sokal 1958), the clusters are iteratively merged until a
single cluster remains. In every step, the two clusters that are closest in terms of the
(average linkage) distance

d(Ci ,C j) = 1

|Ci ||C j |
∑

xi∈Ci ,x j∈C j

‖xi − x j‖

are merged, i.e., the clusters Ci and C j are removed from C and replaced by Ci, j =
Ci ∪ C j ; the distance to all remaining clusters Ck ∈ C is recomputed according to

d(Ck,Ci, j) = |Ci |
|Ci | + |C j |d(Ck,Ci) + |C j |

|Ci | + |C j |d(Ck,C j) .

3. The hierarchical cluster structure is converted into a nested dichotomy. Since each cluster
is associated with a class, and in every step exactly two clusters are aggregated, there is
a one-to-one correspondence between the cluster structure and the nested dichotomy of
classes.

123

Machine Learning (2018) 107:1537–1560 1549

4.6 Complexity

Although complexity is not in the focus of this paper, let us shortly comment on the runtime of
the different heuristics. In this regard, it is clear that CBND is the fastest among all heuristics.
NDC and ACND are relatively fast, too, because there is no need to solve any classification
problem. Yet, the initial computation of pairwise distances d(Ci ,C j) on the level of instances
makes ACND a bit less efficient, because this operation scales quadratically with the size of
the classes.6 RPND and BoK aremore costly, because they repeatedly invoke the base learner
L on several problems; in both cases, a number of learning problems linear in the number
of classes n needs to be solved. Note, however, that the runtime of BoK can be reduced in
a rather simple manner. First, since the sampling procedure only depends on the number of
classes n, but not on the data itself, it can be carried out in a preprocessing step. Second, the
training in the second step can be done independently for each nested dichotomy. Thus, BoK
is naturally implemented in a parallel way. If K cores are available for computation, a speedup
factor close to K can be achieved in comparison to a standard (sequential) implementation.
Then, the runtime reduces to the maximal time needed to train a single ND.

5 Performance comparison

5.1 Data andmethods

We compare the performance of the discussed heuristics empirically on 27 standard bench-
mark datasetsmostly from theUCI repository. Table 1 provides a description of these datasets.
The datasets used in this study are made available on openml.org7 (Vanschoren et al. 2013).
Moreover, our Python implementation of the heuristics and the experiments is available at
github.8

We have used three base learners from the scikit-learn framework (ver. 0.19) (Pedregosa
et al. 2011): the classification tree learner CART, logistic regression, and decision stumps
(CART). These learners are meant to cover the spectrum from very flexible (CART) to very
restrictive (decision stumps), with linear models as fit by logistic regression in-between.
The hyper-parameters of the base learners were set to default values except for the minimal
decrease of the impurity in CART, which was set to .0001 to avoid excessively large trees
(with a strong tendency to overfit). For the datasets with missing feature values, we applied
imputation with themean replacement strategy. For categorical features, we adopt a separate
class imputation strategy that adds a ‘missing’ feature value. This strategy has been shown to
work well in the case of binary classifiers, both for CART and logistic regression (Ding and
Simonoff 2010). Since the base learners in scikit-learn are able to deal with numeric features
only, all categorical features were converted to numerical ones using one-hot encoding.

5.2 Experimental setting

The experimental study is designed as follows. On every dataset, we perform a 10-fold
cross-validation and measure the mean predictive accuracy of every heuristic in combination

6 Though in practice, it is normally enough to approximate these distances on a subsample.
7 https://www.openml.org/s/76/.
8 https://github.com/v-melnikov/nested-dichotomies.

123

https://www.openml.org/s/76/
https://github.com/v-melnikov/nested-dichotomies

1550 Machine Learning (2018) 107:1537–1560

Table 1 The datasets used in the study

Dataset # classes # instances # features # categorical

abalone 28 4177 8 1

anneal 5 898 38 32

arrhythmia 13 452 279 73

audiology 24 226 69 69

autos 6 205 25 10

ecoli 8 336 7 0

glass 6 214 9 0

kr-vs-k 18 28,056 6 3

LED 10 500 7 0

letter 26 20,000 16 0

mfeat-factors 10 2000 216 0

mfeat-fourier 10 2000 76 0

mfeat-karhunen 10 2000 64 0

mfeat-morphological 10 2000 6 0

mfeat-pixel 10 2000 240 240

mfeat-zernike 10 2000 47 0

optdigits 10 5620 64 0

page-blocks 5 5473 10 0

pendigits 10 10,992 16 0

primary-tumor 21 339 17 17

satimage 6 6430 36 0

segment 7 2310 19 0

shuttle 7 58,000 9 0

soybean 19 683 35 35

vowel 11 990 12 2

yeast 10 1484 8 0

zoo 7 101 16 15

with every base learner. Each such combination specifies a learning algorithm A, and cross-
validated accuracy serves as an estimate ê(A) of the generalization performance (3) of the
corresponding learner. To make the comparison as fair as possible, all heuristics are executed
on the same folds. In addition, to stabilize results for randomized heuristics, we repeat the
whole experiment ten times and average results. For all heuristics, probabilistic inference is
used (Sect. 2.1).

Motivated by our discussion about sampling in Sect. 3, we also evaluate a “biased” version
of the Best-of-K heuristic (BBoK). This is a variant of BoK in which ND structures are
sampled in a non-uniform way, i.e., with a bias towards more balanced structures. For both
BoK heuristics, we use the validation error as a selection criterion. The latter is computed as
the mean on a 3-fold CV error on the training data. Once being selected, the best-performing
ND is retrained on the whole training data.

For comparing the performance of different heuristics (learners A), we use the exceedance
probability (2). More specifically, since the underlying distribution of performances is not

123

Machine Learning (2018) 107:1537–1560 1551

Fig. 6 Accuracy distributions estimated from 10,000 randomly sampled nested dichotomies in combination
with CART, logistic regression, and decision stumps as base learners on themfeat-morphological dataset. The
(estimated) exceedance probability corresponds to the area under the accuracy distribution to the right of the
average performance of the heuristic, which is indicated by a vertical line

Table 2 Mean exceedance probability over all datasets

Base learner CBND ACND NDC RPND Bo10 Bo50 BBo10 BBo50

Decision stumps .608 .303 .174 .143 .080 .087 .121 .124

Logistic regression .692 .363 .265 .176 .130 .113 .242 .238

CART .571 .318 .311 .272 .228 .203 .232 .262

known, we approximate this measure by computing the exceedance on an empirical distribu-
tion obtained from 10,000 nested dichotomies sampled uniformly at random. The estimated
exceedance is then simply given by the fraction of random NDs which, when being trained
with the same base learner, yield a performance better than ê(A). Figure 6 illustrates this
approach for the mfeat-morphological dataset.

One technical remark concerns the learning of NDs for highly imbalanced datasets. When
splitting such data for training and testing, it may happen that some classes y ∈ Y are not
represented in the training data. Obviously, this leads to the problem that, for some binary
problems, there will be no examples for a meta-class. To be able to train NDs in such cases,
we make use of a default classifier that either predicts probabilities of 0 and 1 (if only one
meta-class is absent) or of 0.5/0.5 (if both meta-classes are empty).

5.3 Results

Detailed results of our experiments in terms of exceedance probabilities are provided in
“AppendixA”,which, for the sake of completeness, also presents the corresponding predictive
accuracies on all datasets. The main summaries of these results are provided in Table 2 in
terms of themean exceedance probability over all datasets, and in Table 3 in terms of pairwise
win/tie/loss statistics.

123

1552 Machine Learning (2018) 107:1537–1560

Table 3 Win/tie/loss statistics for CART (Panel A), logistic regression (Panel B), and decision stumps (Panel
C) as a base learner (row against column)

CBND ACND NDC RPND Bo10 Bo50 BBo10 BBo50

Panel A

CBND – 6/0/21 6/0/21 3/1/23 2/2/23 0/0/27 1/2/24 2/0/25

ACND 21/0/6 – 14/1/12 11/0/16 13/0/14 13/0/14 13/0/14 13/0/14

NDC 21/0/6 12/1/14 – 13/0/14 11/0/16 9/1/17 9/0/18 11/2/14

RPND 23/1/3 16/0/11 14/0/13 – 13/0/14 10/1/16 11/1/15 11/2/14

Bo10 23/2/2 14/0/13 16/0/11 14/0/13 – 12/1/14 14/1/12 18/1/8

Bo50 27/0/0 14/0/13 17/1/9 16/1/10 14/1/12 – 14/6/7 20/3/4

BBo10 24/2/1 14/0/13 18/0/9 15/1/11 12/1/14 7/6/14 – 19/2/6

BBo50 25/0/2 14/0/13 14/2/11 14/2/11 8/1/18 4/3/20 6/2/19 –

Panel B

CBND – 6/0/21 3/0/24 0/0/27 0/0/27 0/0/27 0/0/27 0/0/27

ACND 21/0/6 – 8/2/17 7/0/20 8/1/18 8/1/18 12/0/15 12/0/15

NDC 24/0/3 17/2/8 – 9/2/16 11/0/16 11/0/16 16/0/11 14/0/13

RPND 27/0/0 20/0/7 16/2/9 – 10/2/15 7/4/16 20/2/5 18/1/8

Bo10 27/0/0 18/1/8 16/0/11 15/2/10 – 7/4/16 21/3/3 22/1/4

Bo50 27/0/0 18/1/8 16/0/11 16/4/7 16/4/7 – 24/3/0 24/2/1

BBo10 27/0/0 15/0/12 11/0/16 5/2/20 3/3/21 0/3/24 – 8/3/16

BBo50 27/0/0 15/0/12 13/0/14 8/1/18 4/1/22 1/2/24 16/3/8 –

Panel C

CBND – 4/1/22 4/0/23 0/0/27 0/0/27 0/0/27 0/0/27 0/0/27

ACND 22/1/4 – 9/1/17 9/0/18 9/0/18 8/0/19 8/0/19 9/0/18

NDC 23/0/4 17/1/9 – 15/0/12 13/0/14 13/0/14 18/0/9 19/1/7

RPND 27/0/0 18/0/9 12/0/15 – 12/1/14 13/0/14 13/0/14 14/2/11

Bo10 27/0/0 18/0/9 14/0/13 14/1/12 – 17/1/9 15/1/11 15/4/8

Bo50 27/0/0 19/0/8 14/0/13 14/0/13 9/1/17 – 14/0/13 17/0/10

BBo10 27/0/0 19/0/8 9/0/18 14/0/13 11/1/15 13/0/14 – 14/1/12

BBo50 27/0/0 18/0/9 7/1/19 11/2/14 8/4/15 10/0/17 12/1/14 –

As a first conclusion from these results, we categorize the heuristics into three groups:
RPND, BoK and BBoK perform best, the clustering heuristics ACND and NDC are in the
middle, and CBND is worst. Interestingly, this ranking is in perfect agreement with the
amount of information exploited by the different heuristics or, stated differently, the degree
to which they produce ND structures that are tailored for the specific problem at hand:

– On the one extreme, CBND does not exploit any properties of the data, i.e., this heuristic
produces ND structures that are completely independent of the current problem.

– On the other extreme, RPND and BoK make use of both the data D and the base learner
L . Thus, the NDs produced by these heuristics are tailored for the problem at hand as
well as the algorithms used to learn a predictor.

– The cluster-based heuristics NDC and ACND are in-between in the sense of exploiting
the data D but not the learner L .

123

Machine Learning (2018) 107:1537–1560 1553

Interestingly, the average performance of CBND is even worse than sampling an ND
structure at random (which would yield a performance of 0.5). This suggests that, in terms
of performance, balanced NDs tend to be worse than more degenerate structures. This obser-
vation is also supported by the performance of the BBoK heuristic. It benefits from the
Best-of-K selection, but cannot achieve the performance of its unbiased variant BoK.

The heuristics based on clustering in the instance space (ACND and NDC) perform quite
comparable on most of the datasets when using CART as a base learner. More interesting
is the observation that the performance of these heuristics often strongly differs from each
other, which also means that they often “disagree” about the optimal structure of a nested
dichotomy. For example, on the dataset mfeat-morphological, the NDC heuristic clearly
outperforms ACND, but exactly the opposite is true for the dataset autos. ACND achieves
surprisingly strong performance with CART as a base learner, and even outperforms all other
heuristics on nine datasets. For weaker base learners, the average performance of NDC tends
to improve while the average performance of ACND remains roughly the same. But even in
these cases, ACND is a clear winner for some datasets (such as autos). This finding suggests
that the optimal choice of a clustering strategy (divisive or agglomerative) used to produce a
dichotomy strongly depends on the base learner and on the dataset at hand.

Among the previously proposed heuristics, the best performance is shown by RPND,
which is in agreement with earlier studies (Leathart et al. 2016). Yet, the performance of
BoK is highly competitive, which is probably the most interesting finding of our analysis.
BoK is superior to RPND for all base learners; this already holds for K = 10 and even more
so for K = 50. The strong performance of BoKmay appear surprising at first sight, especially
because of the simplicity of this heuristic. On the other side, as explained in Sect. 4.4, BoK
does indeed have a solid theoretical foundation.

Finally, we investigated whether the exceedance of a heuristic is influenced by the number
of classes in a dataset. Although there is no clear reason for why this should be the case, it
appears to be a quite obvious question, especially since standard accuracy measures (such as
misclassification rate) are definitely influenced. However, as can be seen in Fig. 7, a strong
(statistically significant) correlation is indeed not visible. Note that this result can also be
interpreted in favor of exceedance as a performance measure, since this measure tends to be
comparable across datasets.

6 Conclusion

In this paper, we addressed the problem of structure optimization for nested dichotomies.
If a single nested dichotomy, combined with a certain base learner, is used as a multi-class
classifier, its performance can vary a lot depending on how the decomposition structure is
chosen. From the point of view of automated machine learning, the ND structure can be
seen as a hyper-parameter that is subject to optimization, so as to guarantee the overall best
performance. Since an exhaustive search in the space of structures is in general infeasible,
several heuristics have been proposed in the literature.

We investigated the performance of these heuristics in an empirical study with 27 multi-
class datasets, and completed the repertoire of heuristics with two additional candidates.
Moreover,we proposed the exceedance probability as a suitable performancemetric. Roughly
speaking, the exceedance is the probability that a randomly chosen ND structure will yield
a better performance than the structure chosen by the heuristic. Compared to predictive
accuracy, this metric is less dependent on the base learner and comparable across different

123

1554 Machine Learning (2018) 107:1537–1560

Fig. 7 Exceedance plotted against the number of classes in a dataset. The base learners are marked by different
symbols: circle (CART), cross (logistic regression), and plus (decision stumps). For every heuristic, a linear
regression model (with 95% confidence band) was fitted

datasets. It assumes values in [0, 1] and has a simple interpretation: Since the extreme value
of 0 can indeed be achieved, pexc is the “gap” to perfect performance; moreover, 1/2 serves
as a calibration point, since this is the performance achieved by a random selection.

As for the approaches existing so far, our study identified the random-pair selection heuris-
tic (RPND) as a clear winner. This is in agreement with earlier studies on ensembles of NDs (
Leathart et al. 2016). More surprising is the strong performance of one of our new proposals,
the extremely simple Best-of-K heuristic, which outperforms all other heuristics even for a
relative small K = 10. Together with an efficient algorithm for uniform sampling of nested
dichotomies, and an obvious possibility for parallel implementation, this heuristic is highly
attractive and clearly worth further investigation.

123

Machine Learning (2018) 107:1537–1560 1555

Acknowledgements This work has been conducted as part of the Collaborative Research Center “On-the-Fly
Computing” (SFB 901) at Paderborn University, which is supported by the German Research Foundation
(DFG).

Appendix A: Detailed experimental results

In the following tables, we show the exceedance probabilities (best value per dataset marked
in bold) as well as the mean accuracies (with corresponding ranks) achieved by the heuristics
on each dataset, separately for the three base learners. Qualitatively, exceedance and accuracy
are in agreement with each other, although there are of course differences on a quantitative
level (Tables 4, 5, 6, 7, 8 and 9).

Table 4 Exceedance probability of different heuristics with CART as base learner

Dataset CBND ACND NDC RPND Bo10 Bo50 BBo10 BBo50

abalone .669 .797 .718 .294 .327 .341 .532 .572

anneal .480 .267 .409 .567 .480 .360 .480 .420

arrhythmia .630 .653 .873 .292 .330 .166 .194 .367

audiology .653 .042 .032 .017 .175 .174 .247 .244

autos .520 .099 .814 .450 .156 .155 .155 .207

ecoli .579 .017 .214 .116 .297 .199 .199 .153

glass .448 .274 .340 .563 .133 .383 .258 .221

kr-vs-k .646 .000 .002 .001 .060 .077 .063 .119

LED .503 .044 .288 .275 .617 .381 .503 .381

letter .379 .008 .003 .003 .209 .094 .094 .142

mfeat-factors .791 .554 .325 .308 .248 .103 .132 .192

mfeat-fourier .429 .308 .095 .136 .075 .195 .195 .088

mfeat-karhunen .829 .021 .141 .075 .275 .140 .131 .147

mfeat-morphol. .463 .869 .238 .716 .193 .210 .299 .491

mfeat-pixel .660 .005 .042 .045 .109 .089 .127 .152

mfeat-zernike .506 .428 .211 .222 .249 .130 .174 .211

optdigits .756 .799 .193 .223 .055 .085 .126 .169

page-blocks .665 .500 .356 .470 .408 .347 .347 .408

pendigits .563 .380 .139 .276 .090 .117 .074 .096

primary-tumor .338 .064 .402 .219 .338 .171 .174 .219

satimage .766 .134 .447 .310 .224 .235 .260 .284

segment .685 .567 .159 .362 .070 .159 .138 .159

shuttle .578 .510 .515 .578 .250 .250 .344 .344

soybean .432 .251 .680 .200 .109 .166 .087 .200

vowel .579 .078 .200 .043 .163 .216 .198 .282

yeast .344 .383 .016 .274 .390 .212 .413 .486

zoo .539 .540 .540 .315 .129 .315 .315 .315

123

1556 Machine Learning (2018) 107:1537–1560

Table 5 Mean accuracy and the corresponding rank of different heuristics with CART as base learner

Dataset CBND ACND NDC RPND Bo10 Bo50 BBo10 BBo50

abalone .20(6) .20(8) .20(7) .20(1) .20(2) .20(3) .20(4) .20(5)

anneal .96(6) .96(1) .96(3) .96(8) .96(5) .96(2) .96(7) .96(4)

arrhythmia .61(6) .61(7) .59(8) .63(3) .63(4) .64(1) .64(2) .63(5)

audiology .77(8) .81(3) .81(2) .81(1) .79(5) .79(4) .79(7) .79(6)

autos .78(7) .82(1) .76(8) .79(6) .81(4) .81(3) .81(2) .81(5)

ecoli .78(8) .83(1) .80(6) .81(2) .80(7) .80(5) .81(4) .81(3)

glass .65(7) .66(4) .65(5) .64(8) .67(1) .65(6) .66(3) .66(2)

kr-vs-k .69(8) .78(1) .76(3) .77(2) .74(4) .73(6) .74(5) .73(7)

LED .69(7) .70(1) .70(3) .70(2) .69(8) .70(4) .69(6) .70(5)

letter .85(8) .86(3) .86(1) .86(2) .85(7) .86(4) .86(5) .85(6)

mfeat-factors .86(8) .87(7) .87(6) .87(5) .88(4) .88(1) .88(2) .88(3)

mfeat-fourier .71(8) .71(7) .72(3) .72(4) .72(1) .72(6) .72(5) .72(2)

mfeat-karhunen .77(8) .81(1) .80(5) .80(2) .79(7) .80(4) .80(3) .80(6)

mfeat-morphol. .65(5) .64(8) .65(3) .65(7) .66(1) .66(2) .65(4) .65(6)

mfeat-pixel .82(8) .87(1) .86(2) .86(3) .85(5) .85(4) .85(6) .85(7)

mfeat-zernike .64(8) .64(7) .65(4) .65(5) .65(6) .65(1) .65(2) .65(3)

optdigits .89(7) .89(8) .90(5) .90(6) .91(1) .90(2) .90(3) .90(4)

page-blocks .97(8) .97(7) .97(3) .97(6) .97(4) .97(1) .97(2) .97(5)

pendigits .95(8) .95(7) .96(5) .95(6) .96(2) .96(4) .96(1) .96(3)

primary-tumor .36(7) .37(1) .35(8) .36(4) .36(6) .36(2) .36(3) .36(5)

satimage .85(8) .86(1) .86(7) .86(6) .86(2) .86(3) .86(4) .86(5)

segment .96(8) .96(7) .96(5) .96(6) .97(1) .96(4) .96(2) .96(3)

shuttle .00(8) .00(5) .00(6) .00(7) .00(1) .00(2) .00(4) .00(3)

soybean .91(7) .92(6) .90(8) .92(5) .92(2) .92(3) .92(1) .92(4)

vowel .78(8) .80(2) .79(5) .80(1) .79(3) .79(6) .79(4) .79(7)

yeast .51(4) .51(5) .53(1) .52(3) .51(6) .52(2) .51(7) .51(8)

zoo .94(6) .94(7) .94(7) .96(2) .97(1) .96(3) .95(5) .96(4)

average ranks 7.22 4.33 4.78 4.19 3.70 3.26 3.81 4.67

Table 6 Exceedance probability of different heuristics with logistic regression as base learner

Dataset CBND ACND NDC RPND Bo10 Bo50 BBo10 BBo50

abalone .578 .000 .000 .000 .055 .024 .050 .060

anneal .785 .883 .815 .086 .215 .243 .243 .243

arrhythmia .637 .596 .016 .292 .213 .184 .573 .466

audiology .895 .115 .002 .099 .094 .099 .157 .233

autos .416 .059 .989 .127 .127 .097 .168 .168

ecoli .626 .368 .563 .423 .062 .106 .107 .032

glass .608 .560 .204 .228 .134 .107 .231 .166

kr-vs-k .582 .032 .001 .000 .048 .065 .088 .108

LED .826 .082 .003 .107 .141 .107 .352 .314

123

Machine Learning (2018) 107:1537–1560 1557

Table 6 continued

Dataset CBND ACND NDC RPND Bo10 Bo50 BBo10 BBo50

letter .931 .001 .000 .000 .102 .070 .352 .416

mfeat-factors .810 .985 .064 .184 .085 .085 .381 .361

mfeat-fourier .812 .077 .065 .119 .077 .077 .184 .142

mfeat-karhunen .783 .245 .064 .052 .099 .085 .116 .254

mfeat-morphol. .596 .181 .175 .082 .116 .082 .179 .159

mfeat-pixel .848 .153 .153 .149 .053 .100 .425 .403

mfeat-zernike .782 .868 .195 .318 .103 .095 .354 .307

optdigits .781 .811 .297 .147 .058 .068 .341 .366

page-blocks .710 .491 .501 .216 .052 .119 .206 .245

pendigits .921 .367 .512 .236 .107 .080 .407 .363

primary-tumor .542 .871 .521 .348 .445 .191 .348 .261

satimage .452 .016 .074 .055 .046 .042 .070 .047

segment .347 .203 .487 .075 .092 .088 .160 .141

shuttle .667 .570 .612 .471 .271 .156 .264 .263

soybean .693 .754 .461 .432 .179 .179 .179 .342

vowel .743 .058 .000 .000 .073 .064 .130 .122

yeast .645 .086 .036 .145 .109 .093 .109 .100

zoo .679 .358 .358 .356 .356 .356 .356 .356

Table 7 Mean accuracy and the corresponding ranks of different heuristics with logistic regression as base
learner

Dataset CBND ACND NDC RPND Bo10 Bo50 BBo10 BBo50

abalone .24(8) .27(1) .26(3) .26(2) .25(6) .26(4) .25(5) .25(7)

anneal .91(6) .91(8) .91(7) .92(1) .92(2) .92(3) .92(5) .92(4)

arrhythmia .57(8) .57(7) .62(1) .59(4) .59(3) .59(2) .57(6) .58(5)

audiology .75(8) .79(5) .82(1) .79(3) .80(2) .79(4) .79(6) .79(7)

autos .64(7) .68(1) .56(8) .67(4) .67(3) .68(2) .66(6) .67(5)

ecoli .74(8) .75(5) .74(7) .75(6) .76(2) .76(3) .76(4) .76(1)

glass .54(8) .56(7) .60(4) .60(5) .60(2) .60(1) .59(6) .60(3)

kr-vs-k .29(8) .31(3) .33(2) .34(1) .31(4) .31(5) .31(6) .30(7)

LED .68(8) .74(2) .75(1) .73(4) .73(5) .74(3) .72(7) .72(6)

letter .48(8) .64(3) .72(1) .67(2) .58(5) .59(4) .55(6) .54(7)

mfeat-factors .95(7) .92(8) .97(1) .97(4) .97(2) .97(3) .96(6) .96(5)

mfeat-fourier .77(8) .80(4) .80(1) .80(5) .80(3) .80(2) .79(7) .80(6)

mfeat-karhunen .89(8) .92(6) .93(2) .93(1) .92(4) .93(3) .92(5) .92(7)

mfeat-morphol. .59(8) .67(7) .67(5) .68(2) .68(3) .68(1) .67(6) .67(4)

mfeat-pixel .91(8) .95(4) .95(4) .95(3) .96(1) .96(2) .94(7) .94(6)

mfeat-zernike .77(7) .76(8) .80(3) .79(5) .80(2) .80(1) .79(6) .79(4)

optdigits .90(7) .90(8) .93(4) .94(3) .95(1) .95(2) .93(5) .93(6)

page-blocks .95(8) .95(6) .95(7) .96(4) .96(1) .96(2) .96(3) .96(5)

pendigits .81(8) .89(5) .87(7) .90(3) .91(2) .91(1) .88(6) .89(4)

123

1558 Machine Learning (2018) 107:1537–1560

Table 7 continued

Dataset CBND ACND NDC RPND Bo10 Bo50 BBo10 BBo50

primary-tumor .46(7) .45(8) .47(6) .47(4) .47(5) .48(1) .47(3) .47(2)

satimage .83(8) .86(1) .85(7) .86(5) .86(3) .86(2) .85(6) .86(4)

segment .90(7) .93(6) .89(8) .95(1) .94(3) .95(2) .93(5) .94(4)

shuttle .89(8) .95(6) .95(7) .96(5) .96(4) .96(1) .96(3) .96(2)

soybean .92(7) .92(8) .93(6) .93(5) .93(1) .93(2) .93(3) .93(4)

vowel .45(8) .60(3) .72(1) .72(2) .60(5) .60(4) .57(7) .58(6)

yeast .51(8) .53(2) .54(1) .53(7) .53(6) .53(3) .53(5) .53(4)

zoo .94(8) .95(6) .95(6) .95(5) .96(1) .96(3) .96(2) .95(4)

average ranks 7.67 5.11 4.11 3.56 3.00 2.44 5.26 4.78

Table 8 Exceedance probability of different heuristics with decision stumps as base learner

Dataset CBND ACND NDC RPND Bo10 Bo50 BBo10 BBo50

abalone .361 .063 .006 .031 .115 .058 .046 .029

anneal .664 .664 .832 .510 .210 .454 .210 .210

arrhythmia .548 .636 .238 .218 .035 .093 .301 .274

audiology .429 .153 .000 .000 .015 .021 .020 .015

autos .615 .581 .710 .257 .067 .088 .193 .169

ecoli .675 .093 .133 .059 .104 .067 .052 .085

glass .669 .906 .016 .451 .215 .085 .075 .061

kr-vs-k .343 .046 .169 .073 .111 .093 .021 .048

LED .360 .083 .015 .002 .086 .097 .054 .047

letter .864 .068 .002 .009 .042 .075 .199 .231

mfeat-factors .915 .891 .105 .101 .055 .059 .248 .285

mfeat-fourier .850 .076 .073 .189 .072 .061 .106 .189

mfeat-karhunen .757 .016 .016 .073 .065 .067 .112 .086

mfeat-morphol. .477 .001 .039 .053 .060 .065 .048 .069

mfeat-pixel .308 .005 .001 .006 .039 .057 .019 .033

mfeat-zernike .874 .135 .118 .233 .064 .072 .128 .120

optdigits .541 .310 .059 .033 .033 .052 .051 .074

page-blocks .639 .746 .746 .449 .105 .105 .171 .151

pendigits .329 .005 .024 .095 .053 .059 .029 .036

primary-tumor .630 .313 .041 .324 .086 .059 .068 .086

satimage .633 .597 .088 .209 .077 .080 .059 .077

segment .561 .116 .039 .091 .108 .101 .054 .113

shuttle .663 .413 .127 .189 .057 .074 .099 .127

soybean .786 .183 .160 .007 .079 .053 .482 .320

vowel .653 .007 .014 .024 .074 .065 .199 .163

yeast .429 .203 .018 .070 .080 .089 .089 .070

zoo .832 .877 .911 .098 .047 .092 .131 .171

123

Machine Learning (2018) 107:1537–1560 1559

Table 9 Mean accuracy and the corresponding ranks of different heuristics with decision stumps as base
learner

Dataset CBND ACND NDC RPND Bo10 Bo50 BBo10 BBo50

abalone .24(8) .25(6) .26(1) .26(3) .25(7) .25(5) .26(4) .26(2)

anneal .85(6) .85(7) .83(8) .87(5) .87(3) .87(4) .87(1) .87(2)

arrhythmia .64(7) .63(8) .68(4) .69(3) .72(1) .71(2) .67(6) .68(5)

audiology .57(8) .61(7) .71(2) .73(1) .66(4) .65(6) .65(5) .66(3)

autos .53(7) .54(6) .53(8) .56(5) .59(1) .59(2) .57(4) .57(3)

ecoli .75(8) .81(5) .80(7) .82(2) .81(6) .81(3) .82(1) .81(4)

glass .58(7) .53(8) .69(1) .61(6) .62(5) .64(4) .65(3) .65(2)

kr-vs-k .25(8) .26(2) .26(7) .26(4) .26(6) .26(5) .26(1) .26(3)

LED .45(8) .51(5) .56(2) .61(1) .51(6) .51(7) .52(4) .53(3)

letter .25(8) .32(4) .36(1) .34(2) .33(3) .32(5) .30(6) .30(7)

mfeat-factors .58(8) .58(7) .72(4) .72(3) .74(1) .73(2) .69(5) .68(6)

mfeat-fourier .49(8) .60(4) .61(3) .58(7) .61(2) .61(1) .60(5) .58(6)

mfeat-karhunen .47(8) .59(1) .59(2) .56(5) .56(3) .56(4) .55(7) .56(6)

mfeat-morphol. .49(8) .67(1) .60(2) .59(4) .59(5) .58(6) .59(3) .58(7)

mfeat-pixel .53(8) .65(2) .69(1) .65(3) .60(6) .59(7) .62(4) .61(5)

mfeat-zernike .40(8) .51(6) .51(3) .49(7) .53(1) .52(2) .51(5) .51(4)

optdigits .52(8) .55(7) .60(5) .61(1) .61(2) .60(4) .60(3) .59(6)

page-blocks .94(6) .93(7) .93(7) .94(5) .95(1) .95(2) .95(4) .95(3)

pendigits .56(8) .67(1) .64(2) .61(7) .62(5) .62(6) .64(3) .63(4)

primary-tumor .35(8) .37(6) .41(1) .37(7) .40(5) .40(2) .40(3) .40(4)

satimage .65(8) .65(7) .77(5) .73(6) .78(2) .77(4) .78(1) .77(3)

segment .69(8) .80(7) .84(1) .82(3) .80(5) .81(4) .83(2) .80(6)

shuttle .90(8) .93(7) .93(5) .93(6) .93(1) .93(2) .93(3) .93(4)

soybean .52(8) .62(5) .62(4) .70(1) .64(3) .65(2) .57(7) .59(6)

vowel .34(8) .45(1) .44(2) .43(3) .41(5) .42(4) .39(7) .40(6)

yeast .49(8) .51(7) .55(1) .53(3) .53(4) .53(5) .53(6) .53(2)

zoo .80(6) .78(7) .76(8) .90(3) .91(1) .91(2) .89(4) .89(5)

average ranks 7.67 5.22 3.59 3.93 3.48 3.78 3.96 4.33

References

Dietterich, T., & Bakiri, G. (1995). Solving multiclass learning problems via error-correcting output codes.
Journal of Artificial Intelligence Research, 2, 263–286.

Ding, Y., & Simonoff, J. S. (2010). An investigation of missing data methods for classification trees applied
to binary response data. Journal of Machine Learning Research, 11(Jan), 131–170.

Dong, L., Frank, E., &Kramer, S. (2005). Ensembles of balanced nested dichotomies for multi-class problems.
Knowledge discovery in databases, Lecture Notes in computer science (Vol. 3721, pp. 84–95). Berlin
and Heidelberg and New York: Springer.

Duarte-Villaseñor,M.M.,Carrasco-Ochoa, J.A.,Martínez-Trinidad, J. F.,&Flores-Garrido,M. (2012).Nested
dichotomies based on clustering. In Progress in pattern recognition, image analysis, computer vision,
and applications: 17th iberoamerican congress, CIARP 2012, Buenos Aires, Argentina, September 3–6,
2012. Proceedings (pp. 162–169). Berlin Heidelberg, Berlin, Heidelberg: Springer.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F. (2015). Efficient and robust
automated machine learning. In Advances in neural information processing systems (pp. 2962–2970).

123

1560 Machine Learning (2018) 107:1537–1560

Frank, E., & Kramer, S. (2004). Ensembles of nested dichotomies for multi-class problems. In Proceedings
of the twenty-first international conference on machine learning, ICML ’04. New York: ACM.

Furnas, G. W. (1984). The generation of random, binary unordered trees. Journal of Classification, 1(1),
187–233.

Fürnkranz, J. (2002). Round robin classification. Journal of Machine Learning Research, 2, 721–747.
Leathart, T., Pfahringer, B., & Frank, E. (2016). Building ensembles of adaptive nested dichotomies with

random-pair selection. InMachine learning and knowledge discovery in databases: European conference,
ECML PKDD 2016, Riva del Garda, Italy, September 19–23, 2016, Proceedings, Part II (pp. 179–194).
Springer International Publishing.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.

Rifkin,R.,&Klautau,A. (2004). In defense of one-vs-all classification. Journal ofMachineLearningResearch,
5, 101–141.

Rodríguez, J. J., García-Osorio, C., & Maudes, J. (2010). Forests of nested dichotomies. Pattern Recognition
Letters, 31(2), 125–132.

Rohlf, F. J. (1983). Numbering binary trees with labeled terminal vertices. Bulletin of Mathematical Biology,
45(1), 33–40.

Sokal, R. R. (1958). A statistical method for evaluating systematic relationship. University of Kansas Science
Bulletin, 28, 1409–1438.

Stanley, R. P., & Fomin, S. (1999). Enumerative combinatorics, Cambridge studies in advanced mathematics
(Vol. 2). Cambridge: Cambridge University Press.

Thornton, C., Hutter, F., Hoos, H. H., & Leyton-Brown, K. (2013). Auto-WEKA: Combined selection and
hyperparameter optimization of classification algorithms. In The 19th ACM SIGKDD international con-
ference on knowledge discovery and data mining, KDD 2013 (pp. 847–855). Chicago, IL, USA.

Vanschoren, J., vanRijn, J. N., Bischl, B.,&Torgo, L. (2013).Openml:Networked science inmachine learning.
SIGKDD Explorations, 15(2), 49–60.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

123

	On the effectiveness of heuristics for learning nested dichotomies: an empirical analysis
	Abstract
	1 Introduction
	2 Nested dichotomies
	2.1 Inference
	2.2 The choice of base learners
	2.3 Performance of nested dichotomies

	3 Uniform random sampling of ND structures
	4 Heuristics for ND structure optimization
	4.1 Random-pair selection (RPND)
	4.2 Nested dichotomies based on clustering (NDC)
	4.3 Class-balanced nested dichotomies (CBND)
	4.4 The Best-of-K heuristic (BoK)
	4.5 Heuristic based on agglomerative clustering (ACND)
	4.6 Complexity

	5 Performance comparison
	5.1 Data and methods
	5.2 Experimental setting
	5.3 Results

	6 Conclusion
	Acknowledgements
	Appendix A: Detailed experimental results
	References

